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Abstract—Modern Smart City applications draw on the 

need for requirements that are safe, reliable and 

sustainable, as such these applications have a need to utilise 

machine learning mechanisms such that they are consistent 

with public liability. Machine and Deep Learning networks 

therefore are required to be in a form that are safe and 

deterministic in their development and also in their 

deployment. The viability of non-random weight 

initialisation schemes in neural networks make the network 

more deterministic in learning sessions which is a desirable 

property in safety critical systems where deep learning is 

applied to smart city applications and where public liability 

is a concern.  The paper uses a variety of schemes over 

number ranges and gradients and achieved a 98.09% 

accuracy figure, +0.126% higher than the original random 

number scheme at 97.964%. The paper highlights that in 

this case it is the number range and not the gradient that is 

affecting the achieved accuracy most dominantly, although 

there can be a coupling of number range with activation 

functions used.  Unexpectedly in this paper, an effect of 

numerical instability was discovered from run to run when 

run on a multi-core CPU.  The paper also has shown the 

enforcement of consistent deterministic results on an multi-

core CPU by defining atomic critical code regions, and that 

aids repeatable Information Assurance (IA) in model fitting 

(or learning sessions). That enforcement of consistent 

repeatable determinism has also a benefit to accuracy even 

for the random schemes, and a highest score of 98.29%, 

+0.326% higher than the baseline was achieved.  However, 

also the non-random initialisation scheme causes weight 

arrangements after learning to be more structured which 

has benefits for validation in safety critical applications. 

 

Keywords— Repeatable Deep Learning Networks, Non-

Random Weight Initialization, Security and Information 

Assurance, Smart Cities Safety-Critical AI, Learning Session 

Determinism. 

I. INTRODUCTION 

Smart City applications of Artificial Intelligence (AI) 

has the potential for growth in many areas in human life as 

an assistive technology [1], particularly the use of Deep 

Learning Networks and frameworks; however, 

applications for Safety Critical software with public 

liability concerns [2] has additional challenges in security 

in terms of Information Assurance (IA) in the context of 

hazard avoidance and safety criticality [3].  It may be 

argued that the application of AI and Deep Learning 

Networks have goals for replicating or challenging human 

abilities against a human performance baseline [4]. 

Although Safety Critical software has goals of 

completeness, correctness and repeatability making it 

rigorous in the development and in the deployed 

application performance [5], arguably to reach a 

performance that is 'more than human', in that it reduces 

human error [6].  With this consideration the application 

of Deep Learning Networks has challenges when applied 

to Safety Critical software in terms of gaining 

understanding and confidence for verification and 

validation of the machine learnt generalisation model [7], 

and that is a challenge for IA for AI both in the formed 

neural network generalisation model but also in the 

processes that formed that model [8].   

Smart City applications of deep learning have seen 

increasing popularity particularly as a decision making 

assistance tool [9, 10, 11, 12, 13]. A paper by De Souza et 

al [14] in 2019 surveys Machine Learning and Deep 

Learning uses in the Smart City applications, and applies 

data mining techniques to publications. Disregarding 

keywords that were highlighted in the paper findings but 

were part of their search criteria, it finds that the 

publications where it is most prevalent are from China, 

and with keywords of Models, Consumption, Prediction 

and Energy Efficiency and related to journals for energy 

consumption and transportation in the subjects of energy, 

health, and urban transport.  Also a paper by Nosratabadi 

et al [15] identifies that Smart City applications are using 

the following techniques: artificial neural networks; 

support vector machines; decision trees; ensembles, 

Bayesians, hybrids, neuro-fuzzy; and deep learning.  Of 

particular interest in this paper is the artificial neural 

network, and within this paper applications of the use of 

artificial neural networks are cited for: lightning detection, 

transport, wind turbine stability and water leak detection. 

Some of these applications provide smart assistance for 

transport network prediction and parking availability, and 

others provide efficiencies like water leak detection and 

wind turbine utilisation.  But it is lightning detection that 



gets close to the area of hazard prediction and avoidance, 

and is an example of artificial neural networks being used 

in risk applications.  In that work [16], building and 

lightning conductor shape datasets are used with a number 

of artificial neural network architectures to make 

predictions of the lightning hazards using a process 

involving detection and classification applied to building-

type categories.   

As a motivation, in this research paper there are 

multiple experiments that are conducted with retraining 

sessions, and the focus of this paper is repeatable 

determinism between training sessions.  Moreover, as a 

foundation layer for Deep Learning Networks to have 

determinism in learning sessions, this paper is part of a 

research thread that is examining the change in weight 

values of Deep Learning Networks after learning. It builds 

upon a previous journal paper [17] that was early work to 

understand weights and biases for formula extraction as a 

complement to rule extraction.  As part of that research an 

unexpected problem occurred with repeatable 

determinism; a variation in results occurred, and also as 

that work was seeking to extract meaning from the 

weights and biases, the notion of weight initialisation 

became important. The premise of this is that if the update 

was to be consistent it might be affected by the initial 

state, and the paper on the early work [17] found that 

unused vectors may retain a residue of the initial state. 

These research thread experiments were required to make 

measurements and comparisons from a stable set of 

known weights and biases before and after learning, such 

that comparisons after learning are repeatable and the 

experiment is controlled.  As such, currently accepted 

schemes of random number initialisations of the weight 

values [18] may need to be repeatable to preclude run to 

run variation. In this way the weight value initialisation is 

not a varying contributor, and initial condition residues 

[17] do not influence unused or less used vectors.  In 

consideration of Smart City applications, this research 

thread is looking to apply artificial neural networks in 

safety critical fields that may be important where public 

liability and confidence in a  decision assistance is present.  

As current applications are confined to decision assistance 

and algorithm selection. 

When considering an alternative policy in initialisation 

[19], the seeding of random numbers or the saving and 

retrieving of a previously generated random initial state, 

may provide a repeatable determinism in learning sessions 

in terms of a start condition that is finite. However, using 

a non-random initialisation state might provide greater 

understanding of a network when it is ordered, where as a 

random set is both asymmetric in values and unordered at 

the outset.  Also, as the Dense Layers of neural networks 

are fully connected, a disordered arrangement in the 

weight initialisation state should not be important or 

significant, and a random number set that is numerically 

ordered should give the same performance. 

Another approach that is motivated to enhance the 

subsequent update is the Xavier / Glorot and the He et al 

initialisation approaches in the article [20]. These 

approaches also use a random number set that is zero 

centred and can be normally or uniformly distributed, but 

sets the distribution variance to be dependent on the 

"number of neurons" in other layers of architecture.  

However, these two approaches differ by the gain value 

that they use to avoid saturations or dropouts. He et al 

builds upon Xavier / Glorot's approach to provide a signal 

gain normalisation that attains a distinct minima quicker in 

updates. 

Moreover, it may be considered that Xavier / Glorot 

and He et al initialisation approaches have application to a 

non-random initialisation scheme. An article [21] states 

that the use of random numbers allows asymmetry in the 

start condition whereas using a fixed value provides equal 

symmetry. Also in that article [21] is a view that, in the 

case of random initialisation the network is being taught to 

unlearn an initial condition in favour of a new learning 

condition. This means that for best effect, the initial 

condition and the learnt state must have a compatible 

symmetry transition.  This paper looks at the viability of 

non-random weight initialisation schemes in dense layers, 

to be used in place of the random number weight 

initialisations of an established well understood test case, 

where those symmetry transitions maybe more controlled.  

Xavier / Glorot and He et al initialisation gain approaches 

for the update efficiency can also be applied to that non-

random scheme. 

Another challenge is the time evolution of a solution, 

or the perfection of a solution with change i.e. the 

adaptation of a prediction in response to new behaviours.  

Melen at al provide an alternative approach [22] using a 

rule based approach that is more acceptable to safety 

critical applications rather than a neural network approach 

has been thus far. The Melen et al approach uses a 

Bayesian Network to control rule probability for selection 

of Expert System rules.  However, in the neural network 

context, this approach might express the need for 

repeatable determinism if neural networks are to be 

updated or retrained when adapting to change, and 

learning session variations of accuracy are a disruption to 

this. 

Applications to a mission critical problem may be 

considered. There has been research in this area for 

several years, with a number of papers relevant to safety 

critical applications in unmanned air vehicles [23], the 

automation of space missions [24] and unattended 

telecoms fault tolerance [25].  However, in the context of 

Smart City applications that have public liability or hazard 

concerns, the application of neural networks may be 

limited to advisory, decision assistance or algorithm 

selection. Repeatable determinism is a foundation of 

safety critical applications. In this context, the paper 

examines the nature of learning session variations, with an 

assumption that random states used as a stochastic 



coverage could have alternatives that allow coverage 

without learning session variation.  As this research is 

dealing with a fundamental level, the use of a familiar test 

case, although not a mission critical problem, it is well 

understood and is a simple architecture with dense layers 

that is mature to provide a demonstration benchmark.  

An advantage of the deep learning network approach 

in the overall research thread, is that it has the ability to 

form generalisation models that can perform tasks that 

may be considered intractable by traditional approaches. 

However, without controls, it can also form solutions that 

are not compliant to known understanding or real-world 

physics.  For Safety Critical systems where public liability 

is a concern, repeatability and determinism are desirable 

features for verification and validation, both for the 

processing to form the generalisation model, and when 

making a prediction with the model when deployed.  As 

both repeatable and deterministic aspects are desirable 

attributes and also form an experimental control, one 

aspect that may make a disruption to this is the use of a 

random number initialisation state of weights before 

learning.  Particularly if a residual of the initial state 

values is retained and varying, or if the asymmetry of the 

initial state is uncontrolled. It also may be that in dense 

layers that the use of random number initialisations is not 

of positional significance, although the non uniform step 

between values may be.  The familiar test case to be used 

also uses two dense layers and therefore provides a 

benchmark for these initialisation schemes. 

In Smart city applications neural networks and deep 

learning can be applied to municipal power grid 

management, traffic management, fault prediction and 

avoidance and applications within the home and car. As 

such applications may have public liability concerns, and 

the deployment and adoption of such systems may have a 

safety critical aspect that is required to be dependable but 

also safety controlled.  Arguably the deployment of deep 

learning neural networks has been restricted to advisory or 

assistance roles, thus avoiding the responsibility of 

rigorous verification and validation for safety critical 

applications.  However, clearly there is an appetite for 

deep learning neural networks in these applications, and 

this research looks at one aspect of this which is learning 

session Repeatable Determinism but more particularly the 

viability of an alternative initialisation scheme that is not 

random in dense layers. 

A. The Paper Structure 

The paper's approach is defined in section two, and 

will use a well known deliberately simplistic example 

that is mature, familiar and well understood which is 

using dense layers.  In section three, the baseline example 

is described and the initial baseline performance 

measured.  These initial results will use ten reset runs of 

learning because there is a run to run variation in learning 

session results.  Also the baseline example uses five 

epochs, but the first epoch will be focused on as this is 

the initial learning after the initialisation state. Later in 

the paper there is a comparative use of the five epochs 

with highest scoring schemes that will compare back to 

the example baseline.  Although in this example case the 

learning session variations have a relatively small 

variance. However, the objective is to gain no variance in 

learning sessions, as that is the Repeatable Determinism 

that is desired.  In section four the random number 

generators are seeded and the first epoch focused on to 

provide a single epoch baseline.  In section five, four 

fixed value schemes are experimented with and result in 

low scores.  In section six, four linear ramp schemes are 

experimented with that test number ranges with a 

constant gradient, and better scores are achieved. In 

section seven the sinusoidal slope initialisation schemes 

are experimented to introduce a change in slope and with 

comparable scores to the linear ramp.  Although the 

sinusoid and linear ramps both scored well the learning 

session variation persists, and section eight resolves the 

run to run learning session variation issue for 

discrimination purposes. Section nine experiments with a 

custom SoftMax function with numerical representation 

scaling, and  section ten draws the conclusions.  Section 

eleven makes recommendations and section twelve 

identifies areas for further research. The paper's 

contribution is the analysis of non random initialisation 

schemes and shows that a linear ramp using the Xavier / 

Glorot can be just as effective, although the paper also 

shows the enforcement of repeatable determinism 

II. THE APPROACH 

This paper looks at different non-random schemes 

with number ranges and gradients for a weight 

initialisation scheme to be used in place of a random 

number initialisation state. In Figure 1 the experiment 

design is illustrated showing variant and invariant 

components for the baseline control and experiment cases.   

 
Fig 1 Architecture of the Experiment's Design. 



In Figure 1, the original scheme case of the baseline 

and invariant components is illustrated in Green to show 

the control case. In Blue, Orange and Red are the three 

experiment variant classifications, each with four 

permutations, each of those four experiments use different 

number ranges around the Xavier / Glorot limits.  

Although, it is possible that Xavier / Glorot and He et al 

initialisations can still be applied, but in place of their 

respective adapted random number variances, a non-

random number range and gradient is used that is set 

between the Xavier / Glorot limits instead.   

Three main non-random initialisation weight schemes 

are experimented with, these are: fixed value, uniform 

linear ramp and sinusoid slope.  In each of these non-

random schemes the number range and gradient are 

changed as experiment controls with Xavier / Glorot 

limits.  Those three schemes that are employed provide 

discrimination between number ranges and gradient slopes 

used in those schemes.   The fixed value scheme has no 

gradient and no number range, the linear ramp scheme has 

a constant gradient and controlled number range, and 

lastly the sinusoidal slope schemes have a variation in the 

gradient and a controlled number range.   

The research contribution that this paper is seeking to 

provide is to answer a research question, that is: "Are 

random number initialisation weight values required as 

the initial state before learning to have high accuracy in 

predictions, or can a non-random scheme also have 

comparable performance in those predictions". 

This paper is a foundation environment for subsequent 

research experimental work that will examine changes and 

adaption to weights and biases after learning model fitting 

sessions in rule extraction.  The  foundation environment 

is using Anaconda Python, NumPy and Keras with 

TensorFlow deep machine learning framework accessed 

through the Jupyter Notebook web services environment.  

This work was required to establish a repeatable result 

with a defined known initial state that has comparable 

performance to the existing random initialisation schemes 

used currently.  The experiment's initial state before 

learning is to be defined, known and predictable such that 

it may be controlled and accounted for in results as a 

deterministic initial state that forms an experiment control.  

In the experiments a well understood problem that is 

published will be used. The MNIST dataset in TensorFlow 

with Keras and NumPy. This is an application of 

recognising hand written text characters and although in 

itself may not be a safety critical problem with public 

liability concerns, text character recognition in number 

plates still could have legal liabilities, and it is a mature 

reviewed solution and provides a fixed baseline to 

demonstrate a performance comparison with dense layers. 

III. THE BASELINE CONTROL CASE  

This example is familiar to researchers and is being 

used to demonstrate weight initialisations that are not using 

random number sequences, see the architecture in Figure 2.  

 
Fig 2 Architecture of the Baseline Example. 

This example is known as the "hello world" of Neural 

Networks.  When it is run the output from the evaluate 

command provides both Loss and Accuracy figures, from 

ten consecutive learning session runs it is noted that the 

losses and accuracies vary from run to run in each 

learning session (see Table 1). 
Run Loss Accuracy 

1 0.06106613632314256 98.18 

2 0.06175447308695293 98.16 

3 0.07186600035531446 97.72 

4 0.06600431568695349 98.18 

5 0.06500834331280785 98.13 

6 0.06586962914280885 98.01 

7 0.07172874092692509 97.96 

8 0.08020385432066396 97.65 

9 0.0815817079940578 97.71 

10 0.07415228985190625 97.94 

Mean 0.069923549 97.964 

Var 5.19614E-05 0.042737778 

StdDev 0.007208428 0.206731173 

Table 1: Hello World Example Results. 

 

There is a variation in both the loss and the accuracy 

figures, which means that there is some variation in the 

prediction performance depending on the model fitting 

using random Shuffles and the random initialisation of 

weights.  Random initialisation is a stochastic approach 

and is an approach that embraces incompleteness in a 

dataset.  However, from the ten runs in Table 1 the 

minimum loss and the maximum accuracy is in run 1, but 

it took ten runs to find that that was the initial state that 

provided the highest score.  The reasoning for this 

variation run to run may be considered to be due to the 

random number initialisation values present in the weight 

values and the shuffle ordering of the training dataset. 

Therefore setting the random number seed values before 

each learning session should make the random number 

sequence repeatable, and therefore the accuracy and loss 

values results the same from each learning session so that 

it is repeatable and deterministic, as a desirable attribute 

for safety critical systems in smart city applications. 

IV. SEEDING THE RANDOM NUMBER GENERATOR 

Running the same model with the no shuffle added to 



the fit command, and again using the evaluate command's 

loss and accuracy figures the results are gathered.  At this 

point the number of epochs is reduced to one because the 

early learning in the first epoch after the initialisation is 

the focus. Also the Tensor Flow and NumPy random 

seeds have been set to form a baseline value from one 

epoch that should make the random number sequence 

defined to be identical in each learning session. The 

comparative ten run results are in Table 2: 
Run Loss Accuracy 

1 0.1266106634631753 95.91 

2 0.1216393306143582 96.21 

3 0.13143637651763856 95.62 

4 0.1323663795016706 95.74 

5 0.12944038207307457 95.83 

6 0.13047181819714607 95.69 

7 0.13344295675437898 95.7 

8 0.13349654669184238 95.58 

9 0.12230887789316476 96.14 

10 0.12589706211015583 95.93 

Mean 0.128711039 95.835 

Var 1.92267E-05 0.045316667 

StdDev 0.004384824 0.212877116 

Table 2: Single Epoch Random Number Seeded Baseline Results 
 

From these ten results (in Table 2) run 2 has the 

highest score but it can be seen that the variation is still 

present at the same variance and standard deviation, 

although arguably the mean accuracy may have lowered 

by ~2%.  These values without the shuffle in a single 

epoch form the comparison baseline for further 

measurement experiments, as it is the epoch that occurs 

after the initialisation state. This might be an indicator that 

this variation in learning sessions is not attributable to the 

initialisation of the weights alone.  Adaption of the 

example allows the random initialize values to be 

substituted with non-random schemes, and this will allow 

the three discrimination initialisation cases to be 

experimented with.  The three initialisation schemes will 

be experimented with and these are: fixed values, linear 

ramps and sinusoid slopes, these will test different 

numerical aspects from values, gradients to number 

ranges.  These three schemes provide a isolation of 

numerical aspects where Fixed Values have no gradient 

and number range, Linear Ramps have a number range 

and a fixed gradient and the Sinusoid Slopes have a 

number range and a variation in the gradient. 

V. FIXED VALUE SCHEME  

Starting with a weight initialized array of 28×28×512 

in the second layer and 512×10 weight values in the fourth 

layer that are all containing a fixed value one (defined in 

Figure 3).  The weight initialisation layer dimensions in 

the second layer (or 1st Dense Layer) reflects the 512 

neurons and the image dimensions in the dataset which is 

28 by 28 monochrome pixels.  The weight initialisation 

layer dimensions in the fourth layer (or 2nd Dense Layer) 

reflect the 512 neurons and the 10 categories of numerical 

single digit values that an image could have in that 

dataset.  The ten learning session runs provided the results 

in Table 3 with a fixed value one. 

 
1st Dense Layer  = {+1 … +1} 
2nd Dense Layer = {+1  ... +1} 
Fig 3: Fixed Value (1.0) Weight Initialisation Tensor 
 

The ten run results are as follows in Table 3: 
Run Loss Accuracy 

1 14.490169499206543 10.1 

2 14.490169499206543 10.1 

3 14.490169499206543 10.1 

4 14.490169499206543 10.1 

5 14.490169499206543 10.1 

6 14.490169499206543 10.1 

7 14.490169499206543 10.1 

8 14.490169499206543 10.1 

9 14.490169499206543 10.1 

10 14.490169499206543 10.1 

Mean 14.490169499206543 10.1 

Var 0 0 

StdDev 0 0 

Table 3: Fixed Value (1.0) Results 

 

When fixed values are used the network initial state is 

symmetric and many nodes may be performing the same 

or similar calculation as the initial condition is the same in 

every weight, also the value one would appear to cause a 

saturation that Xavier / Glorot and He et al initialisation 

approaches were meant to overcome. The results have no 

variance run to run due to the saturation and loss in 

learning as the scheme provides a symmetric output as the 

initial state that is not providing variations in every nodes 

calculations towards the categorisation layer.  The next 

experiment is to use a fixed value of zero instead (in 

Figure 4), and gains the following results from the ten 

runs (in Table 4). 

 
1st Dense Layer  = {+0 ... +0} 

2nd Dense Layer = {+0  ... +0} 
Fig 4: Fixed Value (0.0) Weight Initialisation Tensor 
 

The ten run results are as follows in Table 4: 
Run Loss Accuracy 

1 2.3011607303619384 11.35 

2 2.301160646820068 11.35 

3 2.3011608764648437 11.35 

4 2.3011607875823974 11.35 

5 2.3011607551574706 11.35 

6 2.301160848617554 11.35 

7 2.3011607162475585 11.35 

8 2.3011607135772705 11.35 

9 2.3011607372283938 11.35 

10 2.3011608749389647 11.35 

Mean 2.301160769 11.35 

Var 5.88128E-15 0 

StdDev 7.66895E-08 0 

Table 4: Fixed Value (0.0) Results 

 

Again the accuracy values have no variance although 

the loss has a small variance run to run and the Xavier / 



Glorot and He et al initialisation approaches would 

optimise the number range towards a useful range to avoid 

dropouts and saturations.  In the Keras code [26] it is 

noted that the random initialisation value scheme used by 

default is "Glorot uniform" which is also known as 

Xavier.  This scheme would have set the random weight 

initialisation value limits to be between +/-0.0680414 in 

the first dense layer (as per sqrt(6/(28×28+512)) and set 

the weight initialisation values between +/-0.1072113 in 

the second dense layer as per sqrt(6/(512+10)).  So using 

the upper range of those values  (Figure 5) the benefit of 

those values is demonstrated in Table 5: 

 
1st Dense Layer  = {+0.0680414 …+0.0680414} 

2nd Dense Layer = {+0.1072113  ... +0.1072113} 
Fig 5: Fixed Value (Upper Glorot range) Weight Initialisation Tensor 

 

The ten run results are as follows in Table 5: 
Run Loss Accuracy 

1 1.7905318803787231 28.45 

2 1.7931770057678222 28 

3 1.7885990364074706 28.22 

4 1.7926008644104003 27.79 

5 1.792194675064087 28.13 

6 1.7864114040374757 28.93 

7 1.7913340614318847 27.81 

8 1.7892346405029298 28.36 

9 1.7960710954666137 27.85 

10 1.7946386306762696 28.02 

Mean 1.791479329 28.156 

Var 8.40606E-06 0.124671111 

StdDev 0.00289932 0.353087965 

Table 5: Fixed Value (Upper Glorot range) Results 

 At the upper Glorot limit value the accuracy in the ten 

runs has increased three fold and endorses the use of the 

value, however the network is not performing well with 

fixed values as it is not utilizing and combining different 

node influences as all values are the same at the outset, 

and may cause a same or similar calculation in many 

nodes.  Using just the lower limit (Figure 6) may conflict 

with the RELU in the 1st dense layer but for completeness 

the lower Glorot limit value is tested (Table 6). 

 
1st Dense Layer  = {-0.0680414 …-0.0680414} 

2nd Dense Layer = {-0.1072113  ... -0.1072113} 
Fig 6: Fixed Value (Lower Glorot range) Weight Initialisation Tensor 

 

The ten run results are as follows in Table 6: 
Run Loss Accuracy 

1 2.301160766983032 11.35 

2 2.3011607803344725 11.35 

3 2.3011608039855957 11.35 

4 2.301160773086548 11.35 

5 2.3011607959747313 11.35 

6 2.3011607624053956 11.35 

7 2.301160643005371 11.35 

8 2.301160859680176 11.35 

9 2.301160783004761 11.35 

10 2.301160697555542 11.35 

Mean 2.301160767 11.35 

Var 3.49831E-15 0 

StdDev 5.91465E-08 0 

Table 6: Fixed Value (Lower Glorot range) Results 

 

These results compare with the fixed zero value 

experiment.  However, with fixed values schemes this 

implies there is a sensitivity to the initialisation value and 

that the upper Glorot value as a potential to allow better 

learning. Also the network populated with a single 

repeated value in every weight as the initialisation scheme 

provides a symmetry that is difficult for the network 

learning to overcome, and may cause the network to be 

under-utilised.  But there still remains an application for a 

fixed values scheme, and this application is to inhibit 

learning for areas of weights that map to unused input 

vectors or when a network is deliberately under populated 

for growth, transferred learning or anticipated retraining in 

response to changes in the operating environment.   

A summary table in Table 7 follows of the 

experiments with the single epoch baseline and the fixed 

value weight initialisation schemes: 
Experiment Loss and Accuracy Comment 

Fixed value 

1.0  
Accuracy 

Mean 10.1% 

Var 0 

StdDev 0 

 

Loss 

Mean 14.49016949 

Var 0 

StdDev 0 

This scheme is the 

lowest score, however, 

it may have some 

applications to reserve 

a network area for 

later use like when an 

input vector is unused. 

Fixed value 

0.0  
Accuracy 

Mean 11.52% 

Var 0 

StdDev 0 

 

Loss 

Mean 2.301160769 

Var 5.88128E-15 

StdDev 7.66895E-08 

Low performing and 

compares with the 

negative number 

experiment.  However, 

it may have some 

applications for an 

network area to be  

disregarded. 

Fixed value 

Upper 

Glorot limit   

Accuracy 

Mean 28.156% 

Var 0.124671111 

StdDev 0.353087965 

 

Loss 

Mean 1.791479329 

Var 8.40606E-06 

StdDev 0.00289932 

Highest score although 

low performing but 

does show that the 

Glorot value has a 

benefit, although using 

only that value may 

under-utilise the 

network. 

Fixed value 

Lower 

Glorot limit   

Accuracy 

Mean 11.35% 

Var 0 

StdDev 0 

 

Loss 

Mean 2.301160767 

Var 3.49831E-15 

StdDev 5.91465E-08 

Compares with the 

zero number 

experiment and may 

conflict with the use of 

RELU in the first 

dense layer. 

Table 7: Fixed Value Summary Table 
 

It appears that using a fixed number as an initialised 

value has a large impact on the resultant accuracy, and 



that some of that accuracy is connected to the value used.  

This may be unsurprising as a fixed value is a large 

departure from a random number scheme in terms of 

number range and the step of influence in a node's initial 

value.  It may be that the value one may have caused the 

lowest score and was far outside the Glorot values, and the 

upper Glorot value has a threefold benefit.  But using 

fixed repeated number initialisation schemes may have 

under-utilised the network, with matching initial 

influences throughout the network that are performing 

same or similar updates. However, it could conceivably 

have a lower impact on learning on a remaining network if 

used to reserve a network area for growth or transferred 

learning.  The value zero could conceivably be used to 

disregard an area of a network by switching it off, and 

indeed zero values are used in pruning.  These results may 

of course only pertain to this model in particular in terms 

of values used, but we might of expected that fixed 

number schemes would have an large impact as 

statistically they are deterministic.  However the role of 

determinism in mission critical applications might have 

use for forcing deterministic outcomes in areas of a vector 

input that are to be disregarded or are unused and could be 

subjects for transferred learning. 

Moreover, there is a concern for repeatable 

determinism with learning sessions, as there is accuracy 

variations even with the random number generator seeded, 

the shuffle switched off and also when the weight 

initialisation vector is finite with the same dataset and 

architecture.  An observation is that a 32bit number 

floating point bit representation looses resolution when 

calculations are performed with 5 significant places 

difference. Also noticing that the input data is positive 

image values in the scale 0 - 255 rescaled to 0 - 1 and the 

weight initialisation value from the Glorot limit is 0.06... 

which is two significant places different.  Where a five 

significant place difference is experienced in an update 

computation this will begin to affect a 32bit calculation 

representation accuracy. A possible source of concern is 

the use of the SoftMax activation function, as the SoftMax 

function divides a number by the sum of an exponential 

number set.  Alternatively this may be solved by using a 

larger floating point bit representation for the accumulator 

in the sum or the use of pre and post scaling of the number 

scales before and after the accumulator calculations.  But 

this representation accuracy should be a repeatable effect.  

However, PC processors have a internal 80bit extended 

floating point precision register, that if interrupted by a 

task scheduler could cause rounding when a task is stored 

and retrieved during the learning sessions in asynchronous 

task scheduling events.  This would provide truncation of 

precision at different times in each learning session and 

result in variations. 

In summary it should also be noted that the results that 

show a lower mean accuracy are with fixed weight 

initialisation values. Perhaps the learning is more 

uniformly affecting other neurons by a similar amount and 

it could be expected by initial weight values that have no 

number range variations at the outset of learning.  The 

next set of experiments have a number range in a linear 

ramp so as to have a numerical difference in influence in 

each node that can combine, although with a standard 

interval in the values used. 

VI. LINEAR RAMP SCHEME 

Using a linear ramp in the Glorot range as the initial 

values of the weights to provide areas of the neural 

network that will have different dominance towards an 

output from the outset of learning, and a fixed gradient of 

values and number range in those initial weights may be 

higher performing.  The initialisation weight values are 

defined in Figure 7:  

 
1st Dense Layer  = {-0.0680414 …+0.0680414} 

2nd Dense Layer = {-0.1072113  ... +0.1072113} 
Fig 7: Linear Ramp (Glorot range) Weight Initialisation Tensor  
 

The ten run results are as follows in Table 8: 
Run Loss Accuracy 

1 0.1851132948242128 93.97 

2 0.16467118371911346 95.01 

3 0.16555062152668834 94.97 

4 0.1738155936975032 94.69 

5 0.18077268141284586 94.46 

6 0.2119653475858271 93.66 

7 0.19896690204292536 93.75 

8 0.19868872426487505 93.8 

9 0.19239787173271178 93.82 

10 0.17692170148193836 94.56 

Mean 0.184886392 94.269 

Var 0.00024044 0.276676667 

StdDev 0.015506117 0.526000634 

Table 8: Linear Ramp (Glorot range) Results 
 

It seems that a number range in weight values may be 

helpful and the accuracy is just ~1.5% less than the 

baseline result. The number range provides an initial 

influence that is varied in each node and can be combined 

providing a better utilisation of the network.  The 

comparable performance with the random scheme is 

explained by: in dense layers every node is connected so 

the placement order of values in a non uniform order is 

not important or significant. But the random number 

scheme has a non uniform step and is statistically unlikely 

to arrive on the value zero exactly or the two Glorot limit 

values, where as in this scheme that is a closer guarantee.  

To check the number range the same slope is used but 

nudged upward to positive values as zero to twice the 

upper Glorot limit and is defined in Figure 8: 

 
1st Dense Layer  = {0 …+2×0.0680414} 

2nd Dense Layer = {0  ... +2×0.1072113} 
Fig 8: Linear Ramp (0 - twice Glorot limit) Weight Initialisation Tensor  
 

The ten run results are as follows (in Table 9): 
Run Loss Accuracy 

1 0.2720342619046569 91.28 



2 0.2702090907022357 91.38 

3 0.2686337884970009 91.42 

4 0.2648709679841995 91.57 

5 0.26604176666885615 91.58 

6 0.26589927548691633 91.53 

7 0.26427238701581957 91.74 

8 0.26519556519016624 91.62 

9 0.2715027303129435 91.29 

10 0.2719804396606982 91.34 

Mean 0.268064027 91.475 

Var 9.9364E-06 0.024094444 

StdDev 0.003152205 0.155223853 

Table 9: Linear Ramp (0 - twice Glorot limit) Results  

 

It seems that the results are similar but a little reduced 

then the ramp over zero and is ~4% lower than the 

baseline in accuracy. The gradient was unchanged but the 

number range was slid up to positive numbers, but that 

number range reached a number range greater than the 

Glorot limit and reduced accuracy.  In the next experiment 

the gradient is changed but is now within the Glorot 

limits, as zero to the upper Glorot limit (in Figure 9): 

 
1st Dense Layer  = {0 …+0.0680414} 

2nd Dense Layer = {0  ... +0.1072113} 
Fig 9: Linear Ramp (0 to Glorot limit) Weight Initialisation Tensor  
 

The ten run results are as follows (in Table 10): 
Run Loss Accuracy 

1 0.239874689412117 92.44 

2 0.24703469477891923 92.19 

3 0.2418467572107911 92.39 

4 0.22567530573680997 92.82 

5 0.25892428045272825 91.72 

6 0.24337126431316136 92.52 

7 0.22973494304940104 92.79 

8 0.2376753763526678 92.35 

9 0.23152151829451323 92.71 

10 0.23743405939936638 92.55 

Mean 0.239309289 92.448 

Var 9.02308E-05 0.105462222 

StdDev 0.009498988 0.324749476 

Table 10: Linear Ramp (0 to Glorot limit) Results 

 

 These results are very similar at ~3% less than the 

baseline, and for completeness trying the negative value of 

the same gradient as -Glorot to zero (Figure 10).  

Although it is expected that the ReLU used in the first 

dense layer's activation function will affect the 

performance with negative numbers. 

  
1st Dense Layer  = {-0.0680414 … 0} 
2nd Dense Layer = {-0.1072113 ... 0} 
Fig 10: Linear Ramp (-Glorot limit to 0) Weight Initialisation Tensor  
 

The ten run results are as follows (in Table 11): 
Run Loss Accuracy 

1 2.301160806274414 11.35 

2 2.301160684585571 11.35 

3 2.301160723876953 11.35 

4 2.301160803604126 11.35 

5 2.3011607578277586 11.35 

6 2.301160758972168 11.35 

7 2.301160799407959 11.35 

8 2.3011608020782472 11.35 

9 2.301160831451416 11.35 

10 2.301160835647583 11.35 

Mean 2.30116078 11.35 

Var 2.33796E-15 0 

StdDev 4.83524E-08 0 

Table 11: Linear Ramp (-Glorot limit to 0) Results  

 

 The results are very much lower almost like the 

negative values that were seen with the fixed values 

suggesting that layer 2 ReLU activations may have 

dropouts suppressing values from the outset that are less 

than zero.  A summary table of the results is in Table 12: 
Experiment Loss and Accuracy Comment 

Ramp 

through 

Glorot 

range 

Accuracy 

Mean 94.269% 

Var 0.276676667 

StdDev 0.526000634 

 

Loss 

Mean 0.184886392 

Var 0.00024044 

StdDev 0.015506117 

Learning Session 

variance in results, but 

only 1.5% lower 

accuracy from the 

baseline in this case. 

Same 

Slope as 

the Glorot 

range but 

slid up to 

positive 

numbers 

Accuracy 

Mean 91.475% 

Var 0.024094444 

StdDev 0.155223853 

 

Loss 

Mean 0.268064027 

Var 9.9364E-06 

StdDev 0.003152205 

Variance in numbers, 

4% lower accuracy 

from the baseline in this 

case. 

Change in 

slope but in 

positive 

and Glorot 

limited 

Accuracy 

Mean 92.448% 

Var 0.105462222 

StdDev 0.324749476 

 

Loss 

Mean 0.239309289 

Var 9.02308E-05 

StdDev 0.009498988 

Variance in numbers, 

3% lower accuracy 

from the baseline in this 

case. 

Same slope 

as the 

above 

experiment 

but  

negative 

values and 

-Glorot  

limited 

Accuracy 

Mean 11.35% 

Var 0 

StdDev 0 

 

Loss 

Mean 2.30116078 

Var 2.33796E-15 

StdDev 4.83524E-08 

No variance in the 

accuracy and variances 

in Loss. Accuracy is 

low performing and the  

ReLU activation 

function may have 

affected learning from 

the outset. 

Table 12: Linear Ramp Summary Table 

 

From these results negative number ranges seem to be 

low performing and positive values higher performing, but 

the range between Glorot limits was the highest 

performing in terms of accuracy at just 1.5% less than the 

baseline.   The gradient changed between the experiments 

with 0.0 to Glorot upper limit and 0.0 to two times the 

upper Glorot limit but had little difference in results, but 



the number range and gradient were changed together.  In 

the next set of experiments the gradient and number range 

are changed more independently using a sinusoidal slope. 

VII. SINUSOID SLOPE SCHEMES 

A moving gradient is used starting with the Glorot 

range limits in a sinusoidal form such that the number 

range is the same but the gradient is changing with respect 

to the linear ramp experiment of the same range (the 

sinusoidal form is in Figure 11). 

 
1st Dense Layer  = cos({0 ... }) × 0.0680414 

2nd Dense Layer = cos({0 ... }) × 0.1072113 
Fig 11: Sinusoid slope (Glorot range) Weight Initialisation Tensor  
 

The ten run results are as follows (in Table 13): 
Run Loss Accuracy 

1 0.17446787632405758 94.66 

2 0.16790239577889443 95.09 

3 0.17015618828460574 94.79 

4 0.17184093101769685 94.74 

5 0.16502467265054582 95.03 

6 0.1692778503138572 94.86 

7 0.16809104131534697 94.84 

8 0.17081736022941768 94.78 

9 0.16529247453436255 95.08 

10 0.16685232015512882 94.99 

Mean 0.168972311 94.886 

Var 8.76335E-06 0.022937778 

StdDev 0.002960295 0.151452229 

Table 13: Sinusoid slope  (Glorot range) Results 

The results are similar to the linear ramp over the same 

number range which was also only ~2% lower than the 

baseline,  Using the positive figure experiment with the 

same sinusoidal pattern in the range 0 to two times the 

Glorot upper limit in Figure 12. 

 
1st Dense Layer = cos({0...})×0.0680414+0.0680414 

2nd Dense Layer = cos({0...})×0.1072113+0.1072113 
Fig 12: Sinusoid slope (twice Glorot limit-0) Weight Initialisation Tensor  
 

The ten run results are as follows (in Table 14): 
Run Loss Accuracy 

1 0.2793025099083781 91.4 

2 0.2805209428802133 91.43 

3 0.28077282523810865 91.37 

4 0.2799623735308647 91.44 

5 0.27916926593780517 91.38 

6 0.27978013244271277 91.38 

7 0.28000284353345634 91.39 

8 0.2676098602056503 91.68 

9 0.2806942581638694 91.42 

10 0.28791632864177225 91.24 

Mean 0.279573134 91.413 

Var 2.41043E-05 0.01189 

StdDev 0.004909613 0.109041277 

Table 14: Sinusoid slope (twice Glorot limit-0) Results  

 

The accuracy is 4% lower than the baseline.  The next 

experiment also uses positive values, but only in the range 

0 to the upper Glorot limit in the same sinusoidal form 

(shown in Figure 13). 

 
1st Dense Layer = cos({0...})×0.0680414/2+0.0680414/2 

2nd Dense Layer = cos({0...})×0.1072113/2+0.1072113/2 
Fig 13: Sinusoid (upper Glorot limit to 0) Weight Initialisation Tensor  

 

The ten run results are as follows (in Table 15): 
Run Loss Accuracy 

1 0.2200166605822742 93.41 

2 0.2440426151908934 92.68 

3 0.248060436925292 92.48 

4 0.2443391766808927 92.53 

5 0.2500976152040064 92.38 

6 0.24831699962988496 92.46 

7 0.25095710896626117 92.4 

8 0.2400451942332089 92.66 

9 0.2460106762483716 92.55 

10 0.24416129550859333 92.73 

Mean 0.243604778 92.628 

Var 7.93523E-05 0.08944 

StdDev 0.008907991 0.29906521 

Table 15: Sinusoid Slope (upper Glorot limit to 0) Results 

 

Also slightly lower results at almost 3% less than the 

baseline, but for completeness the sinusoidal range of 

lower Glorot Limit to 0 is provided in Figure 14.  

 
1st Dense Layer = cos({0...})×0.0680414/2 -0.0680414/2 

2nd Dense Layer = cos({0...})×0.1072113/2 - 0.1072113/2 
Fig 14: Sinusoid Slope (0-Lower Glorot) Weight Initialisation Tensor  

 

The ten run results are as follows (in Table 16): 
Run Loss Accuracy 

1 2.301160799407959 11.35 

2 2.3011607650756836 11.35 

3 2.3011606666564943 11.35 

4 2.30116068611145 11.35 

5 2.3011605926513674 11.35 

6 2.301160647583008 11.35 

7 2.3011606704711913 11.35 

8 2.3011606185913087 11.35 

9 2.3011607677459716 11.35 

10 2.30116082611084 11.35 

Mean 2.301160704 11.35 

Var 6.39136E-15 0 

StdDev 7.9946E-08 0 

Table 16: Sinusoid Slope (0-Lower Glorot) Results 

 

As expected the negative values are low performing, 

but a summary of these experiments using sinusoidal 

slope patterns are shown in Table 17: 
Experiment Loss and Accuracy Comment 

Sinusoid 

slope in 

Glorot 

Range  

Accuracy 

Mean 94.886% 

Var 0.022937778 

StdDev 0.151452229 

 

Loss 

Mean 0.168972311 

Var 8.76335E-06 

StdDev 0.002960295 

Almost the same score 

as the same number 

range with the linear 

ramp experiment. 



Sinusoid 

slope from 

twice the 

Glorot 

upper limit 

to 0 

Accuracy 

Mean 91.413% 

Var 0.01189 

StdDev 0.109041277 

 

Loss 

Mean 0.279573134 

Var 2.41043E-05 

StdDev 0.004909613 

Almost the same score 

as the same number 

range with the linear 

ramp experiment. 

Sinusoid 

slope from 

Glorot 

upper limit 

to 0 

Accuracy 

Mean 92.628% 

Var 0.08944 

StdDev 0.29906521 

 

Loss 

Mean 0.243604778 

Var 7.93523E-05 

StdDev 0.008907991 

Almost the same score 

as the same number 

range with the linear 

ramp experiment. 

Sinusoid 

slope from 

0 to lower 

Glorot 

limit. 

Accuracy 

Mean 11.35% 

Var 0 

StdDev 0 

 

Loss 

Mean 2.301160704 

Var 6.39136E-15 

StdDev 7.9946E-08 

This result also 

coincides with the 

linear ramp of the same 

number range. 

Table 17: Sinusoid Slope Summary Table 

 

The sinusoidal slopes have comparable results to the 

linear ramps, although when compared with the Glorot 

range the sinusoidal slopes have a small benefit. Perhaps 

that might be thought to be due to the non uniform interval 

step in values, and its' statistical probability of having less 

values nearer zero as per its bath tub distribution.  

However, later the solution to the learning session 

variation will show linear ramps are higher performing 

when a numerical stability is solved. 

Taking the highest score of the sinusoid slopes in the 

range of the Glorot limits and re-running with the five 

epochs and enabling the shuffle, provides the following 

results (in Table 18) as a comparison to the original 

baseline performance: 

 
Run Loss Accuracy 

1 0.06873708092225715 97.99 

2 0.07566913830568082 97.75 

3 0.06941359058758244 97.81 

4 0.07690233801202849 97.75 

5 0.07229105311079184 98 

6 0.07870250816526823 97.79 

7 0.06857179706634488 97.98 

8 0.07224223068275024 97.86 

9 0.07307772935463581 97.75 

10 0.07484171458326745 97.87 

Mean 0.073044918 97.855 

Var 1.22188E-05 0.010494444 

StdDev 0.003495545 0.102442396 

Table 18: Five Epoch and Shuffle with High Score Sinusoid Slope 
 

In comparison with the high Score Linear Ramp, the 

results are shown in Table 19 and the accuracy of learning 

sessions run to run figures are similar, and the accuracy is 

about the same as the baseline but is not using random 

weight initialisations: 

 
Run Loss Accuracy 

1 0.06948850467810408 97.93 

2 0.0810321348624304 97.66 

3 0.07320999270802131 97.81 

4 0.0818435779891268 97.49 

5 0.06348531504337443 97.95 

6 0.07764026021502214 97.67 

7 0.08206962382048369 97.53 

8 0.07047365378377726 97.86 

9 0.07122972569263075 97.9 

10 0.06634688437929144 97.93 

Mean 0.073681967 97.773 

Var 4.42831E-05 0.029801111 

StdDev 0.006654552 0.172629983 

Table 19: Five Epoch and Shuffle with High Score Linear Ramp 

 

The following graph in Figure 15 is a bar graph of the 

learning session accuracy results, from each of the 

consecutively reset learning session runs.  It is sorted into 

numerical order to illustrate the relative variations and 

curve in variations. 
 

 
Fig 15: Five Epoch runs between Random, Sinusoid and Linear Ramp 

 

In a comparison of the accuracy values, the accuracy 

value range between the Original Random, Sinusoid Slope 

and Linear Ramp schemes is shown in Figure 15.  The 

graph in Figure 15 shows that the original random scheme 

using Glorot limits still has the higher score potential for 

the highest accuracy values (98.18%).  But the Original 

Random scheme has the largest variation in accuracy 

values (0.53%) so that requires more throwaway reset 

learning session iterations to achieve that score and to 

know it is the highest value.  The next best is Sinusoid 

slope achieving a maximum of (98%) but has the smallest 

variation (0.25%) meaning that it achieves a more 

deterministic measurement quicker and also its' minimum 

is higher than the minimum of the random schemes.  The 

Linear Ramp achieves a maximum of 97.49% accuracy 

and variations of 0.46% making it have the lowest 

accuracy scoring potential, but it still has a smaller 



variation and has more determinism then the original 

random scheme. 

Comparing those results with the single Epoch which 

is the first epoch after the initialisation state. Figure 16 

shows the single epoch results for the same schemes. 

 
Fig 16: 5 1st Epoch run between Random, Sinusoid and Linear Ramp 

 

Using just the first epoch, the accuracy values are 

naturally reduced and the variances are increased. The 

Original Random Scheme's accuracy is 1.97% less 

(96.21%), the sinusoid slope's accuracy is 2.91% less 

(95.09%) and the linear ramp's accuracy is 2.94% less 

(95.01%).  However in repeatable determinism order, i.e. 

variation order in the learning sessions, the lowest 

variation (i.e. greatest repeatable determinism) is still the 

sinusoidal slope. Then the original random scheme, has 

the second lowest variation at 0.63%, and Linear ramp 

with the highest variation at 1.35%. 

In the comparison of those results (Figure 15 and 

Figure 16) it should be appreciated that the initial 

condition is a transitory state and the learning will update 

the weights subsequently as a state change. It may be 

noted that the linear ramp variance benefited the most 

from the epochs in terms of repeatable determinism 

closing its variations by 0.98%, then the sinusoid slopes at 

0.18% and followed by the original random number 

scheme 0.1%. Also the maximum achieved accuracy 

benefited the linear ramp the most (2.94% increase), then 

sinusoidal slope (2.91%) followed by 1.97%,  Thus 

meaning that the learning may have been marginally 

slower in the non random schemes thus requiring more 

epochs and benefiting more from them. 

However, it may be that early learning in the model 

has been affected, and in some model datasets in learning 

that the colour of the noise in the image may have been  

further coloured by the learning session variations and 

perhaps less fit the selected regularisation scheme as 

intended, or in this example as there is no regularisation 

selected, it might provide a unintended regularisation 

scheme and a third source of noise for colourisation. 

Although these results seam to show that the non-

random initialisation schemes provide a slightly lower 

accuracy to random numbers, it is providing higher 

repeatable determinism then the random number 

initialisation scheme.  The learning session to learning 

session variation in results is masking the actual 

repeatable determinism accuracy measurements and 

causes a number of throwaway learning session runs to be 

conducted to gain the best accuracy. This learning session 

variation needs to be tackled to improve the measurement 

accuracy made, for both the experiment and the baseline 

values, as the ten learning session runs may be affected by 

the variation and be adding to a regularisation effect of 

which those schemes may benefit by different amounts. 

VIII. TACKLING THE REPEATABILITY RUN TO RUN 

There is still a variance run to run in the results even 

using the seeded random numbers with non-random 

weight value initialisations but taking into account the 

possibility of the scheduling causing variations in number 

representations.  An experiment to invoke the real-time 

priority of the scheduler [27] with an affinity to one 

processor [28] as an attempt to deny or reduce interruption 

of the task thread.  Take note that in some operating 

systems you may need to run in admin privileged modes. 

With the real-time priority selected on a single 

processor affinity then the learning session becomes 

completely repeatable in each of the ten runs (see Table 

20).  This supports the theory that task scheduling is 

interrupting and truncating calculations in the CPU's 

internal  80bit extended precision floating point register 

[29], as now the task is running on one processor 

uninterrupted in a critical region of code.  This provides 

an accurate repeatable figure for the highest scoring 

sinusoid scheme (in Table 20). 
Run Loss Accuracy 

1 0.06988054851347116 97.93 

2 0.06988054851347116 97.93 

3 0.06988054851347116 97.93 

4 0.06988054851347116 97.93 

5 0.06988054851347116 97.93 

6 0.06988054851347116 97.93 

7 0.06988054851347116 97.93 

8 0.06988054851347116 97.93 

9 0.06988054851347116 97.93 

10 0.06988054851347116 97.93 

Mean 0.069880549 97.93 

Var 0 0 

StdDev 0 0 

Table 20: Highest Score Sinusoid Slope, in a Critical Region of code 

 

It should be noted that this score is the 4th highest 

value for this scheme encountered for sinusoidal schemes 

and is achieved in a single learning session run. 

Now that the runs are consistent the highest score 

number ramp scheme with the Glorot range is re-run with 

no variance in the results and they are similar suggesting 

that the initialisation and task scheduler denial is 

providing repeatability run to run (see Table 21): 
Run Loss Accuracy 

1 0.06633297475341242 98.05 

2 0.06633297475341242 98.05 

3 0.06633297475341242 98.05 

4 0.06633297475341242 98.05 



5 0.06633297475341242 98.05 

6 0.06633297475341242 98.05 

7 0.06633297475341242 98.05 

8 0.06633297475341242 98.05 

9 0.06633297475341242 98.05 

10 0.06633297475341242 98.05 

Mean 0.066332975 98.05 

Var 0 0 

StdDev 0 0 

Table 21: Highest Score Linear Ramp, in a Critical Region of code 

 

It appears that the ramp is a very slightly better 

initialisation scheme then the sinusoid of the same number 

range dismissing the affect of initial varying gradients 

being of a benefit to the resultant accuracy and loss, at 

least in this case.  This may be because the dense layer is 

fully connected so the order of numbers is not significant 

although the distribution values step is, and the ramp 

values provide a uniform step interval. However, before 

the processor critical region was used to gain learning 

session determinism, the task scheduler may have been 

providing variations in the calculation unintentionally. But 

now that the 80bit extended precision register's integrity is 

preserved avoiding random rounding the linear ramp has 

overtaken the sinusoid slope performance, as the number 

range and values are assured and the variation in 

calculations is removed as an unintentional noise source. 

Although repeatable results that a comparable score to 

the baseline is achieved the earlier concern of numerical 

stability of the SoftMax activation function is investigated. 

IX. CUSTOM NUMBER SCALED SOFTMAX FUNCTION 

An experiment of the SoftMax activation function 

used in the final layer, Figure 17 defines a SoftMax 

function with a rescaling for bit representation numerical 

stability [30] as was suggested as a possible concern 

earlier. 

Original SoftMax                                                  
Modified SoftMax                                                                            
Fig 17: Modified SoftMax Function Definition 

 

In Table 22 is the results and there similar suggesting 

that the numerical stability is having a minor effect 

although this is the highest accuracy score yet at a 0.04% 

benefit: 
Run Loss Accuracy 

1 0.06171222376991063 98.09 

2 0.06171222376991063 98.09 

3 0.06171222376991063 98.09 

4 0.06171222376991063 98.09 

5 0.06171222376991063 98.09 

6 0.06171222376991063 98.09 

7 0.06171222376991063 98.09 

8 0.06171222376991063 98.09 

9 0.06171222376991063 98.09 

10 0.06171222376991063 98.09 

Mean 0.061712224 98.09 

Var 0 0 

StdDev 0 0 

Table 22: Highest Score Linear Ramp, in a Critical Region of code with 

modified SoftMax 

 

Although a very marginal increase in accuracy. 

However, now that the model can be run with repeatable 

results, the original random scheme is run in a critical 

region and with the random number initialisation of the 

weights, but seeded (see Table 23).  
Run Loss Accuracy 

1 0.061059941675240405 98.05 

2 0.061059941675240405 98.05 

3 0.061059941675240405 98.05 

4 0.061059941675240405 98.05 

5 0.061059941675240405 98.05 

6 0.061059941675240405 98.05 

7 0.061059941675240405 98.05 

8 0.061059941675240405 98.05 

9 0.061059941675240405 98.05 

10 0.061059941675240405 98.05 

Mean 0.061059942 98.05 

Var 0 0 

StdDev 0 0 

Table 23: Baseline, Random Scheme , in a Critical Region of code 

The baseline perfected value is 98.05% which is equal 

to using the best linear ramp using Glorot limits, although 

the linear ramp is 0.04% above the baseline when the 

modified SoftMax is used.  The sinusoidal slope using 

Glorot limits is 0.12% lower than the baseline.   

However rerunning the baseline with the modified 

SoftMax provides 98.29% accuracy which is the highest 

accuracy achieved and is with random weight initialisation 

and the modified SoftMax (see Table 24). 
Run Loss Accuracy 

1 0.05775070842197165 98.29 

2 0.05775070842197165 98.29 

3 0.05775070842197165 98.29 

4 0.05775070842197165 98.29 

5 0.05775070842197165 98.29 

6 0.05775070842197165 98.29 

7 0.05775070842197165 98.29 

8 0.05775070842197165 98.29 

9 0.05775070842197165 98.29 

10 0.05775070842197165 98.29 

Mean 0.057750708 98.29 

Var 0 0 

StdDev 0 0 

Table 24: Baseline, Random Scheme , in a Critical Region of code & 

modified SoftMax 

 

The results show that also the random weight 

initialisation scheme suffers in accuracy from the 

scheduler truncation and also the SoftMax numerical 

representation instability.  In Figure 18 is the final results 

and have been referenced to the baseline performance.  

The fixed value scheme has been disregarded as it was so 

low performing. 



 
Fig 18: Final Perfected Results Graph 
 

In Figure 18 the "Random Run in a Critical Region 

With Modified SoftMax" is the highest score, and is also 

higher than the original "Baseline".  The next highest 

score achieved is the "Linear Ramp Run in a Critical 

Region with Modified SoftMax" and is also above the 

"Baseline" performance.  The Third highest score is 

jointly held by the "Linear Ramp Run in a Critical 

Region" and "Random Run in Critical Region".  While 

only the "Sinusoid Slope Run in a Critical Region" scored 

lower than the original "Baseline". 

X. CONCLUSION 

In summary the initial original code has a mean 

accuracy of 97.964% and using random numbers, 

conventional thoughts might be that the weight values and 

random numbers were responsible alone for the variations 

in successive learning session results run to run. However, 

when the random seeds are set to a defined seed value the 

variation in the results continues in learning sessions.  The 

paper was able to establish a stable set of results making 

the processing repeatable and deterministic in every 

learning session, and the baseline performance would 

increase to 98.05% and would be equally matched by a 

non-random scheme using a linear ramp that used the 

same Gloror ranges as the random initialisation in both 

dense layers of the architecture.  A minor numerical 

floating point representations stability may be present in 

the SoftMax function, and replacing this function with an 

alternative that had numerical scaling, had the effect of 

increased accuracy in all experiment cases.  A thirds 

source of random noise variation was discovered from 

scheduling truncating the stored values between schedules 

affecting the integrity of the internal 80bit extended 

floating-point precision register.  The solution to task 

scheduler learning session variation was to define critical 

regions of code that are uninterruptable preserving the 

80bit extended floating-point precision register integrity.  

All operating systems that are using Intel processors and 

an internal extended precision register may have this 

problem.  This source of learning session variation is seen 

with task scheduling on CPUs with extended floating-

point precision registers that are internal like Intel PC 

processors, although it should be noted that GPU results 

also may have a different result again as the GPU 

implementations are different, and have special Floating 

point Fused Multiply Add (FFMA) features for 32 and 64 

bit floating point calculations to preserve precision 

resolution in consecutive calculations.  Although GPUs 

may not be available in all Smart City hardware 

deployments and developments. 

The paper also tested a variety of initialisation 

schemes and when the solution to the learning session 

variation was applied an equality to the random number 

accuracy was achieved at 98.05%, between a random 

number initialisation and non-random number weight 

initialization scheme that used a linear ramp in the same 

Glorot limit range. With the addition of a modified 

SoftMax function the non random linear ramp scheme 

achieved a further  0.04% accuracy.  But however, when 

the same modified SoftMax function was applied to the 

random initialisation a further 0.324% increase was seen.  

But it should be noted that more optimal non-random 

schemes may exist, but the paper has shown that random 

number initialisation is not an imperative requirement.  It 

may be that the number step interval sequence could be 

optimised, as the difference between the random scheme 

and the non random scheme is the interval step between 

the values.  Although the placement arrangement of the 

value steps should not be significant numerically to a fully 

connected layer in a dense layer.  However the placement 

of the values may be more intuitive to understanding the 

learning that has occurred if they are numerically ordered.  

Furthermore, it is also possible that the learning 

session variations may be contributing to a regularisation 

effect to help to not over fit a model by reducing 

significant bit resolution, and a comparison with the 

original code with critical regions and no critical regions 

shows that the effect can also be a loss in accuracy as even 

random schemes benefit from the critical regions.  This 

paper has looked at dense layers and it may follow that 

initialisation schemes could be set depending on the layer 

type, the activation function and the regularisation scheme 

used.  The 80bit floating point representation does have 

benefits to achieved accuracy with the Glorot limit range, 

but there are also benefits to determinism in successive 

run results and that may have benefits to make a Deep 

Learning network capability accessible to safety critical 

systems with public liability concerns in smart city 

applications.   

Moreover, the paper has demonstrated deterministic 

repeatable results in successive runs without random 

initialisations meaning that safety critical smart city 

applications with public liability concerns may have the 

test and qualification determinism required by those 

applications and the test environment is viable for further 

experiments. 

But it was the research question of "Are random 

number initialisation weight values required as the initial 

state before learning to have high accuracy in predictions, 



or can a non-random scheme also have comparable 

performance in those predictions" and the answer is that it 

is possible to use non-random sequences with comparable 

performance.  Also random numbers are not an imperative 

requirement for accuracy performance.  But where 

learning session variations exist as a result of task 

scheduling defining critical regions will benefit both 

random and non-random schemes.  The critical regions 

will also allow a model to arrive at the optimised answer 

in a single learning session, thus reducing development 

time, and simplifying further relearning sessions that are 

in response to environmental changes. 

Although, it is also possible that coupling in those 

schemes may connect with: the deep learning architecture, 

the layer type and the activation function used when not 

using dense layers.  Also the numerical ordering of the 

weights in dense layers at the outset may provide more 

understandable learning transitions of the weights after 

learning to provide repeatable deterministic results and a 

better organisation for analysing the receptive field from 

the categorisation back through the dense layers after a 

learning session.  That might be a support to safety critical 

systems that have public liability concerns with 

verification and validation obligations going forward in 

hazard avoidance smart city applications. 

An important benefit to using the non-random 

initialisation scheme in dense layers is that it structures the 

weights after learning to have an order of influence 

arrangement in the neuron order.  This is because the 

initialisation scheme provided a coupling of the node 

position to the initial influence that each node has. This is 

viable in dense layers because they are fully connected so 

the sequencing order of weight values is not significant to 

the result only the number range and interval.  But 

however from a safety critical validation perspective the 

ordering of influence in the result promotes the 

understanding of weights and the influence values that 

combine for each pixel in learning.  In appendix A an 

image representation of the weights is given for the 

highest score random scheme and linear ramp in both 

dense layers, and the weight structure along the neuron  

axis is striking in the non random scheme in the 1st dense 

layer, of which its' structure is inherited in the tensor 

length axis in the 2nd dense layer. 

XI. RECOMMENDATIONS 

It may follow that in training a neural network with a 

smart city application the definition of critical regions 

within the code for model fitting and evaluation can 

provide repeatable deterministic loss and accuracy scores 

which is particularly valuable when setting hyper 

parameters.  It may also follow that the 80 bit extended 

floating-point precision register would provide truncation 

resulting in higher losses and therefore lower accuracy.  

The use of the critical regions may also be considered in 

prediction, as in public liability applications the 

prediction performance also needs to be assured.   

When GPUs are not available, in either development 

or deployment the variation in results between learning 

session and prediction should not be ignored and indeed 

can be resolved. 

The SoftMax numerical bit representation can be 

enhanced although the amount of enhancement achieved 

may be relative to the decimal position difference 

experienced in the datasets and also the model 

configuration, but using the scaling may make a model 

more accurate when configuring it. 

XII. FURTHER RESEARCH 

A limitation of this research is that it has used a single 

model using dense layers.  Couplings of the initialisation 

scheme to the layer architecture, activation function, 

optimisation and regularisation used is an area of further 

research. 

It also may be that the initialisation scheme of the 

biases could also have a benefit, and the matching of 

weight and bias initialisation schemes to activation 

functions and architectures is also a subject of further 

research. 

Using a non-random initialisation scheme appears to 

show that the number range seems to be more important 

than gradient changes.  However with dense layers it may 

be the numerical steps between values that is important 

and a more optimal non-random initialisation value 

interval step scheme may be found.  
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XIV. APPENDIX A 

In Figure 19 is an image of the 1st dense layer using 

the random initialisation scheme and it can be notice that 

it has a uniform random structure. 

 
Fig 19: 1st Dense Layer as an Image using Random Scheme 
 

In Figure 20 is an image of the 1st dense layer but 

this time using the non-random linear ramp initialisation 

scheme and it can be notice that it has a structure along 

the "Number of nodes" axis as the initialisation scheme 

provided a ordering in the nodes that developed in 

learning.  This is as a result of the linear ramp that has 

grown the weights in adjacent addresses, these weights 

have been effected by the initial condition and are 

ordered such that influence in pixels are aligned. 

 

 
Fig 20: 1st Dense Layer as an Image using Linear Ramp 

 

In Figure 21 is an image of the 2nd dense layer at the 

classifier output stage, using the random initialisation 

scheme, and it can be notice that it has a uniform random 

structure. i.e. is more random then Figure 22 as the 

random ordering has re-arranged the weights. 

 
Fig 21: 2nd Dense Layer as an Image using Random Scheme 

 

In Figure 22 is an image of the 2nd dense layer at the 

classifier output stage, but using the linear ramp 

initialisation scheme instead, and it can be notice that it 

has a structure that was inherited from the node order of 

the first dense layer in the tensor length axis. 
 

 
Fig 22: 2nd Dense Layer as an Image using Linear Ramp 

 


