
Int J Data Sci Anal (2016) 1:61–76
DOI 10.1007/s41060-016-0004-3

REGULAR PAPER

P-N-RMiner: a generic framework for mining interesting
structured relational patterns

Jefrey Lijffijt1,2 · Eirini Spyropoulou2 · Bo Kang1,2 · Tijl De Bie1,2

Received: 7 December 2015 / Accepted: 16 January 2016 / Published online: 3 February 2016
© Springer International Publishing Switzerland 2016

Abstract Methods for local pattern mining are fragmented
along two dimensions: the pattern syntax, and the data types
on which they are applicable. Pattern syntaxes include sub-
groups, n-sets, itemsets, and manymore; common data types
include binary, categorical, and real-valued. Recent research
on relational pattern mining has shown how the aforemen-
tioned pattern syntaxes can be unified in a single framework.
However, a unified model to deal with various data types
is lacking, certainly for more complexly structured types
such as real numbers, time of day—which is circular—,
geographical location, terms from a taxonomy, etc. We intro-
duce P-N-RMiner, a generic tool for mining interesting local
patterns in (relational) data with structured attributes. We
show how to handle the attribute structures in a generic man-
ner, by modelling them as partial orders. We also derive an
information-theoretic subjective interestingness measure for
such patterns and present an algorithm to efficiently enumer-
ate the patterns. We find that (1) P-N-RMiner finds patterns
that are substantially more informative, (2) the new inter-
estingness measure cannot be approximated using existing
methods, and (3) we can leverage the partial orders to speed
up enumeration.

Keywords Data mining · Pattern mining · Information
theory · Subjective interestingness · Relational data ·
Structured attributes

B Jefrey Lijffijt
jefrey.lijffijt@ugent.be

1 Data Science Lab, Ghent University, Ghent, Belgium

2 Intelligent Systems Lab, University of Bristol, Bristol, UK

1 Introduction

Exploratory data mining (EDM) tools enable businesses and
scientists to explore their data and find previously unknown
patterns, which in turn helps them learn about reality, inno-
vate, and gain a competitive edge. An important obstacle for
the adoption of EDM techniques in general, and local pattern
mining approaches in particular, is their limited flexibility in
terms of the data types to which they can be applied, e.g.,
only tabular data, and the types of patterns they can generate,
e.g., itemsets. In reality, however, data are often complexly
structured (e.g., relational databases), and additionally there
is often structure among the different values data attributes
may attain, i.e., attribute values can be ordinal, interval, tax-
onomy terms, and more.

Local pattern mining has traditionally been rooted in cate-
gorical or even binary data, including algorithms for frequent
itemset mining and variants [2], n-set mining [7], subgroup
discovery [14], and multi-relational pattern mining [15,24].
Some of these local pattern mining approaches have been
extended in various ways to include ordinal, real-valued,
or other data structures. For example, extensions of item-
set mining to real-valued data have led to approaches akin
to biclustering, and subgroup discovery methods exist that
allow discovery of rules based on attribute-value inequali-
ties.

However, that work is fragmented and often ad hoc, in
the sense that other kinds of structure (taxonomy terms,
time-of-day intervals on a circular 24-hour clock, geograph-
ical regions on the globe, etc.) may not be approachable in
the same way and may necessitate fundamentally different
approaches. The purpose of this paper is to provide an ele-
gant and encompassing framework to deal with attributes of
any of the structured types listed above and more, and this
in a relational setting, i.e., applicable to data as it resides in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0004-3&domain=pdf

62 Int J Data Sci Anal (2016) 1:61–76

relational databases. To illustrate the breadth and nature of
the contributions, we provide two motivating examples.

Example 1 Consider a dataset of Foursquare1 check-in times
of a number of users. Such a dataset has the potential of elu-
cidating lifestyle patterns shared by a number of Foursquare
users. To formalise and then find such patterns, it is tempting
to specify a time resolution and discretise the data. However,
it is unclear which discretisation level to use, and whether
to take it uniform throughout the day. In fact, the optimal
discretisation could vary for different lifestyle patterns.

An alternative approach could be to take themean and pos-
sibly higher-order statistics of the check-in times for each
user and find patterns in this summary description. This
approach would suffer from two problems: first, computing
averages of circular quantities is ambiguous (e.g. is the mean
of 6 am and 6 pm midnight or noon?), and second, it ignores
much of the information in the data.

The method developed in this paper, when applied to this
data, deems as most interesting a pattern that reveals that
1.6% of all users check in frequently in the 6am-7am interval
and again in the 10.10–10.50 am interval. Here, the interval
sizes are tuned automatically to maximise interestingness,
and the intervals can be of varying size even within a pattern.

While this example illustrates how the contribution in this
paper advances the state-of-the-art even for a single rela-
tion (between users and check-in times), the second example
shows the full power on data in a relational database.

Example 2 Consider a relational database of users, who have
rated books with an integer from 1 to 5, and where the books
are tagged with a number of genres organised in a taxonomy.
Applied to this dataset, the method proposed in this paper
identifies interesting patterns in the form of sets of books
that have been rated by the same set of users in a similar way
(say, in the interval from 3 up to 5), which may all belong to
a particular set of genres (e.g., fantasy and action).

This second example illustrates the ability of the proposed
method to identify patterns that span several types of entities
(users, ratings, books, genres), including structured entity
types such as ordinal values or values organised in a taxon-
omy.

Thework in this paper ismost easily explained as an exten-
sion of the N-RMiner algorithm for mining local patterns
in relational databases [23], towards structured entity types.
However, given the generality of the N-RMiner pattern syn-
tax, this immediately results in amethod that includes itemset
mining, n-set mining, and subgroup discovery for structured
data types as special cases. To do this, we overcome the fol-
lowing challenges.

1 https://foursquare.com/.

– We formalise the problem and a matching pattern syntax,
in a manner as generic as possible (Sect. 2). To achieve
this, we adopt an abstract formalisation in terms of a
partial order over the structured values. For example,with
the time-of-day and book ratings, the partial order is over
the intervals, where one is ‘smaller’ than another if it is
included in it. For taxonomy terms, one taxonomy term
is smaller than another if it is a specialisation of it.

– We formalise the interestingness of such patterns under
the InformationTheoretic framework for subjective inter-
estingness [9,11]. This is a non-trivial contribution over
the approach applicable for the N-RMiner pattern syntax,
because the presence of entities is no longer independent
(Sect. 3).

– We provide an algorithm for efficiently enumerating all
such patterns (Sect. 4). This is a non-trivial extension
of the algorithmic approach used in N-RMiner that is
applicable due to the additional structure in the search
space. However, we also prove that under the algorith-
mic framework used here (due to [1]), no algorithm
can exist that uses only a polynomial number of steps
per output. This result is new but also applies to earlier
works.

2 Problem formalisation

2.1 Notation

We formalise a relational database as follows. Let E denote
the set of entities, that is all possible values of all attributes,
and t : E → {1, . . . , k} a function that gives the type
of an entity (assuming k types). We write R to denote
the set of all relationship instances in the database, while
R ⊆ {1, . . . , k} × {1, . . . , k} denotes the set of tuples of
entity types whose entities may have relationships, accord-
ing to the schema of the database. The elements of R will
be referred to as the relationship types. A relational data-
base is then a tuple D = (E, t,R, R,�), where � will be
introduced below.

As an example, consider the schema illustrated inFigure 1.
There are four entity types: User (1), Check-in times (2),
Profession (3), and Age (4). The numbering is arbitrary. The

Profession
User

Age

Check-in
times

Fig. 1 Example schema of users and check-in times. Additionally, we
know the age and profession of the users. There are three relationship
types: there are relationships between (1) users and check-in times, (2)
users and ages, and (3) users and professions

123

https://foursquare.com/

Int J Data Sci Anal (2016) 1:61–76 63

1

2

3

4

[1–2]

[2–3]

[3–4]

[1–3]

[2–4]

[1–4]

Fig. 2 Partial order of all intervals that are supersets of {1}, {2}, {3},
and {4}. The partial order corresponds to the superset relation

set of entities E contains all possible values for all types,
and t is a function that returns the type of that entity. The set
of relationships is R = {(1, 2), (1, 3), (1, 4)} and finally R
contains all the instances of such relationships.

In this example,Age,Check-in times, andProfession could
all be structured attributes; the values of Age are numerical,
Check-in times are numerical but without full order, and Pro-
fession has hierarchical structure. One could be interested in
finding patterns in such data not only including an exact age
such as 32, but also intervals such as [25–35]. The set of all
such intervals can be modelled as a partial order. An example
of such a partial order is given in Fig. 2.

To model such structure, we consider one additional ele-
ment in the data model: a partial order � that represents
implication of relationships across entities of the same type.
That is, e � f means that if any entity g is related to f , i.e.,
(f, g) ∈ R, then g is also related to e: ∀e, f, g ∈ E : e �
f ∧ (g, f) ∈ R ⇒ (g, e) ∈ R. Only implications between
entities of the same type are allowed: e � f ⇒ t (e) = t (f).

For example, in Fig. 2, we have [1–2] � 1, [1–3] � [1–2],
etc. Thismeans that if an entity is connected to 1 it is also con-
nected to [1–2], [1–3], and [1–4]. For notational convenience,
we assume that R contains both the relationship instances
present in the database, as well as all relationship instances
implied by �. In practice, we need not store these implied
edges explicitly; details on this are presented in Sect. 5.

2.2 Pattern syntax

Our general aim is to find interesting sets of entities. We
propose that the interestingness of a set of entities can be
measured by contrasting the number of relationship instances
present between the entitieswith the expected number of rela-
tionship instances present between those entities, where the
expectation is subjective, i.e., dependent on the user. We for-
malise this subjective interestingness in Sect. 3. For now it

suffices to know that it will depend on the number of rela-
tionship instances between the entities in the set.

We use a tiered approach to achieve our general aim. First,
we enumerate all dense patterns that are potentially interest-
ing, and secondly we rank them by interestingness. Hence,
the first step is to find sets of entities that have many relation-
ships. We will refer to a set of entities and the relationship
instances among them as a pattern. We define a pattern as
potentially interesting if it is complete, connected, maximal,
and proper.

Definition 1 An entity set F ⊆ E is complete iff

∀(t1, t2) ∈ R,∀ei , e j ∈ F, t (ei) = t1, t (e j) = t2 :
(ei , e j) ∈ R.

More verbosely, a pattern F is complete iff all relationship
instances between entities in F that are allowed by the data-
base schema are also present.

Definition 2 An entity set F ⊆ E is connected iff

∀e, f ∈ F, e 	= f : (e, f) ∈ R ∨ ∃g ∈ F, {e, g} connected
∧ { f, g} connected.

A set of entities F s.t. |F | ≥ 2 is connected iff there is a path
between any two entities in F using only entities in F . Any
F s.t. |F | ≤ 1 is connected.

Definition 3 An entity set F ⊆ E is proper iff

∀e ∈ F, f ∈ E, f � e : f ∈ F.

A pattern F is proper iff all super-entities of any entity in F
are also in F .

Definition 4 An entity set F ⊆ E ismaximal iff

�e ∈ E \ F : F ∪ {e} is complete and connected.

Finally, a pattern F is maximal iff no entity can be added
without breaking completeness or connectedness. Note that
if there is an entity e ∈ E \ F such that F ∪ {e} is complete
and connected, theremust also be an entity f � e, f ∈ E \F
such that F∪{ f } is complete, connected, and proper.We refer
to sets that are complete, connected, and proper as complete
connected proper subsets (CCPSs), and to sets that are also
maximal as maximal CCPSs. In Sect. 4, we will show that
we can enumerate all maximal CCPSs using the so-called
fixpoint-enumeration algorithm.

In short, we add a properness constraint and the pattern
syntax is otherwise equivalent to [23,24]. Our implementa-
tion and theory also support n-ary relationships, butwe do not

123

64 Int J Data Sci Anal (2016) 1:61–76

discuss this further in order to prevent unnecessary complica-
tions in the exposition. One could also consider approximate
patterns by discarding the completeness constraint. This
would lead to an increased computational complexity, but
the increase has been shown to be manageable [22]. For sim-
plicity, we do not consider approximate patterns in this paper.

3 Interestingness

3.1 General approach

Although we limit the output to maximal CCPSs, the number
of patterns can be—and often is—exponential in the number
of entities in the database. Therefore, it is vital to have amech-
anism for identifying themost interesting CCPSs. To achieve
this, we build upon the framework for subjective interest-
ingness in exploratory data mining (FORSIED), introduced
by De Bie [9,11]. This framework is based on modelling
a user’s prior belief state about the data by means of the
Maximum Entropy distribution subject to any stated prior
beliefs the user may hold about the data. This distribution
is referred to as the background distribution. The interest-
ingness of a pattern is then formalised by contrasting the
pattern with this background distribution, as the ratio of two
quantities:

– the self-information of the pattern, defined as minus the
logarithm of the probability that the pattern is present
under the background distribution, and

– the description length of the pattern, which should for-
malise the amount of effort the user needs to expend to
assimilate the pattern.

Both are explained in more detail below. In full, the interest-
ingness of a pattern F is its information ratio:

InformationRatio(F) = Self-Information(F)

DescriptionLength(F)
.

Given the dependence of this measure on the background
distribution, which may in principle differ for different
users, this interestingness measure is a subjective quan-
tity.

In [24], this framework is used successfully to formalise
the interestingness of Complete Connected Subsets (CCSs),
without the properness requirement that lies at the core of
the contributions in this paper. The properness requirement
creates an opportunity as well as a non-trivial challenge. It
allows to describe single patterns that capture information
that could previously be presented only with a set of patterns.
Such patterns reduce the description length. On the other
hand, it is more difficult to compute the self-information of

a pattern. We briefly discuss the core principles in the next
paragraphs, before discussing the computation of the self-
information in greater detail in Sect. 3.5.

3.2 Description length

The description length of a CCS pattern is formalised as
an affine function of the number of entities |F | in F . Let
|E | be the total number of entities in the database and p ∈
(0, 1) a parameter that trades off the cost between describing
the presence of an entity in the pattern F , cost log(p), and
describing its absence, cost log(1− p). Then, the description
length is defined as [24]:

DescriptionLength(F) = |F | log
(
1 − p

p

)

+ |E | log
(

1

1 − p

)
.

Note that, to convey a CCPS pattern to the user, only the
minima of F need to be described. Indeed, the presence of
the entities that are larger is implied; explicitly describing
these would be redundant. Thus, the above expression needs
to be modified by replacing |F | with the number of minima
in F . This leads to a smaller description length than would
be required if the partial order�would be unknown or unac-
counted for.

3.3 Information content

The central idea of FORSIED is to quantify the amount of
information that a pattern conveys to a user, which in general
terms is known as the information content of a pattern. The
most interesting pattern is then the one that conveys the most
information, i.e., that maximally reduces the uncertainty the
user has about the data [9]. The self-information of a pattern
quantifies the unexpectedness of that pattern, given a back-
ground distribution. We present the technical details of the
self-information and the background distribution below.

In the following section, we argue that the background
distribution can be fitted in the exact same way as in [24].
However, how to compute the probability that a given pattern
is present—and thus its self-information—is not trivial. The
difficulty stems from the fact that the presence of relationship
instances is nowdependent, owing to the partial order relation
over the entities. Nonetheless, Sect. 3.5 describes how the
probabilities can still be computed effectively by using the
inclusion–exclusion principle.

3.4 The Background Distribution

In [24], interestingness is formalised under the assumption
that users have prior beliefs on the number of entities of a

123

Int J Data Sci Anal (2016) 1:61–76 65

specific type towhich a given entity is related. It is argued that
this is often a good assumption, and the experiments in the
current paper also support that.2 This assumption leads to a
tractable distribution, under which the relationship instances
are independent with probabilities that can be found by solv-
ing an efficiently solvable convex optimisation problem.

This background distribution factorises over the differ-
ent relationship types, such that the self-information can be
decomposed into a sumof different contributions, each one of
which corresponds to the relationship instances for one par-
ticular relationship type. That is also the case in the present
paper, such that in the rest of this exposition it suffices to
imagine just a single relationship type.

What is new is that we implicitly make a further assump-
tionon the user’s knowledge state, namely that the user knows
the partial order�, and hence the fact that if e � f ∧(g, f) ∈
R, then (g, e) ∈ R. This creates hard-to-handle depen-
dencies between the presence of relationship instances. In
practice, data will often only contain relationship instances
between minimal entities, i.e., entities that are minimal in
the partial order �. In this case, the background distribution
can be fitted on the set of minimal entities without worrying
about the dependencies, exactly as done in [24].

In particular, we assume prior beliefs on the number of
relationship instances each (minimal) entity is involved in,
for every relationship type. The maximum entropy distribu-
tion subject to these prior belief constraints is then used as
the background distribution. This background distribution is
a product of Bernoulli distributions with one factor for each
possible relationship instance [24]. In other words: for each
possible relationship instance (e, f), the distribution gives
us a probability p(e, f) that (e, f) is present in the data.

This background distribution defines the probabilities
p(e, f) of relationship instances between minimal entities e
and f . Given this, it is possible to compute the probability
p(e, f) of any relationship instance (e, f), whether minimal
or not, as the probability of presence of any of the relation-
ship instances (e′, f ′) with e � e′ and f � f ′ and e′ and
f ′ minimal. Indeed, the presence of any such (e′, f ′) would
imply the presence of (e, f). How this probability and the
overall probability of a CCPS pattern can be computed given
the background distribution is the subject of Sect. 3.5.

In general, for data that includes relationship instances
between non-minimal entities, let us define a partial order
�R over the relationship instances as follows: (e1, f1) �R
(e2, f2) iff e1 � f1 and e2 � f2. Then, we suggest fitting
the background distribution as before on the minimal rela-
tionship instances only. This includes the approach from the
previous paragraph as a special case. Thismodel is imperfect,
as the user should be aware ofnegativedependencies between

2 Of course, exploring other types of prior beliefs is an important line
of further work.

the presence of a relationship instance as a minimal one: if
(e2, f2) is a minimal relationship instance, then (e1, f1)with
(e1, f1) �R (e2, f2) and (e3, f3) with (e3, f3) �R (e2, f2)
cannot be minimal relationship instances. Yet, we argue that
in this case, assuming independence is nonetheless still a
good approximation.3

3.5 Self-information

Given a pair of entities (e, f) such that (t (e), t (f)) ∈
R—i.e., (e, f) may be related according to the database
schema—let us denote the event that (e, f) /∈ R as A(e, f)

(A for Absent). The probability of this event under the back-
ground distribution can be computed as4

P(A(e, f)) =
∏

(e′, f ′):(e, f)�R(e′, f ′)
(1 − p(e′, f ′)).

Thepresence of aCCPSpattern F corresponds to the event
defined by the complement of the union of all events A(e, f)

with e, f ∈ F and (t (e), t (f)) ∈ R. Hence, the union of all
these events corresponds to the event where at least one of
the relationship instances is missing. The complement of the
union of absence events implies the presence of the pattern.
Defining TF as TF = {(e, f)|e, f ∈ F, (t (e), t (f)) ∈ R}
(the set of pairs of entities in F), this means that the proba-
bility of a pattern is given as 1 − P

(∪(e, f)∈TF A(e, f)
)
. Note

that it suffices to consider only the minimal relationship
instances from TF , because ¬A(e, f) implies ¬A(e′, f ′) for
any e′ � e, f ′ � f .

Directly computing this probability is nontrivial, given
the dependencies between the events A(e, f). Fortunately, we
can use the inclusion–exclusion principle to compute it as
follows:

P

⎛
⎝ ⋃

(e, f)∈TF

A(e, f)

⎞
⎠

=
∑
I⊆TF

(−1)|I |−1P

⎛
⎝ ⋂

(e, f)∈I
A(e, f)

⎞
⎠ .

3 The intuition is as follows. In practice the probabilities for relationship
instances under the background distribution are small. Additionally, for
two events with small probabilities p and q, the probability of their
union is between p + q (in the case of perfect negative dependence)
and 1 − (1 − p)(1 − q) = p + q − pq (in the case of independence),
which differs by only pq, such that assuming independence results in
at most a second-order error in the probabilities.
4 As pointed out in Sect. 3.4, this expression is exact for databases
where relationship instances involve only minimal pairs, and a good
approximation in practice in other cases. Note also that only minimal
relationship instances have positive probability, and hence non-minimal
instances can be ignored.

123

66 Int J Data Sci Anal (2016) 1:61–76

Now, the probability of the intersection of events A(e, f)

can be computed straightforwardly as:5

P

⎛
⎝ ⋂

(e, f)∈I
A(e, f)

⎞
⎠ =

∏
(e′, f ′):(e, f)�R(e′, f ′)

1 − p(e′, f ′).

Hence, we can compute the probability of the presence of
a pattern. The self-information is then given as the negative
logarithm of this probability:

Self-Information(F) = − log

⎛
⎝1 − P

⎛
⎝ ⋃

(e, f)∈TF

A(e, f)

⎞
⎠

⎞
⎠ .

4 Enumeration algorithm

Last but not least, we study how to efficiently enumerate all
maximal CCPSs. Like previous work on mining interesting
patterns in relational data [22–24], our algorithm is based
on the fixpoint-enumeration algorithm by Boley et al. [1].
Although that algorithm already exists, it should be noted
that it is a meta-algorithm, which does not directly work on
the data. The fixpoint-enumeration algorithm takes as input
a set system and a closure operator that together define the
problem setting and the output. The definitions are given
below.

We first introduce the fixpoint-enumeration algorithm,
after which we introduce notation and formalise our prac-
tical problem of enumerating maximal CCPSs as a problem
of enumerating all fixpoints in a set system. We prove
that the introduced set system is strongly accessible, which
is required for the fixpoint enumeration to be applica-
ble, and present a suitable closure operator. Finally, we
analyse the computational complexity, and we prove that—
unfortunately—the delay time between two maximal CCPSs
cannot be polynomial under this scheme.

4.1 The enumeration algorithm

The fixpoint-enumeration algorithm can efficiently enumer-
ate all fixpoints in a strongly accessible set system (E,F),
where E is a set of objects called the ground set and F ⊆
P(E) a family of sets. The fixpoints are defined by a closure
operator σ . The output of the algorithm is valid if and only
if the set system satisfies certain criteria [1]. The algorithm
is very simple:

5 Note again that onlyminimal relationship instances (e′, f ′) need to be
considered, since non-minimal relationship instances have zero proba-
bility.

(1) Start with an empty set: F := {∅}.
(2) Compute the closure of the current set: F := σ(F). This

closure is one of the fixpoints to return.
(3) If the current set can be extended, that is, ∃G ⊇ F : G ∈

F , then pick any element f ∈ G \ F : F ∪ { f } ∈ F and
recurse from (2) to one branch where every set contains
f and one branch where no set contains f . If the current
set cannot be extended, then this branch ends.

If and only if the set system (E,F) is strongly accessible,
then all sets in F can be found by adding elements one by
one while traversing only over sets in F [1]. The closure
operator defines the fixpoints, which should be interpreted as
the subset of sets from F that we would like to enumerate6.

4.2 Enumerating CCPSs

The set of all CCPSs forms a set system (E,F) where the
ground set E is the set of entities and F is the set of CCPSs,
defined as

F = {F ∈ P(E) :
F connected ∧ F complete ∧ F proper}.

The fixpoint-enumeration algorithm can be used to enumer-
ate all closed patterns from this set system, and it is efficient
if we can define an appropriate closure operator. Ultimately,
we are interested in enumerating the maximal CCPSs, while
F contains all CCPSs.

4.3 Strong accessibility

For the fixpoint-enumeration algorithm to be applicable, the
set system must be strongly accessible. This is the case iff

∀F ∈ F \ {∅} : ∃e ∈ F : F \ {e} ∈ F , and (1)

∀F, F ′ ∈ F , F ⊂ F ′ : ∃e ∈ F ′ \ F : F ∪ {e} ∈ F . (2)

Theorem 1 (E,F) is strongly accessible.

Proof We prove each of the two properties separately, but
first we introduce some notation for convenience. Let (F,�)

denote the set F partially ordered by �. We write that an
entity e ∈ F is minimal in (F,�) iff � f ∈ F, e 	= f, e � f .
Likewise an entity e ∈ F is maximal in (F,�) iff � f ∈
F, e 	= f, f � e.

The first property states that for every CCPS F , there
should be an entity e ∈ F that can be removed such that

6 This is actually not the case here, because we are interested only in
maximal sets, rather than all fixpoints (closed sets). This is explained
further in Sect. 4.5.

123

Int J Data Sci Anal (2016) 1:61–76 67

we obtain another CCPS F ′ = F \ {e}. We prove this by nar-
rowing down candidates by looking in turn at completeness,
properness, and finally connectedness:

(1) ∀F ∈ F \ {∅} : ∃e ∈ F : F \ {e} ∈ F , because

– Removing an entity never violates completeness.
– Any entity e ∈ F , e minimal in (F,�) can be
removed without breaking properness and ∃e ∈ F , e
minimal in (F,�).

– If ∃e, f ∈ F, e � f, f minimal in (F,�), then F \
{ f } ∈ F , because F \{ f } is complete and proper (see
two previous statements) and since F is connected,
for any (f, g) ∈ R also (e, g) ∈ R (since e � f),
thus F \ { f } is also connected.

– If �e, f ∈ F, e � f, f minimal in (F,�), then
∀e ∈ F : e minimal in (F,�). Hence, removal of
any entity would not break completeness or proper-
ness. Then, we could model the entities of F as nodes
in a graph and the relationship instances between enti-
ties in F as its edges. Since F is connected, that graph
is also connected. Any connected graph has a span-
ning tree and it is possible to remove any leaf node
from that spanning tree without breaking connected-
ness of the graph.

The second property states that for any pair of CCPS
F, F ′ ∈ F , F ⊂ F ′, there is an entity e ∈ F ′ \ F
that can be added to F to lead to another CCPS F ∪
{e} ∈ F .We prove this property by considering all entity
types of entities that are in F ′ and not in F , and then we
condition on whether F is the empty set or whether it
already contains some entities.

(2) ∀F, F ′ ∈ F , F ⊂ F ′ : ∃e ∈ F ′ \ F : F ∪ {e} ∈ F ,
because

– Let t (F) = {t j |t j = t (e), e ∈ F}. For every type
t j ∈ t (F ′ \ F), ∃e ∈ F ′ \ F : t (e) = t j , e maximal
in (F ′ \ F,�), since F ′ \ F is finite.

– If F = ∅, then for ∀e ∈ F ′ \ F, t (e) = t j , e maximal
in (F ′ \ F,�) : F ∪ {e} ∈ F .

– If F ⊃ ∅, then because every entity type has one or
more maximal elements and F ′ is connected, there is
a type adjacent to or present in F which includes an
entity e maximal in (F ′ \ F,�) and then F ∪ {e} is
complete, connected and proper. ��

4.4 The closure operator

Strong accessibility implies thatwe can efficiently enumerate
all fixpoints in F in a single traversal over the set sys-
tem without considering any set twice [1]. A trivial choice
for the fixpoints would be all sets in F ; in which case
σ(F) = F , ∀F ∈ F . However, in the worst case the number

of CCPSs |F | is an exponential in |E |, while there is only one
maximal CCPS. Hence, we would like to choose the set of
fixpoints such that it includes all maximal CCPSs and as few
other CCPSs as possible. It is not possible to choose the clo-
sure operator such that we enumerate only maximal CCPSs,
because a CCPS may have multiple maximal extensions.

We derive a suitable closure operator from its require-
ments; an operator σ : F → F is a closure operator iff
∀F,G ∈ F , σ is

extensive : F ⊆ σ(F),

idempotent : σ(σ(F)) = σ(F), and

monotonic : F ⊆ G ⇒ σ(F) ⊆ σ(G).

Firstly, extensivity is straightforward to guarantee, we
choose σ(F) such that it never removes entities from F .
Secondly, due to idempotency, we require that the closure of
a maximal CCPS is the maximal CCPS itself; otherwise, it
is not a fixpoint and will not be in the output. Thirdly, sup-
pose that the set F has two supersets F ′, F ′′ that are maximal
CCPSs: F ′, F ′′ ⊇ F, F ′ 	= F ′′. Since they aremaximal, they
both contain an entity that is not in F, nor in the other max-
imal CCPS. Extensivity combined with monotonicity forces
us to choose σ(F) such that it does not add any entities that
are missing from any superset G ⊇ F,G ∈ F .

Hence,we define the closure as follows. Let the set of com-
patible entities beComp(F) = {e ∈ E | F∪{e} is complete},
i.e., all entities that can still be added to F , and let the set of
augmentation entities be Aug(F) = {a ∈ A | F ∪ {a} ∈ F},
i.e., all entities that can be added while leading to a valid
CCPS. Then we define the closure operator as in [24]:

σ(F) = {e ∈ Aug(F) | Comp(F ∪ e) = Comp(F)}.

This operator is extensive and monotonic, but not idem-
potent. Without idempotency, the algorithm would still
enumerate all maximal CCPSs, but also unnecessary non-
maximal CCPSs. We achieve idempotency by repeating the
closure operator until σ(F) = F . This repetition can be done
efficiently by considering only entities that have just become
part of Aug(F).

In [24], it is assumed that the dataset does not contain any
entity e that is related to all entities of a neighbouring type,
because if such an entity exists, all other entities could be
in its set of compatible entities (Comp({e}) = E), hence
σ(∅) ⊇ {e}, while e need not be part of every CCS. Thus,
this assumption is required for the closure operator to be
monotonic.

In the current setting, entities that are fully connected
to a neighbouring type would not be uncommon and this
assumption is not reasonable. For example, there could be a
catch-all entity in a hierarchical attribute. Hence, we addi-
tionally define σ(∅) = ∅. Alternatively, one could redefine

123

68 Int J Data Sci Anal (2016) 1:61–76

Comp as Comp(F) = {e ∈ E |∃G ⊇ F ∪ {e},G ∈ F}, but
we leave that to future work. For brevity, we omit the proof
that this σ is a closure operator.

4.5 Final remarks

Thefixpoint-enumeration algorithmenumerates all fixpoints,
i.e., any set that results from computing the closure operator.
We are only interested in maximal CCPSs, so we output only
those. Maximal CCPSs are easily identified at runtime, as
they are fixpoints where no entity could be added (Sect. 2,
Definition 4).

Finally, we allow a user to put any number of constraints
on the set of patterns in the form “any pattern should include
at least X entities of type Y”. We implement this by contin-
uously computing upper bounds during the mining process,
such that we can prune any branch where the constraints can-
not be satisfied any more. A similar approach is followed in
[24].

4.6 Computational complexity

As stated previously, the number of maximal CCPSs can
be exponential in |E |. Since P-N-RMiner exhaustively enu-
merates all maximal CCPSs, the worst-case complexity of
P-N-RMiner is also exponential in |E |. Unfortunately, we
are not aware of an upper bound on the number of maximal
CCPSs, nor do we know the exact worst-case complexity of
our algorithm.

It has been shown that the delay time between finding
two closed CCSs using the fixpoint-enumeration algorithm
is O(|E |3) [24]. The algorithm used here is almost the same,
except that computing the set of augmentation entities also
involves checking the properness constraint. The complexity
of that is O(|E |), hence the delay time for closed CCPSs is
also O(|E |3).

It was previously not known whether the delay time
between the enumeration of two maximal CC(P)Ss is always
polynomial. Although we cannot make a general statement
about the delay time, we prove here that the fixpoint-
enumeration algorithm can indeed require a number of steps
exponential in the number of outputs.We prove this bymeans
of an example data set where the number of closed CCSs is
exponential in the number of maximal CCSs, while indeed
the number of closed CCSs is already exponential in the size
of the input.

Theorem 2 No algorithm that is an instantiation of fixpoint
enumeration can guarantee a polynomial number of steps in
the number of outputs (maximal CCSs).

Proof Consider a database with entity types A and B and a
single binary relation between the two types; R = {A, B}.
Let both entity types have n entities, numbereda1, a2, . . . , an

and b1, b2, . . . , bn . Let the set of relationship instances con-
tain all pairs (ai , b j), i, j ∈ [1, n], i 	= j . That is, all possible
relationship instances exist, except for entities ai and bi with
the same index.

The number of maximal CCSs follows fairly straightfor-
wardly: all CCSs can be extended until they have n entities
and for each index i we can include either ai or bi . Includ-
ing both would violate completeness, while the CCS is not
maximal as long as for some index i neither is included.
This would lead to 2n maximal CCSs, except that neither the
choice to include all entities in A, nor all entities in B are
valid choices; this violates connectedness. Hence, there are
2n − 2 maximal CCSs.

The number of closed CCSs is only slightly more
involved: notice that 2n − 2 = ∑n−1

i=1

(n
i

)
, which highlights

that the number of maximal CCSs is indeed the number of
choices to pick 1, . . . , n − 1 entities from A, which then
form a unique maximal CCS if augmented with the remain-
ing items from B. The second observation that we can use
to derive the number of closed CCSs is that for this data
every CCS is closed, because any entity that we add (ai or
bi) will reduce the set of compatible entities by one. Hence,
the closure of every CCS is that CCS itself.

Let |F | denote the number of CCSs. The set of CCSs is
found as the selection of i ∈ {1, . . . , n} entities from A,
completed with j ∈ {1, . . . , n − i} entities from B, plus all
2n singletons. Hence, we find

|F | = 2n +
n−1∑
i=1

(
n

i

)
·
⎛
⎝n−i∑

j=1

(
n − i

j

)⎞
⎠

= 2n +
n−1∑
i=1

(
n

i

)
·
(
2n−i − 1

)

= 2n +
n−1∑
i=1

(
n

i

)
· 2n−i −

n−1∑
i=1

(
n

i

)

= 2n + (
3n − 2n − 1

) − (
2n − 2

)
= 3n − 2n+1 + 2n + 1.

Since the fixpoint-enumeration algorithm enumerates all
closed CCSs, the number of closed CCSs is O(3n), while
the number of maximal CCSs is O(2n). It follows that the
number of steps required by the algorithm per maximal CCS
is O(3n/2n). The following is speculation: it may be possible
that all maximal CCSs are enumerated in only O(2n) steps,
which is why a conclusion regarding the delay time between
two maximal CCSs is more difficult to obtain. However, the
algorithm cannot know it has found all maximal CCSs until
it has processed all O(3n) closed CCSs; hence, the general
complexity per maximal CCS is O(3n/2n).

123

Int J Data Sci Anal (2016) 1:61–76 69

Finally, notice that we concluded previously (Sect. 4.4)
that regardless of the definition of the closure operator, the
closure operator cannot add any entities to a set F unless they
are part of every maximal CCPS that is a superset of F . This
implies that our closure operator defined here is indeed opti-
mal for any database involving only one relationship type.
Hence, this proof holds for any instantiation of fixpoint enu-
meration. ��

Notice that this proof is for CCSs, and since properness
need not be present in the data, the proof is also valid for
CCPSs, as well as all other RMiner variants.

5 Implementation

We implemented the full program in C++ and the imple-
mentation turned out to be surprisingly difficult. The main
difficulty is the efficiency of the enumeration algorithm. To
facilitate understanding and reproduction of the tool, we pro-
vide full pseudocode here (Algorithms 1–4). The full source
code is available at https://bitbucket.org/BristolDataScience/
p-n-rminer. Our implementation is based on N-RMiner [23]
and the pseudocode is partly based on the description in [21].

Themain function isP-N-RMiner (Algorithm 1), which
takes as arguments four sets of entities and a list of entity
types. Entity set F contains the entities whose supersets need
to be enumerated in the current branch, this set is constructed
via branching and the closure. Entity set B contains the enti-
ties all whose supersets already have been enumerated; this
set is used for pruning. Entity sets C and A and the entity
types list t ypes are passed on for efficiency; these are the
compatible entities, augmentation entities, and types adja-
cent to F . The initial call is P-N-RMiner(∅,∅, E, E,∅).

The main structure of P-N-RMiner is the for loop over
all augmentation entities (line 1), which is an implementa-
tion of the branch step of fixpoint enumeration. An entity is
chosen and the branch including that entity is fully explored
first. Once returned from the recursion (line 18), the entity is
added to the B set (line 21). Iteration of the closure operator is
ensured by the while loop (lines 7–13)7. F∗ and A∗ are used
to track entities that enter the augmentation set A′. Entities
in the augmentation set have to be checked for inclusion with
the closure operator only once for a specific combination of
F and B, because the set of compatible entities C ′ does not
change with the closure8. AnMCCPS is outputted whenever
A = F (lines 15, 16).

The computation of the set of augmentation entities
Compute_Aug (Algorithm 2) is straightforward: the set of

7 The current implementation computes the closure only once, which
probably negatively impacts the performance.
8 NB. C , A, and t ypes are fixed also for given sets F and B.

Algorithm 1 Enumerate all maximal CCPSs
Global static variables:
– Comp List of compatible entities per entity
– Rel_types_ent List of related entity types per entity type
P-N-RMiner(F, B,C, A, t ypes)

1: for all e ∈ A \ (F ∪ B) do
2: t ypes′ ← t ypes ∪ Rel_t ypes_ent[t (e)]
3: C ′ ← F ∪{e} ∪ Compute_Comp(C ∩Comp[e] \ (F ∪{e}), F ∪

{e})
4: F∗ ← F
5: A′ ← Compute_Aug(C ′, F, t ypes′)
6: F ′ ← F ∪ {e} ∪ Compute_Comp(A′ \ (F ∪ {e}),C ′)
7: while F ′ \ F∗ 	= ∅ do
8: t ypes′ ← t ypes′ ∪ ⋃

e∈F ′\F∗ Rel_t ypes_ent[t (e)]
9: A∗ ← A′
10: F∗ ← F ′
11: A′ ← Compute_Aug(C ′, F ′, t ypes′)
12: F ′ ← F ′ ∪ Compute_Comp(A′ \ (A∗ ∪ F ′),C ′)
13: end while
14: if F ′ ∩ B ′ = ∅ then
15: if F ′ = A′ then
16: Output F ′
17: else
18: P-N-RMiner(F ′, B,C ′, A′, t ypes′)
19: end if
20: end if
21: B ← B ∪ {e}
22: end for

compatible entities C is given, so we can take the entities of
the adjacent t ypes from C (line 1) and any remaining entity
e ∈ C ′ leads to a complete and connected set F ∪ {e}. Then,
we only need to verify properness of F ∪ {e} by checking
the parents of e (lines 2–6).

Algorithm 2 Enumerate the augmentation set of F (this
assumes entities in C are compatible with F)
Global static variables:
– Parents List of parents per entity
Compute_Aug(C, F, t ypes)

1: C ′ ← ⋃
t∈t ypes Ct

2: for all e ∈ C ′ do
3: if ¬ (Parents[e] ⊆ F) then
4: C ′ ← C ′ \ {e}
5: end if
6: end for
7: return C ′

For the compatible entities computation, we present
pseudocode for the general n-ary case (Algorithm 3).
Compute_Comp takes as arguments two sets of entities:
G is the entities to verify for compatibility, and F is the set
of entities to check compatibility against. The routine works
by considering each entity e ∈ G separately (line 3). Then,
compatibility with F is checked for each relationship type
that e can participate in (line 5). If the check fails for any rela-
tionship type, e is not compatible with F , the routine breaks

123

https://bitbucket.org/BristolDataScience/p-n-rminer
https://bitbucket.org/BristolDataScience/p-n-rminer

70 Int J Data Sci Anal (2016) 1:61–76

Algorithm 3 Enumerate the entities inG that are compatible
with F
Global static variables:
– Rel_inst List of relationship instance ids per relationship type per

entity
– Entity_types List of entity types per relationship type
– Rel_types_types List of relationship types a given entity type par-

ticipates in
Compute_Comp(G, F)

1: S ← ∅
2: F ′ ← { f ∈ F | �g ∈ F, f ∈ Parents[g]}
3: for all e ∈ G do
4: insert ← true
5: for all r ∈ Rel_t ypes_t ypes[t (e)] do
6: T ← Enti t y_t ypes[r] ∩ t(F) \ t(e)
7: if ¬Is_Comp(T, F ′, Rel_inst[e][r], r) then
8: insert ← false
9: break
10: end if
11: end for
12: if insert then
13: S ← S ∪ {e}
14: end if
15: end for
16: return S

(lines 7–9) and continues from line 3. Line 2 contains an opti-
misation that is explained below after introducingIs_Comp.

The compatibility check for the n-ary case is based on
verification of the coverage of the critical sets of F ∪ {e}
[21,23]. A critical set of a set of entitiesG and a relationship
type r is any subset of G containing only entities present in
r and at most one entity per type. A maximal critical set is
one that contains as many entities as possible, i.e., one entity
from each entity type of r that is present in G. A critical
set G ′ ⊆ G is covered if there exists a relationship instance
i ∈ R,G ′ ⊆ i . If all maximal critical sets of G are covered,
all critical sets of G are covered, and then and only then G
is complete.

The function Is_Comp (Algorithm 4) checks whether
all combinations of entities of types T in an entity set F—
which could have more types than T—are covered by the set
of relationship instances I of type r . The function works via
recursion; if I becomes empty, the set is not covered (lines 1–
3). If I is not empty, select an entity type t ∈ T and check for
every entity e ∈ F of type t whether it is coveredby recursion,
while decreasing |T | by one every time and selecting only
the relationship instances of type r and the entity e (lines
4–9). Line 2 of Compute_Comp is an optimisation specific
to P-N-RMiner because maximal critical sets that involve an
entity e that is a parent of another entity f are covered by
definition if the child f is covered9.

9 This optimisation is currently not in the implementation, and that
probably negatively impacts the performance.

Algorithm 4 Check compatibility of all entities in F for
specific entity types T and relationship type r
Global static variables:
– Rel_inst List of relationship instance ids per relationship type per

entity
Is_Comp(T, F, I, r)

1: if I = ∅ then
2: return false
3: end if
4: Select any t ∈ T
5: for all e ∈ Ft do
6: if ¬Is_Comp(T \ t, F, I ∩ Rel_inst[e][r],r) then
7: return false
8: end if
9: end for
10: return true

6 Case studies

The framework and theory presented in the previous sections
give rise to several empirical questions, which we aim to
address in this section through three case studies.Our primary
contribution is the formalisation of a more general pattern
syntax; hence, the primary question that we need to verify
experimentally is:

1. Can we find patterns that are more interesting?

Our secondary contribution is the derivation of an inter-
estingness score that accounts for the dependence between
relationship instances of structured attributes.Hence, the sec-
ond question is:

2. Is the new interestingness score relevant?

Thirdly, we present a novel enumeration algorithm. Given
the appropriate input, the enumeration algorithm from N-
RMiner [23] would output the same maximal CCPSs. How-
ever, we claim P-N-RMiner is faster, because it can capitalise
on the partial order structure. Hence, the third question is:

3. Is the new enumeration algorithm faster?

We aim to answer the first two questions in the following
case studies and also showcase the type of patterns that one
can find using the method introduced in this paper. The third
question we discuss in Sect. 7.

6.1 Foursquare check-ins

First we return to the Foursquare Check-ins data discussed in
the introduction. These datawere gathered byCheng et al. [8]
from several online social media but mostly (>50%) from
Foursquare, and consists of user-ids, check-in times, and
venues. The data consists of 225K users and 22M recorded

123

Int J Data Sci Anal (2016) 1:61–76 71

Time (hours)
0 6 12 18 24

User 1 (n = 532)

Time (hours)
0 6 12 18 24

User 2 (n = 18)

Density estimate Modes

Fig. 3 Two examples of density estimation and mode location finding
for the check-ins data

check-ins. Data such as this could be useful to identify pat-
terns of people’s mobility, busy times of certain services, etc.
Ordinarily, we would represent this data using three entity
types and triary relationship instances; user x checks in at
time t into venue y. To make this example as simple as pos-
sible, we omit the information about venues.

In this case, we are interested in finding patterns in the
check-in times across users such as “many users check in
somewhere both between 8.30 and 9.30 in the morning and
between 11.30 and 12.30 around noon”. Such patterns can-
not be identified by running P-N-RMiner on the data directly,
because relationship instances carry no weights or any infor-
mation about their probability. Hence, users that check in
frequently and are tracked over a long period of time will
have checked in somewhere at many times of the day.

To remedy this, we preprocess the data by computing ker-
nel density estimates for each user, using a Gaussian kernel
with a width of one hour and then locating the modes of their
check-in times with 10-minute precision. Two examples are
visualised in Figure 3. As a result, instead of 22M check-ins,
the relationship instances correspond to 684K modes, 3 per
user on average. This way, more data ensure that our patterns
will become more accurate.

We are interested in discovering patterns that possibly
include time intervals and not just specific times. As pos-
sibilities, we considered asking P-N-RMiner to try intervals
up to one, one and a half, and two hours. The reason we con-
sider several options is because the more intervals there are,
the more difficult the computational problem is. We identi-
fied for each interval size the largest subsampled data that
we could run in less than 8 hours10, using a reasonable con-
straint on minimum number of users in any CCPS, each time
cutting the data size in half. We found these sample sizes to
be 2−8 (879 users), 2−9 (440 users), and 2−10 (220 users),
with minimum constraints of 0, 10, and 10 users in all pat-
terns.

None of the settings yields substantially more interest-
ing patterns than another. The ‘up to 2-hour intervals’ adds

10 Unfortunately our current implementation does not use any paral-
lelisation, so it runs only in a single thread.

least information to the other two; more than half of the
top-100 patterns for that setting contain only intervals that
are shorter than 1.5h and are thus also present in those
results, and the interestingness scores are <0.815, while the
top-65 for ‘≤1-hour’ and the top-26 for ‘≤1.5-hours’ have
higher scores; up to 0.861 and 0.855, respectively. Notice
that such scores are not straightforward to interpret, because
whether such a score is low or high depends on the data at
hand. For example, the pattern ranked 4th for ‘≤2-hours’
is interesting. It contains three intervals and reads: 4.5% of
the users checked in frequently between [1.10 am–2.30 am],
[4.30 pm–6.30 pm], as well as [8.30 pm–9.30 pm].

The overall most informative pattern that we iden-
tify is: 1.6% of the users checked in frequently between
[6 am–7 am], as well as [10.10 am–10.50 am]. This means
that, compared to the number of users that check in frequently
between those intervals, there is a surprisingly large set of
users that checks in frequently during both intervals. This
pattern was found in the subsample of 879 users using inter-
vals up to one hour in duration. Interestingly, in that case
computing the results without constraints took 2 hours 20
minutes, but all except one pattern in the top-700 (ranked
269) have at least ten users, a result that can be computed in
roughly half the time (1h 13m).

To confirm that handling intervals is relevant, we identi-
fied the top pattern that does not include any intervals; it is
ranked 892nd, 2962nd, and 10138th, for the three settings,
respectively. This clearly shows that patterns with intervals
are more interesting in terms of information content. We also
test the relevance of the new interestingness score, by com-
paring the ranking of P-N-RMiner against N-RMiner on data
augmented such that they produce the same patterns.We find
thatKendall’s tau is 0.337 and 0.352, respectively (N-RMiner
did not finish in the specifiedmaximumof 8 hours on the third
dataset),which highlights that accounting for the partial order
when computing interestingness is highly relevant.

6.2 Amazon book ratings

As a second case study, we downloaded a snapshot of Ama-
zon product reviews from SNAP11. This dataset contains
around 500K products, 8M reviews with ratings from 1 to
5, and 2.5M product category memberships. From this we
selected all reviews about books and uniformly sub-sampled
1% of the customers.

All books have one or more categorymemberships, which
are given as paths in the Amazon product category hierarchy.
From this we extracted the relationship between books and
categories and the hierarchy itself, keeping two levels below
the category Book → Subject . The dataset that we obtain
has the structure shown in Figure 4 and consists of 22,003

11 https://snap.stanford.edu/data/amazon-meta.html

123

https://snap.stanford.edu/data/amazon-meta.html

72 Int J Data Sci Anal (2016) 1:61–76

Rating

BookCustomer Subject

Fig. 4 Relational schema of the Amazon Book Ratings data

books, 9,855 customers, 417 hierarchically structured book
subjects, as well as 36,415 ratings and 53,403 subject mem-
berships.

We ran P-N-RMiner on this dataset with constraints of at
least 6 books and 20 customers. As an example, we present
the most highly-ranked pattern. This contains 23 customers
and 8 books, all of which are different versions of the book
“Left Behind: A Novel of the Earth’s Last Days”, a rating
[1–5] and the subjects Fiction and Christianity. To our sur-
prise, we found that most of the patterns in the result are
like this; different versions of the same book (hard cover,
audiobook, etc.).

Inspection of the raw data led us to the hypothesis that this
happens because reviews are copied across different versions
of the same book. Unfortunately, the text of reviews was not
crawled, so it is not straightforward to identify reviews for
different items that are equivalent. We attempted to tackle
this problem by keeping only one such version of a book by
looking for reviews that have the same date, rating, and user.
However, after removing duplicates using this procedure, it
appears that little structure remains in the data.

We also ran N-RMiner on the same dataset, augmenting
it with all the implied relationship instances. We see that
the same pattern is now ranked at the 21st position. This is
because N-RMiner does not take into account the dependen-
cies between the intervals and, as a result, intervals are by
definition more highly connected and relationship instances
containing intervals are more probable. This confirms that
our new derivation of the interestingness score is indeed rel-
evant.

6.3 Fisher’s Iris data

The Iris data12 have been pervasively used in machine learn-
ing and pattern recognition text books. The data consist
of 150 measurements of plants. Each has four numerical
attributes and a class label (one of three species). In Sect. 2,
we have shown that P-N-RMiner can be used to mine tiles
and frequent patterns. However, it can also be used to mine
subgroups and subspace clusters, which we highlight in this
case study.

Subgroup discovery is a form of pattern mining where a
user chooses a target attribute and the aim is to find rules

12 https://archive.ics.uci.edu/ml/datasets/Iris.

that predict high values of this attribute, or rules that predict
true if the attribute is binary. For the Iris data, this means
that we would like to find rules based on the four numerical
attributes that predict a specific class label.Wemodel the data
as five entity types. We discretise each numerical attribute to
ten different values using equal spacing and include inter-
vals up to six adjacent values. This substantially reduces the
computation time, while hardly affecting the patterns.

We then ran P-N-RMiner with a constraint that all patterns
have to include a class label. The top pattern for each class is
visualised in Figure 5. All top patterns include values for all
four numerical attributes, indicating that they are all informa-
tive for the class label and the set of points that they describe.
The first pattern that omits an attribute is ranked 120th and
is equivalent to the second most informative pattern in the
data (and second most informative for class 1), except that
it omits sepal width. Figure 5 visually confirms that sepal
width is the least informative feature for that pattern.

Subspace clustering is a form of pattern mining that is
unsupervised. The goal is to discover clusters in the data,
but unlike traditional clustering, the goal is not to provide
a full partitioning of the data, and there is no requirement
to use all variables. Our framework has roughly the same
aim and could as such be considered a relational (exhaus-
tive) approach to subspace clustering. Like in the case of the
check-ins data, our framework enables identification of pat-
terns that are otherwise unattainable using existing methods.

To find subspace clusters in the data, we ran P-N-RMiner
without constraints on the Iris data, leaving out the class
labels. As output we find 25,365 patterns. The top pattern
is: pl = [1.295–1.885], pw = [0.22–0.7], sl = [4.84–5.2],
sw = [3.08–4.04], with an interestingness score of 1.4744.
So, it is similar to the top pattern predicting class 1 (see
Figure 5), except that the intervals for sepal length and
sepal width are slightly more narrow. The first subspace
cluster occurs at rank 347 and is quite specific already:
pl = [1.295–1.885], pw = [0.22–0.7], sl = [4.48–5.2],
with an interestingness score of 1.1040, again omitting sepal
width.

As a final remark, we are not suggesting that P-N-RMiner
can replace all existing subgroup discovery and subspace
clustering methods, because P-N-RMiner has high com-
putional cost, owing to the exhaustive search strategy. On
the other hand, the advantage of exhaustive search is that the
identified patterns are truly the most informative patterns in
the data.

7 Scalability

To test the scalability of the algorithm and studywhatwe gain
by using the attribute structure in the form of the properness
constraint, we again look at the check-ins data. We created

123

https://archive.ics.uci.edu/ml/datasets/Iris

Int J Data Sci Anal (2016) 1:61–76 73

4 5 6 7 8
Sepal length

1.5

2

2.5

3

3.5

4

4.5

S
ep

al
 w

id
th

4 5 6 7 8
Sepal length

0

1

2

3

4

5

6

7

P
et

al
 le

ng
th

4 5 6 7 8
Sepal length

0

0.5

1

1.5

2

2.5

3

P
et

al
 w

id
th

1 2 3 4 5
Sepal width

0

1

2

3

4

5

6

7
P

et
al

 le
ng

th

1 2 3 4 5
Sepal width

0

0.5

1

1.5

2

2.5

3

P
et

al
 w

id
th

0 2 4 6 8
Petal length

0

0.5

1

1.5

2

2.5

3

P
et

al
 w

id
th

Fig. 5 Visualisation of the full Iris data, projected for each pair of features. Colours depict class labels and the boxes represent the top subgroup
pattern for each class, as discovered by P-N-RMiner. Incidentally, each most informative pattern includes all four attributes

Experiment (sorted by avg. computation time)
0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0.01

1

100

10000

9,
 9

, 4
0

9,
 9

, 8
0

9,
 9

, 1
60

9,
 9

, 3
20

8,
 9

, 1
60

8,
 9

, 3
20

8,
 9

, 6
40

7,
 9

, 3
20

7,
 9

, 6
40

7,
 9

, 1
28

0
6,

 9
, 1

28
0

6,
 9

, 2
56

0
5,

 9
, 2

56
0

5,
 9

, 5
12

0
4,

 9
, 5

12
0

4,
 9

, 1
02

40
3,

 9
, 1

02
40

3,
 9

, 2
04

80
2,

 9
, 2

04
80

2,
 9

, 4
09

60
1,

 9
, 4

09
60

1,
 9

, 8
19

20
0,

 9
, 8

19
20

0,
 9

, 1
63

84
0

10
, 1

2,
 1

0
10

, 1
2,

 2
0

10
, 1

2,
 4

0
10

, 1
2,

 8
0

10
, 1

2,
 1

60
9,

 1
2,

 8
0

9,
 1

2,
 1

60
9,

 1
2,

 3
20

8,
 1

2,
 3

20
8,

 1
2,

 6
40

7,
 1

2,
 6

40
7,

 1
2,

 1
28

0
6,

 1
2,

 1
28

0
6,

 1
2,

 2
56

0
5,

 1
2,

 2
56

0
5,

 1
2,

 5
12

0
4,

 1
2,

 5
12

0
4,

 1
2,

 1
02

40
3,

 1
2,

 1
02

40
3,

 1
2,

 2
04

80
2,

 1
2,

 2
04

80
2,

 1
2,

 4
09

60
1,

 1
2,

 4
09

60
1,

 1
2,

 8
19

20
0,

 1
2,

 8
19

20
0,

 1
2,

 1
63

84
0

10
, 6

, 1
0

10
, 6

, 2
0

10
, 6

, 4
0

10
, 6

, 8
0

10
, 6

, 1
60

9,
 6

, 1
0

9,
 6

, 2
0

9,
 6

, 4
0

9,
 6

, 8
0

9,
 6

, 1
60

9,
 6

, 3
20

8,
 6

, 1
0

8,
 6

, 2
0

8,
 6

, 4
0

8,
 6

, 8
0

8,
 6

, 1
60

8,
 6

, 3
20

8,
 6

, 6
40

7,
 6

, 1
60

7,
 6

, 3
20

7,
 6

, 6
40

7,
 6

, 1
28

0
6,

 6
, 6

40
6,

 6
, 1

28
0

6,
 6

, 2
56

0
5,

 6
, 1

28
0

5,
 6

, 2
56

0
5,

 6
, 5

12
0

4,
 6

, 2
56

0
4,

 6
, 5

12
0

4,
 6

, 1
02

40
3,

 6
, 5

12
0

3,
 6

, 1
02

40
3,

 6
, 2

04
80

2,
 6

, 1
02

40
2,

 6
, 2

04
80

2,
 6

, 4
09

60
1,

 6
, 2

04
80

1,
 6

, 4
09

60
1,

 6
, 8

19
20

0,
 6

, 4
09

60
0,

 6
, 8

19
20

0,
 6

, 1
63

84
0

10
, 9

, 1
0

10
, 9

, 2
0

10
, 9

, 4
0

10
, 9

, 8
0

10
, 9

, 1
60

9,
 9

, 1
0

9,
 9

, 2
0

Fig. 6 Comparison of computation times between P-N-RMiner (intro-
duced here) and N-RMiner [23]. On the x-axis are experiments, sorted
by average computation time over the twomethods, and on the y-axes is
computation time. The runtime of each experiment is visualised by two
dots, corresponding to the runtime of the two methods. For dark/green

bars and dots, P-N-RMiner is the lower dot of the two (and thus faster),
while for light/pink bars and dots, N-RMiner is lower dot of the two (and
thus faster). P-N-RMiner is typically faster, but especially for problems
that are computationally more demanding

11 versions of the data, each time throwing away half of the
remaining users and their relationship instances (the check-
in modes). We then ran both N-RMiner on augmented data
with the additional entities and relationship instances, and
P-N-RMiner, which then output the same set of maximal
CCPSs.

We are interested also in how the depth of the partial order
of an attribute affects the scalability and potential speed-up
by P-N-RMiner. Hence, we tested runtimes for 6, 9, and 12
levels, i.e., time intervals up to one, one and a half, and two
hours. We exhaustively tested constraints on the number of
users from 10, 20, 40, etc. up to the sample size. We stopped
any experiment that had not finished after 24 hours.

A comparison of runtimes for all cases where N-RMiner
finished succesfully is given in Figure 6. The general trend
is that P-N-RMiner in faster in 71 out of this subset of
100 experiments and that the speed-up grows as the com-
putation time grows. The largest observed speed-up is
a factor of 8; 12.3 vs. 1.5 hours, for the full data, 12
levels, and mining patterns with at least 81920 users. N-
RMiner is mainly faster (up to a factor of 2) for runtimes
shorter than 1 second. Not shown in the figure is that P-
N-RMiner uses substantially less memory. For example, for
the full data with 12 levels, P-N-RMiner uses 5.5 MB of
memory at its peak, while N-RMiner uses more than 10
GB.

123

74 Int J Data Sci Anal (2016) 1:61–76

Sample size (2x)
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

C
om

pu
ta

tio
n

tim
e

(s
ec

)

0.01

1

100

10000
Depth: 6

Sample size (2x)
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Depth: 9

Sample size (2x)
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Depth: 12

0

4

16

64

256

1024

4096

16384

65536

262144

1.04858e+

Fig. 7 Scalability of P-N-RMiner for increasing data size. Each dotted
line with circles corresponds to a constraint on the minimum number
of users. For any such constraint there are typically two or three mea-
surements (sample sizes) that finished in 24 hours, due to the constraint
being too low and demanding, or too high (larger than the sample size).
On the x-axis is the sample size, on the y-axis the runtime. The colour

of a circle corresponds to the number of patterns (CCPSs) enumerated,
ranging from 0 (black) to ca. 250k (light blue), see also the colour bar.
There appears to be linear relation between runtime and sample size
when the number of patterns is the same, and the depth of the partial
order structure has a limited effect as well

Runtimes of P-N-RMiner for increasing sample sizes are
illustrated in Fig. 7. It appears that the number of levels, i.e.,
the depth of the partial order, actually only has a small effect
on the runtime—for example, compare the trend of brown
points across the depths. Yet, the number of patterns in the
data explodes much more easily. For depth 12, we can only
enumerate all patterns in the samples that have at most 879
users (0.4% of the data). There appears to be a linear rela-
tionship between the size of the data and the runtime if the
number of patterns is equivalent; for any of the subfigures,
one could fit a straight line through measurements that have
roughly the same number of patterns (i.e., points of the same
colour). This relationship holds even when there are no pat-
terns.

8 Related work

8.1 Exploratory versus predictive patterns

The broad purpose of the framework presented in this paper
is to facilitate exploration of data in an entirely unsuper-
vised manner. This distinguishes the framework from other
types of local pattern for multi-relational data mining such
as Safarii [15], and more generally from approaches based
on inductive logic programming. These alternative frame-
works operate by a user selecting one or a set of attributes
as a target, after which an algorithm builds rules to predict
that target using the full relational data. Wu et al. [27] intro-
duced a method for finding interesting chains of biclusters in
relational data, which has a similar goal as our framework.
Their approach differs in that they only consider binary rela-
tionships, they employ a heuristic greedy algorithm to find
interesting patterns, and their method does not account for
structure of attributes in any way.

8.2 Pattern syntax

The pattern syntax proposed in this paper is unique in being
both relational and able to deal with structured attribute types
such as ordinal and real-valued attributes, taxonomy terms,
and more. The proposed pattern syntax, in being local, owes
to the frequent pattern mining literature. Indeed, the CCS
pattern syntax [24], which it generalises, has already been
shown to be a generalisation itself of a local pattern type in
binary databases known as tiles [12], which are essentially
equivalent to frequent itemsets.

8.3 Structured attribute types

Real-valued and ordinal attributes have also been dealt with
before in local pattern mining, in subgroup discovery and
exceptional model mining. For example, in subgroup dis-
covery, approaches have been developed to infer subgroup
descriptions in terms of intervals for real-valued attribute
types and subsets of categorical attributes. A notable paper
in this regard is [19], where an efficient algorithm is intro-
duced for findingoptimal subgroups using any convexquality
measure. Exceptional model mining, on the other hand, aims
to extend subgroup discovery beyond a single target attribute
[17].Noneof these approaches, however, are as generic as our
proposed approach: they are either ad hoc or remain limited
to a very specific types of structured attributes. The approach
of modelling the structure of the attributes as a partial order
is also entirely novel.

8.4 Interestingness formalisations

The formalisation of interestingness of local patterns is a
highly active research area, with most research targeted on
itemsets in binary databases. This makes sense, as the prob-

123

Int J Data Sci Anal (2016) 1:61–76 75

lem is most acute for exploratory data mining approaches,
in the absence of a particular set of target attributes to be
predicted. Many approaches to formalising interestingness
are based on modelling the unexpectedness of a pattern: the
extent to which the pattern presents novel, surprising, or
unexpected information to the user. A recent survey is [16].

There are three major lines of research aimed at mining
(sets of) ‘interesting’ local patterns. Constrained randomisa-
tion techniques are based on the assumption that a pattern
is more interesting if it is not present in randomised data
[13,18,20]. Methods based on the Minimum Description
Length principle assume that a pattern is more interesting
if provides better compression [26]. Approaches based on
the Maximum Entropy (MaxEnt) principle assume a pattern
is more interesting the more surprising it is given a MaxEnt-
based background model [9,10]. Both randomisation and
MaxEnt approaches have been shown to allow for account-
ing prior knowledge, thus enabling subjective interestingness
and iterative data mining.

The MaxEnt approach and the subjective interesting-
ness framework FORSIED have been shown to be highly
flexible in terms of pattern types [11]. Additionally, they
have been used successfully to quantify interestingness pat-
terns for RMiner [24], which we directly build upon. For
these reasons we used this paradigm to formalise the inter-
estingness of the patterns in the current paper. Clearly,
a direct application of interestingness as defined in [24]
would not have yielded desirable results, as the dependen-
cies between relationship instances would be ignored (see
also Sect. 6).

In the work on Domain Driven Data Mining [3,5], it
is stressed that there is a difference between technical and
business interestingness. For patterns to be actionable, tech-
nical interestingness often does not suffice and patterns
are only truly interesting if they reveal relations that are
directly related to the business model, i.e., they take into
account domain knowledge of the business [4]. Furthermore,
a distinction is made between objective and subjective inter-
estingness. Notably, in that line of work there are also results
on mining patterns across data tables, called combined min-
ing [6].

It is important to note that the FORSIED framework [9,11]
attempts to integrate objective and subjective interesting-
ness by means of an objective score function that explicitly
accounts for prior beliefs specified by the user. We have so
far assumed that the user wants to learn everything about
the data and largely ignored what to do if the user is inter-
ested only in (relationships to) part of the data. We envision
that in our framework it should be possible to integrate both
technical and business interestingness. It seems possible to
manipulate the constraints on the minimum number of enti-
ties of certain types as well as the prior beliefs to ensure
only patterns are found that are indeed interesting to the end

user, whatever the context. However, further research in this
direction is necessary.

8.5 Enumeration algorithms

The algorithm that we derived for enumeration of maximal
CCPSs is based on the generic fixpoint-enumeration algo-
rithm for enumerating all closed sets in a strongly accessible
set system, introduced by Boley et al. [1]. This algorithmic
scheme has been used before in the data mining literature
for enumerating maximal CCSs [24], including extensions
to n-ary relations [23] and approximate CCSs [22]. Here, we
adhere to the same algorithmic scheme. In order to be able
to use the scheme, we model the structure of attributes as a
partial order, augment the pattern syntax, and add a proper-
ness constraint to the definition of the set of augmentation
elements. As may be apparent, these changes are not triv-
ial, and neither is the proof that the algorithmic scheme still
works.

9 Conclusions

An important obstacle for the adoption of exploratory data
mining techniques in general, and local pattern mining
approaches in particular, is their limited flexibility in terms
of data type to which they can be applied (e.g., only tabular
data), and type of pattern they can generate, e.g. subgroups,
itemsets, n-sets. In reality, however, data are often complexly
structured (as in, e.g., a relational database), and addition-
ally there is often structure among the different values data
attributes may attain, i.e., attribute values can be ordinal,
interval, taxonomy terms, and more.

Attempts to resolve this inflexibility for specific data and
pattern types are numerous. Yet, we are unaware of any
generic approach that comes close to subsuming the range
of pattern syntaxes considered by the local pattern mining
research community, allowing for data types of a broad range
of structures. The contributions made here may be an impor-
tant step in this direction.

Our contributions raise a number of new research chal-
lenges. Ideally, the pattern syntax is tolerant to missing
relations to ensure noise resilience, similar to [22]. The inter-
estingness can be made more versatile by considering a more
varied range of prior belief types. Another interesting ques-
tion is whether the enumeration algorithm could still be
improved. Our algorithm is similar to the Bron-Kerbosch
algorithm for enumerating maximal cliques in a graph, for
which it is known that the worst case complexity of O(3n/3)

is optimal, since it is equivalent to the number of maxi-
mal cliques in a graph [25]. Yet another interesting direction
for future work is developing heuristic algorithms for find-

123

76 Int J Data Sci Anal (2016) 1:61–76

ing interesting CCPSs directly, in order to avoid the costly
exhaustive search step.

Acknowledgments This work was supported by the European Union
(ERCGrantFORSIED615517) and theEPSRC(GrantEP/M000060/1).

References

1. Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Listing closed sets
of strongly accessible set systems with applications to data mining.
TCS 411(3), 691–700 (2010)

2. Borgelt, C.: Frequent item set mining. WIREs: DMKD 2(6), 437–
456 (2012)

3. Cao, L.: Domain driven datamining (D3M). In: ICDMWorkshops,
pp. 74–76 (2008)

4. Cao, L.: Domain-driven data mining: Challenges and prospects.
IEEE TKDE 22(6), 755–769 (2010)

5. Cao, L., Yu, P.S., Zhang, C., Zhao,Y.: DomainDrivenDataMining.
Springer, New York (2010)

6. Cao, L., Zhang, H., Zhao, Y., Luo, D., Zhang, C.: Combined min-
ing: Discovering informative knowledge in complex data. IEEE
TSMC-B 41(3), 699–712 (2011)

7. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Data peeler:
Constraint-based closed pattern mining in n-ary relations. In: Pro-
ceedings of SDM, pp. 37–48 (2008)

8. Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of
footprints in location sharing services. In: Proc. of ICWSM, pp.
81–88 (2011)

9. De Bie, T.: An information-theoretic framework for data mining.
In: Proceedings of KDD, pp. 564–572 (2011)

10. De Bie, T.: Maximum entropy models and subjective interesting-
ness: an application to tiles in binary databases. DMKD 23(3),
407–446 (2011)

11. De Bie, T.: Subjective interestingness in exploratory data mining.
In: Proceedings of IDA, pp. 19–31 (2013)

12. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Pro-
ceedings of DS, pp. 278–289 (2004)

13. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing
datamining results via swap randomization. TKDD 1(3), 14 (2007)

14. Herrera, F., Carmona, C.J., González, P., del Jesus, M.J.: An
overview on subgroup discovery: foundations and applications.
KAIS 29(3), 495–525 (2011)

15. Knobbe, A.J.: Multi-relational data mining. IOS Press, Amsterdam
(2006)

16. Kontonasios, K.N., Spyropoulou, E., De Bie, T.: Knowledge dis-
covery interestingness measures based on unexpectedness. WIREs
DMKD 2(5), 386–399 (2012)

17. Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining.
In: Proceedings of ECML-PKDD, pp. 1–16 (2008)

18. Lijffijt, J., Papapetrou, P., Puolamäki, K.: A statistical significance
testing approach to mining the most informative set of patterns.
DMKD 28(1), 238–263 (2014)

19. Mampaey,M.,Nijssen, S., Feelders, A., Knobbe,A.: Efficient algo-
rithms for finding richer subgroup descriptions in numeric and
nominal data. In: Proceedings of ICDM, pp. 499–508 (2012)

20. Ojala,M., Vuokko, N., Kallio, A., Haiminen, N.,Mannila, H.: Ran-
domization of real-valued matrices for assessing the significance
of data mining results. Proc SDM 8, 494–505 (2008)

21. Spyropoulou, E.: Local pattern mining in multi-relational data.
Ph.D. thesis, University of Bristol (2013)

22. Spyropoulou,E.,DeBie,T.:Approximatemulti-relational patterns.
In: Proceedings of DSAA, pp. 477–483 (2014)

23. Spyropoulou, E., De Bie, T., Boley,M.:Mining interesting patterns
in multi-relational data with N-ary relationships. In: Proceedings
of DS, pp. 217–232 (2013)

24. Spyropoulou, E., De Bie, T., Boley, M.: Interesting pattern mining
in multi-relational data. DMKD 28(3), 808–849 (2014)

25. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time com-
plexity for generating all maximal cliques and computational
experiments. TCS 363(1), 28–42 (2006)

26. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets
that compress. DMKD 23(1), 169–214 (2011)

27. Wu, H., Vreeken, J., Tatti, N., Ramakrishnan, N.: Uncovering the
plot: detecting surprising coalitions of entities in multi-relational
schemas. DMKD 28(5–6), 1398–1428 (2014)

123

	P-N-RMiner: a generic framework for mining interesting structured relational patterns
	Abstract
	1 Introduction
	2 Problem formalisation
	2.1 Notation
	2.2 Pattern syntax

	3 Interestingness
	3.1 General approach
	3.2 Description length
	3.3 Information content
	3.4 The Background Distribution
	3.5 Self-information

	4 Enumeration algorithm
	4.1 The enumeration algorithm
	4.2 Enumerating CCPSs
	4.3 Strong accessibility
	4.4 The closure operator
	4.5 Final remarks
	4.6 Computational complexity

	5 Implementation
	6 Case studies
	6.1 Foursquare check-ins
	6.2 Amazon book ratings
	6.3 Fisher's Iris data

	7 Scalability
	8 Related work
	8.1 Exploratory versus predictive patterns
	8.2 Pattern syntax
	8.3 Structured attribute types
	8.4 Interestingness formalisations
	8.5 Enumeration algorithms

	9 Conclusions
	Acknowledgments
	References

