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Abstract We examine the performance of some stan-
dard causal discovery algorithms, both constraint-based and
score-based, from the perspective of how robust they are
against (almost) failures of the Causal Faithfulness Assump-
tion. For this purpose, we make only the so-called Triangle-
Faithfulness assumption, which is a fairly weak consequence
of the Faithfulness assumption, and otherwise allows unfaith-
ful distributions. In particular, we allow violations of
Adjacency-Faithfulness and Orientation-Faithfulness. We
show that the (conservative) PC algorithm, a representative
constraint-based method, can be made more robust against
unfaithfulness by incorporating elements of the GES algo-
rithm, a representative score-based method; similarly, the
GESalgorithmcan bemade less error-prone by incorporating
elements of the conservative PC algorithm. As our simula-
tions demonstrate, the increased robustness seems to matter
even when faithfulness is not exactly violated, for with only
finite sample, distributions that are not exactly unfaithfulmay
be sufficiently close to being unfaithful to make trouble.
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1 Introduction

Although it is usually more reliable to infer causal rela-
tions from experimental data than from observational data,
the problem of causal discovery from observational data has
been drawing increasingly more attention, thanks on the one
hand to the practical difficulties in carrying outwell-designed
experiments and on the other hand to the relative ease of
obtaining large volumes of data from various records and
measurements. A widely adopted framework is to use graphs
to represent causal structures and to relate causal graphs
to probability distributions via various assumptions. Two
well-known assumptions are known as the Causal Markov
Assumption and the Causal Faithfulness Assumption [15].
The Causal Markov Assumption states that the joint distri-
bution of a set of variables satisfies the Markov property of
the true causal graph over them, or in other words, satis-
fies the conditional independence relations that are implied
by the causal graph according to its Markov property. The
Causal Faithfulness Assumption states the converse that the
conditional independence relations satisfied by the joint dis-
tribution are all implied by the causal graph.

While the Causal Markov Assumption—when applied to
causally sufficient systems where no common direct cause
of two variables in the system is left out—is backed by
substantial metaphysical principles relating causality and
probability, such as Reichenbach’s principle of common
cause [11], the Causal Faithfulness Assumption is usually
taken to be a sort of Occam’s razor or methodological
preference of simplicity [19]. As a result, the Causal Faith-
fulness Assumption is more dubious than the Causal Markov
Assumption. Moreover, even if the Causal Faithfulness
Assumption is not exactly violated, the distribution may be
sufficiently close to being unfaithful to the causal graph in
that a (conditional) dependence may be sufficiently weak
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to be almost indistinguishable from independence in finite
samples (with a moderate sample size). The point that such
“almost violations” of faithfulness pose serious challenges to
causal discoverywas alreadymade in the relatively early days
of the graphical modeling approach to causal discovery [7].
Recently, it was also established that the standard defense for
the Causal Faithfulness Assumption that violations thereof
are unlikely does not justify assuming away “almost unfaith-
fulness,” especially when the number of variables is large
[17].

For these reasons, it is worth investigating, for those
causal discovery methods that adopt the Causal Faithful-
ness Assumption, the extent to which the methods rely
on the assumption, as well as the possibility of relaxing
the assumption and adjusting the methods accordingly. The
existing investigations of this sort have focused on the
constraint-based approach to causal discovery [10,14,20]. In
this paper, we follow this line of inquiry and bring the score-
based approach to bear on the problem. In particular, we
argue that the (conservative) PC algorithm, a representative
constraint-based method, can be made more robust against
unfaithfulness by incorporating elements of the GES algo-
rithm, a representative score-basedmethod, and that the GES
algorithm can be made less error-prone by incorporating ele-
ments of the conservative PC algorithm.

The rest of the paper is organized as follows. We review
the basic framework and notations in Sect. 2 and survey a
number of consequences of the faithfulness assumption that
may serve as weaker substitutes for the faithfulness assump-
tion in Sect. 3. Then, in Sect. 4, we examine the behavior of
PC and that of GES against certain kinds of unfaithfulness
and motivate some natural hybrid algorithms. We test these
hybrid algorithms through simulations in Sect. 5, which sug-
gest, among other things, that the proposed algorithms are
less error-prone than PC and GES at realistic sample sizes,
even though the Faithfulness Assumption is not exactly vio-
lated. We conclude with discussions of some open problems
in Sect. 6.

2 Preliminaries

We will use the following graph terminology. A (mixed)
graph is a pair (V,E), where V is a set of vertices (each rep-
resenting a distinct random variable),1 andE is a set of edges
between vertices such that between each pair of vertices there
is at most one edge. For the purpose of this paper we need

1 The distinction between a random variable and the vertex that rep-
resents it in a graph is as usual unimportant, and we will use “vertex”
and “variable” interchangeably. We use boldface letters to denote sets
of variables/vertices and italicized letters to denote individual vari-
ables/vertices.

only two kinds of edges: directed (→) and undirected (−−).
Given a graph G(V,E) and any X,Y ∈ V, if there is an
edge between X and Y of any kind, X and Y are said to be
adjacent. If the edge is directed, e.g., X → Y , X is called
a parent of Y and Y a child of X ; if the edge is undirected,
i.e., X −−Y , then X and Y are called neighbors of each other.
A path in G is a sequence of distinct vertices (V1, . . . , Vn)
such that for 1 ≤ i ≤ n − 1, Vi and Vi+1 are adjacent in
G. A path between V1 and Vn is called a directed path from
V1 to Vn if the edge between Vi and Vi+1 is Vi → Vi+1 for
1 ≤ i ≤ n−1. A vertex X is called an ancestor of a vertex Y
and Y a descendant of X in G if X = Y or there is a directed
path from X to Y in G.

An (ordered) triple of vertices (X,Y, Z) in G is called an
unshielded triple if X,Y are adjacent and Y, Z are adjacent,
but X, Z are not adjacent. It is called a shielded triple or
triangle if in addition to X,Y and Y, Z , X and Z are also
adjacent. An unshielded or shielded triple (X,Y, Z) is called
a collider if the edge between X and Y and the edge between
Z andY are both directed atY , i.e., X → Y ← Z . Otherwise,
it is called a non-collider.

A graph with only directed edges is called a directed
graph, and a directed acyclic graph (DAG) is a directed graph
in which no two distinct vertices are ancestors of each other.
We assume that we are working with a set of variablesV, the
underlying causal structure of which can be represented by
a DAG over V. A DAG entails a set of conditional indepen-
dence statements according to its (local or global) Markov
property. One statement of the (global)Markov property uses
the notion of d-separation [8]. Given a path (V1, . . . , Vn) in
a DAG, Vi (1 < i < n) is said to be a collider (non-collider)
on the path if the triple (Vi−1, Vi , Vi+1) is a collider (non-
collider). Given a set of vertices Z, a path is blocked by Z if
some non-collider on the path is in Z or some collider on the
path has no descendant in Z. For any X,Y /∈ Z, X and Y are
said to be d-separated by Z if every path between X and Y
is blocked by Z. For any X,Y,Z that are pairwise disjoint,
X and Y are d-separated by Z if every vertex in X and every
vertex in Y are d-separated by Z. According to the (global)
Markov property, a DAG entails that X and Y are indepen-
dent conditional on Z if and only if X and Y are d-separated
by Z.

Two DAGs are said to be Markov equivalent if they
entail the exact same conditional independence statements.
A well-known characterization is that two DAGs areMarkov
equivalent if and only if they have the same adjacencies (or
skeleton, the undirected graph resulting from ignoring the
direction of edges in a DAG) and the same unshielded col-
liders [18]. A Markov equivalence class of DAGs, M, can
be represented by a graph called a pattern (a.k.a an essen-
tial graph or complete partially directed acyclic graph); the
pattern has the same adjacencies as every DAG in M such
that for every X and Y that are adjacent, the pattern contains
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X → Y if X → Y appears in every DAG inM, and contains
X −−Y if X → Y appears in some DAGs inM and X ← Y
appears in others.

In this paper we assume that all variables in the given
set V are observed, or in other words, the set of observed
variables is causally sufficient so that we need not introduce
latent variables to properly model the system. Under this
simplifying assumption, the problem we are concerned with
is that of inferring information about the causal DAG over V
from i.i.d. data sampled from a joint distribution P over V.
All methods we know of make the following assumption:

Causal Markov Assumption: The joint distribution P over
V is Markov to the true causal DAG G over V in the sense
that every conditional independence statement entailed by G
is satisfied by P .

Andmanymethods also make the following assumption:2

Causal Faithfulness Assumption: The joint distribution P
overV is faithful to the true causal DAGG overV in the sense
that every conditional independence statement satisfied by P
is entailed by G.

Under these two assumptions, the pattern of the true causal
DAG is in principle determinable by the distribution, and
many causal discovery algorithms aim to recover the pattern
from data. In what follows, we will often omit the qualifier
“causal” and refer to the assumptions simply as “Markov”
and “Faithfulness,” respectively.

3 Weaker notions of faithfulness

As stated in Sect. 1, our work here follows a line of inquiry
that seeks to adjust some standard causal discovery pro-
cedures to make them more robust against violations of
Faithfulness. From this line of work a number of weaker
notions of Faithfulness have emerged. Ramsey et al. [10]
highlighted two consequences of the Faithfulness assump-
tion (recall that we use G to denote the true causal DAG over
V, and P the true joint distribution ofV from which samples
are drawn):

Adjacency-Faithfulness: For every X,Y ∈ V, if X and Y
are adjacent inG, then they are not conditionally independent
given any subset of V\{X,Y }.
Orientation-Faithfulness: For every X,Y, Z ∈ V such that
(X,Y, Z) is an unshielded triple in G:

2 An important exception is the class of methods based on (restricted)
functional causal models (e.g., [5,12,22], which seem to dispense with
the Faithfulness assumption bymaking certain assumptions on the func-
tional or distributional form).

(i) If (X,Y, Z) is a collider (i.e., X → Y ← Z ) in G, then X
and Z are not conditionally independent given any subset
of V\{X, Z} that includes Y .

(ii) Otherwise, X and Z are not conditionally independent
given any subset of V\{X, Z} that excludes Y .

These consequences of the faithfulness assumption are sin-
gled out because they are what standard constraint-based
search procedures such as the PC algorithm exploit, in the
stage of inferring adjacencies and in the stage of inferring
orientations, respectively. Ramsey et al. [10] showed that
under the Markov and Adjacency-Faithfulness assumptions,
Orientation-Faithfulness can be tested and hence need not be
assumed. This consideration leads to a variation of the PC
algorithm known as the Conservative PC (CPC) algorithm.
We will return to these algorithms in Sect. 4.

A still weaker consequence of the Faithfulness assumption
thanAdjacency-Faithfulness is the following, first introduced
by [20]:

Triangle-Faithfulness: For every X,Y, Z ∈ V such that
(X,Y, Z) is a triangle in G:

(i) If (X,Y, Z) is a (shielded) collider in G, then X and Z
are not conditionally independent given any subset of
V\{X, Z} that includes Y .

(ii) Otherwise, X and Z are not conditionally independent
given any subset of V\{X, Z} that excludes Y .

Clearly Triangle-Faithfulness is strictly weaker than Adj-
acency-Faithfulness (for the former is only about adjacent
variables in a triangle). Triangle-Faithfulness is of special
interestwhen combinedwith another veryweak consequence
of Faithfulness:

SGS-minimality: No proper subgraph of G satisfies the
Markov assumption with P .

Where a proper subgraph of G is a DAG over V with a
proper subset of the edges in G. This is known as the Causal
Minimality Condition in the literature [15]. To distinguish
it from another minimality condition that is relevant to our
discussion, we follow [19] to refer to it as SGS-minimality
(Spirtes, Glymour and Scheines’s minimality condition).
Zhang and Spirtes [21] showed that it is in general very safe
to assume the SGS-minimality condition.

An interesting result is that if one assumes Markov, SGS-
minimality, and Triangle-Faithfulness, then the rest of the
Faithfulness assumption, including in particular Adjacency-
Faithfulness as well as Orientation-Faithfulness, can in
principle be tested [14,20].

In fact, the assumption needed to make the Faithful-
ness assumption testable is even weaker than Triangle-
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Fig. 1 An illustration of a violation of Orientation-Faithfulness. a The
true causal DAG that generates an unfaithful distribution due to bal-
ancing out of the two paths from V1 to V4. b A DAG that satisfies the
Markov and P-minimality assumptions with the supposed distribution

Faithfulness (plus SGS-minimality). It will be referred to
as P-minimality (Pearl’s minimality condition, [9]):

P-minimality: No proper independence-submodel of G sat-
isfies the Markov assumption with P .

Where a proper independence-submodel of G is a DAG
over V that entails a proper superset of the conditional
independence statements entailed byG. In otherwords, the P-
minimality assumption states that, for every DAG that entails
all the conditional independence statements entailed by G
plus some additional ones, P does not satisfy some of the
additional ones entailed by the DAG.

Zhang [19] showed that P-minimality is weaker than
Triangle-Faithfulness plus SGS-minimality, and if one
assumesMarkov and P-minimality, the Faithfulness assump-
tion can in principle be tested. However, the Markov and
P-minimality assumptions together are so weak that in gen-
eral the adjacencies of the causal DAG over V are not
uniquely determined by the distribution of V. That is, there
are cases where two DAGs overV have different adjacencies
but both satisfy the Markov and P-minimality assumptions
with a given distribution of V. Here is an example that will
prove relevant to our later discussion of the GES algorithm.

Example 1 Suppose V = {V1, V2, V3, V4}, and the true
causal structure is represented by the DAG in Fig. 1a.
Suppose that the parameterization is such that the causal
influence along the path V1 → V2 → V4 and that along
the path V1 → V3 → V4 balance out. As a result, in addi-
tion to the conditional independence relations entailed by
the graph, the distribution satisfies one (and only one) extra
independence: V1 ⊥⊥ V4, which is a violation of Orientation-
Faithfulness. Under such a circumstance, the DAG in Fig. 1b
also satisfies theMarkov and P-minimality assumptions with
the distribution. (It is Markov because it entails only that
V1 ⊥⊥ V4, which is satisfied by the given distribution. It is P-
minimal because every DAG that entails V1 ⊥⊥ V4 and some
more conditional independence statements entails one that is
not satisfied by the given distribution).

So the Markov and P-minimality assumptions together
are not strong enough to entail that adjacencies are uniquely
determined by a distribution. We do not know whether the

Markov, SGS-minimality and Triangle-Faithfulness assump-
tions together are sufficiently strong to entail that adjacencies
are uniquely determined by a distribution. In Example 1,
obviously, the distribution is not Triangle-Faithful to the
DAG in Fig. 1b, for V2 ⊥⊥ V3|V1 according to the distrib-
ution, which violates Triangle-Faithfulness with respect to
the triangle (V2, V4, V3). Indeed, in this example, given the
Markov and Triangle-Faithfulness assumptions the distribu-
tion entails that the adjacencies in the true causal DAG must
be the same as those in Fig. 1a.

We conjecture that at least for linear models, adjacencies
are in general uniquely determined by the true distrib-
ution under the Markov, SGS-minimality and Triangle-
Faithfulness assumptions. If this is true, then Triangle-
Faithfulness (plus SGS-minimality) is at once much weaker
than (Adjacency-)Faithfulness [20], and sufficiently strong
to not only allow the Faithfulness assumption to be testable
but also have the true causal skeleton (i.e., the adjacencies)
be determined by data in the large sample limit. It is therefore
worth investigating methods of causal discovery under this
much weaker notion of faithfulness. As we already men-
tioned, this investigation is potentially useful even if the
Faithfulness assumption is rarely exactly violated, for meth-
ods that do not rely on strong notions of faithfulness will
probably be less error-prone at realistic sample sizes than
those that do.

4 PC and GES against unfaithfulness and some
more Robust algorithms

We are yet to work out a feasible method that is provably cor-
rect given only the Triangle-Faithfulness assumption, but an
examination of standard causal discovery algorithms with
respect to violations of Faithfulness suggests some sim-
ple variations that, though not exactly correct given only
the Triangle-Faithfulness assumption, are better heuristic
methods than the original. In this section, we focus on two
well-known algorithms, PC [15] and GES [1,7].

4.1 PC and violations of faithfulness

As a representative constraint-based procedure, the PC algo-
rithm has two stages, a stage of inferring the skeleton or
adjacencies (lines 1–6 in Algorithm 1), and a stage of infer-
ring the orientations of as many edges in the skeleton as
possible (lines 7–8 in Algorithm 1). The basic idea of the
first stage is simple: For every pair of variables X and Y ,
search for a set of variables given which X and Y are con-
ditionally independent, and infer them to be adjacent if and
only if no such set is found. The justification for this step
clearly relies on the Adjacency-Faithfulness assumption. In
the second stage, the key step is to infer unshielded colliders
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and non-colliders; for this purpose, the PC algorithm uses
a simple rule: For every unshielded triple (X,Y, Z), infer
that it is a collider if and only if the set found in the first
stage that renders X and Z conditionally independent does
not include Y . The justification for this step is clearly related
to the Orientation-Faithfulness assumption.

Algorithm 1 The PC Algorithm
1: Form the complete undirected graph U on V.
2: n = 0
3: repeat
4: For each pair of variables X and Y that are adjacent inH such that

either Adjacencies(U, X) \ {Y } or Adjacencies(U, Y ) \ {X} has
at least n elements, check all subsets of Adjacencies(H, X) \ {Y }
andAdjacencies(H, Y )\{X} that have n elements. If a subset S is
foundwhich renders X andY conditionally independent, delete the
edge X −−Y from U and let Sepset (X, Y ) = Sepset (Y, X) = S.

5: n = n + 1
6: until for each ordered pair of adjacent variables X and Y ,

Adjacencies(H, X) \ {Y } has less than n elements.
7: For each unshielded triple (X, Y, Z) inU , ifY is not in Sepset (X, Z)

orient (X, Y, Z) as a collider X → Y ← Z , otherwise mark
(X, Y, Z) as a non-collider.

8: Orient asmanyof the remaining undirected edges as possible accord-
ing to the orientation rules in [6].

As a result, the PC algorithm is very sensitive to a failure of
Adjacency-Faithfulness or that of Orientation-Faithfulness.
For a violation of Orientation-Faithfulness, Example 1 pro-
vides a simple illustration. In that example, if we feed an
oracle of conditional independence derived from the distrib-
ution (or constructed based on statistical tests on a sufficiently
large sample from the distribution) to the PC algorithm, the
algorithm will output the triple (V1, V2, V4) as an unshielded
collider, and similarly for the triple (V1, V3, V4).

Ramsey et al. [10] showed that such unreliability of PC in
the presence of violations of Orientation-Faithfulness can be
remedied in principle, by using a more cautious or conserva-
tive step of inferring the orientation of unshielded triples. The
idea is that given the correct skeleton, whether Orientation-
Faithfulness is true for an unshielded triple is testable, by
checking more statements of conditional independence. The
adjusted algorithm is named CPC (Conservative PC). We
will discuss the conservative orientation step and its varia-
tions in more details in Sect. 4.3. For the moment, suffice it
to say that it is a principled way to guard against violations
of Orientation-Faithfulness.

What about failures of Adjacency-Faithfulness? Here
is a simplest example (that does not violate Triangle-
Faithfulness):

Example 2 Suppose V = {V1, V2, V3, V4}, and the true
causal structure is represented by the DAG in Fig. 2a.
Suppose that the parameterization is such that the causal
influence along the edge V1 → V4 and that along the
path V1 → V2 → V3 → V4 balance out. As a result, in
addition to the conditional independence relations entailed

V1

V2 V3

V4 V1

V2 V3

V4 V1

V2 V3

V4

(a) (b) (c)

Fig. 2 An illustration of a violation of Adjacency-Faithfulness. a The
true causal DAG that generates an unfaithful distribution due to balanc-
ing out of the two paths from V1 to V4. b The output of the PC algorithm
given an input of an oracle of conditional independence associated with
the supposed distribution. c The pattern that represents the Markov
equivalence class of the true causal DAG

by the graph, the distribution satisfies one (and only one)
extra independence: V1 ⊥⊥ V4, which is a violation of
Adjacency-Faithfulness. (Notice that Triangle-Faithfulness
trivially holds, as there is no triangle in the graph).

In this example, the PC algorithm, given an input of an ora-
cle of conditional independence from the distribution, would
output the pattern in Fig. 2b, while the true pattern is depicted
in Fig. 2c. That is, the PC algorithm would miss the edge
between V1 and V4, due to the extra, unfaithful independence
(and consequently miss the collider).

Beforewe discuss how tomitigate this problem, it is worth
noting that although an edge is missing from the skeleton
returned by PC, the edges present in the PC skeleton are all
correct. This is no accident. Spirtes and Zhang [14] observed
that even if the Adjacency-Faithfulness fails, the SGS algo-
rithm, a predecessor of PC, is provably asymptotically correct
in this aspect: The adjacencies in the output are true, though
non-adjacencies may be false. This is because the SGS algo-
rithm searches through all subsets of V\{X,Y } to look for a
set that renders X andY conditionally independent; if no such
set is found, then the Markov assumption alone entails that
X and Y are adjacent. Only the inference of non-adjacencies
relies on the assumption of Adjacency-Faithfulness.

This argument does not straightforwardly apply to PC, as
PC does not necessarily look at every subset. Still, no exam-
ple is known to show that the PC algorithm, when supplied
with a perfect oracle of conditional independence that does
not respect Adjacency-Faithfulness, not onlymakesmistakes
on non-adjacencies, but also may err about adjacencies. We
suspect that there is no such example, but we are currently
unable to find a proof. In any case, it is probably safe to
think that in most cases, PC is asymptotically correct in its
inference of adjacencies (as opposed to its inference of non-
adjacencies), even if Adjacency-Faithfulness is violated.

Regarding the issue with the inferred non-adjacencies,
Spirtes and Zhang [14] suggested a way to confirm some
non-adjacencies as opposed to others by testing some forms
of Markov condition in the output of (conservative) PC,
which was elaborated and implemented by [4]. A limitation
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of this approach is that it only seeks to confirm some non-
adjacencies, without attempting to fill in the missing edges.
A natural, alternative idea is to search for a best way to add
edges back to the PC/CPC output. For this purpose, the algo-
rithm known as Greedy Equivalence Search (GES) may play
a role.

4.2 GES and violations of faithfulness

The GES algorithm [1,7] is a score-and-search procedure
over the space of patterns that represent Markov equivalence
classes of DAGs. It searches for a pattern that maximizes a
certain score, usually a Bayesian score or a penalized like-
lihood such as BIC (which is used in our simulations on
Gaussian models). The algorithm traverses though the space
in a moderately “greedy” fashion, in two phases. In the first,
forward phase (lines 1–9), the algorithm starts with some
pattern, usually the empty one (i.e., without any edge), and
tries adding edges, one in each step,3 to improve the score
until a (local) optimum is reached. It then enters the second,
backward phase (lines 10–17), which differs from the first
phase only in that instead of adding edges it moves through
patterns by deleting edges, one in each step. The basic search
procedure is summarized inAlgorithm 2,whereGini denotes
the pattern the algorithm starts with, G+(G) denotes the set
of patterns G ′ such that some DAG represented by G ′ has
exactly one more edge than some DAG represented by G,
and G−(G) denotes the set of patterns G ′ such that some
DAG represented by G ′ has exactly one fewer edge than
some DAG represented by G.

Algorithm 2 The GES Algorithm
1: Gcur := Gini .
2: repeat
3: Gmax := Gcur
4: Score each G in G+(Gcur )

5: Gnew := G in G+(Gcur ) which scores highest
6: if score(Gcur , data) < score(Gnew , data) then
7: Gcur = Gnew
8: end if
9: until Gmax = Gcur
10: repeat
11: Gmax := Gcur
12: Score each G in G−(Gcur )

13: Gnew := G in G−(Gcur ) which scores highest
14: if score(Gcur , data) < score(Gnew , data) then
15: Gcur = Gnew
16: end if
17: until Gmax = Gcur

3 In a single step, the algorithm considers all possible single-edge addi-
tions that can be made to all DAGs in the Markov equivalence class
represented by the current pattern, scores all those valid patterns that
result from such single-edge additions, and selects the best, if better than
the current pattern. Thus, the algorithm is significantly less “greedy”
than a greedy search over DAGs is.

For our present purpose, it is worth highlighting that in the
forward phase of the algorithm, every time the search moves
from a current pattern to a new one, the DAGs represented
by the current pattern are proper independence-submodels
of the DAGs represented by the new one. Likewise, in the
backward phase of the algorithm, every time the search
moves from a current pattern to a new one, the DAGs
represented by the new pattern are proper independence-
submodels of the DAGs represented by the current one. A
score is said to be consistent if in the large sample limit,
(1) any DAG (or its pattern) that is Markov to the under-
lying distribution has a higher score than any DAG (or its
pattern) that is not Markov to the underlying distribution,
(2) if two DAGs are both Markov to the underlying distri-
bution and one is a proper independence-submodel of the
other, then the former has a higher score than the latter.
For linear Gaussian models and multinomial models, for
example, the Bayesian scores and BIC are all consistent
[1].

It follows from the consistency of the scoring and the way
GES moves in the search space that asymptotically the out-
put of the algorithm satisfies the Markov and P-minimality
conditions with the underlying distribution. Therefore, if
the Faithfulness assumption holds, the GES algorithm is
asymptotically correct, for given Faithfulness, the pattern
of the true causal DAG is the unique pattern that satis-
fies the Markov and P-minimality conditions. What if the
Faithfulness assumption does not hold? For the kind of
unfaithfulness described in Example 2, the GES algorithm
remains valid, for despite the unfaithfulness, the pattern in
Fig. 2c remains the only pattern that satisfies the Markov
and P-minimality conditions with the unfaithful distribu-
tion. We suspect that this is generally the case for violations
of Adjacency-Faithfulness (that do not violate Triangle-
Faithfulness).

In contrast, failures of Orientation-Faithfulness can eas-
ily lead GES astray. Take Example 1 for instance. As we
already pointed out, in that case there are more than one
pattern that satisfy the Markov and P-minimality conditions
with the underlying distribution. As a result, there is little
guarantee that the GES algorithm would end up with the true
causal pattern, even in the large sample limit. For example,
if we parameterize the graph in Fig. 1a as a linear structural
equation model with Gaussian error terms and make the two
pathways cancel as required by the example, then the GES
algorithm will frequently return the pattern for the DAG in
Fig. 1b, even at big sample sizes. Section 5.1 reports some
simulation results to illustrate this point.

These considerations suggest that GES is probably more
unreliable under failures of Orientation-Faithfulness than it
is under failures of Adjacency-Faithfulness. This motivates
us to consider combining GES with a CPC-like orientation
step, to which we now turn.
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4.3 Some heuristic hybrid algorithms

As alreadymentioned, the CPC algorithm [10]modifies PC’s
rule of inferring unshielded colliders or non-colliders into a
more cautious or conservative step. For an unshielded triple
(X,Y, Z) in a skeleton, the CPC algorithm does not just con-
sider one conditioning set that renders X and Z conditionally
independent, but will check, roughly speaking, all subsets of
the set of variables that are adjacent to X and of the set of
variables that are adjacent to Z . If all sets that render X and
Z conditionally independent exclude Y , then (X,Y, Z) is
judged to be a collider. If all sets that render X and Z con-
ditionally independent include Y , then (X,Y, Z) is judged
to be a non-collider. If, however, some such sets exclude Y
while the other such sets include Y , then (X,Y, Z) is marked
to be an ambiguous triple (i.e., the judgment is suspended
regarding whether the triple is a collider or a non-collider),
for the result indicates that Orientation-Faithfulness fails.

A more recent variation on the theme [2] uses a majority
rule decision procedure as follows. As inCPC, this procedure
first finds, for any unshielded triple (X,Y, Z) in a skeleton,
all subsets of variables adjacent to X or of variables adjacent
to Z that render X and Z conditionally independent. Then the
triple is marked according to a majority rule: If Y is excluded
from a majority of such sets, then the triple is marked as a
collider; if Y is included in a majority of such sets, then the
triple is marked as a non-collider; if, however, Y is excluded
from (or included in) exactly half of such sets, then the triple
is marked as ambiguous.

In our experiments, we found that the original CPC ori-
entation is often too cautious to be sufficiently informative;
it marks too many triples as ambiguous. On the other hand,
the majority rule orientation rarely suspends judgment and
so does not effectively serve the purpose of guarding against
(almost) failures of Orientation-Faithfulness. We thus gener-
alize them into a ratio rule with a parameter 0 ≤ α ≤ 0.5.
Given a skeleton and an unshielded triple (X,Y, Z) therein,
let O(X,Y, Z) be the number of sets that render X and Z
conditionally independent and exclude Y , and let I (X,Y, Z)

be the number of sets that render X and Z conditionally inde-
pendent and include Y . The α-conservative orientation rule
states that

(i) if I (X,Y, Z)/(O(X,Y, Z) + I (X,Y, Z)) ≤ α, then
mark (X,Y, Z) as a collider;

(ii) if I (X, Y, Z)/(O(X,Y, Z)+ I (X,Y, Z)) ≥ 1−α, then
mark (X,Y, Z) as a non-collider;

(iii) otherwise, mark (X,Y, Z) as ambiguous.

Obviously, the greater α is, the less conservative the rule
becomes (i.e., the less frequently the rule suspends judg-
ment). The original CPC orientation rule is just an α-
conservative rule with α = 0, and the majority rule is just

an α-conservative rule with α = 0.5. They thus represent
two extremes in this family of conservative orientation rules.
The optimal value of α probably depends on several fac-
tors, including dimension, sample size, and, especially, how
important avoiding errors is relative to gaining information.
Obviously, for example, if it is of utmost importance to avoid
errors and informativeness is categorically only secondary,
then the extreme choice of α = 0, as in CPC, is advisable.
Most of the time, however, the goal is to strike a best balance
between avoiding misinformation and seeking information.
Given a well-defined scoring metric of the goodness of bal-
ance, an optimal value of α is then a value that maximizes the
expectation of the score. We are yet to work out a sophisti-
cated analysis of this issue and a practical method for tuning
this parameter.4 In the simulations reported in the next sec-
tion, α is set to 0.4, as this value appears to achieve the best
result on the measure we use, compared to the other values
we tried in a small-scale experiment.

Our previous examinations of PC and GES suggest the
following three heuristic algorithms that are expected to be
more robust against unfaithfulness:

• PC+GES:Run PCfirst and feed the output pattern toGES
(and prohibit GES to take away any adjacency in the PC
output).5

• GES+c: Run GES first, take the skeleton of the output
and apply the α-conservative rule followed by Meek’s
orientation rules.6

• PC+GES+c: Run PC+GES, take the skeleton of the out-
put and apply theα-conservative rule followed byMeek’s
orientation rules.

Specifically, PC+GES is expected to mitigate PC’s vul-
nerability to failures of Adjacency-Faithfulness, and GES+c
is expected to mitigate GES’s vulnerability to failures of
Orientation-Faithfulness (likewise for PC+GES vs PC+
GES+c). In the next section we report simulation results on
linear Gaussian models that provide some evidence.

5 Simulations

We report two sets of simulation results. One is on the two
toy examples mentioned previously, in which we try exact
violations of Orientation-Faithfulness and of Adjacency-

4 We thank an anonymous referee for raising this interesting question.
5 PC+GES was studied empirically by [13] on discrete data. Their pri-
mary motivation was to improve the feasibility of GES.
6 Occasionally but very rarely, some unshielded triple (X, Y, Z) in the
skeleton is such that no set is found to render X and Z conditionally
independent. In this case, we add back an edge between X and Z .
Similarly for PC+GES+c.
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Faithfulness, respectively. The results not only serve to sup-
port our earlier claims about the aforementioned algorithms,
but also show that two other state-of-the-art algorithms, the
Max-Min Hill Climbing (MMHC) algorithm [16] and the
PC-stable algorithm [2], would stumble over one or both of
the examples.

The other is frommuch more comprehensive experiments
that follow a fairly standard setup, in which the probability of
having exact violations of faithfulness is zero. These results
indicate that the proposed algorithms are less error-prone at
realistic sample sizes even when Faithfulness is not exactly
violated. All experiments reported below are done on linear
Gaussian models.

5.1 Toy examples with exact faithfulness violations

We first present some results on the two toy examples, in
which it is easy to create exact violations of faithfulness.
Recall that Example 1 in Sect. 3 involves a violation of
Orientation-Faithfulness, in which the true causal structure
is represented by the DAG in Fig. 1a, and the two causal
pathways, V1 → V2 → V4 and V1 → V3 → V4, are sup-
posed to exactly cancel so that V1 and V4 are independent
according to the true distribution. In our experiment, we ran-
domly draw edge coefficients for the following three edges in
Fig. 1a, V1 → V2, V2 → V4 and V1 → V3, uniformly from
[−1,−0.1] ∪ [0.1, 1], and then set the coefficient associated
with V3 → V4 as −β12β24/β13, where β12, β24, β13 denote
the edge coefficients for V1 → V2, V2 → V4, V1 → V3,
respectively. The variance of each error term in the model is
drawn uniformly from [0.5, 1]. (Means are all set to 0.) We
generate 100 linear structural equation models this way and
draw from each model 50 i.i.d samples of size 5000. We use
a big sample size for this experiment, for the errors we aim
to reveal are not a matter of sample size.

On the100×50datasetswe runvarious algorithms.Weuse
significance level of 0.01 in tests of conditional independence
and use BIC in the GES algorithm. For this simulation, the
value of α in the conservative orientation does not seem to
matter; all values of α give essentially the same results.

As expected, PC and GES very frequently judge the triple
V1 → V2 → V4 and the triple V1 → V3 → V4 to be
colliders. In particular, as we predicted in Sect. 4.2, GES
frequently—about 65% of the time—outputs the pattern for
the DAG in Fig. 1b.

Just as CPC (and PC-stable, which uses the majority rule
for orientation and is reasonably robust against simple viola-
tions of Orientation-Faithfulness like this one) can to a good
extent avoid such errors of PC, GES+c helps to decrease such
orientation errors of GES. In this simple example, GES+c in
most cases mark the triple V1 → V2 → V4 and the triple
V1 → V3 → V4 as ambiguous. Table 1 lists the average
arrowprecisions of the relevant algorithms in this case,where

Table 1 Arrow precisions in the
experiment on Example 1

Algorithm Arrow precision

GES 0.35

GES+c 0.96

PC 0.49

PC-stable 0.96

CPC 0.99

MMHC 0.56

arrow precision is the percentage of true directed edges (i.e.,
directed edges that also appear in the true pattern) among all
the directed edges in the estimated graph. (Since arrow pre-
cision is used here to measure how well mistaken inferences
to arrows are avoided, we take arrow precision to be 1 when
the estimated graph contains no directed edges.) Thanks to
the conservative orientation, GES+c improves the arrow pre-
cision of GES (i.e., avoids some mistaken arrows in the GES
output), as CPC does to PC.

On this example, the MMHC algorithm, which has been
shown to be empiricallymore accurate thanPCandGES [16],
also mistakes the triple V1 → V2 → V4 and the triple V1 →
V3 → V4 as colliders in almost half of the cases (about 45%
of the time). This drags down its average arrow precision as
listed in Table 1.

Example 2 inSect. 4.1 is intended to illustrate a simple vio-
lation of Adjacency-Faithfulness: The true causal structure
is taken to be the DAG in Fig. 2a, but the true distribution is
such thatV1 andV4 are independent (despite their adjacency).
Again, we generate exact violations by randomly selecting
three edge coefficients (associated with V1 → V2, V2 → V3,
and V3 → V4, respectively), and setting the fourth (associ-
ated with V1 → V4) to exactly balance the two directed paths
from V1 to V4 in Fig. 2a. The setting is otherwise the same
as in the previous example.

In 99% of the 100 × 50 trials, the PC algorithm misses
the adjacency between V1 and V4. The PC-stable algorithm,
which uses an order-independent search of adjacencies and is
usually more accurate than PC, does not help with this case.
As we predicted, PC+GES is able to pick up the edge most
of the time. Indeed, GES by itself outputs the true pattern
most of the time (68% of the trials), which is consistent with
our analysis in Sect. 4.2. MMHC, on the other hand, almost
always misses the edge between V1 and V4, and outputs the
pattern in Fig. 2b most of the time.

Table 2 summarizes the average true adjacency rates and
false adjacency rates of these algorithms, where true adja-
cency rate is the number of true adjacencies in the estimated
graph divided by the number of edges in the true graph, and
false adjacency rate is the number of false adjacencies in the
estimated graph divided by the number of non-adjacencies
in the true graph.
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Table 2 True adjacency rates and false adjacency rates in the experi-
ment on Example 2

Algorithm True adj. rate False adj. rate

PC 0.75 0.01

PC-stable 0.75 0.01

PC+GES 0.95 0.02

GES 0.93 0.06

MMHC 0.76 0.02

Ideally, we would like to run a more systematic exper-
iment using perhaps random graphs and more complex
faithfulness violations. Unfortunately, we have not yet
thought of a way to automatically generate exact viola-
tions of Adjacency-Faithfulness (without being violations of
Triangle-Faithfulness) and/or of Orientation-Faithfulness on
a random graph. Still, the above toy simulations well illus-
trate the main points we made earlier.

5.2 Systematic simulations without exact faithfulness
violations

We now report systematic simulations on random models
generated in the usual way. These models do not give us
exact faithfulness violations, but an important motivation to
design algorithms that are more reliable under exact faithful-
ness violations is the thought that such theoretical benefits
may also show up when Faithfulness is not exactly violated.
The simulations were performed on linear Gaussian models,
with 2 levels of sparsity and 4 different dimensions, with 10,
20, 30, 40 variables, respectively. For the sparse case, each
DAG has at most the same number of edges as the num-
ber of variables, while for the dense case, each DAG has at
most twice as many edges as the number of nodes. In both
settings, the maximum degree was set at 10. In both sparse
and dense settings, for each dimension, 100 DAGs were ran-
domly generated, and from each DAG, a linear structural
equationmodelwas constructed by drawing edge coefficients
uniformly from [−1,−0.1] ∪ [0.1, 1], and variances of error
terms from [0.5, 1]. From each model, 50 i.i.d samples of
size 200, 500, 1000 and 5000, respectively, were generated.

Again, we use significance level of 0.01 in tests of con-
ditional independence and use BIC in the GES algorithm.
For the conservative orientation, we tried a number of values
of α in a small-scale experiment, all of which gave qualita-
tively similar results, but α = 0.4 seemed to strike the best
balance between being cautious and being informative (as
measured by the F1 score we describe below). This finding
is not necessarily generalizable,7 but provides some indica-

7 We thank an anonymous referee for emphasizing this point.
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Fig. 3 True adjacency rates in all settings. The reported rate for each
setting is the mean value of the 100 (models) × 50 (datasets) runs for
each setting
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Fig. 4 False adjacency rates in all settings. The reported rate for each
setting is the mean value of the 100 (models) × 50 (datasets) runs for
each setting

tion that α = 0.4 works reasonably well in our setting. So
we use α = 0.4 in the present simulation.

For the estimation of skeleton or adjacencies, we com-
pared the performance of PC, GES and PC+GES, bymeasur-
ing their respective true adjacency rates and false adjacency
rates, as defined in Sect. 5.1. Figure 3 shows the compar-
ison of the average true adjacency rates of GES, PC and
PC+GES, and Fig. 4 shows the comparison of their aver-
age false adjacency rates. The measurements were plotted
against sample size and dimension for dense and sparse set-
tings, respectively. As expected, the PC algorithm in general
has very low rates of false adjacencies. This has partly to
do with the low significance level we use in the conditional
independence tests, but we think also has to do with the fact
that even in the presence of (almost) violations of Adjacency-
Faithfulness, the correctness of the adjacencies (as opposed
to non-adjacencies) produced by the PC algorithm are not
much affected. However, as is also evident from the results,
the PC algorithm also has much lower true adjacency rates,
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Fig. 6 A box plot of arrow precisions for sample size = 1000

implying that its non-adjacencies are much more problem-
atic. Again, we think that this has a lot to do with the fact
that non-adjacencies are very sensitive to (almost) failures of
Adjacency-Faithfulness. It is clear that running GES8 helps
PC to pick up a lot of missing edges.

For orientations, we first compare GES+c vs GES, and
PC+GES vs PC+GES+c in terms of their arrow precisions
as defined in Sect. 5.1, which suggest how good they are
at avoiding false arrows. Figure 5 shows the average arrow
precisions of the 4 algorithms in various settings. It is clear
that GES+c significantly increases the arrow precision of
GES in all settings, and likewise for PC+GES+c vs PC+GES.
Figure 6 also presents a boxplot of the AP values for a fixed
sample size (n = 1000), with similar implications.

However, arrow precision on its own does not meanmuch,
as an extremely conservative orientation rule can achieve

8 In our simulations, except in very rare situations, only the forward
phase of the GES is needed in PC+GES.
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Fig. 7 F1 measures of orientation accuracies in all settings. The
reported score for each setting is the mean value of the 100 (models) ×
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Fig. 8 F1 scores of MMHC, in comparison with those of GES+c and
PC+GES+c

maximum precision or avoid all errors by always suspend-
ing judgment. So we also compare the standard F1 measure
that combines arrow precision and arrow recall, where arrow
recall is the number of true directed edges in the estimate
graph (i.e., directed edges that also appear in the true pattern)
divided by the number of directed edges in the true pattern,9

and F1 = 2(Precision × Recall)/(Precision + Recall), with
the standard stipulation that F1 = 0 if Precision = Recall =
0. Figure 7 shows the F1 scores of the 4 algorithms in all
settings. On this measure, GES+c clearly outperforms GES,
except for the two settings with the lowest dimension, in
which the two stay very close. So our conservative orienta-
tion rule does not improve precision by simply sacrificing
informativeness. For PC+GES, the conservative orientation

9 For convenience, we stipulate that arrow recall is equal to 1 when
the denominator is 0 (i.e., when the true pattern does not contain any
directed edge). Obviously, when this stipulation applies, all algorithms
will receive the same, maximal value on this measure, so the stipulation
does not favor any algorithm.
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rule also improves the F1 score in sparse settings, while for
dense settings, PC+GES and PC+GES+c have quite compa-
rable F1 scores.

We suspect that the observed improvements are connected
to the fact that the proposed algorithms are designed to bet-
ter handle faithfulness violations, but we realize that it is
premature to claim a definite connection. After all, other
hybrid algorithms [3,16] such as MMHC achieve better
performance, without being designed to deal with exact vio-
lations of faithfulness as illustrated by the simple simulations
in Sect. 5.1.10 Indeed, as shown in Fig. 8, the F1 scores
of MMHC are fairly comparable to those of GES+c and
PC+GES+c. Still, it is interesting to see that certainmodifica-
tions motivated by theoretical concerns with unfaithfulness
turn out to improve performance even when faithfulness is
not exactly violated, and this seems to make it at least rea-
sonable to hypothesize a connection.

6 Conclusion

We examined two representative causal discovery algorithms
that normally assume the Faithfulness assumption, from the
perspective of how robust they are against unfaithfulness.
One of them is theGES algorithm, and it is the first time that a
score-basedmethod is brought to bear on a line of inquiry that
has thus far been confined to the constrain-based approach.
Althoughour discussionwas not yet fully rigorous or general,
it yielded some insights that motivated a couple of simple
hybrid algorithms, which proved to be worthy candidates in
our simulation studies.

A component in our hybrid algorithms is a conservative
orientation rule indexed by a parameter α that generalizes
the conservative rule in the CPC algorithm and the majority
rule in the PC-stable algorithm. An open question is how
to choose the value of this parameter in a systematic and
sophisticated way (which, as we indicated in Sect. 4.3, will
probably be formulated as an optimization problem, with
an objective function that measures the expected extent to
which the outcome is well balanced between accuracy and
informativeness). At this point, we can only report that in our
simulations,α = 0.4 appears to be a good choice.We hope to
work out more convincing recommendations in future work.

Aswe argued in Sect. 3, there seem to be excellent reasons
to explore feasiblemethods of causal discovery that are prov-
ably correct givenonly theTriangle-Faithfulness assumption.
In this regard, all the algorithms we considered in this paper
are heuristic methods; none of them is provably correct given
only the Triangle-Faithfulness assumption. It is clear that the
CPCorientation rule is provably correct given a correct skele-
ton, but it is unclear how to efficiently find the true skeleton

10 We thank an anonymous referee for pressing this point.

given only the Triangle-Faithfulness assumption, nor indeed
is it clear that the skeleton is in principle determinable (unless
our conjecture is proved to be true). These questions are both
theoretically interesting and potentially beneficial to practice
and are in our view worth studying further.
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