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Abstract Nonnegative least squares (NNLS) problem has
been widely used in scientific computation and data mod-
eling, especially for low-rank representation such as non-
negative matrix and tensor factorization. When applied to
large-scale datasets, first-order methods are preferred to pro-
vide fast flexible computation for regularizedNNLSvariants,
but they still have the limitations of performance and con-
vergence as key challenges. In this paper, we propose an
accelerated anti-lopsided algorithm for NNLS with linear

over-bounded convergence rate
[(
1 − μ

L

) (
1 − μ

nL

)2n]k in

the subspace of passive variables where μ and L are always
bounded as 1

2 ≤ μ ≤ L ≤ n, and n is the dimension
size of solutions, which is highly competitive with current
advancedmethods such as accelerated gradientmethods hav-
ing sub-linear convergence L

k2
, and greedy coordinate descent

methods having convergence
(
1 − μ

nL

)k , where μ and L are
unbounded. The proposed algorithm transforms the vari-
able x into the new space satisfying the second derivative

equals constant ∂2 f
∂x2i

= 1 for all variables xi to implic-

itly exploit the second-order derivative, and to guarantee
that μ and L are always bounded in order to achieve over-
bounded convergence of the algorithm, and to enhance the
performance of internal processes based on exact line search,
greedy coordinate descent methods, and accelerated search.
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The experiments on large matrices and real applications of
nonnegative matrix factorization clearly show the higher per-
formance of the proposed algorithm in comparison with the
state-of-the-art algorithms.
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1 Introduction

Minimizing the sum of squares of the errors is one of the
most fundamental problems in numeric analysis as known as
the nonnegative least squares (NNLS) problem. It has been
widely used in scientific computation and data mining to
approximate observations [5]. Specially, in many fields such
as image processing, computer vision, text mining, environ-
metrics, chemometrics, or speech recognition, observations
b ∈ R

d are often approximated by a set of measurements or
basis factors {Ai } contained in a matrix A ∈ R

d×n via min-
imizing 1

2‖Ax − b‖22. Moreover, in comparison with least
squares (LS), NNLS has more concisely interpretable solu-
tions, of which nonnegative coefficients x ∈ R

n+ can be
interpreted as contributions of the measurements over the
observations. In contrast, mixed-sign coefficients of LS solu-
tions are uninterpretable because they lead to overlapping and
mutual elimination of the measurements.

Because of no generic formula of solutions unlike least
squares (LS) problem, although NNLS is a convex opti-
mization problem, multiple iterative algorithms and gradient
methods are widely employed to solve NNLS. The perfor-
mance of NNLS algorithms mainly depends on selecting
appropriate directions to optimize the objective function. To
improve the performance, most effective algorithms remove
redundant variables based on the concept of active sets
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[2,5] in each iteration with different strategies [5]. These
algorithms are fundamentally based on the observation that
several variables can be ignored if they are negative when the
problem is unconstrained [2,15,21]. In other words, NNLS
can be considered an unconstrained problem in a subspace of
several variables [13] that are positive in the optimal solution.
In addition, algorithms using the second derivative [2,15,21]
discover effective directions to more effectively reduce the
objective function value. However, these approaches have
twomain drawbacks: invertibility of AT A and its heavy com-
putation, especially for the methods recomputing (AT A)−1

several times for different passive sets. Hence, first-order
methods [7,13,19] can be more effective for large-scale least
squares problems.

Since 1990s, the methods of nonnegative matrix or tensor
factorizations have widely used NNLS to achieve low-rank
representation of nonnegative data [14,22]. Specially, the
low-rank representation transfers data instances into a lower-
dimensional space of latent components to obtain increased
speed and accuracy, and more concise interpretability of data
processing that is essential in applications of signal and image
processing, machine learning, and data mining [5]. How-
ever, the low-rank representation is usually a non-convex
problem, and it often employs iterative multiplicative update
algorithms. In addition, exact algorithms often lack flexi-
bility for low-rank regularized variants and also have high
complexity and slow convergence. Hence, fast approximate
algorithms based on the first-order methods are more pre-
ferred to naturally provide a flexible framework for low-rank
models [4,9–11].

In our view, to discover more appropriate gradient direc-
tions is to critically enhance the performance of NNLS
algorithms based on the first-order methods for the low-rank
representation. In this paper,we propose a fast and robust iter-
ative algorithm called accelerated anti-lopsided algorithm,
which combines several algorithms and ideas with different
advantages to implicitly exploit the second-order derivative
and reduce negative effects of variable scaling problems to
obtain fast convergence. The proposed algorithm has the fol-
lowing advantages:

– Convergence: the accelerated anti-lopsided algorithm
for NNLS attains linear convergence rate of [(1
− μ

L )(1 − μ
nL )2n]k in the subspace of passive vari-

ables where n is the dimension size of solutions, and
μ and L are always bounded as 1

2 ≤ μ ≤ L ≤ n to
guarantee over-bounded convergence rate. Meanwhile,
current advanced first-order methods are accelerated gra-
dient methods having sub-linear convergence O( L

k2
) and

greedy coordinate descent algorithm having convergence
(1 − μ

nL )k , where μ and L are unbounded.
– Robustness: the algorithm can stably work in ill-
conditioned cases for NNLS regularizations since it is

totally based on the first derivative and it does not require
computing the inverse of matrices (AT A) like Newton
methods. In addition, it can exploit the second deriva-

tive by guaranteeing ∂2 f
∂x2i

= 1,∀i to void the worst cases
and discover more effective gradient directions, while
keeping the low complexity of each iteration O(n2).
Moreover,μ and L are always bounded as 1

2 ≤ μ ≤ L ≤
n, which increase the effectiveness of greedy coordinate
descent and exact line search algorithms that depend on
these parameters μ and L .

– Effectiveness: the experimental results for NNLS are
highly competitive with the state-of-the-art methods.
These results additionally show that the algorithm is the
fastest first-order method for NNLS in both practice and
theory.

The rest of the paper is organized as follows. Section 2
discusses the background and related work on nonnegative
least square problems. Section 3 presents the accelerated
anti-lopsided algorithm for NNLS. The theoretical analysis
is discussed in Sect. 4. Section 5 shows the experimental
results, and Sect. 6 summarizes the main contributions of
this paper.

2 Background and related works

This section introduces the nonnegative least square (NNLS)
problem, its equivalent nonnegative quadratic problem
(NQP), and significant milestones in the algorithmic devel-
opment for NNLS.

2.1 Background

Nonnegative least square (NNLS) can be considered one of
themost central problems in datamodeling, ofwhich solution
can estimate the parameters of models for describing the data
[5]. It comes from scientific applications where we need to
estimate a large number of vector observations b ∈ R

d using
a set of measures or basis factors {Ai } contained in a matrix
A ∈ R

d×n viaminimizing 1
2‖Ax−b‖22. Hence, we can define

NNLS as follows:

Definition 1 Given n measurement vectors A = [A1,

A2, . . . , An] ∈ R
d×n and an observed vector b ∈ R

d ,
nonnegative least squares (NNLS) problem finds an optimal
solution x of the optimization problem:

minimize
x

1
2‖Ax − b‖22

subject to x � 0
where A ∈ R

d×n, b ∈ R
d

(1)
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For low-rank representation models such as nonnegative
matrix and tensor factorization, L2 and L1 regularizations
are usually added to control the smoothness and sparsity of
these models:

minimize
x

1
2‖Ax − b‖22 + α

2 ‖x‖22 + β‖x‖1
subject to x � 0
where A ∈ R

d×n, b ∈ R
d , α ≥ 0, β ≥ 0

(2)

Usually, d � n in the low-rank representation; hence, it
should be equivalently turned into a nonnegative quadratic
programming (NQP) problem:

minimize
x

f (x) = 1
2 x

T Hx + hT x

subject to x � 0
where H = AT A + α I, h = −AT b + β1n,

and 1n = [1, . . . , 1]T
(3)

From NNLS and its NQP formulation, these problems are
convex since Q is positive semi-definite and the nonnegativ-
ity constraints form a convex feasible set. In this paper, we
will solve Problem 3 instead of Problem 2 within thousands
of variables, which often occurs in the low-rank representa-
tion.

2.2 Related works

In the last s everal decades of development, different
approaches have been proposed to tackle the NNLS prob-
lem, which can be divided into two main groups: active set
methods and iterative methods [5].

Active set methods are based on the observation that
variables can be divided into subsets of active and passive
variables [8]. Particularly, the active set contains variables
which are zero or negative when solving the least square
problem without concerning nonnegative constraints; other-
wise, the remaining variables belong to the passive set. The

active set algorithms are based on the fact that if the pas-
sive set is identified, the passive variables’ values in NNLS
are the unconstrained least squares solution when the active
variables are set to zero. However, these sets are unknown in
advance. Hence, a number of iterations are employed to find
out the passive set, each of which is to solve a unconstrained
least squares problem on the passive set to update the passive
set and the active set.

Concerning the significant milestones of the active set
methods, Lawson andHanson [15] proposed a standard algo-
rithm for active set methods. Subsequently, Bro and De Jong
[2] avoided unnecessary re-computations on multiple right-
hand sides to speed up the basic algorithm [15]. Finally, Dax
[6] proposed selecting a good starting point by Gauss–Seidel
iterations andmoving away from a “dead point” to reduce the
number of iterations. Furthermore, the iterative methods use
the first-order gradient on the active set to handle multiple
active constraints in each iteration, while the active set meth-
ods only handle one active constraint [5]. Hence, the iterative
methods can deal with larger-scale problems [12,13] than the
active set methods. However, they do not guarantee the con-
vergence rate.

More recently, Franc et al. [7] proposed a cycle block
coordinate descent method having fast convergence in prac-
tice with low complexity of each iteration, but it still has
been not theoretically guaranteed. Subsequently, Vamsi [19]
suggested three modifications of random permutations [17],
shrinking, and random projections to speed up NNLS for
the case that the matrix A is not thin (d ≤ n). Furthermore,
accelerated methods [16] and proximal methods [18] having
a fast convergence O(1/k2) [10] only require the first-order
derivative. However, one major disadvantage of accelerated
methods is that they require a large number of iterations to
reach high accuracy because the step size is limited by 1

L ,
which is usually small for large-scale NNLS problems with
big matrices, where L is the Lipschitz constant. The compar-
ison summary of NNLS solvers are presented in Table 1.

Table 1 Comparison summary of NNLS solvers

Criteria ELS Coord Accer Fast Nm Frugal Antilop

Iteration complexity n2 n2 n2 n3 #(nd) #(nd) n2

Convergence rate
(
1 − μ

L

)k ? L
k2

? ? ?
[(
1 − μ

L

) (
1 − μ

nL

)2n]k

Over-bounded convergence ✗ ✗ ✗ ✗ ✗ ✗ ✓

Memory size n(n + d) n(n + d) n(n + d) n(n + d) #(nd) #(nd) n(n + d)

Not compute AT A ✗ ✗ ✗ ✗ ✓ ✓ ✗

Not compute (AT A)−1 ✓ ✓ ✓ ✗ ✓ ✓ ✓

#(nd): nonzero number of matrix having size nd
d dimension of data, n number of variables, μ convex parameter, L Lipschitz constant, ELS exact line search, Coord greedy block coordinate
descent [7], Accer accelerated method [10], fast active set methods according to Bro R., de [2] Nm non-monotonic fast method [13], frugal frugal
coordinate descent [19], Antilop: the proposed method
✓ satisfied (positive), ✗unsatisfied, ?unknown
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In summary, active set methods and iterative methods
are two major approaches in solving NNLS. Active set
methods accurately solve nonnegative least squares prob-
lems, but require huge computation for solvingunconstrained
least squares problems and are unstable when AT A is ill-
conditioned. Iterative methods are more potential for solving
large-scale NNLS because they can handle multiple active
constraints per each iteration. In our view, iterative methods
are still ineffective due to the scaling variable problem,which
seriously affects the finding of appropriate gradient direc-
tions. Therefore, we propose an accelerated anti-lopsided
algorithm combining several algorithms and ideas having
different advantages to reduce negative effects of the scaling
problem, obtain appropriate gradient directions, and achieve
over-bounded linear convergence in the subspace of passive
variables.

3 Accelerated anti-lopsided algorithm

This section discusses the main ideas in the proposed algo-
rithm Algorithm 1 to increase the speed of the NNLS solver.
According to the literature, first-order methods have slow
convergence because of zigzagging problems or variable
scaling problems [1]. In other words, the imbalanced role
of variables over the objective function causes the first deriv-
ative achieving the inappropriate direction to optimize the
objective function. Hence, we propose Algorithm 1, repre-
sented in the flowchart Fig. 1, including four important parts
to attain fast convergence:

– Part 1. Anti-lopsided transformation from Line 3 to
Line 5: the variable vector x is transformed into a new
space by x = ϕ(y) as an inverse function. In the new
space, the new equivalent objective function g(y) =
f (ϕ(y)) has ∂2g

∂y2i
= 1, ∀i , or the acceleration of each vari-

able equals 1. As a result, the roles of variables become
more balanced because the level curve of the function
becomes more spherical because ∂2g

∂y2i
= 1, ∀i , and g(y)

is convex. This part aims to make the post-processing
parts more effective because it can implicitly exploit the

second derivative information ∂2g
∂y2i

= 1, ∀i to guarantee

that μ and L are always bounded as 1
2 ≤ μ ≤ L ≤ n.

– Part 2. Exact line search from Line 12 to Line 16: this
part optimizes the objective function with a guarantee
of over-bounded convergence rate (1 − μ

L )k where 1
2 ≤

μ ≤ L ≤ n over the space of passive variables, which
has a complexity O(n2). The part aims to reduce the
objective functions exponentially and precisely, although
it suffers from variable scaling problems and nonnegative
constraints.

– Part 3.Greedy coordinate descent algorithm fromLine 18
to Line 22 and repeated in Line 29: this part employs
greedy coordinate descent using Gauss–Southwell rule

Algorithm 1: Anti-lopsided algorithm for NNLS

Input: A ∈ R
d×n ; b ∈ R

d , α > 0, and β > 0
Output: x minimizing f (x) = ‖Ax − b‖22 + α

2 ‖x‖22 + β‖x‖1
subject to: x � 0

begin1

/*Transfer f (x) into f (x ′) satisfying : ∂2 f
∂2x ′

i
= 1, ∀i*/;2

H = AT A + α I ;3

Q = H√
diag(H)diag(H)T

;
4

q = −AT b+β1n√
diag(H)

;5

/*Minimize f (x) = 1
2 x

T Qx + qT x ;6

x0 = 0n ;7
∇ f = q;8
repeat9

xs = xk and ∇ fs = ∇ f ;10
/*Exact line search algorithm over passive variables*/;11

∇ f̄ = ∇ f ; and ∇ f̄ [x = 0 and ∇ f > 0] = 0 ;12

α = argmin
α

f (xk − α∇ f̄ ) = ‖∇ f̄ ‖22
∇ f̄ T Q∇ f̄

;
13

xk+1 = xk − α∇ f̄ ;14

∇ f = ∇ f − αQ∇ f̄ − Q[xk+1]− ;15
xk+1 = [xk+1]+ ;16
/*Greedy coordinate descent algorithm*/;17
for t=1 to n do18

p = argmax
i,i∈P(x)

|∇i f (xk)|;
19

�xp = max(0, [xk+1]p − ∇p f
Q pp

) − [xk+1]p;20

∇ f = ∇ f + Qp�xp;21
[xk+1]p = [xk ]p + �xp;22

/*Accelerated search carries a ”momentum” based on the23
changes in variables in exact line search and greedy
coordinate descent part*/;
�x = xs − xk+1 /*xs and ∇ fs are assigned in Line 1*/;24

α = argmin
α

f (xk+1−α�x) = ∇ f T �x
�xT Q�x

= ∇ f T �x
�xT (∇ fs−∇ f )

;
25

xk+1 = xk+1 − α�x ;26
∇ f = ∇ f − αQ�x − Q[xk+1]− ;27
xk+1 = [xk+1]+;28
Repeat steps in the part of greedy coordinate descent29
algorithm ;

until ‖∇ f̄ ‖2 < ε;30
/*Inverse x back to the original space */;31

xk+1 = xk+1√
diag(H)

;32

return xk+133
end34

with exact optimization to rapidly reduce the objective
functionwith fast convergenceO(1− μ

nL ) for each update
[17,20], which has a complexity ofO(n2). The part aims
to reduce negative effects of variable scaling problems
and nonnegative constraints, although it has zigzagging
problems because of optimizing the objective function
over each single variable. Due to having fast conver-
gence in practice and reducing negative effects of variable
scaling problems and nonnegative constraints, this part is
repeated one more time after Part 4.

– Part 4. Accelerated search from Line 24 to Line 28: this
step performs a descent momentum search based on pre-
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Anti-lopsided 
transformation

Exact line search

Greedy coordinate 
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Accelerated search

Greedy coordinate 
descent

Stopping 
Condition

True

False

Fig. 1 Flowchart of accelerated anti-lopsided algorithm

vious changes in variables in Part 3 and Part 4, which has
a low complexity ofO(n·nn(n))where nn(n) is the num-
ber of negative elements in (xk+1 −α�x), see Line 27 in
Algorithm 1. This part relies on the global information
of two distinct points to escape the local optimal infor-
mation issues of the first derivative raised by the function
complexity. This part originates from the idea that if the
function is optimized from xs to xk by the exact line
search and the coordinate descent algorithm, it is highly
possible that the function value will be reduced along the
vector (xk − xs) because the NNLS objective function is
convex and has (super) eclipse sharp.

In summary, the proposed algorithm has various advan-
tages because it combines several algorithms. Hence, it can
achieve these various advantages to significantly reduce the
iteration number, and negative effects of variable scaling
problems and nonnegative constraints in order to attain fast
over-bounded convergence rate, although its iteration com-
plexity increases several times.

Let us consider the effectiveness of the proposed algo-
rithms by comparing with the exact gradient line search for
the original NNLS problem, which is severely influenced by
variable scaling problems. For example, if we employ the

70 75 80 85 90 95 100
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16

Fig. 2 A total of 273 optimizing steps by exact line search method
using the first-order derivative for the Function 4 starting at x0 =
[1000]T

iterative exact line search method using the first-order deriv-
ative to optimize Function 4, we need 273 iterations to reach
the optimal solution (see Fig. 2):

f (x) = 1

2

∥∥∥∥∥∥

⎡
⎣
1 1
2 3
3 9

⎤
⎦ x −

⎡
⎣
50
200
300

⎤
⎦

∥∥∥∥∥∥

2

2

(4)

To reduce negative effects of these scaling problems, we
rescale variables into a new space, in which new variables
have more balanced roles and for that reason, we name the
proposed algorithm as accelerated anti-lopsided algorithm.
Specially, we rescale:

x = y√
diag(H)

or xi = yi√
Hii

, ∀i (5)

After rescaling variables, the original Problem 3 is equiv-
alently transformed into NQP Problem 6:

minimize
y

f (y) = 1
2 y

T Qy + qT y

subject to y � 0

where Qi j = Hi j√
Hii Hj j

; qi = hi√
Hii

(6)

Remark 1 Consider the values of matrix Q, we have:

– ∂2 f
∂2 yi

= Qii = Hii√
H2
i i

= 1, ∀ i = 1, . . . , n

– ∂2 f
∂yi ∂y j

= Qi j = Hi j√
Hii Hj j

, ∀ 1 ≤ i 
= j ≤ n

⇒ |Qi j | = |<Ai ,A j>|
|Ai ||A j |+α

≤ | cos(Ai , A j )| ≤ 1 sinceα > 0.

The scaling variable problem is significantly reduced
because the acceleration of the function over variables equals
1, and the roles of variables in the function become more
balanced. For example, Fig. 3 has the change in function
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Fig. 3 Atotal of 21 optimizing steps by the proposed algorithmstarting
at y0 = x0

√
diag(H) or y0i = x0i Hii ,∀i

value over variables more balanced than in Fig. 2. In addi-
tion, the level curve of Function 4 is transformed from
long-ellipse shaped (see Fig. 2) to short-ellipse shaped (see
Fig. 3) in Function 6. Furthermore, by combining fast conver-
gence algorithms such as exact line search, greedy coordinate
descent, and accelerated search, the proposed algorithm can
work much more effectively. For example, we need only 21
iterations instead of 271 iterations to reach the optimal solu-
tion for the Function 4 with the same initial point y0, where
y0i = x0i .Hii , ∀i (see Fig. 3).

For each iteration of Algorithm 1 for solving the NQP
problem with input Q and q, the objective function is opti-
mized on the passive set:

P(x) = {xi |xi > 0 or ∇ fi (x) < 0}

Hence, the first-order gradient will be projected into the
subspace of the passive set ∇ f̄ = [∇ f ]P(x) (∇ f̄i =
∇ fi for i ∈ P(x), otherwise ∇ f̄i = 0). Noticeably, the pas-
sive set can change through iterations, and Algorithm 1 is
converged when P(x) = ∅ or ‖∇ f̄ ‖2 < ε based on KKT
conditions. In addition, the orthogonal projection on the sub-
space of passive variables x = [xk + α∇ f̄ ]+ is trivial [13]
since the NQP Problem 6 is a strongly convex problem on a
convex set.

Concerning computing a of the exact line search in Algo-
rithm 1, we have:

f
(
xk − α∇ f̄

) = −α∇ f̄ T [Qxk + q] + α2

2
∇ f̄ T Q∇ f̄

+ C where C is constant

⇒ ∂ f

∂α
= 0 ⇔ α = ∇ f̄ T (Qxk + q)

∇ f̄ T Q∇ f̄

= ∇ f̄ T∇ f

∇ f̄ T Q∇ f̄
= ‖∇ f̄ ‖22

∇ f̄ T Q∇ f̄

Similarly, regarding computing a of the accelerated
search, we have:

α = �xT (Qxk+1 + q)

�xT Q�x
= �xT∇ f

�xT Q�x
= ∇ f T�x

�xT (∇ fs − ∇ f )

Furthermore, to reduce the complexity of Algorithm 1, we
save Q∇ f̄ to avoid recomputing, see Line 15, and compute
(Q�x = ∇ fs − ∇ f ), see from Line 25 to Line 27.

4 Theoretical analysis

This section analyzes the convergence and complexity of the
proposed algorithm.

4.1 Convergence

Concerning the convergence rate, ourmethod argues Barzilai
and Borwein’s note that NNLS is an unconstrained opti-
mization on the passive set of variables [2]. Moreover, the
orthogonal projection on the subspace of passive variables
x = [xk + α∇ f̄ ]+ is trivial [13] since NNLS and its equiv-
alent problem (NQP) are strongly convex on a convex set.
In addition, the greedy coordinate descent using Gauss–
Southwell rule with exact optimization has fast convergence
rate (1− μ

nL ) for each update [17,20]. Hence, in this section,
we analyze the convergence rate of the exact line search in
Algorithm 1 and determine the over-bounds ofμ and L in the
subspace of passive variables, which significantly influence
the convergence rate of the proposed algorithm. Furthermore,
we only consider convergence of NLLS solver without regu-
larizations because it is assumed that L1 and L2 coefficients
α, β slightly affect the convergence of algorithms for the fol-
lowing reasons: first, the L1 regularized coefficient β do not
change the Hessian matrix; second, the L2 regularized coef-
ficient α is often small, and they slightly influence μ

L because
they change both the convex parameter μ and the Lipschitz
constant L by adding the same positive value α.

Consider the convergence rate of the exact line search for
f (x) = 1

2 x
T Qx + qT x . Since f (x) is strongly convex, we

have:

– ∃μ, L > 0 satisfy μI � ∇2 f � L I
– ∀x, y : f (y) ≥ f (x) + 〈∇ f (x), (y − x)〉 + μ

2 ‖y − x‖2
– ∀x, y : f (y) ≤ f (x) + 〈∇ f (x), (y − x)〉 + L

2 ‖y − x‖2

Based on Theorem 4.5 and Section 4.1.4 in Lecture 4 of
[3], we have:

Theorem 1 After (k + 1) iterations, the convergence rate of
the exact line search is f (xk+1) − f ∗ ≤ (1 − μ

L )k( f (x0) −
f ∗), where f ∗ is the minimum value of f (x).

Proof Since f (y) ≤ f (x)+〈∇ f, y−x〉+ L
2 ‖y−x‖22, ∀x, y

selecting y = x − 1
L ∇ f and x+ is the updated value of x

123



Int J Data Sci Anal (2017) 3:23–34 29

after an iteration by the first-order gradient using exact line
search, we have:

f (x+) ≤ f

(
x − 1

L
∇ f

)
≤ f (x) − 1

L
‖∇ f ‖22

+ L

2

(
1

L

)2

‖∇ f ‖22

≤ f (x) − 1

2L
‖∇ f ‖22

(7)

Hence, for the minimum value f ∗ of the objective function,
we have:

f (xk+1) − f ∗ ≤ (
f (xk) − f ∗) − 1

2L
‖∇ f ‖22 (8)

Consider f (y) = f (x)+〈∇ f, y−x〉+ μ
2 ‖y−x‖22 (fixing

x) is a convex quadratic function of y. Hence, f (y) mini-
mizes when ∇ f (y) = 0 ⇔ y = ỹ = x − 1

μ
∇ f . In addition,

since f (y) ≥ f (x) + 〈∇ f, y − x〉 + μ
2 ‖y − x‖22, ∀x, y, we

have:

f (y) ≥ f (x) + 〈∇ f, y − x〉 + μ

2
‖y − x‖

≥ f (x) + 〈∇ f, ỹ − x〉 + μ

2
‖ỹ − x‖

= f (x) − 1

2μ
‖∇ f ‖22, ∀x, y

(9)

Selecting y = x∗ and x = xk where x∗ is the optimal solu-
tion, we have:

− ‖∇ f ‖22 ≤ 2μ
(
f ∗ − f (xk)

)
(10)

From (8) and (10), we have the necessary result:

fk+1 − f ∗ ≤
(
1 − μ

L

) (
f (xk) − f ∗)

≤
(
1 − μ

L

)k (
f (x0) − f ∗)

��

Lemma 1 Consider ∇2 f of f (x) = 1
2 x

T Qx + qT x, 1
2 I �

∇2 f � ‖Q‖2 I ≤ nI , where ‖Q‖2 =
√∑n

i=1
∑n

j=1 Q
2
i j .

Proof We have ∇2 f = Q, and ai = Ai‖Ai‖2
1
2 x

T I x ≤
1
2

(∑n
i=1 x

2
i

) + 1
2

∥∥∑n
i=1 xiai

∥∥2
2 = ∑n

i=1
∑n

j=1 Qi j xi x j =
xT Qx for ∀x ⇒ 1

2 I � ∇2 f since Qi j = aiaj and Qii =
aiai = 1,∀i, j .

Moreover, based onCauchy–Schwarz inequality,we have:

⎛
⎝

n∑
i=1

n∑
j=1

Qi j xi x j

⎞
⎠

2

≤
⎛
⎝

n∑
i=1

n∑
j=1

Q2
i j

⎞
⎠

⎛
⎝

n∑
i=1

n∑
j=1

(xi x j )
2

⎞
⎠

⇒
n∑

i=1

n∑
j=1

Qi j xi x j

≤
√√√√‖Q‖22

(
n∑

i=1

xi 2

)2

⇔ xT Qx ≤ ‖Q‖2xT I x ∀x
⇔ ∇ f = Q � ‖Q‖2 I

Finally, ‖Q‖2 =
√∑n

i=1
∑n

j=1 Q
2
i j ≤ √

n2 = n since

|Qi j | ≤ 1, ∀i, j ⇒ ‖Q‖2 ≤ n.
Therefore: 1

2 I � ∇2 f � ‖Q‖2 I ≤ nI . ��
From Theorem 1 and Lemma 1 and by setting μ = 1

2 and
L = ‖Q‖2, we have:
Lemma 2 After k + 1 iterations, f (xk+1) − f (x∗) ≤ (1 −
μ
L )k( f (x0) − f (x∗)), and μ, L are always bounded as 1

2 ≤
μ ≤ L ≤ n, where n is the dimension of x. Hence, the
convergence rate of exact line search in Algorithm 1 is over-
bounded as (1 − μ

L )k ≤ (1 − 1
2n )k .

Moreover, because the greedy coordinate descent using
Gauss–Southwell rule with exact optimization has conver-
gence rate (1− μ

nL ) for each update [17,20] and these updates
is conducted 2n times, we have:

Theorem 2 The convergence rate of Algorithm 1 is [(1 −
μ
L )(1− μ

nL )2n]k in the subspace of passive variables, whereμ

and L are always bounded as 1
2 ≤ μ ≤ L ≤ n. Algorithm 1

converges at over-bounded rate [(1 − μ
L )(1 − μ

nL )2n]k ≤
[(1 − 1

2n )(1 − 1
2n2

)2n]k .
Proof Based on Section 3.2 in [20], the greedy coordi-
nate descent using Gauss–Southwell rule, we have: f (xk

− 1
L ∇ik f (x

k)) − f (x∗) ≤ (1 − 1
nL )( f (xk) − f (x∗)).

For using exact optimization, f (xk+1) − f (x∗) ≤ f (xk

− 1
L ∇ik f (x

k)) − f (x∗).
Hence, f (xk+1) − f (x∗) ≤ (1 − 1

nL )( f (xk) − f (x∗)).
In other words, the convergence rate of each update in the
greedy coordinate descent using Gauss–Southwell rule with
exact optimization is (1 − 1

nL ).
Overall, Algorithm 1 including one exact line search and

2n updates of the greedy coordinate descent has convergence
rate of [(1 − μ

L )(1 − μ
nL )2n]k . ��

4.2 Complexity

Concerning the average complexity of Algorithm 1, we con-
sider the important parts in each iteration:
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Table 2 Summery of test cases

Dataset d n Type

Synthetic 1 8000 10,000 d < n

Synthetic 2 15,000 10,000 d > n

Synthetic 3 15,000 10,000 Sparse 20% 
= 0

ILSVRC2013 61,188 10,000 d > n

CIFAR 3072 10,000 d < n

20-NEWS 61,185 10,000 Sparse

– The complexity of the exact line search is O(n2 +
n·nn(n)),

– The complexity of the greedy coordinate descent is
O(n2),

– The complexity of the accelerated search is O(n·nn(n)).

where nn(n) is the number of negative elements in (x+α�x)
that is sparse. Therefore, if we consider computing AT A and
AT b in O(dn + dn2), we have:

Theorem 3 The average complexity of Algorithm 1 is
O(dn + dn2 + k̄n2), where k̄ is the number of iterations.

5 Experimental evaluation

This section investigates the convergence of the gradient
square over passive variables ‖ f̄ ‖22 and the objective value
‖Ax − b‖22/2 in comparison with state-of-the-art algorithms
belonging to different research directions: block coordi-
nate descent, accelerated methods, active set methods, and
iterative methods. Furthermore, we employ the proposed
accelerated anti-lopsided algorithm for a low-rank problem
as nonnegative matrix factorization to investigate the effec-
tiveness of the proposed algorithm for real applications.

Datasets:To investigate the effectiveness of the compared
algorithms, 6 datasets are used and shown in Table 2:

For 3 synthetic datasets:

– the matrix A is randomly generated by the function
rand(d, n) × 100 for dense matrices, and
sprand(d, n, 0.1) × 100 for space matrices.

For 3 real datasets:

– 10,000 first images of ILSVRC20131 are extracted to
form the matrix A, and the images in ILSVRC2013 are
resized into the size [128 × 128] before converted into
vectors of 61,188 dimensions.

1 http://image-net.org/challenges/LSVRC/2013/.

– 10,000first instances ofCIFAR2 are extracted to establish
the matrix A,

– 10,000 first documents of 20-NEWS3 are extracted to
form the matrix A.

The number of variables is set by 10,000 because of the
usually limited requirements of low-rank algorithms and the
limitation of our algorithm in computing and storing AT A.
In addition, the observed vectors b are randomly generated
and added noisy to guarantee that NNLSwill have non-trivial
optimal solutions. The 6 datasets, the generated dataset code
and our source codes are published for in the link.4

Environment settings: we develop Algorithm 1 in MAT-
LAB with embedded code C++ to compare them with other
algorithms. For NNLS, we set system parameters to use
only 1 CPU for MATLAB and the IO time is excluded in
the machine 8-Core Intel Xeon E5 3GHz. In addition, for
evaluating on nonnegative matrix factorization, we set the
parameter to use 8 CPUs.

5.1 Comparison with state-of-the-art algorithms

In this section, we investigate the convergence of the gradient
square ‖ f̄ ‖22 over the passive set (see Fig. 4) and the objective
values ‖Ax−b‖22/2 (See Fig. 5) during the running time (see
Fig. 5). Specially, we compare our algorithm Antilop with
state-of-the-art algorithms as follows:

– Coord: this is a cycle block coordinate descent algorithm
[7] with fast convergence in practice [17].

– Accer: this is a Nesterov accelerated method with con-
vergence rate O( L

k2
) [10]. The source code is extracted

fromamodule in the paper [10]. The source code is down-
loaded from.5

– Fast: this is a modified effective version of active set
methods according to Bro R., de Jong S., Journal of
Chemometrics, 1997 [2], which is developed by S.
Gunn.6 This algorithm can be considered as one of the
fastest algorithms of active set methods.

– Nm: this is a non-monotonic fast method for large-scale
nonnegative least squares based on iterative methods
[13]. The source code is downloaded from.7

– Nm: this is frugal coordinate descent for large-scale
NNLS. This code is provided by the author [19].

2 http://www.cs.toronto.edu/~kriz/cifar.html.
3 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.
4 http://khuongnd.appspot.com.
5 https://sites.google.com/site/nmfsolvers/.
6 http://web.mit.edu/~mkgray/matlab/svm/fnnls.m.
7 http://suvrit.de/work/progs/nnls.html.
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Fig. 4 Convergence of the gradient square ‖ f̄ ‖22 versus running time

Figures 4 and 5 show that the proposed algorithmwith red
color lines has the fastest convergence of the gradient square
and the objective value:

– Concerning the convergence of the gradient square ‖ f̄ ‖22
over the passive variable set versus time in Fig. 4, the
proposed algorithm has the fastest convergence over
6 datasets. At the beginning, the frugal block coordi-
nate descent algorithm FCD [19] and the non-monotonic
method Nm [13] have the fast approximation because
they do not compute AT A. However, for a long time,
the faster convergence algorithms such as Antilop and
Coord [7] will dominate, although they spend a long
time on computing Hessian matrix AT A. In comparison
with Coord, the proposed algorithm Antilop converges
much faster because Coord has zigzagging problems
in optimization of multiple variable functions. For the
accelerated algorithm Accer, its gradient square grad-
ually reduces because the step size is limited in 1

L .
The active set method fast converges slowly because it
has a high complexity at each iteration approximated
to O(n3) and handles a single active set simultane-
ously.

– Similarly, regarding the convergence of the objective
value ‖Ax − b‖22/2 versus, in Fig. 5, the proposed algo-
rithm has the fastest convergence over 6 datasets. At
the beginning, the fast approximate algorithms FCD and
Nm have faster convergence than the algorithms Antilop
and Coord. However, Antilop and Coord more rapidly
converge because they can detect the more appropriate
direction to optimize the function. In comparison with
Coord, the proposed algorithm Antilop converges much
faster. For the accelerated algorithm Accer having con-
vergence of 1/k2, the objective value gradually reduces
because of its limited step size 1

L and negative effects
of nonnegative constraints. In addition, the active set
method fast converges slowly due to its high complexity.

These experimental results clearly indicate that the pro-
posed algorithm has the fastest convergence of both two
significant measures as the gradient square and the objective
value, which are reasonable because the proposed algorithm
combines several algorithms with different advantages to
significantly reduce the negative effects of variable scaling
problems, detect themore appreciate optimization directions,
and attain the better theoretical guarantee.
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Fig. 5 Convergence of the objective value ‖Ax − b‖22/2 versus running time

Table 3 Summery of test cases for NMF

Dataset n m

CIFAR 3072 60,000

ILSVRC2013 61,188 60,000

5.2 Application for low-rank representation

NLSS is widely used as the core algorithm in low-rank rep-
resentation, especially for nonnegative matrix and tensor
factorization [23]. In these applications, fast convergence and
high accuracy both are required. In this section, we investi-
gate the effectiveness of the proposed algorithm for low-rank
representation as nonnegative matrix factorization (NMF)
on the large datasets CIFAR and ILSVRC2013 with differ-
ent ranks r = {150, 200, 250}. For the datasets CIFAR and
ILSVRC2013, 60,000 instances are employed as in Table 3.

In the NMF problem, a given nonnegative matrix V is
factorized into the product of two matrix V ≈ WF . For
Frobenius norm, multiple iterative algorithm like EM algo-
rithm is usually employed, which contains two main steps.
In each step, one of the two matrices W or F is fixed

to find the other optimal matrix. For example, when the
matrix W is fixed, the new matrix is determined by F ≈
argmin
F�0

‖V −WF‖22 = argmin
Fi�0

∑r
i=1 ‖Vi −WFi‖22. Hence,

a large number of NNLS problems must be approximately
solved in NMF, and employing the proposed algorithm in
NMF is a reasonable way to test its effectiveness.

We compare the algorithm NMF_Antilop using the pro-
posed algorithm Antilop with state-of-the-art methods:

– NMF_Coord [11] using a greedy block coordinate
descent method,

– NMF_HALS [9] using the cycle block coordinate descent
method,

– NMF_Accer [10] using an accelerated method.

In comparison with state-of-the-art methods, the algo-
rithm NMF_Antilop using the proposed NNLS algorithm
converges much faster and has higher accuracy than the other
algorithms in almost all test cases:

– Figure 6 shows the convergence of the objective value
‖V − WF‖22/2 versus running time. For the dataset
CIFAR, the algorithm NMF_Antilop always converges
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Fig. 6 Convergence of the objective value ‖Ax − b‖22/2 versus running time

faster than the other compared algorithms. For the dataset
ILSVRC2013, NMF_Antilop converges slowly at the
beginning. However, the algorithm NMF_Antilop has
faster convergence rate than the other algorithms to obtain
the lower objective values ‖V − WF‖22/2 at the end-
ing time. In addition, the algorithm NMF_Accer has the
slowest convergence and its results has been not reported
for the dataset ILSVRC2013 with r = {200, 250}
because of its long running time.

– Moreover, Table 4 shows the objective values after 300
iterations of the multiple iterative algorithm. Based on
the results, the algorithm NMF_Antilop has the highest
accuracy in all the test cases. The results indicate that the
proposed NNLS algorithm obtains higher accuracy than
the other algorithms employed in NMF for the follow-
ing reasons: first, NMF is a hard optimization problem
within a large number of variables. It is difficult to reduce
the objective value when the variables converge to the
optimal solution, which is represented in Fig. 6. Second,
algorithm Antilop has fast convergence with high accu-
racy to obtain the better objective values.

Hence, the results in Fig. 6 andTable 4 have shown that the
proposed NNLS algorithm has both the fastest convergence

and highest accuracy, which can be potentially applied to
low-rank representation.

6 Conclusion and discussion

In the paper, we proposed an accelerated anti-lopsided algo-
rithm to solve the nonnegative least squares problemas one of
the most fundamental problems for low-rank representation.
The proposed algorithm combines several algorithms and
ideas, namely anti-lopsided variable transformation, exact
line search, greedy block coordinate descent, and acceler-
ated search to reduce the number of iterations and to increase
the speed of the NNLS solver. These techniques aim to deal
with variable scaling problems and nonnegative constraints
of NNLS, although the combinational algorithm’s iteration
complexity increases several times. In addition, the pro-
posed algorithm has over-bounded linear convergence rate
[(1 − μ

L )(1 − μ
nL )2n]k in the subspace of passive variables,

where n is the dimension of solutions, andμ and L are always
bounded as 1

2 ≤ μ ≤ L ≤ n.
In addition, we carefully compare the proposed algorithm

with state-of-the-art algorithms in different research direc-
tions for both synthetic and real datasets. The results clearly
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Table 4 ‖V − WH‖22/2 of
NMF solvers after 300 iterations
(unit: ×1010)

Method NMF_Antilop NMF_Coord NMF_HALS NMF_Accer

CIFAR + r = 150 2.565 2.565 2.581 2.575

CIFAR + r = 200 2.014 2.017 2.031 2.016

CIFAR + r = 250 1.625 1.630 1.649 1.636

ILSVRC2013 + r = 150 12.390 12.409 12.400 12.433

ILSVRC2013 + r = 200 11.070 11.089 11.116

ILSVRC2013 + r = 250 10.097 10.127 10.141

The most optimal values are shown in bold

shows that the proposed algorithm achieves the fastest con-
vergence of the gradient square over passive variables and the
objective value. Moreover, we investigate the effectiveness
of the proposed algorithm in a real application of nonnega-
tivematrix factorization, inwhich numerousNNLSproblems
must be approximately solved. The results also indicate that
theNMFsolver employing the proposed algorithmconverges
fastest and has the best accuracy in almost all the test cases.

Besides these advantages, our proposed algorithm still
has several drawbacks such as computing and storing the
Hessian matrix (AT A). Fortunately, in low-rank represen-
tation, the Hessian matrix is computed only once time, and
parallel threads can use the same shared memory. Hence, the
proposed algorithm can potentially be applied for low-rank
representation models with Frobenius norm. In the future
researches, wewill apply the proposed algorithm to low-rank
representation problems, especially for nonnegative matrix
and tensor factorization.
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