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Abstract The problem of time series motif discovery has
attracted a lot of attention and is useful in many real-world
applications. However, most of the proposed methods so far
use Euclidean distance to deal with this problem. There has
been one proposed method, called MDTW_WedgeTree, for
time series motif discovery under DTW distance. But this
method aims to deal with the case in which motif is the
time series in a time series database which has the high-
est count of its similar time series within a range r. To adapt
the above-mentioned method to the case in which motifs are
frequently occurring subsequences of a longer time series,
we modify MDTW_WedgeTree to a new algorithm for dis-
covering “subsequence” motifs in time series under DTW.
The proposed method consists of a segmentation method to
divide the time series into motif candidates and a BIRCH-
based clusteringwhich can efficiently clustermotif candidate
subsequences under DTW distance. Experimental results
showed that our proposed method for discovering “subse-
quence” motifs performs very efficiently on large time series
datasets while brings out high accuracy.
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1 Introduction

A time series is a sequence of real numbersmeasured at equal
time intervals. Time series data arise in so many applications
of various areas ranging from business, finance, medicine,
meteorology, environment to government. One of the impor-
tant representative patterns in time series is time series motif.
One commonly used definition of time series motif is that
motifs are frequently occurring but previously unknown
subsequences of a longer time series. Motif discovery has
been used in various areas, for instance, telecommunica-
tions, medicine, web, motion capture and sensor networks.
Some well-known algorithms for motif discovery are Ran-
dom Projection by Chiu et al. [1]; EMD by Tanaka et al.
[22] which applies Minimum Description Length principle;
MK by Mueen et al. [17]; an algorithm by Gruber et al. [5]
which is based on segmentation and clustering; an algorithm
by Castro and Azevedo [2] which exploits iSAX represen-
tation multiresolution capability to obtain motifs at different
resolutions; GrammarViz by Li et al. [15] which is based
on grammar inference and a method by Son and Anh ref2n
which is based on a multidimensional index. However, most
of the proposedmethods so far use Euclidean distance to deal
with this problem.

Euclidean distance is not a suitable measure for working
on time series in various fields, for example,multimedia data.
Ding et al. [3] pointed that dynamic time warping (DTW) is
the best measure for various kinds of time series data. Nev-
ertheless, it has been suggested many times in the literature
that DTW incurs high computational complexity and that is
the main obstacle of using DTW in time series data mining
tasks. There have been several research works in speeding
up the computation of DTW distance. Most recently, Rak-
thanmanon et al. [19] introduced a suite of techniques for
speeding up DTW similarity search on very large time series
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datasets (consisting of trillions of time series subsequences).
However, the complexity of similarity search on N time
series subsequences is just about O(N ), while the complex-
ity of motif discovery on N time series subsequences will
cost about O(N 2). Due to this difficulty, so far there is little
research work on time series motif discovery under DTW
distance.

The first attempt to deal with time series motif discov-
ery under DTW distance is the method proposed by Truong
and Anh [23]. This method, called MDTW_WedgeTree, uti-
lizes UCR, a suite of techniques to speed up DTW similarity
search [19], and a clustering-based technique to discover
motifs in a time series database. The clustering technique
used in this motif discovery method employs a data struc-
ture calledWedge-Tree to facilitate the time series clustering
under DTW distance. But MDTW_WedgeTree aims to deal
with the case in which motif is the time series in a time series
database which has the highest count of its similar time series
within a range r. With this definition of time series motif,
motif discovery is based on whole sequence matching.

To adapt the above-mentionedmethod to the case inwhich
motifs are frequently occurring but previously unknown sub-
sequences of a longer time series, in this paper, we modify
MDTW_WedgeTreemethod to a new algorithm for discover-
ing “subsequence”motifs in time series underDTWdistance.
The proposed method consists of the following enhance-
ments:

– We identify significant points in the time series and
extract subsequences based on these significant points.

– Wedevelop aBIRCH-based clustering that can efficiently
cluster subsequences under DTW distance.

– In clustering, we propose a technique of finding cluster
representatives to improve the quality of clustering.

Experimental results revealed that our proposed method
for discovering “subsequence” motifs under DTW distance
can perform very fast on large time series datasets while
brings out high accuracy.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the problem definition. Section 3 introduces
some backgrounds on DTW distance, MDTW_ WedgeTree
method, BIRCH algorithm, and significant points in time
series. Section 3 explains our proposed method for discov-
ering motif in time series under DTW distance. Section 5
reports the experiments. Some discussion is given in Sect. s6.
Finally, Sect. 7 gives some conclusions and future works.

2 Problem definition

In order to describe the problem of motif discovery, we give
the related definitions which are from [1,16] as follows.

Definition 1 (Time Series) A time series T = t1, . . . , tn is
an ordered set of n real values measured at equal intervals.

Definition 2 (Subsequence) Given a time series T of length
n, a subsequence S of T is a sampling of length m < n of
contiguous positions from T , that is, S = tp, . . . , tp+m−1 for
1 < p < n − m + 1.

Definition 3 (Distance) Dist is a function as: Dist(C,M)

→ � wherein the inputs are two subsequences C and M , the
function returns a nonnegative number, called as the distance
from C to M . Dist function must hold symmetry.

Definition 4 (Match) Given a positive real number r (called
range) and a time series T containing a subsequenceC begin-
ning at position p and a subsequence M beginning at q, if
the distance Dist(C,M) ≤ r , then M is called a matching
subsequence of C .

Any definition of motif should exclude the possibility of
overcounting the trivial matches, which are defined below.

Definition 5 (Trivial match) Given a time series T , contain-
ing a subsequence C beginning at position p and a matching
subsequence M beginning at q, we say that M is a trivial
match to C if either p = q or there does not exist a subse-
quence M ′ beginning at q ′ such that Dist(C,M ′) > r and
either q < q ′ < p or p < q ′ < q.

Definition 6 (1-motif ) Given a time series T , a subsequence
lengthm and a range r , themost significant motif in T (called
the 1-motif ) is the subsequence C1 that has the highest count
of nontrivial matches.

The K th most significant motif in T (called K-motif ) is
the subsequence Ck that has the highest count of nontrivial
matches, and satisfies Dist(CK ,Ci ) > 2r , for all 1 ≤ i ≤ K .

All subsequences that are similar to theK-motif are called
instances of that K-motif. Note that Definition 6 forces the
sets of instances of the motifs to be mutually exclusive.

The motif definition given in this section indicates that in
this work, we deal with discovering “subsequence” motif in
time series rather than “whole sequence” motif as in [23].

3 Background

3.1 Dynamic time warping

Given two time series Q and C , both of length n, to com-
pare these two time series using DTW, an n × n matrix is
constructed, where the (i th, j th) element of the matrix is
the distance dist(qi , c j ) = (qi − ci )2. A warping path P
is a contiguous set of matrix elements that defines a map-
ping between Q and C . The t th element of P is defined as
pt = (i, j)t , so we have:
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Fig. 1 (Left) Two time series Q
and C are aligned under DTW
distance. Note that Sakoe–Chiba
band with width w is used to
constrain the warping path
(right)

P = p1, p2, . . . , pt , . . . , pT n ≤ T < 2n − 1

Given two time series, the DTW Distance between them
is the minimal cost of all warping paths:

ED(Q,C) = min

⎛
⎝

√√√√ T∑
i=1

pt

⎞
⎠

The Euclidean distance between two time series can be
seen as a special case of DTWdistancewhere the kth element
of P is constrained such that pk = (i, j)k , i = j = k.

To speed up the DTW distance calculation, all practition-
ers usingDTWconstrain thewarping path in a globalmanner
by limiting how far it may stray from the diagonal. The sub-
set of matrix that the warping path is allowed to visit is called
warping window or a band. Two of the most frequently used
global constraints in the literature are the Sakoe–Chiba band
proposed by Sakoe and Chiba [20] and Itakura Parallelo-
gram proposed by Itakura [8]. Sakoe–Chiba band is the area
defined by two straight lines in parallel with the diagonal (see
Fig. 1), and Itakura Parallelogram is the area defined by the
parallelogram which is symmetric over the diagonal.

In this work, we use the Sakoe–Chiba band with width
w. As mentioned in [19] that similarity search on the time
series with different lengths using DTW is very hard and
meaningless, in our work, if the lengths of time series are
different, we apply some interpolation technique to convert
them to the same length before doing motif discovery.

3.2 Speeding up DTW computation

In this section, we describe a suite of techniques, called UCR
suite, to speed up the computation of DTW distance as well
as to reduce the number of times invoking the DTW distance
computation. These techniques were introduced by Rakthan-
manon et al. [19]. In our work, we make use of some major
ideas from UCR suite as follows.

Using the squared distanceBoth DTW and ED have a square
root calculation.However, as suggested in [19] ifwe omit this
step, it does not change the relative rankings of nearest neigh-
bors. In this work, we will still use DTW and ED; however,
the reader may assume that we mean the squared versions of
them.

Lower bounding To speed up the computation of DTW dis-
tance between two time series Q and C , besides using warp-
ing window, researchers proposed some cheap-to-compute
lower-bound teTherefore, during the computationchniques
[9,13,14,25]. In aDTW lower bounding technique, the lower
bound of the DTW distance between two time series Q and
C , denoted by LB(Q,C), must satisfy the following inequal-
ity: LB(Q,C) ≤ DTW(Q,C).

The computation cost of LB(Q,C) is much less than that
of DTW(Q,C). If LB(Q,C) > r , then DTW(Q,C) > r
and therefore we do not have to compute DTW (Q,C) and
conclude that the two time series Q and C cannot be similar
to each other.

Kim et al. [13] proposed a lower bounding technique for
DTW called LB_Kim. LB_Kim extracts a four-tuple feature
vector from each time series. The features are the first and
last data points of the time series, together with themaximum
and minimum values. The maximum squared differences of
corresponding features are used as the lower bound. The
complexity of LB_Kim is O(n). Rakthanmanon et al. [19]
improved LB_Kim to LB_KimFL, with the complexity O(1).
LB_KimFL uses only the distances between the first (last)
pair of points from both time series. In this work, we also use
the LB_KimFL as proposed in [19].

One of the most popular lower bounding techniques
for DTW is LB_Keogh [9]. LB_Keogh has the complexity
O(n). Rakthanmanon et al. [19] use LB_Keogh in similar-
ity search on very large time series. Lemire [14] proposed
the lower bounding technique called LB_Improved which
is an improved variant of LB_-Keogh. Lemire has proved
that LB_Improved is a tighter lower bound than LB_Keogh.

123



116 Int J Data Sci Anal (2017) 4:113–126

Instead of using LB_Keogh to speed up DTW distance com-
putation, in this work we use LB_Improved.

We use the two lower bounding techniques (LB_Kim-FL
and LB_Improved) in a cascade. We first use the LB_KimFL.
If a candidate is not pruned at this stage, we turn to the
LB_Improved. This technique is called cascading lower
bounds.

LB reversing Since LB(Q,C) �= LB(C, Q), after checking
whether LB(Q,C) < r or not, if we cannot prune off a
candidate, we can continue to compute LB(C, Q) in the same
way given in [19].

Look ahead of DTW For 1 < k < n, the following
inequality will be satisfied:

DTW(Q1:k,C1:k) + LB(Qk+1:n,Ck+1:n)
≤ DTW(Q1:n,C1:n)[18]

Therefore, during the computation of the distance DTW
(Q,C) at any time point k, ifDTW(Q1:k,C1:k)+LB(Qk+1:n,
Ck+1:n) > r , then we can conclude that the two time series
Q and C cannot be similar to each other and stop the com-
putation of DTW(Q,C) at that time point.

Early abandoning During the computation of the lower
bound LB or Dist(Q,C), if we note that the current sum of
the squared differences between each pair of corresponding
data points exceeds the range r , we can stop the calculation
at that data point and conclude that Dist(Q,C) > r and Q
and C are not similar to each other. We apply this techniques
in all steps which check whether a distance satisfies a given
distance threshold r .

Besides the above-mentioned techniques, Truong andAnh
[23] devised an upper-bound technique to speed up DTW
computation which is described as follows.

Upper bound by Euclidean distance Note that ED(Q, C)

is a special case of DTW(Q,C), when the warping band w

is set to 1. We have the following inequality: DTW(Q,C) ≤
ED(Q,C).

If ED(Q,C) is within the range r , then we have DTW
(Q,C) ≤ r . ED(Q,C) can be used as an upper bound of
DTW(Q,C). So the computation ofDTW(Q,C) includes the
computation of ED(Q,C) at the point pk = (i, j)k , i = j =
k. To speed up the computation of DTW, we first compute
ED(Q,C) and during the process of computing ED(Q,C)

we store the values pk = (i, j)k , i = j = k which may
be used in the later computation ofDTW(Q,C) if necessary.
When the computation ofED(Q,C)finishes, ifED(Q,C) ≤
r , then we can stop the computation and conclude that Q, C
are similar.

Look ahead of Euclidean distance Similar to the look
ahead of DTW, we have the following inequality:

DTW(Q1:n,C1:n)
≤ DTW(Q1:k,C1:k) + ED(Qk+1:n,Ck+1:n)
1 < k < n

Therefore, during the computation of the distance DTW
(Q,C) at any timepoint k, ifDTW(Q1:k,C1:k)+ED(Qk+1:n,
Ck+1:n) ≤ r , then we can conclude that the two time series Q
and C can be similar to each other and stop the computation
of DTW(Q,C) at that time point.

3.3 MDTW_WedgeTree method

In this section, we review briefly the MDTW_WedgeTree
method [23] for discovering “whole sequence” motifs in a
time series database. This method is based on clustering. To
mitigate the difficulty of time series clustering under DTW
distance, the method uses the support of Wedge-Tree.

Wedge and Wedge-Tree Given a set of time series Cset =
C1, . . . ,Ck , we can form two new time seriesU and L using
the following formula:

Ui = max(C1i , . . . ,Cki )

Li = min(C1i , . . . ,Cki )

U and L stand for upper and lower bounds ofCset , respec-
tively. They form the smallest possible bounding envelope
that encloses all members of the set Cset from above and
below. As in the work [12], we will call the combination
U, L a wedge and denote a wedge as W : W = {U, L}. We
have the following inequality:

DTW(Ci ,C j ) ≤ ED(Ci ,C j ) ≤ ED(U, L), ∀Ci ,C j ⊂ Cset

For convenience, we denote WUL = ED(U, L).
The expansion of W = {U, L} of Cset when inserting a

new time seriesC toCset can be done simply as follows:Ui =
max(Ui ,Ci ) and Li = min(Li ,Ci ). Similarly, whenwe have
two sets of time series:Cset1, withW1 = {U1, L1} andCset2,
withW2 = {U2, L2}, then the wedgeW = {U, L} of Cset1 ∪
Cset2 can be computed as follows: Ui = max(U1i ,U2i ) and
Li = min(L1i , L2i ).

Now we construct a tree structure based on the wedges
W = {U, L}, which is called Wedge-Tree. The structure of
Wedge-Tree is almost similar to that of R∗ _Tree. At each
entry in a node, Wedge-Tree stores a wedge W which is the
bounding envelope of all child nodes of this entry. There are
two parameters in aWedge-Tree: B, themaximumnumber of
entries in a nonleaf node and r , the distance threshold WUL
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of all entries in a leaf node, i.e., all entries in a leaf node must
satisfy WUL ≤ r .

Insertion of a time seriesC toWedge-Tree is as follows.At
each level of theWedge-Tree, we insertC to the entry whose
wedge W , ED(U, L), needs the least enlargement to include
that time series. Insertion of a time series C to an entry at a
leaf node can be done only when the enlargement satisfies
the condition WUL ≤ r ; otherwise, we have to create a new
entry at that leaf node.

The node splitting due to a violation of the threshold B
can be done by selecting the two entries E1 and E2 in a node
such that the wedge W of E1 ∪ E2 is the largest and then
based on E1 and E2, we split the node in question into two
different nodes.

TheMDTW_WedgeTreealgorithm BasedonWedge-Tree,
an algorithm for motif discovery in a time series database
D = {T1, T2, . . . , Tm} was proposed [23]. This algorithm
is called MDTW_WedgeTree (Motif discovery under DTW
using Wedge Tree). The algorithm consists of the four fol-
lowing steps:

1. Step 1: [Constructing Wedge-Tree] The algorithm builds
the Wedge-Tree with two parameters B and r by repeat-
edly inserting time series Ti to the Wedge-Tree. After
constructing the Wedge-Tree, we obtain the subclusters
corresponding to the entries at the leaf nodes whose
wedges satisfy the condition WUL ≤ r . That means the
time series in the same subcluster are similar to each
other.

2. Step 2: [Merging the subclusters] In this step,we consider
every pair of subclusters Si ∪S j and computeW of the set
Si ∪ S j . IfW satisfies the threshold r ,WUL ≤ r , then we
merge the two subclusters to a bigger subcluster, Si ∪ S j .

3. Step 3: [Enriching the subclusters] During the process of
building the Wedge-Tree, since the subclusters must be
mutually exclusive and due to the order of insertion of
Ti to the tree, some inaccuracies might exist: two simi-
lar time series might be inserted to different subclusters.
Therefore, in this phase, we consider each pair of sub-
clusters obtained after Step 2, Si and S j , to checkwhether
there exist some instances in Si that can be inserted to S j ,
and vice versa. If that is the case, some instances can be
migrated from one subcluster to another subcluster.

4. Step 4: [Discovering motifs] After Step 3, we sort the
subclusters in the descending order of the number of
instances and remove the overlapping subclusters. There
may exist overlapped instances in two subclusters. If the
overlap percentage is above a certain threshold (e.g., we
use 90%overlap), the overlapped subclusters aremerged.
The subcluster with the highest number of instances will
be the 1-motif, and the subcluster with the kth highest
number of instances will be the k-motif.

In Step 3, we utilize the lower-bound measure between
an arbitrary time series Q to the subcluster S proposed by
Keogh et al. [12]. This lower-boundmeasure canbe described
as follows.

For each subcluster S, based on the wedgeW = {U, L} of
S and the warping range w, we form two new subsequences
DTW_U and DTW_L:

DTW_Ui = max(Ui−w : Ui+w)

DTW_Li = min(Li−w : Li+w)

Keogh et al. gave the lower bounding measure between
an arbitrary subsequence Q to the subcluster S as follows:

LB_KeoghDTW(Q,W )

=

√√√√√
n∑

i=1

⎧⎨
⎩
(qi − DTW_Ui )

2 if qi > DTW_Ui

(qi − DTW_Li )
2 if qi > DTW_Li

0 otherwise

and proved that:

LB_KeoghDTW(Q,W ) ≤ DTW(Q,Ck),∀Ck ⊂ S

Therefore, if we have LB_KeoghDTW(Q,W ) > r , then
we can conclude that there are no subsequences in the sub-
cluster S that is similar to Q. In the MDTW_ WedgeTree
algorithm, the early abandon technique is applied in all the
steps. One weakness of MDTW_Wedge-Tree is that it lacks
a principled method to determine subcluster representatives.
The algorithm selects randomly one instance in a subcluster
as its representative. This stochastic factor might reduce the
effectiveness of Step 2 (Merging the subclusters) and Step 3
(Enriching the subclusters) in the method.

3.4 Extracting significant points

Detecting change points in a given time series is an impor-
tant time series data mining task. Change points are the time
positions in the original time series where the local trend
in the data values has changed. The main goal of time series
segmentation is the extractionof segmentswith similar obser-
vations or different from the rest of the time series. Here, in
time series segmentation we want that the start point and the
end point of a segment should be change points. We extract
the change points based on the combination of important
extreme points [6] and turning points [4].

The algorithm for finding important extreme points was
first introduced by Pratt and Fink [18]. Fink and Gandhi
[6] proposed the improved variant of the algorithm for find-
ing important extreme points. Important extreme points are
divided into two kinds: important minima and important
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Fig. 2 Illustration of important extreme points: a minimum, b maxi-
mum

Fig. 3 Representing the original series only by important extrema [4]

maxima. Figure 2 illustrates the definition of important min-
ima (a) and important maxima (b).

We control the compression rate with a positive parameter
R; an increase of R leads to the selection of fewer points.
Fink and Gandhi [6] proposed some functions to compute
the distance between two data values a, b, in a time series.
In this work we use the distance dist(a, b) = |a − b|.
Definition 7 (Important minimum) For a given distance
function dist and positive value R, a point ti of a series
t1, . . . , tn is an important minimum if there are indices il
and ir , where il < i < ir , such that ti is a minimum among
til , . . . , tir , and dist(ti , til) � R and dist(ti , tir ) � R.

Definition 8 (Important maximum) For a given distance
function dist and positive value R, a point ti of a series
t1, . . . , tn is an important maximum if there are indices il
and ir , where il < i < ir , such that ti is a maximum among
til , . . . , tir , and dist(ti , til) � R and dist(ti , tir ) � R.

The algorithm for extracting important extremaof all types
from a time series of length n is given by Fink and Gandhi
[6]. The algorithm takes linear time and constant memory.

Fu et al. [4] proposed a method for identifying the change
points in a time series which are called turning points. Fu
et al. notice that choosing the change points in a time series
only from important extremamay not be enough (see Fig. 3).
To overcome the imperfection of important extreme point
method, Fu et al. proposed the concept of turning points
defined as follows.

Definition 9 Turning point: For a given positive value R and
time series T = t1, . . . , tn . If t j is a previous turning point

Fig. 4 Turning point [4]

found in time series T at position j , 1 ≤ j ≤ n, for each
point tk , (k > j), three slopes are calculated as follows:

sc(k) = tk − t j
k − j

su(k) = tk − (t j + R)

k − j

sl(k) = tk − (t j − R)

k − j

tk is considered as a turning point, if sc(k) > min(sl(i)) or
sc(k) < max(su(i)) where i = j + 1, j + 2, . . . , k − 1.

In the definition of turning points, R represents a given
error bound. The method for identifying turning points is
like drawing a thicker and smoother curve that can cover
the original curve. For two points (p, tp) and (q, tq) where
p < q, the area between the two lines that joins (p, tp + R)
to (q, tp + R) and (p, tp − R) to (q, tq − R) forms a thick
line. We say we can connect two points with a thick line if
and only if all the points between the two points are falling
in the area of the thick line.

The algorithm for identifying the turning points in a time
series is given in [4] as follows:

1. Step 1. The first point of time series T is chosen as a
turning point.

2. Step 2. Let ( j, t j ) be the newly chosen turning point.
Obviously, we can connect ( j, t j ) and ( j + 1, t j+1) with
a thick line. Then we grow the length of the line one by
one. If we can connect ( j, t j ) and ( j + 1, t j+1) with a
thick line and cannot connect ( j, t j ) and (k, tk) where
j + 1 < k < n, with a thick line, we select the last point
(only one point at most time) which is between t j and
tk and outside the thick line as a new turning point (see
Fig. 4) Repeat this step until the last point of T .

3. Step 3. The last point is also a turning point.

The algorithm proposed by Pratt and Fink [18] for iden-
tifying the important extrema in some cases ignores some
turning points in the time series. This makes the compressed
time series not to preserve the shape of the original time
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series (see Fig. 3). On the contrary, the algorithm proposed
by Fu et al. [4] for identifying the turning points in some
cases does not bring out the turning points which match with
the important extreme points.

In order to find sufficiently the change points in a time
series, in our work, we combine two above-mentioned meth-
ods for identifying the change points. We identify not only
important extrema but also the turning points in a time series.
At each point in a time series, we check whether it is a turn-
ing point. If this is not the case, then we check whether it is
an extreme point. This algorithm needs one scan through the
whole time series.

3.5 BIRCH clustering

BIRCH is designed for clustering a large amount of numeri-
cal data by integration of hierarchical clustering at the initial
stage andother clusteringmethods, such as iterative partition-
ing at the later stage [26]. It introduces two main concepts,
clustering feature and clustering feature tree (CF tree), which
are used to summarize cluster representations. These struc-
tures help the clustering method achieve good speed and
scalability in large databases. BIRCH is also effective for
incremental and dynamic clustering of incoming objects.

Given N d-dimensional points or objects xi in a cluster,
we can define the centroid x0 and the radius R of the cluster
as follows:

x0 =
∑N

i=1 xi
N

R =
√∑N

i=1(x0 − xi )2

N

where R is the average distance from member objects to the
centroid; R reflects the tightness of the cluster around the
centroid. A clustering feature (CF) is a triplet summarizing
information about clusters of objects.Given N d-dimensional
points or objects in a subcluster, then the CF of the cluster
is defined as (N , LS, SS) where N is the number of points
in the subcluster, LS is the linear sum on N points, and SS
is the square sum of data points.

Given the CF for a cluster, centroid and radius R may
be computed. Clustering features are additive. For example,
suppose that we have two disjoint clusters, C1 and C2, hav-
ing the clustering features, CF1 and CF2, respectively. The
clustering feature for the cluster that is formed by merging
C1 andC2 is simplyCF1+CF2. Clustering features are suf-
ficient for calculating all of themeasurements that are needed
for making clustering decisions in BIRCH.

A CF tree is a height-balanced tree that stores the clus-
tering features for a hierarchical clustering. By definition, a
nonterminal node in the tree has descendents or “children.”

The nonleaf nodes store sums of the CFs of their children
and thus summarize clustering information about their chil-
dren. Each entry in a leaf node is not a single data objects
but a subcluster. A CF tree has two parameters: branching
factor (B for nonleaf node and L for leaf node) and threshold
r . The branching factor specifies the maximum number of
children in each nonleaf or leaf node. The threshold parame-
ter specifies the maximum radius of the subcluster stored at
the leaf nodes of the tree. The two parameters influence the
size of the resulting tree.

BIRCHapplies amultiphase clustering technique: a single
scan of the dataset yields a basic good clustering, and one
or more additional scans can (optionally) be used to further
improve the quality.

4 The proposed method

The proposed method is a modification of MDTW_ Wed-
geTree algorithm for discovering “subsequence” motifs in a
long time series under DTW. Besides using a combination of
several techniques to speed up DTW computation, our pro-
posed motif discovery method is also based on clustering as
in MDTW_WedgeTree algorithm. But there are some major
improvements that we include in our proposed method:

(i) We identify significant points in the time series and
extract subsequences based on these significant points.
This technique is necessary since we have to work with
motif candidates that are subsequences extracted from
a long time series.

(ii) Instead of using a clustering method with the support
of Wedge-Tree, we develop a BIRCH-based clustering
which can effectively and efficiently cluster subse-
quences under DTW distance.

(iii) In clustering, we propose a technique of finding cluster
representatives to improve the quality of clustering.

Besides UCR suite of techniques, our proposed method
exploits upper-bound technique with Euclidean distance [23]
and reference point technique [17] to speed up DTW com-
putation as much as it can.

The proposed method for discovering “subsequence”
motif in time series under DTW consists of the following
phases:

1. Phase 1: [Identifying significant points] We identify all
the significant points in a time series T by combin-
ing important extreme point method and turning point
method as explained in Sect. 3.4.

2. Phase2: [Extracting subsequences]Basedon the sequence
of the significant points found in Phase 1, we extract
the subsequences that satisfy some conditions on the

123



120 Int J Data Sci Anal (2017) 4:113–126

length and the number of feature points specified by user.
Candidate subsequences are subsequences that may have
different lengths. To enable the computation of Euclidean
or DTW distance between them, we bring them to the
same length by using some interpolation method.

3. Phase 3: [Clustering subsequences] In this phase, we
cluster the subsequences based on Euclidean distance.
Note that ED(Q,C) is a special case of DTW (Q,C),
when the warping bandw is set to 1. We have the follow-
ing inequality:

DTW(Q,C) ≤ ED(Q,C)

If ED(Q,C) is within the range r , then we have
DTW(Q,C) ≤ r . Therefore, if any subsequence in a
cluster satisfies the distance threshold r according to
Euclidean distance, then it also satisfies the distance
threshold r according to DTW distance.

4. Phase 4: [Finding subcluster representatives]After Phase
3, we select the representatives for all the subclusters.
Besides, depending on the clustering algorithm, there
may be some defects in Phase 3: some instances that
are not similar to the representative of the subcluster can
belong to the subcluster. Therefore in Phase 4, we remove
all the instances that are not similar within r threshold
to the subcluster representative. We repeat Phase 3 and
Phase 4 until we remove all these misclustered instances.

5. Phase 5: [Enriching subclusters] Due to the prop-
erty DTW(Q,C) ≤ ED(Q,C), there may be several
instances that do not belong to a subcluster but satisfy
the distance threshold r to the subcluster representative
under DTW distance. Therefore, we have to check all
this kind of instances and insert them into the subcluster
if necessary.

6. Phase 6: [Evaluating subclusters] We evaluate the sub-
clusters based on motif scores in order to discover motifs
in the time series. For convenience, we call our method
SPs_BIRCH_DTW (motif discovery using Significant
Points with BIRCH algorithm and under DTWdistance).

4.1 Extracting of subsequences and building a set of
subsequences

The significant points can be used as the start points or end
points of motif candidates. We identify all the significant
points in a time series T by combining important extreme
point method and turning point method as explained in
Sect. 3.4. Then we extract the subsequences from a time
series using the significant points and based on the common
length of subsequences which is specified by user in find-
ing motif (from Lmin to Lmax ). The subsequence extraction
algorithm is described as follows.

The subsequence extraction algorithmworks by anchoring
the start point of a potential subsequence at the first signifi-
cant point of a time series and then attempting to extend the
subsequence to the right with increasing number of signifi-
cant points. At some (i+1)th significant points, the length of
the potential subsequence is greater than the user-specified
length, so the subsequence from the anchor to the i th signif-
icant point is transformed to a subsequence. The anchor is
moved to the second significant point, the algorithm tries to
extract the second subsequence, and the process repeats until
the entire time series has been transformed into a sequence
of subsequences.

The extracted subsequences may have different lengths.
In order to be able to compare these subsequences under
Euclidean distance or DTW distance, we apply homothetic
transformation to convert these subsequences to the same
length.

Transforming subsequences Homothety is a simple and
effective technique which also can transform the subse-
quences with different lengths to those of the same length.
Homothety is a transformation in affine space. Given a point
O and a value k �= 0. A homothety with center O and ratio

k transforms M to M ′ such that
−−→
OM ′ = k × −−→

OM
The algorithm that performs homothety to transform a

subsequence T with length N (T = {Y1, . . . ,YN }) to subse-
quence of length N ′ (T ′ = {Y ′

1, . . . ,Y
′
N }) is given as follows.

1. Let Y_Max = Max{Y1, . . . , YN }; Y_Min = Min
{Y1, . . . ,YN }

2. Find a center I of the homothety with the coordi-
nate: X_Center = N/2,Y_Center = (Y_Max +
Y_Min)/2

3. Perform the homothety with center I and ratio k =
N ′/N , where the value of T ′ at time point i , Y ′

i , is equal
to the value of T at the time point:

j = i − X_Center

k
+ X_Center

The homothety is a simple transformation with low com-
putational complexity.However,when N ′ � N , itmay cause
some information loss and cannot preserve the shapes of
the original subsequences. Therefore, in this work we per-
form homothetic transform with N ′ > N . In Phase 2 of
SPs_BIRCH_DTW, we transform all the candidate subse-
quences to the same length of the largest subsequence.

4.2 Clustering subsequences with BIRCH and refining
the clustering results

By using BIRCH algorithm for clustering the subsequences,
we obtain the resulting subclusters in which all the subse-
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quences that are similar to each other within the threshold
r under Euclidean distance form a subcluster. Since the
Euclidean distance is always greater than DTW distance,
theremaybe some subsequences that belong to other subclus-
ters but can be similar within r threshold of DTW distance
to the subsequences in the subcluster under consideration.

Since we have applied BIRCH algorithm under Euclidean
distance for clustering the subsequences,weneed to refine the
BIRCH algorithm in Phase 3 and Phase 4 in order to make its
resulting subclusters consistent with DTWdistance. In Phase
3, we merge the two subclusters in which the DTW distance
between their centroids is less than or equal to the threshold
r . In Phase 4, instead of using the centroids, we will use the
representative of each subcluster in checking whether there
exist some subsequences that do not belong to the subcluster
but may have the DTW distance to the representative of the
subcluster within the r threshold. If that is the case, we insert
these subsequences to the correct subcluster.

4.3 Finding representatives of subclusters

In SPs_BIRCH_DTW, to improve the quality of clustering,
we devise a principled method to determine representatives
of subclusters, as described as follows.

Definition 10 (Representative of a subcluster) Given a sub-
cluster S = C1, . . . ,Ck , instance Ci , 1 ≤ i ≤ k, is
representative of the subcluster if the distance from Ci

to its farthest neighbor in the subcluster is smallest, i.e.,
max(DTW(Ci ,MCi )) < max(DTW(C j ,MC j )), 1 ≤ j ≤ k
where MCi is a neighbor of Ci .

In order to speedup the process of finding subcluster repre-
sentatives, we apply early abandoning technique (described
in Section 3.2) as follows: let minDis denote the smallest
DTW distance to the farthest neighbor of the subcluster rep-
resentative found so far.

At the index j , if DTW(C j ,Cq) > minDis (where Cq

is a neighbor of C j ) then C j cannot be the representative
of the subcluster, so we stop the process of checking C j . In
order to apply early abandoning technique earlier, we sort
C1, . . . ,Ck in ascending order of Euclidean distances from
each of them toCcentroid (the centroid of S), and at the index
j , we compute DTW(C j ,Cq), where q varies from k to 1.
In the process of finding the farthest neighbor of C j ,

we apply the reference point technique [17] as follows. Let
maxDis j denote the DTW distance from C j to its farthest
neighbor found so far; we have the following inequality:

DTW(C j ,Cq) ≤ ED(C j ,Cq)

≤ ED(C j ,Ccentroid) + ED(Cq ,Ccentroid)

Therefore, at the current index, if ED(C j ,Ccentroid)

+ED(Cq ,Ccentroid) ≤ maxDis j , we should stop the pro-

Table 1 Algorithm for finding the representative

cess of finding the farthest neighbor ofC j at the instancewith
the index q since Cq and any Ck where 1 ≤ k < q cannot be
the farthest neighbor ofC j . The pseudocode of the algorithm
for finding the representative of a subcluster is described in
Table 1.

In the functions LB(si , s j ), ED(si , s j ), DTW(si , s j ) we
also apply early abandoning technique. That means it is pos-
sible to abandon the lower bound, the Euclidean distance or
DTW distance computation as soon as the cumulative sum
goes beyond the current best-so-far.

During the process of finding the representative for sub-
cluster S, we also identify the instances that do not satisfy the
r threshold to the subcluster representative. We remove all
of these instances out of the subcluster and form a new sub-
cluster for them. We perform again BIRCH algorithm and
finding the representatives for the new subclusters formed
from these instances.

4.4 Enriching the subclusters based on DTW distance

For a pair of subclusters Si and S j , checking whether any
instances of Si can be included in S j , and vice versa can be
done as follows.

1. In each subcluster Si , we find the representative of this
subcluster. This time series is denoted as C_Si .

2. Based on LB_Keogh lower bound (described in Section
3.3),we checkwhether any instance in the subcluster S j is
similar to C_Si . If that is the case, we apply the speedup
techniques for DTW computation by lower bound and
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upper bound. If there is any instance in S j similar to
C_Si , we insert it to Si .

In this step we also apply the reference point technique
to speed up the computation. In the process of finding the
representative of a subcluster, we have sorted the instances
in subcluster S j in increasing order of the Euclidean distance
from each instance to Ccentroid_S j (the centroid of S j ). And
we have the following inequality:

DTW(C_Si ,Cq ) ≤ ED(C_Si ,Cq )

≤ ED(C_Si ,Ccentroid_S j ) + ED(Cq ,Ccentroid_S j ),∀Cq in S j

Therefore, at some index q, if ED(C_Si ,Ccentroid_S j )+
ED(Cq ,Ccentroid_S j ) ≤ r , we can stop the process and have
DTW(C_Si ,Ck) ≤ r , where 1 ≤ k ≤ q. That means all such
instances Ck can be included in the subcluster Si .
Remove Trivial Matches In our SPs_BIRCH_DTW method,
trivial matches may arise since we extract motif candidates
with the different lengths varying from Lmin to Lmax . These
trivial matches can cause negative effects on the clustering
quality. To exclude possible trivial matches, after obtaining
the subclusters by using BIRCH algorithm, we examine all
the subclusters to exclude any instances which have some
overlap in one another more than 90% data points.

4.5 Evaluating subclusters

To discover 1-motif in a time series, after clustering the sub-
sequences,we evaluate the subclusters usingmotif score. The
definition of motif score is given as follows.

Definition 11 Motif score For each subcluster Si , motif
score of Si , mscorei , is calculated by the formula:

mscorei = m1 × a − m2 × b + m3 × c

where a is the number of subsequences in Si (normalized to
the range [0,1]); b is WUL of the subcluster Si (normalized
to the range [0,1]); c is the length of the longest subsequence
in Si ; m1, m2, m3 are the weights specified by user.

After computing motif score for each subcluster, the sub-
cluster with the highest motif score will contain the instances
of the 1-motif. Similarly, we can determine the subcluster
with the kth highest motif score will contain the instances of
the k-motif .

5 Experimental evaluation

We evaluate the performance of our proposed method for
discovering motif under DTW in several publicly avail-
able time series datasets downloaded from the web pages

Table 2 Datasets

Dataset Length No. Sig. Pts No. subs

TEK 16 4992 46 58

TEK 17 5000 43 56

ECG (stdb308) 5400 153 281

ECG (qtdbsele0606) 15,000 797 4488

ECG (chfdbchf15) 15,000 466 731

ECG (mitdbx_108) 21,600 683 2299

Power 35,040 1446 5258

Koski-ECG 144,404 2587 3613

[7,10,11]. The datasets are from different areas (medicine,
engineering, industry). Among the eight datasets used in the
experiments, TEK16 and TEK17 are sensor time series, rep-
resenting normal Space Shuttle Marotta Valve Time Series
annotated by NASA engineer. There are five electrocardio-
gram datasets: ECG (stdb308), ECG(qtdbsele0606), ECG
(chfdbchf15), ECG (mitdbx_108), and Koski-ECG. Power
dataset is the data on power demand. The names and lengths
of the eight datasets are given in Table 1. All these datasets
are normalized by z-normalization.

We implemented the two algorithms with Microsoft
Visual C# and conducted the experiments on an Intel Core i7
6700HQ 2.6Hz, RAM 8GB PC. We evaluate our proposed
method based on two performancemetrics: effectiveness and
efficiency.

Our proposed method requires from user 6 parameters:
Lmin and Lmax (the minimum and maximum length for each
motif candidate), R (compression rate for computing impor-
tant extreme points or turning points), r (the range threshold
for matching subsequences), B (the branching factor of a
nonterminal node in CF tree), and the warping range w

(Sakoe–Chiba band) for DTW.
For all the datasets, we select R = 1 for compression rate,

Lmin = 200, Lmax = 300. We conduct the experiments on
the datasets with different range thresholds r . We used some
different values of r , ranging from 0.01Lmax to 0.1Lmax .
We select B = 1000, w = 0.05Lmax . To evaluate the motif
scores, we select m1 = 1,m2 = 0.1 and m3 = 0.01.

Table 2 shows the test datasets and the results of segmen-
tation for each dataset. The number of identified significant
points and the number of extracted subsequences for each
dataset are reported in the third column and the fourth col-
umn.

5.1 Accuracy

In this experiment, following the tradition established in pre-
vious works, such as [1,16], we use the brute-force algorithm
given by Lin et al. [16], as the baseline to evaluate the accu-
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Fig. 5 The 1-motif (in blue) discovered by our method in some datasets

racy of the proposedmethod. The brute force is an exhaustive
search algorithm which guarantees to catch all true 1-motif
patterns. This algorithm can be implemented by a two-layer
nested loop. The outer loop considers each possible candidate
subsequence, and the inner loop is a linear scan to identify
the nontrivial matches of the candidate within a range r . We
also apply DTW distance in this brute-force algorithm rather
than Euclidean distance.

Experimental results show that for each dataset, the 1-
motif discovered by SPs_BIRCH_DTW is exactly the same
as the 1-motif discovered by the brute-force algorithm. Fig-
ure 5 shows the1-motifs discoveredbySPs_BIRCH_DTWin
somedatasets (TEK16, TEK17, ECG (stdb308), ECG (qtdb-
sele0606), ECG (chfdbchf15), ECG (mitdbx_108), Power,
Koski-ECG).

Besides, for each dataset we check whether the instances
of the 1-motif discovered by SPs_BIRCH_DTW are the
same as those of the 1-motif found by the brute-force
algorithm or not. The experimental results show that for
each dataset, the overlap (intersection) of the two sets of

motif instances discovered by the two methods reaches to
about 90%.

5.2 Efficiency

Since our proposed method is the first attempt in “subse-
quence” motif discovery in time series with DTW distance,
we use the brute-force algorithm given in [16], as the base-
line to evaluate the efficiency of the proposed algorithm. We
evaluate the efficiency of the motif discovery algorithms by
considering the ratio of howmany times of the distance func-
tion must be invoked by the proposed algorithm over the
number of times it must be called by the brute-force algo-
rithm. However, in this work we compute the efficiency ratio
by using the number of times dist(qi , c j ) is invoked (see Def-
initions 3, 4) rather than the number of times Dist(Ti , Tj ) is
called as in some previous works [16,24]. This new way of
computation is especially suitable in the case that we have to
compute the lower bound LB as well as the upper bound ED
and these computational costs are significant.
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Table 3 log(Eff) of SPs_BIRCH_DTW

Dataset 0.02 0.04 0.06 0.08 0.1

TEK 16 5.15 5.23 5.21 5.21 5.25

TEK 17 5.18 5.20 5.24 5.19 5.20

ECG (stdb308) 4.03 4.11 4.17 4.18 4.24

ECG (qtdbsele0606) 3.18 3.28 3.28 3.33 3.37

ECG (chfdbchf15) 4.62 4.67 4.61 4.64 4.64

ECG (mitdbx_108) 3.88 3.90 3.92 3.93 3.97

Power 3.79 3.85 3.95 4.01 4.06

Koski-ECG 5.88 5.92 5.77 5.67 5.88

The efficiency ratio of a motif discovery algorithm, Eff, is
defined as follows:

Eff = number calls of dist (qi , q j ) in SPs_BI RCH_DTW

number calls of dist (qi , q j ) in brute f orce

The range of the efficiency ratio is from 0 to 1. The algo-
rithm with lower efficiency ratio is better. Since the number
of calls of dist(qi , c j ) function is very large and the value
of Eff is small, we represent the efficiency ratio Eff by using
log(Eff).

Table 3 reports log(Eff) of SPs_BIRCH_DTW for range
r varying from 0.02Lmax to 0.1Lmax against the brute-force
algorithm in finding motif with the length of 0.1Lmax .

From the experimental results in Table 4, we can see that
in comparison with the brute-force algorithm, SPs_BIRCH_
DTW has the average value of log(Eff) at 4.52 that means
SPs_BIRCH_DTWruns faster than the brute-force algorithm
about 104.52 times.

We also measure the runtimes of SPs_BIRCH_DTW
over 8 dataset and for different values of range r . The
results of CPU time (in seconds) on 8 datasets are shown
in Table 3. From the results in Table 3, we can see that
SPs_BIRCH_DTW is very time efficient. The runtime of
SPs_BIRCH_DTW for Koski-ECG, the largest dataset with
144,404 data points, is just less than 30 seconds. Due to
the support of BIRCH clustering and a combination of sev-
eral techniques to speed up DTW computation, our proposed
method can work with large time series datasets. With the
experimental results in Table 4, it is obvious that DTW dis-
tance can be competitive with Euclidean distance in time
series motif discovery.

Besides, we can see that the efficiency ratio and runtime of
SPs_BIRCH_DTW do not change much with different val-
ues of the range r . When r is large, SPs_BIRCH_DTW can
apply early abandoning by using Euclidean distance as upper
bound. On the contrary, when r is small, SPs_BIRCH_DTW
can apply early abandoning by using lower-bound values.
The length and number of instances of 1-motif discovered by
SPs_BIRCH_DTW over each dataset for different values of

Table 4 Runtime (seconds) of SPs_BIRCH_DTW

Dataset 0.02 0.04 0.06 0.08 0.1

TEK 16 0.50 0.49 0.57 0.48 0.64

TEK 17 0.64 0.56 0.52 0.76 0.70

ECG (stdb308) 1.91 1.50 1.71 1.40 1.36

ECG (qtdbsele0606) 37.52 31.51 31.79 31.16 26.69

ECG (chfdbchf15) 2.83 2.52 2.93 2.53 2.90

ECG (mitdbx_108) 23.62 21.57 20.46 18.8 17.51

Power 90.64 63.97 52.21 45.99 41.30

Koski-ECG 18.80 17.88 23.41 28.04 18.83

Table 5 The length and number of instances of 1-motif found for dif-
ferent values of range

Dataset 0.02 0.04 0.06 0.08 0.1

TEK 16 258 258 258 258 258

#05 #05 #05 #05 #05

TEK 17 259 259 259 259 259

#05 #05 #05 #05 #05

ECG (stdb308) 287 287 293 293 293

#12 #13 #13 #13 #13

ECG (qtdbsele0606) 282 230 282 271 235

#92 #92 #93 #93 #93

ECG (chfdbchf15) 291 293 283 291 284

#19 #28 #32 #37 #43

ECG (mitdbx_108) 269 254 253 269 260

#23 #30 #33 #37 #39

Power 242 208 214 208 242

#50 #90 #118 #126 #136

Koski-ECG 272 209 295 266 266

#91 #99 #100 #157 #195

the range r are reported in Table 5. We can see that for larger
values of r , the number of instances of 1-motif increases
and for different values of r , the instances of 1-motif can be
different in length and locations.

5.3 Comparing SPs_BIRCH_DTW to
MDTW_WedgeTree

For completeness, we attempt to compare SPs_BIRCH
_DTW to MDTW_WedgeTree even though MDTW_Wedge
Tree aims to discover “whole sequence” motif, while
SPs_BIRCH_DTW aims to discover subsequence motif. To
make the comparison meaningful, given a time series, we
apply Phase 1 and Phase 2 in SPs_BIRCH_DTW to extract
subsequences of the same length from the time series and
we form a database of short time series from these sub-
sequences. We continue to apply the Phases 3 to 6 of
SPs_BIRCH_DTWs on the extracted subsequences to obtain
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Fig. 6 The number of the instances of the 1-motif discovered by the
two algorithms when the range r varies

the 1-motif. Then, we apply MDTW_WedgeTree on the
database of short time series to obtain the 1-motif in its own
way.

We conducted the comparison of the two algorithms over
the above-mentioned eight datasets. The experimental results
show that the 1-motif discovered by MDTW_WedgeTree
is approximately the same as the 1-motif discovered by
SPs_BIRCH_DTW. However, when the range r increases,
the number of instances of 1-motif in both algorithms
increases, but the change in MDTW_WedgeTree is random
and unstable, while the change in SPs_BIRCH_DTW is
more stable and robust. Figure 6 shows the number of the
instances of the 1-motif discovered by the two algorithms on
the Koski-ECG dataset for range r varying from 0.01Lmax

to 0.1Lmax . In Fig. 6, the curve of SPs_BIRCH_DTW
indicates a smoothly gradual increase, while the curve of
MDTW_WedgeTree is a randomly abrupt variation. We
attribute this weakness of MDTW_WedgeTree to the fact
that MDTW_WedgeTree selects randomly one instance in a
subcluster as its representative and this stochastic selection
might reduce the robustness of the algorithm.

6 Discussion

Unlike several previousworks on time seriesmotif discovery,
in SPs_BIRCH_DTW, we do not require the user to sup-
ply one important parameter: the length of motif, which is
unknown and very difficult to determine. We mitigate the
difficulty of setting the motif length by replacing it with the
three other easy parameters, R, Lmin , and Lmax in the time
series segmentation method which is based on significant
points.

It is possible to extend SPs_BIRCH_DTW so that the pro-
posed method can discover motifs and anomaly patterns in a
time series at the same time. This can be done by applying
the following extension in Phase 6 of SPs_BIRCH_DTW.We
define the anomaly score for each subcluster found inBIRCH

clustering and calculate these scores immediately after calcu-
lating themotif scores for all subclusters. The subcluster with
the highest anomaly score will contain the most significant
anomaly pattern (1-anomaly) in the time series.

7 Conclusion

In this paper, we modify MDTW_WedgeTree, a method for
discovering “whole sequence” motif, to a new method for
discovering “subsequence” motif in time series under DTW
distance. Thismethod first extracts subsequences from a time
series based on significant points and then uses BIRCH to
cluster these subsequences. For each subcluster, the method
determines the representative of the subcluster and enriches
the subcluster based on DTW distance. Finally, the method
evaluates motif score for each subcluster in order to discover
1-motif in the time series. In order to accelerate the similarity
search under DTW distance, the method applies not only
UCR suite of techniques but also upper bounding technique
using Euclidean distance and reference point technique.

Experimental results reveal that our proposed method can
run very fast and bring out motifs with high accuracy on
large time series datasets. We attribute the high performance
of our proposed method to the efficiency of the chosen seg-
mentation method, the BIRCH-based clustering of extracted
subsequences under DTW, and a combination of techniques
to speed up DTW computation.

For future work, we plan to modify our two methods,
MDTW_WedgeTree or SPs_BIRCH_DTW, so that they can
discover motifs in database of shapes.
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