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Abstract Existing data mining techniques, more partic-
ularly iterative learning algorithms, become overwhelmed
with big data. While parallelism is an obvious and, usu-
ally, necessary strategy, we observe that both (1) continually
revisiting data and (2) visiting all data are two of the
most prominent problems especially for iterative, unsuper-
vised algorithms like expectation maximization algorithm
for clustering (EM-T). Our strategy is to embed EM-T into a
nonlinear hierarchical data structure (heap) that allows us to
(1) separate data that needs to be revisited from data that does
not and (2) narrow the iteration toward the data that is more
difficult to cluster. We call this extended EM-T, EM*. We
show our EM* algorithm outperform EM-T algorithm over
large real-world and synthetic data sets. We lastly conclude
with some theoretical underpinnings that explain why EM*
is successful.
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1 Introduction

Big data has taken center stage in analytics. While there is
no formal definition, and as many shades of interpretation as
can be made from “data” and “big,” there are several themes.
Chief among these is that traditional ways of processing data
have become inadequate. This is witnessed in how the dozen
or so traditional algorithms [2], e.g., k-means or EM, have
begun to be rethought and retooled [3-5] to deal with data
that is now too massive, too complex, produced too quickly,
etc., to be effectively analyzed as we have in the past.

Expectation maximization (EM) is linear convergent algo-
rithm, 0%+D = M(6%) with fix point 6* = M(6*), where
6®) is a vector of parameters on the kth iteration and 0* the
point of convergence, recognized by its name given in [6].
The authors brought together earlier works into a broader
class of optimization that dealt with incomplete data (a mix
of both observed and unobserved) while providing conver-
gence analysis. EM is simple to understand, implement and
perform quite well on many kinds of data (good accuracy
with relatively fast convergence). Later work [7] corrected
mistakes in the original paper’s convergence analysis, but
the community recognized that convergence in practice often
appeared arbitrary. Subsequent focus was set upon improv-
ing our understanding of convergence and, consequently, run
time with the bulk being introduced from the statistical com-
munity. While theoretically interesting, none of the solutions
have left any significant impact on the original EM as it is
either currently taught or used in practice. Certainly, in some
circumstances, EM converges quickly. When confined to two
Gaussian mixtures, for example, and the average degree of
separation of the mixtures is high, the convergence is fast.
While classification is linear, training can quickly overwhelm
the algorithm: O (ik(d> 4+ nd?)) for i iterations, k Gaussians,
data size n, over d dimensions.
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With big data, more instances can be found that are not
well modeled as Gaussian mixtures than are. And with
dimensions routinely in the 100s and data sizes in the
millions, the traditional EM (EM-T) becomes increasingly
impractical to use. Initialization tends not to play a signif-
icant role in the outcome of EM, provided the values are
reasonable; consequently, not much attention has been paid
to initialization, unlike, for example, k-means.

Rather than observed and unobserved, we distinguished
what we call good and bad in this sense: Good data does not
need to be revisited, while bad data does (there is an appeal
to casting the problem in terms of entropy, but at this point,
we have not found a sensible information-theoretic approach
to our results). As an iterative algorithm, having a monotonic
winnowing of the data improves the rate of convergence (or
boundedness if there is not any convergence) while being at
least as accurate as EM-T. Among the critical tasks were: (1)
discover whether a computable, general dichotomy exists—
initially we have a heuristic; (2) build additional architecture
whose overhead will effectively reduce execution time; (3)
examine the breadth of execution savings by varying data,
e.g., size and attributes. Our results confirmed we have dis-
covered a technique that is superior to EM-T. We call the new
EM, EM*. Our results show a

— Dramatic improvement of EM* over EM-T in run time
over big data, for k, n and d;
— Accuracy at least as good as EM-T in almost all the cases.

For the classical problem of k > 1, EM-T did not converge,
while EM* did; the degrees of overlap were not a factor in
EM-T’s failure to converge. We are presenting the deeper
theoretical elements of EM* algorithm in another paper that
is currently under review.

The paper continues with background on EM-T and EM*
with several data sets. These data were chosen to expose
the strengths and weakness of both EM-T and EM*. All
of our code is in Python and the generator (multivariate)
isin R. Code is available at https://github.com/hasankurban/
Expectation-Maximization- Algorithm-for-Clustering. The
data sets are easily accessible from https://iu.box.com/s/
Oteuuw2oxc42fjex9fjct886;7j6um3i.

1.1 Related and previous work

EM-T exists now as a standard tool [8—10] across diverse
areas, e.g., [11-14] and although no current survey exists,
[12,15] together provide a good collection of various aspects
of EM-T. Meng and van Dyk’s work [16], celebrating twen-
tieth anniversary of the original EM-T paper, gives both a
historical account and, to that time, approaches to faster con-
vergence, while maintaining stability. The data set uses 100
observations.
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The bulk of work relating to improving EM-T has been
produced by the statistics community where, broadly, the
splitis among (1) employing new models (e.g., [17] segmen-
tation of brain MR images through a hidden Markov random
field model and the expectation-maximization algorithm,
[18] radial basis function networks, regression weights,
and the expectation-maximization algorithm, and [19] using
expectation-maximization for reinforcement learning); (2)
improving the accuracy (e.g., [20] improved confidence
interval construction for incomplete r x c tables); and (3)
increasing convergence rates and computing times. Since
our work deals with the latter, we our focus will be on this
branch of related work. We do point to Wu [7] who studies
convergence properties of the EM-T algorithm, e.g., whether
convergence is a local maximum or a stationary point of like-
lihood function and the sequence of the parameters predicted
by EM-T when converging.

We borrow (and slightly modify) the Jamshidian and Jen-
nrich classification of three approaches to improving speed:
pure, mixed and EM-like which indicate how EM-T is mod-
ified. The most common iterative fixed point techniques
compared with EM-T are Newton—Raphson (NR) and quasi-
Newton (QN). Improving speed is generally through either
improved gradient or increased step size; however, the most
significant problem is the incomplete data log-likelihood
(information matrix) that captures directly the connection
between missing data and parameters. Comparing EM-T and
NR for a mixed linear model, Lindstrom and Bates [21] found
that the execution time for NR took four times as long than
EM, while the iterations were an order of magnitude less.
The paper conveys what we have found—different data pro-
duce different effective execution times without any apparent
(computable) differences. When the information matrix is
positive definite, NR becomes as stable as EM-T—the ini-
tial set of points that generate the convergent sequence. The
QR removes the need to compute the observed information
matrix and is effectively competitive with EM-T.

Pure methods, while keeping the EM-T algorithm intact,
leverage tricks drawn from numerical methods in fixed
point iterations. For example, the Aitken extrapolation [22]
accelerates a linear convergence into quadratic by esti-
mating a subsequent uncomputable quantity and is shown
in [6,12,21]. While these approaches are seem relatively
innocuous and promise easy gains, EM-T becomes unstable
and will increasingly fail to converge.

Mixed methods, which seem to be the broadest class,
include log-likelihood values themselves, but ignore the Hes-
sian. [23] uses conjugate gradient acceleration and [24] uses
QN. Using line search, unlike the pure methods, these are
globally convergent. Neal et al. [25] mainly describe an incre-
mental variant of the EM algorithm that converges faster
by recalculating the distribution for only one of the unob-
served variables across subsequent E-steps. Booth et al. [26]
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describe two extensions of the EM-T algorithm that are com-
putationally more efficient than the EM algorithms based
on Markov chain Monte Carlo algorithms and employing
sampling techniques. ECM [27] is class of generalized EM
algorithms and replaces M-step of the EM algorithm with
computationally simpler expectation/conditional maximiza-
tion (CM) steps. ECME [28] conditionally maximizes the
likelihood as distinct from EM-T and ECM. AECM [16]
is an expectation—conditional maximization algorithm and
combines data augmentation schemes and model reduction
schemes to converge faster. SAEM [29] compares the SEM,
SAEM, MCEM algorithms which are different stochastic
versions of the EM algorithm. MCEM [30] is an EM-T algo-
rithm designed using Markov Carlo-in E-step. PX-EM [31]
and PX-DA [32] converge faster via parameter expansion.
[31] shows that this can be achieved by correcting the analysis
of the M-step based on a covariance adjustment method. [31]
presents theoretical properties of a parameter expanded data
augmentation algorithm. DA [33] demonstrates how the pos-
terior distribution can be calculated via data augmentation.
Characterizing this disparate group is problematic; however,
there are neither uniform test sets and the data sets very small
in size, e.g., 10 dimensions. Furthermore, these approaches
actually create more data for modest gains; they also presume
particular kinds of data, e.g., PET/SPECT.

EM-like methods do not directly use EM-T, but its general
approach. Lange [34] proposed shifts from QN to NR as the
algorithm unfolds. Louis [35] gives a technique for generat-
ing normal approximations to the information matrix draw-
ing from Efron and Hinkley [36]. The data set sizes range
from 10to 100s. Lastly, the approximations are computation-
ally difficult to compute for only a small set of particular data.

There is a small amount of work on accommodating
EM to work on large data sets. Bradley et al., introduced
a scalable EM algorithm called SEM [37] based on a frame-
work of a scalable k-means algorithm [38] for clustering
large databases. In this work the authors do not demon-
strate SEM converges. Their converges assumption is based
on k-means convergence. [39] explains why SEM is a more
CPU intensive resulting in a slower algorithm than EM-T
algorithm for clustering. FREM was proposed by Carlos et
al., as an improved EM algorithm for high dimensionality,
noise, and zero variance problems [40]. FREM improves
mean and dimensionality based on initialization and learning
steps through regularization techniques, sufficient statistics,
cluster splitting and alternative probability computation for
outliers.

2 Background on EM-T

The EM-T algorithm was proposed in 1977 by Arthur Demp-
ster et al. [6]. EM-T is a general technique and calculates

Algorithm 1 EM-T over A

1: INPUT data A, blocks k, convergence threshold €
2: OUTPUT Gaussian distributions G1, . . ., Gr

3: // assume that each G is (1. X, Pr(G), wy, X)

4: // u: mean, X: covariance, Pr(G): prior probability
5://wxy e Rand X C A

6: randomly construct G = {G?, G(z) ..... Gg}

7. i <0

8: repeat

9:  // expectation step

10: forx € A do

11: for G'. € Gl do

12: /1 assign data to Gaussians with likelihood
13: /I G';.wx corresponding likelihood for x, G
14: Gj..wX « Pr(G",. [ x)

15: end for ‘

16:  end for

17: /I maxjmiza_tion step: recalculate i, X, Pr(G)

18: for G’j € G'do

19: G;.“.M <~ Exec;.x(x - Glwg/(EGhwy))

20:  GHx « Zyeqh x (G wx (-Gl (- Gl)

/(26" wy)
21:  GLPr(G) < X(Gh.wy) /|G X|

2: G < (G

23:  end for
24: i <«—i+1 ) )
25: until % callGhn— G ) < e

the maximum likelihood estimate of some parameters when
underlying distribution of data is known. In this work, we
assume that underlying distribution of data is Gaussian and
‘cluster’ and ‘block’ are used interchangeably. We review
EM-T in its original form shown in Algorithm 1. Each data
point x is a vector over R?. Based on Gaussian distribu-
tions, EM-T partitions A into a set of non-empty blocks
Xo, X1,... Xg such that U; X; = A and X; NY; = ¢ for
alli # jand X;,Y; C A.

2.1 Run time for E and M

The general run time for EM-T is shown here:

[E-Step]
k clusters

invert ¥; compute |Z;|; O(d>)  —
k,n clusters, points
—

O (kd?)

evaluate density; O (d 2 O (knd?)
[M-Step]

k clusters
update ¥;  —

[General Run time]
O(ik(d® + nd?))

O (knd?)

The best run-time EM-T can have is O (knd) for the E-
Step and O (knd) for the M-Step. This yields O (inkd).
The EM-T algorithm takes as input data A, the number of
blocks k and a convergence threshold € and produces a set
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of Gaussian distributions G, Ga, ..., G. Each Gaussian
has a set of parameters. For every x € A, there is a Gaus-
sian where x is most likely from. The algorithm iteratively
alternates between (1) computing log-likelihood of each data
point belonging to each Gaussian (E-step) (2) recalculating
the parameters (M-step). Iteration continues until the set of
means is stable.

To make discussion easier, we assume at each i th iteration,
Gi. is the jth Gaussian in the set G'. Lastly, we presume a
Gaussian is a set of parameters (u.%, Pr(G), wx, X) where
wu is the mean, X the covariance matrix, Pr(G) the prior,
wyx € R the likelihood and X C A. Line 6, the initialization
of the starting set of Gaussians, greatly affects EM-T’s per-
formance, since it is a greedy algorithm. Most spaces will
be non-convex, so local optima will “trap” the Gaussians.
The assignment phase, Lines 10-16, maps each data point
to Gaussians with likelihoods. Originally k, m < |A]; con-
sequently, the algorithm is often said to be linear in the size
of data, i.e., O(|A|). A number of details are unspecified
in the EM-T. One of the most significant is what do if the
covariance matrix becomes singular. Since a Gaussian might
become empty, the number of blocks can differ from the
original k. Further, points can be equally near more than one
Gaussian; therefore, ties must be broken.

The remainder of this paper is as follows. Section 3
algorithmically explains EM* and provides some theoreti-
cal insights. Section 4 presents results from our experiment
as well as comparison with EM-T. Section 5 is the summary
and conclusions from our work.

3 EM*: EM clustering algorithm for big data

We observe that both (1) continually revisiting data and (2)
visiting all data are two of the most prominent problems for
EM-T. We embed EM-T into a nonlinear hierarchical data
structure (max heap) that allows us to (1) separate data that
needs to be revisited from data that does not and (2) narrow
the iteration toward the data that is more difficult to cluster.
We call this extension of EM-T algorithm EM*. A notational
outline of EM* is presented in Alg. 2.

In our algorithm, initialization of the parameters is iden-
tical to EM-T. In the E-step phase, each piece of active data
is compared to each Gaussian distribution and assigned to
the most likely one. In the M-step phase, each Gaussian dis-
tribution is altered to better represent the data assigned to
it during the previous phase, and the data is processed to
determine which pieces are still active.

We introduce a concept of active data as a means of dif-
ferentiating between the data that needs to be revisited on
a subsequent iteration from the data that does not. On the
first iteration, every piece of data is marked as active. Dur-
ing the E-step phase, when a piece of data is assigned to a
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Algorithm 2 EM* over A

1: INPUT data A, blocks k

2: OUTPUT Gaussian distributions Gy, ..., G

3: // assume that each G is (1. X, Pr(G), wy, X)

4: // u: mean, X: covariance, Pr(G): prior probability
5://wxy e Rand X C A

6: //heap H C A

7: randomly construct GO = {GO, Gg, o, Gg}

8: i« 0

9: AA «~— A

10: // expectation step

11: repeat

12: forxe Ado

13: for G’ € G' do

14: /" Gz. .wy corresponding likelihood for x, G
15: G;.wx <~ Pr(G; | x)

16: end for

17: // assign data to G.H that is most likely from
18: 'Y = wy

19: G;..H.insert(x, wy ), Where max{Pr(G;.wx)}
20:  end for

21 A, <0

22: /I maximization step: recalculate u, X, Pr(G)

23: for G € G' do

24: Gl < Zeq x (X Glwy/(EGhwy)

25: G’j+1 D)) <« ExeG;‘X(G;.wX(X-G;.u)(x-Gf'f.pL)T

/(£G.wx))
260 GYTLPr(G) < (G wy)/IGE X
27: Ay G;.H.flush(E)
28 G 26t
29:  end for !

30: i<«—i+1
31: AA <~ A/A .
32: until threshold on Gi~

Gaussian, it is placed in a heap structure for that Gaussian
(mutual exclusion blocks are implemented for data protection
across the heaps). The values in the heap are representative
of the likelihood used for data and Gaussian. Data that is
higher in the heap indicates that it is more likely to be from
the Gaussian; data that is lower in the heap indicates it is
less likely—perhaps even unlikely—from the Gaussian. In
the M-step phase, each Gaussian is updated as EM-T is, by
taking into consideration all the data points assigned to that
Gaussian. The heap for that Gaussian then used to determine
which pieces of data are marked as active.

The heap for a particular Gaussian represents a partial
ordering (the path from the root to any leaf) over the data
assigned to that Gaussian. This offers a natural view of the
relative importance of the data. Data residing in leaf nodes is
most important and is re-clustered in the following iteration.
Data that is high in a Gaussian’s heap is considered closely
bound to that Gaussian and unlikely to change; consequently,
itis ignored in the following iteration. Determining the opti-
mal break that separates the two yielded our first heuristic
described presently, but we imagine there exist different (and
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perhaps better depending on context) breaks. We do not use
“hyperplanes,” even in its broadest sense, since level-wise,
the partial order can be violated, but there may be some
notion that could become useful. Following the Gaussian
update and data culling in this phase, new likelihoods are
calculated for the data remaining in the heap with the par-
tial ordering being restored where it may have broken. Our
implementation terminates once 99% of the data in the leaf
nodes remains unchanged in subsequent iterations and it is
discussed in “Experiments” section.

3.1 Run time for EM*

EM*, in contrast to EM-T, has, at each iteration i, n <
O([n/2]) and each subsequent iteration takes half as long,
i < i/2. We know from basic complexity theory that
cO(n) = O (n) for some positive integer ¢ and would right-
fully argue it does not matter. From a practical standpoint of
big data, however, this makes an effective and dramatic differ-
ence evidenced by our experimentation. In many instances,
EM-T simply could not converge. Let I = [n/2] and
t = |n/2] denote the number of data points located in the
leaf nodes and not located in the leaf nodes. The general
and best run time of EM* is O (i2k(d> 4+ nd?) + li> logn)
and O (ixknd + iz logt), respectively (i» < i). Logarithmic
parts come from heap updates.

4 Experiments and results

To determine how well our EM* algorithm performs, we
compared it against the EM-T algorithm. Both algorithms
were run against both real-world and synthetic data sets. We
implemented EM* and EM-T in a way that would allow them
to partition data for an arbitrary number of blocks. If the true
clusters are known, for a given arbitrary number of blocks,
final clusters are determined by measuring the Euclidean (this
is the most popular choice) distances between true cluster
centers and predicted cluster centers.

The EM* algorithm stops when 99%, ¢ < 0.01, of the
data points in the leaf nodes between consecutive iterations
are the same. This criterion guarantees not only stability of
the heaps but also completion of clustering task. In other
words, our algorithm converges using the structure as distinct
from EM-T. 99% threshold is heuristically chosen. During
the experiments, we observed that our stopping criterion is
less sensitive than € used in EM-T. Increasing and decreasing
the threshold does not affect it that much since our algorithm
benefits from the structure to converge. Average size of the
heap managed by the EM* algorithm at each iterationisn/k.
In this paper, we are not: (1) improving EM through initial-
ization and (2) presuming the number of blocks affects the
results.

All experiments were performed on an 4-core Intel Core i7
with 16GB of main memory running 64-bit OS X El Capitan.
Both algorithms are implemented using Python 2.7.10, and
multivariate data generator (mixture of Gaussians) is in R
3.24.

4.1 Experiments with real-world data sets
4.1.1 Breast cancer data set

In the first experiment, we tested our EM* algorithm over the
well-known Wisconsin breast cancer data set [41]. This mod-
est size data set is a good starting point for our comparison,
since neither the size nor dimensions would be considered
big. This data set consists of 699 tuples and 11 variables and
is publicly available in the UCI Machine Learning Reposi-
tory [42]. The feature set describes multiple histopathologies
of resected breast tissue as whole numbers in [1,10]. After
missing records (minor, insignificant number), EM* and EM-
T algorithms were run over the data set, size of 683 x 9, to
cluster benign and malignant tumors. The original clusters
have 444 and 239 data points, and thus, the baseline cluster
error was 0.35.

We ran both algorithms against different number of clus-
ters and used different € values for EM-T, but we only give
the results for € < 0.0001 . We note that EM-T was unable to
convergence for € < 0.01 in 10K iterations. Figure 1 demon-
strates the experimental results for training time in seconds,
number of iterations and accuracy. Results show that EM*
was able to drastically reduce training time of EM-T. Perfor-
mance of both algorithms in terms of cluster error was similar.
Accuracy values for EM* and EM-T were between 88-96
and 87-97%, respectively. However, EM* performs better
than EM-T for the true number of clusters. Algorithms were
also ran against larger number of clusters, and we observed
that EM* makes EM-T more efficient for large number of
clustering problems.

4.1.2 US census data set

Census income data set consists of approximately S0K data
points and 14 features, 6 continuous and 8 discrete, and is
publicly available in the UCI Machine Learning Repository.
At the preprocessing step, we removed the missing informa-
tion and column-wise normalized the data. The clean data set
had 45 K data points in 6 (only continuous attributes) dimen-
sions. In this experiment, clustering task is to separate people
who make over 50K from who do not.

Figure 2 shows the experimental results. EM-T ran for
1K and 10K iterations with € < 0.01 and was only able to
converge for k = 2. We observed that EM* was effective
at reducing training time of EM-T and performs better for
large number of clustering problems once again. We note
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Breast Cancer Data Set
EM-T FAILED to converge in 10000 iterations
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7500~
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Number of Clusters k

Iteration Count

Algorithm

90- EM-T
EM*
60~
) l
o- HIE L
2 5 10 15 20 25

Number of Clusters k

Training Time in seconds

100 -

Accuracy (%)

é 5; 1.0 1‘5 2‘0 2‘5
Number of Clusters k

Fig. 1 Comparison of EM-T and EM* over breast cancer data set and
it provides a numerical complexity analysis for EM-T and EM*. Note
that EM-T did not converge during maximum number of iterations

that the € value used for EM-T is way larger than the € values
commonly recommended. Thus, EM* reduces training time
of EM -T much more for smaller € values.

4.2 Experiments with synthetic data sets
4.2.1 Galactic survey data set

This data set is a catalog of stars and was generated using
the TRILEGAL 1.6 star count simulation [3,43,44]. Galactic
survey data set consists of 910K stars and is available at http://
www.computationalastronomy.com [43]. In this experiment,
our clustering goal is to efficiently recover the three major
components that make up our home Galaxy: the halo, thick
disk and thin disk. 49, 30 and 21% of the date points belong to
halo, thin disk and thick disk, respectively. Experiments were
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shown that mass ratio, effective temperature, surface gravity
and distance modulus are the features that reveal character-
istics of this data to separate the galactic components [3].
Thus, we ran EM* over these four attributes.

Figure 3 shows the experimental result for EM-T and EM*
over Galaxy Survey Data Set. EM* drastically reduced train-
ing time of EM-T. Since training time of EM-T takes around
7.5h, we did not run it for k = 200. We do not give the
accuracy figures because both algorithms performed similar.
EM* for k = 200 was around 1.7h faster than EM-T for
k = 100.

4.2.2 Multivariate synthetic data sets

We generated large multivariate data sets, mixtures of Gaus-
sians, to observe performance of EM*. Experiments are
designed over high-dimensional data, large number of clus-
ters and data points. We repeated each experiment five times
and averaged the results while observing effect of dimension-
ality and cluster numbers. Scalability experiments were not
repeated due to time constraints. Covariances are randomly
selected from [0.01, 0.04] and variances are assigned, the
smallest being 0.1 and the proportion of the largest one to
the smallest being 10. Centers of the clusters are assigned as
the first one being d-dimensional vector of ones, the second
one being d-dimensional vector of threes and so on. Figure 4
represents an example of three mixture of Gaussian distri-
butions on two variables generated with those parameters.
Maximum number of iteration for a run was a 1K, the stop-
ping criterion € was 0.01, and each of the true clusters had
the same amount of the data points.

Our first experiment was designed to test scalability of
EM*. We observed how EM* and EM-T perform over
large data sets where n = {1.5, 3,4.5,6,7.5,9, 10.5} mil-
lions data points while k = 20 and d = 20. EM-T,
according to the literature, is capable of handling high-
dimensional data sets. Second, we examined the perfor-
mance of EM* over high-dimensional data sets where
d = {20, 40, 60, 60, 80, 100, 150, 200, 250, 300, 400, 450}
while n = 45K and k = 10. Lastly, we generated 45K data
points, each cluster having 15K points, in 10 dimensions
and tested our heap-based algorithm over large number of
clusters where k = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Figure 5 shows experimental results for EM* and EM-T
over multivariate data sets. EM-T and EM* clustered all data
points correctly at each experiment; thus we only scrutinize
execution time and number of iterations. EM* always out-
performs EM-T in run time. One striking observation is the
improved efficiency when number of clusters is large. EM*
drastically reduced training time when compared to EM-T
for large number of clusters. EM* converged approximately
around 11-13 iterations while increasing number of clusters,
whereas EM-T was not able to converge in 1K iterations after
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Census Income Data Set [1K iterations]
EM-T FAILED to converge in 1000 iterations
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Fig. 2 Comparison of EM-T and EM* over census income data set and it provides a numerical complexity analysis for EM-T and EM*. Note that

EM-T did not converge during maximum number of iterations

30 clusters. EM-T was only able to converge 2 out of 5 data
sets for k = 30. Execution time and iteration counts are given
in Fig. 5.

Unsurprisingly, as we increase dimensionality, both EM-
T and EM* converge at the same number of iterations and
execution time. Presumably, the curse of dimensionality, with
its effects on distance, reduces any advantage EM* possesses.

4.3 Observing data in the heap: good and bad data

Our goal was to dichotomize the data as good and bad
using the heap structure to make iterative learning algorithms
computationally more efficient. Our initial approach was to
empirically determine this break with the intuition that the
bound was location near or at the median. By fixing the

median in the heap, and subsequently locating bad data points
in the heap, we confirmed that that bad data points reside in
the leaves.

4.3.1 A simple heuristic: median

In effectively producing a heuristic that separates good from
bad, we wanted our heuristic to be driven by the data. We
began motivated by the principle that most of the bad data
resides in the leaves and that the median is as good as other
measures, but we also wanted a heuristic that was computa-
tionally cheap to find. What we provide here are our results
in identifying the median in a heap mixed with both good and
bad data. Our results support our conjecture. An interesting
observation is that we are unaware of any systematic data sci-
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Fig. 3 Results for EM-T and EM* over galactic survey data set. EM-T did not converge during maximum number of iterations
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Fig. 4 How the synthetic data sets are generated. Mixture of three
Gaussian distributions. Each distribution has 300K data points on two
dimensions

ence approach to examining this kind of heap property and
suggest fertile areas of exploration with regard to statistical
analysis.

4.3.2 Observing median in the heap

We randomly generated six data sets of sizesn ={27, 51, 101,
231, 351, 495}. The data points are randomly picked num-
bers between [1, 100000] without replacement. We then built
2M heaps for each data set by sampling each data set without
replacement 2M times to observe location of median in the
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heap. Figure 6 demonstrates the likelihood of median being
on each node in the heap. As seen from the plots, the node that
has the highest likelihood for median is left most node above
the leaf nodes all the time. We also observed level-wise loca-
tion of median in the heap. To keep the discussion simple, we
do not show the figures demonstrating median location level-
wise in the heap. However, results show median locates in
the last two levels of the heap. Since this is not a good bound,
we located bad data points in the heap for the next step to
decide a better bound.

4.3.3 Distribution of bad data in the heap

We experimentally generated both bad and good data (larger
and smaller mean square error) and inserted them into the
heap. First, good data and bad data were generated randomly
with replacement. Second, 1M heaps were built randomly
without replacement. Third, the location of the bad data
points was detected. Figure 7 shows node-wise bad data
distribution for randomly generated 200 points, and Fig. 8
demonstrates how the amount of bad data in the leaf nodes
changes, while increasing the amount of the bad data in the
data. This experiment was carried out while 1, 10, 20, 30,40,
and 50% of the data was bad in the data. The results demon-
strate that when 1% of the data is bad, all the bad data points
are located in the leaf nodes. Other experiments show that
while 10, 20, 30, 40, 50% of the data is bad, 99, 98, 94, 90
and 84% of the bad data points are in the leaf nodes, respec-
tively. This experiment is also done for different number of
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data points. The results were similar. In conclusion, the heap
is an efficient structure for separating both good and bad data.

4.4 Convergence threshold ¢, KL distance and entropy

To understand why EM* performs better than EM-T, we
observed:

Convergence threshold €

Entropy distribution among clusters

— The total entropy for W, which represents the likelihood
matrix for clusters and data points

The Kullback—Leibler (KL) distance for each cluster
between consecutive iterations.

Informally, KL distance measures the difference between
two probability distributions, using one as a starting point

(thus, KL is not a metric because it is not symmetric). Since
the underlying distribution of clusters is multivariate nor-
mal, the KL distance for each cluster between consecutive
iterations was calculated using formula (1). After calculat-
ing the KL distance for each cluster, we added the distances
and formulated the result as a measure of difference between
consecutive iterations. To address the lack of symmetry in
KL, we calculated KL1 KL(G'| |Gf/.+1) and KL2

KL(G;HHG;). We also calculated the total entropy and
cluster-wise entropy distribution at each iteration.

_ itl 1 i
A_tr(Gj D Gj.z)

. . T . . .
B= (Glj“.p, — G’j.u) Gtz (G’j“.p, — G’j.u)
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Fig. 6 Plots of likelihood of median being on each node in the heap. The plots were made with R and ggplot2. The blue lines denote loess smoothers

(color figure online)

C =log (detG;.Z/detGZ.“.E) —d

KL (G§.||G§.+‘) —1/2[A+ B - C] (1)

We observed those measures over different synthetic and
real-world data sets and obtained similar results. We only
show experimental results for the breast cancer data set and
the multivariate normal synthetic data set used to test per-
formance of the two algorithms over different number of
clusters. Additional figures are omitted for brevity. Regard-
ing the experiments involving the breast cancer data set,
Figs.9 and 10 demonstrate the experimental results for EM*
and EM-T parameterized with 5 clusters and € = 0.01. We
note that EM-T did not convergence during maximum num-
ber of iterations. Figures 11 and 12 represent the results
for the multivariate normal data set. We note that EM-T
and EM* convergence in 89 and 8 iterations, respectively,
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for ¢ = 0.01. The experiments over breast cancer data set
include the case where EM-T fails to converge, and the exper-
iments over the multivariate data represent the case where the
both algorithms convergence during the maximum number of
iterations.

Results reveal that EM* always appears to make bet-
ter decisions than EM-T while finding the true parameters.
During its execution, the € value almost monotonically
decreases. In comparison, EM-T’s parameter update pro-
cess does not appear monotonic over the breast cancer data.
However, both algorithms have similar trends over the syn-
thetic data set for €. We observe similar trends in the figures
portraying the KL distance, total entropy and cluster-wise
entropy distribution. Figures 11 and 12 demonstrate that EM-
T and EM* show similar trends over the synthetic data set,
but the only difference is that EM* converges faster than
EM-T.
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Fig. 7 Plots of node-wise distribution of bad data points in the heap while changing amount of the bad data in the data. The plots were made with
R and ggplot2. The histogram coloring is from R’s default coloring scheme (color figure online)
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Fig. 8 Plot of percentage of bad data in the leaf nodes while increasing
amount of the bad data in the data. The plots were made with R

These results support our initial intuition that when clus-
tering a large data set, a significant portion of the data will not
change clusters or will do so only a limited number of times.
Introducing heap data structures to EM-T has allowed us to
develop an algorithm that significantly lessens the amount
of data considered on each iteration of the algorithm, effec-
tively reducing the training run time complexity. Further, the
optimization occurs now over a structure and inspection of
where data exists, rather than from an objective function. Of
the interesting questions that this raises, what is the class of
structures themselves that allow for this optimization? What
is the best (efficiency, accuracy, etc.) structure? Can we effec-
tively share the goodness or badness of data globally?
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5 Summary and conclusions

We have presented an extension to the traditional EM called
EM* that drastically reduced time complexity of EM algo-
rithm over large real-world and synthetic data sets. We
achieved this introducing a max heap over traditional EM
algorithm ordering data by its likelihood that (1) separates
data that needs to be revisited from data that does not and (2)
narrows the iteration to focus on data that is more difficult to
cluster. We believe, in general, hierarchical management of
data in iterative optimization algorithms like EM presents an
effective strategy to deal with scaling data and have begun
employing this technique on different learning algorithms.
We are further examining other algorithms, parallelizing and
distributing the heap. Lastly, we are employing EM* to larger
data sets and studying the results. Lastly, we have submitted
work on the theoretical underpinnings of this approach, both
addressing this instance, and to iterative optimization prob-
lems of this ilk in general.
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