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Abstract Mobile phones have an unprecedented rate of
penetration across the world. Such devices produce a large
amount of data that have been used on different domains.
In this work, we make use of mobile calls to monitor
the presence of individuals region by region. Traditionally,
this activity has been conducted by means of censuses and
surveys. Nowadays, technologies open new possibilities to
analyse the individual calling behaviour to determine the
amount of residents, commuters and visitors moving in an
area. To this end, in this paper we provide a clustering
technique completely unsupervised able to cluster data by
exploring an arbitrary similarity metric. We make use of such
technique, and we define metric to analyse mobile calls and
individual profiles. The approach provides better population
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estimation with respect to state of the art when results are
compared with real census data and greatly improves the
execution time of a previous work of some of the authors
of this paper. The scalability and flexibility of the proposed
framework enables novel scenarios for the characterization
of people by means of data derived from mobile users, rang-
ing from the nearly real-time estimation of presences to the
definition of complex, uncommon user archetypes.

Keywords Clustering - Apache spark - Population
indicators - Mobile calls - Distributed algorithm

1 Introduction

Between 2013 and 2017, mobile phone penetration has
increased from 61.1 to 69.4% of the global population,
according to several reports [1]. An assumption, which is
often considered valid, is that the position of the mobile
devices is the position of their users [2]. As a consequence, it
is possible to use such information in many different domains
and in ways for which they were not meant. For instance, such
data have been successfully used for traffic monitoring [3] or
tourist movements. Thanks to this information, available at
the level of the telecom infrastructure (e.g. calls, SMS), we
define a conceptual and technological framework that charac-
terizes the mobility of the users without requiring any kind
of interaction with the software and the specific hardware
of the mobile device. Our framework provides instruments
able to estimate individuals living in a certain region (res-
idents), the ones that are used to work or study into that
region (commuters) and those who visit a certain area (vis-
itors). In these cases, it is important to have tools to group
individuals sharing a common behaviour properly. In a pre-
vious work, by some of the authors of this paper [4], the
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algorithm adopted for data clustering was K-means. This is
easy to use and adopted in many circumstances, but it is not
free from weakness. First of all, it requires identifying the
number of clusters (the K parameter), whose choice is not
immediate. Additionally, K-means is not able to discriminate
noise data that characterize most of the real-world datasets.
One of the consequences is that noise data may significantly
affect the quality of the result and the compactness of clus-
ters. Beyond the “functional” limitation of K-means, from
the non-functional viewpoint, it is very challenging to design
scalable distributed clustering algorithms. In fact, albeit K-
means is in principle easy to parallelize, it suffers of a large
runtime when K is large and requires a large number of sim-
ilarity computations.

To overcome the aforementioned limitations and address
the issues underpinning previous works, we already pro-
posed a base version of Muchness [5], a framework that
is able to estimate the number of residents, commuters and
visitors in a given region by exploiting mobile phone data.
In this paper, we extend our contributions as the follow-
ing:

— We enhance the clustering algorithm and provide a com-
pletely unsupervised clustering algorithm which does not
require input parameters from the users and is able to
accommodate an arbitrary similarity metric;

— we make a study on indicators about individuals move-
ments such as the flows between home and work locations
and from home to visit places;

— based on the outcome of the estimations of the number
of residents, commuters and visitors, we build individ-
ual profiles and we define a personalized metric able to
capture similarities between individuals. This opens new
possibilities for the study of individuals behaviour.

The remaining of this paper is organized as follows: Sect. 2
introduces the related works, Sect. 3 provides insight about
the typology of data we analyse, Sect. 4 describes the seminal
idea that we extend in this work, Sect. 5 describes the details
of our framework, while Sects. 6 and 7 present the results we
have obtained. Section 8 details the impact of the research
and the future works.

2 Related work

Several studies use data driven by mobile phone calls due
to their large market penetration in the recent years. In fact,
many works study all the possible social and economic indi-
cators that can be extracted from such data. In this section,
we discuss works related to ours about mobile calls data
analysis (Sect. 2.1) and about scalable clustering algorithms
(Sect. 2.2).

@ Springer

2.1 Mobile calls data analysis

Mobile phone traces have been utilized to monitor the traffic
in cities and analyse tourist movements. In particular, two
popular works focus on this issue for the cities of Rome [3]
and Graz [7]. From these works, many others, for instance
Ahas et al. [8], analyse that it is possible to detect the places
visited by the individuals by analysing the calls they perform.
In addition, a plethora of works, for instance, the winner of
the Nokia Mobile Data Challenge [9], build predictors able to
determine the next position of an individual given the current
context.

De Jonge et al. [10] study different approaches making use
of call records spanning 2 weeks, in Netherlands. They give
insights into the indicators obtainable analysing the phone
calls. For instance, the number of phone calls can be used
as an indicator to estimate the economic activity of a certain
region. They make use of the K-means clustering algorithm to
determine day pattern clusters of the call activity. However,
they suggest that a deeper study of the calling behaviour
should be performed on a larger dataset covering multiple
weeks to correctly estimate population density.

One of the first works using mobile data to estimate the
population has been presented by Terada et al. [11]. In this
work, they monitor the presence of mobile terminals present
in each base station area in different time intervals. Such data
are refined with census information and at the end the per-cell
populations are aggregated in grid sections or municipalities.
This result may be affected by errors. Checking only the
presence in a cell cannot detect if an individual is a resident,
who should be counted as living in the area, or just a visitor.
Due to this, subsequent works try to exploit mobile data in a
different manner.

Deville et al. [6] improve the ideas of De Jonge and exploit
mobile phone data for estimating population density. They
propose a framework called MP. According to such method-
ology, population density is estimated as a function of the
night-time phone calls occurring in a given area. However, a
simple rule-based approach to identify user presence may
hinder to derive some more useful information about the
calling behaviour of the users. For instance, it would be cum-
bersome to define rules able to characterize individuals that
are Commuters or Visitors. To overcome the aforementioned
limitations, in a seminal work Furletti et al. [12] defined how
to build individual profiles based on mobile phone calls. Such
profiles characterize the calling behaviour of a user, in dif-
ferent time slots. By analysing these profiles, it is possible to
identify three categories of users: Residents, Commuters or
Visitors. Sociometer [4] focuses on this characterization to
aggregate users having a similar calling behaviour with the
K-means clustering algorithm. The centroid of each clus-
ter is compared with pre-defined archetypes representing the
categories of interest, and then, each cluster is classified by
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Table 1 Overview of frameworks to estimate population

Name Method Clustering configurable Residents Commuters Visitors
MP [6] Rules on each data N/A Yes No No
Sociometer [4] Clustering K-means Number of clusters Yes Yes Yes
Muchness [5] Clustering k-NN based 3 main parameters Yes Yes Yes
Muchness+ Clustering k-NN based Completely unsupervised Yes Yes Yes

means of the associated archetype. Hereafter, we use the term
exemplar to refer to the cluster’s centroid.

The seminal idea of this work has been presented by Lulli
et al. [5] where a novel scalable algorithm has been used to
estimate the population. We give additional details of this
work in Sect. 4. This work advances the achievements of
Sociometer and Muchness in the following directions: (i) it
provides a scalable distributed approach which can process
a sensibly larger collection of data requiring no input from
the user; (ii) it defines a personalized similarity metric that
leads to better clustering results and is able to cluster differ-
ent kind of data relative to different mobile calls aggregation
strategies; (iii) it automatically removes outliers to improve
the overall quality and to provide a better estimation of the
population; (iv) it does not require to provide in advance the
number of clusters as in K-means; (v) it studies the indicators
that can be extracted from mobile calls such as how individ-
uals move to reach their working location. Table 1 shows the
main differences between our work and the related works
described in this section.

2.2 Scalable clustering algorithms

Mobile data are usually of large size. In this work, we anal-
yse the phone calls performed daily in the Italian region of
Tuscany. Due to this, when we need to cluster such amount of
data a scalable clustering algorithm is of paramount impor-
tance. In this section, we cover several scalable clustering
algorithms related to ours.

One of the most popular clustering algorithm is K-means
which aggregates data around K centroids. It has three main
limitations: the K parameter has to be user-provided, it is lim-
ited to euclidean spaces, it has a bias on the initial selection of
centroids. Moreover, despite parallel and distributed imple-
mentations of K-means exist, they suffer of longer running
time when K is large due to the large number of comparisons.

Another interesting class of clustering algorithms falls
in the DBSCAN family, defined by Ester et al. [13]. The
underpinning idea is to cluster items that have at least
MINPTS neighbours at maximum distance ¢. The main
advantages against K-means are the following: (i) it is not
required to know the number of clusters in advantage; (ii)
the ability to cluster items with complex shapes instead of

aggregating items that are simply close (according to the
euclidean distance) to a centroid. MR-DBSCAN [14] has
been the first proposal targeting a distributed implementation
of DBSCAN, realized as a 4-stage MapReduce algorithm.
This approach focuses on the definition of an efficient data
partitioning in a d-dimensional Euclidean space, where each
partition is assigned to a worker node. This solution is lim-
ited, similarly to K-means, to work on euclidean spaces.

Recently, a distributed clustering algorithm based on
nearest neighbour graphs [15] able to deal with arbitrary sim-
ilarity metrics has been proposed, albeit in the original paper
experiments have been performed only for the JaroWinkler
metric. This is at the basis of the approach of Muchness.
In such work, a metric conceived for the data under exam
making use of a linear combination of Euclidean distance
and Jaccard similarity has been used (additional details can
be found in Sect. 4). However, such approach has several
drawbacks. Albeit it is not necessary to define the number of
clusters in advantage, it requires three parameters to tune the
quality and the execution time of the algorithm. Due to this,
in this work we extend such algorithm in order to remove the
requirement of setting input parameters from the user. This
will facilitate its usage and target a good trade-off between
clustering quality and execution time.

3 Data description

Telco operators collect customer data for billing purposes.
Refer to Fig. 1 to have an overview of how data are cre-
ated, collected and aggregated. From one Telco operator in
Italy, we received anonymized data of calls performed in Tus-
cany (Italy) recorded during the period between February and
March 2014. Each call record is a tuple having the anony-
mous identifier of the user, the call timestamps and the cell
id. Nevertheless, our approach for the analysis of the individ-
uals can be applied to every kind of data which provides the
above information. We manage approximately 60 mln calls
(column Telco data in Fig. 1). Each cell id can be assigned
to a municipality. A municipality is an administrative tessel-
lation of the territory. Our data span between municipalities
having a density of population in the range 6-261 individuals
per square kilometre. Figure 2 describes the amount of calls
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Fig. 1 Individuals perform
calls under a given cell (relative
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Fig. 2 Amountof callsin the dataset. Darker colours represent a higher
amount of calls collected in the dataset

collected in the dataset for each municipality. As expected,
the cities are characterized by the largest amount of calls with
respect to small municipalities. For each individual, we com-
pute an Individual Call Profile (ICP), following the approach
defined in a paper from Furletti et al. [12]. An ICP represents
the calling behaviour of an individual in a municipality (col-
umn ICPs in Fig. 1). Due to this, each individual may have
multiple ICPs if the user performed calls in different munic-
ipalities in the time period. These are used to identify if an
individual is a resident, commuter or visitor in the munic-
ipality. Each ICP is a 30-dimensional array in which each
position represents a specific time slot of the day (morning,
afternoon, evening) discriminating between weekdays and
weekends for a total of the 5 weeks under analysis. A value
greater than 0 indicates that the represented user performed
atleast one call in a specific time slot. At the end of the aggre-
gation process, we obtain around 2.6 mln ICPs representing
calls generated by about 800k individuals from 115 different
municipalities.

The clustering algorithm uses the ICPs as input to pro-
vide clusters of individuals and tag such clusters as Resident,
Commuter or Visitor. Such information is eventually pro-
cessed, to estimate the number of residents, commuters
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and visitors for each municipality. It is possible to extract
many useful information from such data. For instance, check
Fig. 3a, b where are described the amount of workers trav-
elling in-coming and out-coming the municipality of Pisa
from the other municipalities. In particular, we identified
all the individuals being commuters in Pisa. Than, for each
individual i of this set we searched in our result in which
municipality, if different from Pisa, i has been recognized as
resident. Figure 3a represents the amount of residents in the
municipalities that are commuters in Pisa. Itis nice to observe
that the majority of the work travellers are from the sur-
rounding municipalities, principally from Livorno. Finally,
we reversed such approach searching for each individual i
resident in Pisa where i has been recognized a commuter. We
call this the out-coming result presented in Fig. 3b. Despite
the majority of the Pisa’s resident work in the surrounding of
Pisa, some of them travel everyday to Florence, the biggest
city in Tuscany.

4 Preliminaries: Muchness

In this section, we provide some details about the Much-
ness technique targeting population estimation. In particular,
we highlight some shortcomings that we improve on Much-
ness+.

Muchness estimates the population in 3 phases:

— individual characterization: we start from raw data about
mobile calls where for each call we have the timestamps,
an individual identifier and the position of the caller.
These data are aggregated resulting for each individual
in a individual calling profile (ICP) for a given munici-
pality. An ICP provides information about the time of the
day when the individual perform calls.

— clustering: we cluster the ICPs with a specialized simi-
larity metric;

— classification: each cluster is classified as composed of
Residents, Commuters or Visitors.
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Fig. 4 Muchness analytical process. a For each individual we assign
an ICP. b Each ICP becomes a node in a graph. ¢ We search for similar
nodes and at the end we prune low similarity edges (dashed). d We

Figure 4 gives an overview of the whole analytical pro-
cess of Muchness. For each mobile user, we build an ICP (see
column A). Then, we start our clustering algorithm that has
the peculiarity of accepting an arbitrary similarity metric. It
is a two-phase algorithm. First, we build iteratively a nearest
neighbour graph (k-NN), according to the given similarity
metric. Second, we search for connected components in the
k-NN graph. We make use of the ICPs to generate the graph.
At the bootstrap, we randomly link each node to few other
nodes (see column B). Then, the algorithm iterates, starting
from the initial graph, adjusting the neighbourhood of each
node with the most similar nodes. In the following stage, the
edges connecting nodes whose similarity is below a given
threshold parameter are pruned (see column C). The result-
ing clusters are the connected components [16,17] derived
from the pruned graph (column D). It is worth to notice how
in this phase the nodes without neighbours are identified as
outliers (situation represented in Fig. 4 by node #2). Finally,
for each cluster an exemplar is generated (column E), used
by the automatic classifier to label the clusters as Resident,
Commuter or Visitor. The exemplar is an ICP where the value
of each element of the array is the average of the relative val-
ues of all the ICPs of the cluster. Then, the classification is
performed similarly to [4].
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search for connected components and we identify outliers (node 2). e
For each cluster, we define an exemplar (icons) classified as Resident,
Commuter or Visitor

This solution requires specifying three parameters: k,
numliter and €.

— k represents the number of neighbours for each node in
the graph, and it affects both the quality and the execution
time of the clustering. In general it is acceptable to set a
value € [5, 10] to have a good trade-off between quality
and time as suggested in Lulli et al. [15];

— numlter fixes the number of iterations performed by the
algorithm. Larger value provides a better k-NN graph at
the cost of a longer running time;

— ¢ is a threshold parameter that drives the edge pruning
process to avoid that very different nodes would fall in
the same cluster.

5 From Muchness to Muchness+: a framework for
census

In this work, we target to improve the analytical process of
Muchness described in Sect. 4. In particular, we think it is of
paramount importance to provide a completely unsupervised
approach (i.e. where no configuration is required from the
user) to avoid trial-and-error approach when changing the
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Algorithm 1: Muchness+ clustering algorithm.

1 k-NN =RandomInitialization()

2 meanSimilarity = mean(k-NN)

3 tmp =-1

4 while i < numlter A |tmp — meanSimilarity| > 0.01 do
5 H = {ReverseMap(n)¥n ek—NN}

T = {CheckNeighborhood (n) Vn €H}
k-NN = {ReduceNeighbor (n, [)VY(n,l) €T}
tmp =meanSimilarity

meanSimilarity = mean(k-NN)

10 i=i+1

11 end

S={n €k-NN |s, < 1}

e=mean(S)

—
w N

Algorithm 2: Muchness procedures.

1 procedure ReverseMap (Node n)

2 forall the u eNeighborhood (n) do

3 emit (n, u)

4 emit (u, n)

5 end

6 procedure CheckNeighborhood (Node n)

7 forall the u € Neighborhood (n).Limit (pk)U{n} do
8
9

=0
forall the v € Neighborhood (n) U {n}\ {u} do
10 | I=1U((v,distance (4, v)))
1 end
12 emit (u, 1)
13 end

14 procedure ReduceNeighbor (Node n, List((Node, Distance))
I)
15 localMeanSimilarity=mean(/)

16 if localMeanSimilarity ~ 1 then

17 orderedList = orderDESC (/) .Limit (j/2)
18 emit (n, orderedList)
19 else

20 orderedList = orderDESC (/).Limit (j)
21 emit (n, orderedList)
22 end

data to achieve a good result. To this end, we introduce some
techniques to avoid the input of all the parameters required
by the previous Muchness approach. We call this new version
of the algorithm Muchness+. In addition, we define how we
can find similarity metrics that adapt to mobility data without
choosing them according to the algorithm implementation.

5.1 Improving the clustering algorithm

In this section, we provide insights into how we improve
the algorithm with respect to the one used in Muchness. In
particular, we concentrate on the following aspects:

— avoid bad performance in degenerate cases, bounding the
number of messages to O (pk) (Sect. 5.1.1);

— provide a completely unsupervised algorithm, which
does not require parameters from the users. In partic-
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ular, as highlighted in Sect. 4, the previous algorithm
requires three parameters that are not required any more
in Muchness+: k the size of the neighbourhood on each
node (Sect. 5.1.2), numlIter the number of iterations
(Sect. 5.1.3), e to prune low similarity edges (Sect. 5.1.4).

Refer to Algorithm 1 for an high level description of the
clustering algorithm. Also, refer to Algorithm 2 for the details
of the different phases of the algorithm and the optimizations
introduced.

5.1.1 Introducing a sampling mechanism

Before giving the details of the sampling technique intro-
duced in Muchness+, it is interesting to analyse the number
of messages required to build the k-NN graph. The directed k-
NN graph in each iteration is initially reversed to construct an
undirected graph (see Function ReverseMap Alg. 2 Line 1).
Due to this, it may happen that a node u, if by construction
initially has k directed neighbours like all the other nodes,
after the reverse operation in the worst case may have n — 1
neighbours, where n is the number of node in the graph. If
this is the case, O (kn) messages are required, in the follow-
ing phases of the algorithm, in node # to communicate the
2-hop neighbourhoods to all its n — 1 neighbours (see the
Forall at Alg. 2 Line 7).

To avoid such degenerate scenarios, we introduce a sam-
pling parameter p. After the reverse operation, each node
keeps uniformly at random a maximum of pk neighbours
(see Line 7). This operation permits to bound the number of
messages on each node, instead to O (kn), in O(pk).

5.1.2 Automatic neighbourhood selection

The k parameter in Muchness represents the number of neigh-
bours for each node in the graph. It affects both the quality and
the execution time of the clustering. In general, it is accept-
able to set a value € [5, 10] to have a good trade-off between
quality and time as suggested in Lulli et al. [15]. However,
this may require an analysis and an input from the user. Due
to this, we provide an heuristic to avoid such input and we let
each node autonomously resize its neighbourhood depending
on its state.

On each node u, at each iteration 7, we define the average
similarity between u and all its current k neighbours equal to
s!. Our algorithm is iterative and improve the neighbours of
each node in each iteration. Due to this, givent’ > ¢ we have
5.[4/ > s;. If a node u discovers a neighbour v in iteration t,
the neighbour v can be substituted in #’ > 7 only by a node z
whose similarity with u is greater. Due to this, if u has already
collected enough good neighbours, where good means that
the similarity metric is to close to 1, we can limit its view,
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whereas if # has no good neighbours, we need to keep k large
to improve the possibility to discover better neighbours.

From the above hint, we defined a methodology able to
automatically set on each node a correct value for the parame-
ter k. We setk = j when s/, is low (see Algorithm 2 Line 20),
and we set k = j/2 when s/, is high (see Line 17). We let
each node perform computation at two speeds, respectively,
when it searches neighbours or when it has already found
good neighbours. In this case, j can be set to a value large
enough to permit to discover many nodes. From previous
results [15], [5] is safe to set j = 10. This permits to per-
form more computation on nodes that need to improve the
neighbours and just preserve the connectivity on the other
nodes.

5.1.3 Early termination

The num I ter parameter defines the number of iterations that
the algorithm performs. Previous results suggest that it is not
required to perform a large number of iterations to obtain a
good result. In addition, often a large part of the running time
is spent for marginal improvements. Knowing the improve-
ment of the solution over time enables the algorithm to decide
on an early termination that may save longer running time. In
addition, it is cumbersome to have a fixed amount of iterations
to be performed without knowing the state of the algorithm.

We remark that our algorithm is improving the approx-
imation in each iteration, and such approximation can be
monitored to decide for an early termination. As before, we
define on each node u in each iteration ¢ the average similarity
between u and all its k neighbours equal to s/,. Also, we define
S equal to the average of all the s/, for each node u € G. In
Algorithm 1, we make use of the mean function to compute
S! on each iteration (see Line 9). When the improvement of
S” in two subsequent iterations is less that 0.01 we stop early
the computation of the algorithm (see Line 4). This means
that the majority of the nodes do not improve the neighbours
and we can safely stop the computation.

5.1.4 Automatic € pruning

In Muchness, one of the most important parameters is €. It
is a threshold parameter that drives the edge pruning process
to avoid that very different nodes would fall in the same
cluster. It is affecting the second part of the algorithm (i.e.
the same k-NN graph can be used with different ¢ values to
cut a different number of edges). However, due to its nature,
it is affecting the result considerably and it requires a trial-
and-error approach to be refined.

In Muchness+, we define an heuristic capable of providing
a good approximation to the expected value to be assigned to
e. As before, we define on each node u, in each iteration ¢, the
average similarity between u and all its k neighbours equals

to s,;. At the end of the k-NN creation phase, we collect the
s” values of the last iteration and we remove all the s = 1.
We call S (see Alg. 1 Line 12) the set of s # 1. We remove
each node u having all the neighbours identical to u (s’ = 1)
because such nodes must not affect the result to avoid biases.
We set ¢ = S the average of the values € S.

5.2 Adapt the metric to the data instead of the algorithm

One of the major characteristics of the clustering algorithm
described before is its ability to handle arbitrary similarity
metrics. This characteristic permits to adapt the similarity
metric, used for the clustering algorithm, to the data instead
of adapting the algorithm. Thanks to this, we define and use
similarity metrics that are able to extract the most of the
information from the data. In the following of this section, we
describe the similarity metrics used on such data (Sect. 5.2.1),
how we can analyse each individual (Sect. 5.2.2) and the
metrics used for that (Sect. 5.2.3).

5.2.1 Similarity metrics for ICPs

In this section, we discuss the metrics that can be used for
our data. As introduced before, each ICP is a 30-dimensional
array representing the calling behaviour of an individual.
We define the shape of an ICP equal to the positions of its
array where the values are greater than 0. The shape enables
the evaluation of the presence of an individual in the ter-
ritory without considering the amount of calls performed.
The Euclidean similarity (EUC) is unable to grasp similarities
between ICPs having similar shapes. Due to this, our main
idea is to introduce a metrics able to capture the similarities
between individual sharing a common shape.

A metric able to capture the shape of the array is the Jac-
card similarity (JAC). In order to use JAC, we modify each
array in a boolean array where we set the value 1 in position
i ifin position i the data have a value greater than 0. However,
the JAC takes into account exclusively the shape of the pro-
files, but it loses all the information about the weights in the
array. Therefore, we combine the two similarities, the EUC
and the JAC. We define the EUC+JAC similarity as follows:

EUC+JAC(a, b) = «EUC(a, b) + (1 — a)JAC(a, b) (1)

Our goal is to identify the shape of the ICPs, due to this it
is advisable to put more weight on the JAC. After a careful
analysis, we identified in « = 0.4 an acceptable configura-
tion.

We provide an example supporting our idea in Table 2.
Table 2 shows examples of the values of the presented sim-
ilarity metrics for two residents and two commuters having
similar shapes. Table 2 represents in the first two columns
the ICPs selected and in the last three columns the similarity
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Table 2 Similar ICPs extracted

) . EUC JAC EUC+JAC
by expertises. A comparison of
similarity values using: EUC, JAC |
Residents [ [ 0.5 1 0.8
Commuters HE E N H'E BN 0.78 1 0.91

values using different metrics. The ICPs have a very simi-
lar behaviour resulting in similar shapes. For instance, take
in consideration the two residents in the first row of Table
2. Although some positions have different values, note the
colour darkness representing the value on a single position
of the array, they have an equal shape representing the same
calling behaviour. With the EUC, we cannot assess that the
two ICPs are similar (only 0.5 similarity); however, the JAC
(giving value 1) suggests that the two ICPs have identical
shapes. With our EUC+JAC, we can take the benefits of both
the metrics and we obtain an high similarity of 0.8. Similar
considerations can be applied also to the commuters example.

5.2.2 Beyond ICPs: individual profiles for individuals
analysis

Once we have clustered and classified ICPs as Resident,
Commuter or Visitor, it is possible to estimate the population
in the region and in each municipality. Another interesting
analysis is understanding the different typologies of indi-
viduals. Since one ICP is relative to an individual in a
municipality, an individual may have multiple ICPs, one for
each municipality where he travelled in the period under anal-
ysis. To this end, we think is of paramount importance to
identify how each individual moves in the region.

We define an individual profile (IP) for each individual i.
Each individual has an IP representing its profile in the ter-
ritory under exam. It is constructed from the outcome of the
clustering of the ICPs. An IP is a 3-dimensional array where
each position represents the number of times i is respec-
tively considered a Resident, a Commuter and a Visitor in
the region under exam. The aim of this characterization is to
identify groups of individuals sharing a common behaviour.
In particular, we should answer the following questions:

— how many individuals are just visitors of the region?

— how do residents of a municipality move to the region?

— do individuals exist visiting many places and performing
many calls? (i.e. maybe some individuals are classified
residents in multiple municipalities)?

To answer these questions, we cluster the IPs in order to
aggregate similar individuals. Since we have specific ques-
tions to answer, we need to carefully choose also in this case
the correct similarity metric to be used for the IPs. Again,
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thanks to our algorithm that supports arbitrary similarity
metric, we can define a metric suitable for our data without
warring about its suitability in the algorithm. In the following
section, we define how we choose such metric.

5.2.3 Similarity metrics for individuals profiles

In this section, we define several metrics that can be used for
clustering IPs. We think that the most important value in the
IP is the number of times an individual may be considered
a Resident. Note a value of 0 or 1 represents an individual
that is respectively not a resident in the region under exam
and a resident in one of the municipality under exam. How-
ever, it may happens that an individual has a value greater
than 1. This means that such individual is moving in many
municipalities and it is performing many calls in each of the
municipalities. For instance, consider salespeople: individ-
uals not having a fixed working place and whose work is
mainly characterized on meeting people in different places,
organizing such meetings by phone and keeping in touch with
all the customers. Due to this, they are individuals that in our
data will emerge having multiple ICPs and in some of them,
where they are more present, having an high number of calls
resulting in a Resident profile.

For all the above motivations, we need a metric capable
of correctly identifying clusters keeping well separated indi-
viduals having a different value in the Resident slot. The
euclidean distance is not enough to grasp such differences.
For instance, it gives the same importance to the values in
the resident and visitor slot. However, it is more important
to differentiate between an individual being a resident in 2
municipalities from an individual resident in 3 with respect
to 2 individuals being visitors respectively in 0 and 5 munic-
ipalities. Due to this, we defined a personalized metric. Such
metric assigns a similarity equal to O to individuals having a
different value for Resident. Instead, it assigns a value equal
to the euclidean distance between the values of commuters
and visitors for those individuals having the same value in
resident.

6 Experimental setup

All the experiments have been conducted on a cluster running
Ubuntu Linux consisting of 5 nodes (1 master and 4 slaves),
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each equipped with 128 Gbytes of RAM and with two 16-
cores CPU, interconnected via a Gigabit Ethernet network.

We implemented our approach using Apache Spark [18],
and the source code we used for conducting our experiments
is publicly available on GitHub.!

6.1 Alternative approaches

To study the performances of Muchness with respect to
alternative existing approaches, we compared it against the
following competitors:

— Sociometer [4] is the primary competitor, it is the most
similar to Muchness; both the approaches are based on
clustering and designed for the same case study;

— MP [6] targets the same problem; however, it is not based
on clustering but relies on rules, such as the calling hours
to identify if an individual is a resident. Such approach
requires the knowledge of additional data as for instance
the total amount of individuals in a region. Since such
data may be affected by fluctuation or can be missing,
we make use of a version of MP not requiring additional
parameters;

— DBSCAN, we tried to conduct our experiments with
an implementation”> of MR-DBSCAN [14] on Apache
Spark; unfortunately, we have not been able to cluster
more than the 10% of the dataset due to memory errors
related to the high dimensionality of the ICPs. Such algo-
rithm has been originally conceived to work only in a
two-dimensional space. At the beginning, the approach
requires to partition the data points and this operation
becomes difficult and more time consuming when the
number of dimensions increases [19]. Due to this, we
encounter memory errors when partitioning the space of
the ICPs because they are arrays in 30 dimensions.

6.2 Evaluation metrics

We now discuss the metrics we use to analyse the perfor-
mance of our approach and the most important parameters
of Muchness+.

We study the comparison between Muchness and Much-
ness+ using well-known measures of quality [20,21]:

— Compactness measures how closely related the items in a
cluster are. We obtain the compactness by computing the
average pairwise similarity among items in each cluster.
Higher values are preferred.

— Separation measures how well clusters are separate from
each other. Separation is obtained by computing the aver-

! https://github.com/alessandrolulli/knnMeetsConnectedComponents.

2 https://github.com/alitouka/spark_dbscan.

age similarity between items in different clusters. Lower
values are preferred

Note, the computation of the above metrics is computa-
tionally as hard as computing the clustering we intend to
evaluate. For this reason, to perform a pairwise similarity
between items, we pick items uniformly at random, with a
sampling rate of 10%. Additionally, we also consider algo-
rithm Speed-Up: this metric measures the algorithm runtime
improvement S; where i is the number of cores devoted to
the computation. We set S; = T3/ T; [22] where T}, is the
baseline and 7; the computational time when using i cores.
We chose as baseline the computational time using 4 cores
(one core for each machine).

7 Results

Through our experiments, we first study the optimizations
introduced in Muchness+ with respect to the previous version
called Muchness comparing both the clustering quality and
the execution time. Then, we perform several considerations
about the information that can be extracted using Muchness+;
in particular, we study how the individuals travel from home
to work and which places they visit. Finally, we perform a
comparison with similar works and we evaluate the individ-
ual profiles introduced in Sect. 5.2.2 and the scalability of
Muchness+.

7.1 How to configure Muchness+

With the optimizations introduced for Muchness+, we target
to remove input parameters to facilitate the usage. Although
in Sect. 5 we described how to remove all the parameters,
that were previously required by Muchness, we introduced
the optional parameter p to avoid degenerate scenarios and
to perform a trade-off between running time and quality. Fig-
ure 5 depicts the results when using a value of p € {1, 2, 3, 6}
compared to Muchness. We found that p = 1 is a too strict
configuration and does not permit to achieve a good result
(i.e. the algorithm is not able to estimate correctly the num-
ber of residents). However, already with p = 2 the number
of residents identified is comparable with the ones obtained
with larger values of p. Also, keeping low p permits to have a
shorter running time because each node sends pk messages.
Due to this, we suggest to use p = 2 because this corresponds
to the better running time and a quality similar to different
configurations.

The parameter j is always set equal to 10 in the experi-
ments, and this is the default value in Muchness+. We leave
the possibility to modify it; however, as described also in pre-
vious results [5,15,19], we identified in such configuration
an optimal trade-off for many different scenarios. In addition,
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Table 3 Road to Muchness+:

. L Time (s) #cluster Residents Compactness Separation
adaptive k optimization
Muchness 3164 (£183) 569 552829 0.89 0.76
Adaptive k 1873 (£42) 265 632393 0.86 0.72
600000 : , ‘ . o ) )
K¥XK gain thanks to the possibility to reduce the neighbour size
550000 - Mg s Bige @ Al . i )
of a large part of the nodes in the graph. This has no impact
500000 on the quality of the obtained clusters, in fact compactness
2 450000 and separation have similar values with respect to Muchness.
S 400000 The second gain regards the number of clusters. Keeping the
% 350000 number of clusters low has some benefits because it permits
> 300000 to analyse a lower number of clusters if a manual investiga-
Qo . . .
E 250000 tion is required.
Z 200000 o=1 + A
p=2 X
150000 o=3 m |
100000 |- p=6 @ L
o Muchness A 7.2.2 Early termination
50000 | | | | |
1500 2000 2500 3000 3500 4000 4500
Time (s) Next, we move to the analysis of the early termination mech-

Fig. 5 How to configure Muchness+: analysing the sampling param-
eter (p)

the impact of j is mitigated by the adaptive k feature intro-
duced in Muchness+. This permits to automatically adapt the
neighborhood of each node to the best needs.

7.2 Road to Muchness+: evaluating optimizations

In this section, we evaluate the impacts of the optimizations
introduced in Sect. 5. We start evaluating each optimization
separately. At the end of the section, we build Muchness+ and
we compare it with Muchness. According to the result of the
previous section, we set the sampling mechanism in all the
experiments equal to p = 2. All the results are the average
of 5 independent runs. For the time metric, we reported in
parentheses also the 95% confidence interval.

7.2.1 Adaptive k

In the first set of experiments, we evaluate the adaptive k
optimization (Sect. 5.1.2). Table 3 depicts some comparison
metric with respect to Muchness. In particular, with the adap-
tive k optimization we gain two major results. First, the time
to reach the solution is around the 40% less with respect
to that of Muchness. This is motivated by two things. The
sampling mechanism as seen in the previous section has a
remarkable impact on the execution time. However, this is
not the only cause of the large gain, note that in Fig. 5 all the
values having p = 2 have execution time >2000s. Here, we
get an average execution time of 1873 suggesting that with
respect to the execution time of p = 2 we obtain another
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anism. This optimization, described in Sect. 5.1.3, permits
to avoid the need to set the NumIter parameter of Much-
ness. Despite this advantage, it shows also execution time
advantages. Table 4 describes the results and shows a com-
parison with Muchness. As in the previous section, we obtain
aremarkable advantage in terms of execution time. Thanks to
the early termination, we finish the computation in half of the
time with respect to Muchness. To be more precise, the early
termination ends the computation after 6 iterations. This sug-
gests that the subsequent iterations performed by Muchness
improve only marginally the result it obtains. Also, this is
another confirmation that monitoring the results on iterative
algorithms permits to have a deeper control about the quality
of the results.

7.2.3 Muchness+ versus Muchness

Finally, we evaluate the Muchness+ algorithm inserting all
the enhancements previously analysed. Here, we add also the
optimization which allow to automatically select the thresh-
old parameter for the pruning mechanism before running the
connected components. Table 5 shows the final results. With
all the optimizations, the execution time of Muchness+ is
around 60% lower than the execution time of Muchness. In
particular, it seems that the contributions of adaptive k£ and
early termination optimizations are additive and both con-
tribute to reduce the execution time. We get also a more stable
running time in the 5 executions, and we obtain only 15 for
what concerns the confidence interval of the time metric.
The number of clusters is sensibly smaller in Muchness+,
but this is not affecting the number of residents estimated by
such approach.
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Table 4 Road to Muchness+:

. Time (s) #cluster Residents Compactness Separation
early termination
Muchness 3164 (£183) 569 552829 0.89 0.76
Termination 1697 (£80) 293 586398 0.87 0.73
Table S Muchness+ versus Time (s) #cluster Residents Compactness Separation
Muchness
Muchness 3164 (£183) 569 552829 0.89 0.76
Muchness+ 1309 (£15) 161 634402 0.87 0.71

7.3 Studying individuals mobility

In this set of experiments, we aim to answer some questions
about the indicators that can be extracted from mobile calls.
For instance, it is reasonable to assume that call activity in
commercial or business areas is an indicator for economic
activity [10]. First of all, our method allows to use the calling
behaviour to understand if an individual resides, works or is
an occasional visitor in a certain place. Due to this, we answer
to the following questions: (i) Is it possible to classify regions
as residential, commercial or business? (ii) is it possible to
show how individuals move to reach their working position?
(iii) is it possible to check which are the most visited places?
Using the outcome of Muchness+, we can analyze how
individuals move into the territory under study. In particular,
we analyse how individuals move from home to the working
place or to visit a city. In the following figures, the thick-
ness of the flows is proportional to the number of individuals
travelling the path connecting the two municipalities.

7.3.1 Individuals travelling from home to work

One possible use of the outcome of Muchness+ might be to
systematically analyse the movement from home to work.
This may have multiple advantages such as observing what
is the potential market for public transport. Also, this service
can be very useful for statistical institutes. Figure 6 shows the
main home to work flows for each municipality in Tuscany.
Clearly, Florence, being the biggest city in Tuscany, is the
centre of the working activity of the region. A large part of
the individuals of the surrounding municipalities everyday
move to Florence during the working hours. The figure also
highlights the other cities of Tuscany, in order of importance:
Pisa, Lucca and Livorno. Pisa, despite being smaller than
other cities such as Livorno, is a centre of numerous activ-
ities and of prestigious universities. Due to this, it seems to
be the second municipality, after Florence, to attract work-
ers. From the figure, it is possible to obtain two other major
insights. First, the larger centres of working activities seem
to attract workers from their surrounding municipalities, note
that the flows directed to the cities are from the surrounding

municipalities (the edges have a clockwise direction). Sec-
ond, flows exist also between the major cities. For instance,
between Livorno and Pisa or Pisa and Florence. This may
show the impact of rail transportation because a path con-
necting Livorno, Pisa and Florence by train exists.

7.3.2 Individuals travelling from home to visit places

While some statistics about systematic movements may be
extracted also from census, this is not true for occasional vis-
its. Due to this, it would be very helpful to know, for instance,
who has attended an event and where they come from or how
visitors are attracted in certain municipalities. This would
enable to know the spread and importance of an event by
measuring the attractiveness over the surrounding territory.
Figure 7 depicts the flows between the municipality of res-
idence and the visiting places. We can see that the amount
of mobility that is created for occasional reasons is impres-
sive and certainly greater than that happening systematically
and/or due to working activities. Again, the figure shows
that in particular the movements involving occasional trav-
els are to the four largest Tuscan cities we have considered.
These are important destinations for tourism by Italian and
foreign citizens. A difference with the movements for work-
ing activity is that not only the surrounding municipalities
but the individuals of quite all the municipalities travel occa-
sionally to the major cities. For instance, from Camaiore, a
small municipality in the top-left corner of the figure there
are flows directed to all the cities. Also, in the figure many
more municipalities are present with respect to Fig. 6. We can
see that individuals travel occasionally to many more places
than those they visit for working reasons.

7.4 Comparing with competitors and census data

In this section, we evaluate how Muchness+ is capable of
being an indicator for measuring the amount of residents
in a municipal area by comparing its results against MP,
Sociometer and Muchness. In addition, we evaluate also
the amount of estimated commuters against Sociometer and
Muchness. Note the MP method is limited and specialized in
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Fig. 8 Comparing with competitors and census data. a Number of residents, b number of commuters

providing only the number of residents and does not provide
any functionality to estimate commuters. It is worth to notice
that all the estimations have been rescaled using the market
share of our telco provider. The results are compared against
official census statistics provided by Italian national institute
of statistics (ISTAT). These data include the amount of resi-
dents and commuters belonging to the 115 municipalities we
studied.

Figure 8a depicts the number of residents identified for
each municipality. On the Y axis, we show the estimated pop-
ulation in log scale, whereas on the X axis the municipalities
ordered from the lowest to the highest population density.
The results are compared with the real census provided by
ISTAT. As it can be noticed, all the methods have spikes
in the same municipalities. This suggests that although the
methods are based on different approaches (MP defines rules,
Sociometer and ours are based on clustering), all identify sim-
ilar behaviours on the data and may suggest that census data
itself could under or over estimate population. It is evident
that MP is always under estimating the density with an error
that is greater than Sociometer, Muchness and Muchness+.
Muchness+ seems the one closer to the real census data in
particular for higher-dense municipalities.

To have a better insight into the errors performed on the
estimations, Table 6 presents the median error on the esti-
mations. We divided the error on the estimations in 4 areas
having different population densities. Again, MP is provid-
ing the estimation affected by the larger error. Muchness
and Sociometer provide similar results for the municipali-
ties with a higher density where the volume of available data
is large and the clustering can rely on a rich set of infor-
mation. Instead, Muchness+, as we noted before, provides a
better estimation in all the municipalities, and in particular it
improves the result of Muchness on higher-dense municipali-
ties. Finally, we compare the commuters estimations. Also in

Table 6 Comparing with competitors and census data: median estima-
tion errors

Residents x km?

< 50 50-100 100-150 >150
MP 93% 91% 92% 94%
Sociometer 39% 39% 49% 52%
Muchness 24% 29% 42% 47%
Muchness+ 16% 14% 15% 23%

Commuters x km?”

<50 50-100 100-150 >150
Sociometer 83% 84% 86% 89%
Muchness 84% 83% 81% 87 %
Muchness+ 86% 84% 85% 89%

Bold values indicate the best results

this case, the results are compared against real census data.
All the approaches give approximately the same results in
terms of estimation errors, for every density range.

7.5 Evaluating individual profiles

In Sect. 5.2.2, we defined the individual profile (IP) to identify
different typologies of individuals and in Sect. 5.2.3 a metric
capable of extracting useful information from such data. In
this section, we compare two metrics for clustering individual
profiles: the Euclidean distance and the one defined ad hoc
for such data. Initially, we take the output of Muchness+ and
we construct for each individual its IP. We obtained around
800k IP.

First of all, we compared the clusters obtained with the
two metrics. Figure 9a, b depicts for each cluster a point in
a 2D space where on the X axis is represented the number
of times the exemplar of the cluster is a Visitor and on the Y
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Fig. 9 Evaluating individual profiles. a Euclidean distance, b person-
alized similarity metric

Table 7 Evaluating individual profiles: exemplars

Cluster Size # Resident # Commuter # Visitor
426767 (51%) 0 0.01 1.98
265629 (32%) 1 0.01 1.87
94412 (11%) 2 0.02 2.88
32460 (4%) 3 0.03 39
11001 (1%) 4 0.03 5

6744 (< 1%) 5.88 0.06 7.98

axis the number of times is a Resident. With the Euclidean
distance, we obtained many more clusters with respect to the
personalized metric specific for the data. With the personal-
ized metric, we obtain a small number of clusters and each
cluster is well defined and separated from the others. Thanks
to this, the result is easier to be analysed and two clusters
having similar characteristics do not exist.

We then proceed with a manual investigation of the clus-
ters obtained with the personalized metric. Table 7 presents
the 6 clusters obtained with their sizes and the values of the
3-dimensional array. We observe that more than the half of
the individuals (51%) are not residents in the region under
exam. This means that the majority of the people travelling in
the region are living outside the region and visit Tuscany for
tourism or for short periods of time. As expected, the second
biggest cluster is the one where individuals are residents in
only one municipality. However, some individuals exist that
are considered Residents in more that one municipality. This
is of paramount interest because highlight individuals use to
travel a lot. Such individuals perform many calls in different
moments of the day in different municipalities. Another inter-
esting fact is that the individuals resulting resident in more
than one place result to be also visitor of the highest amount
of places. Note the value of Visitor is increasing when also
the value of Resident is increasing. Also, as expected, the size
of the clusters decreases when the values of resident increase.
Finally, we noted that the values in the Commuter column
are always close to 0. The motivation is that the number of
commuters, as we found when comparing with real data, is
low.
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7.6 Scalability

Finally, we tested the scalability of Muchness+, by varying
the number of cores in the range [4,128]. Figure 10 depicts the
results we achieved. Recall, Muchness+ has been built taking
inspiration from two previous works for computing con-
nected components [16,17] and text clustering [5]. In such
works, similar patterns have been observed when evaluating
the scalability using several different typologies of datasets.
We obtained an almost linear scalability using 8 cores, a still
good level scalability with 16 cores, and then the value tends
to stabilize albeit it is always improving while adding more
cores. These results can be motivated with several consid-
erations about the testing environment. Spark allocates the
cores according to a round robin policy: when using 4 cores,
Spark exploits one core from each of the 4 machines. As a
consequence, by using only 4 cores (of the 128 available)
we exploit the total amount of memory available in the clus-
ter. Considering that each machine has two CPUs, we reach
the maximum available CPU-memory bandwidth, and thus
linear scalability, when using 8 cores (one core per CPU).

8 Conclusions

This paper presents a framework for estimating the popula-
tion making use of mobile calls. With respect to the existing
solutions, we presented an unsupervised clustering algorithm
that does not require an input from the user. In addition, it
accommodates arbitrary similarity metric. We define person-
alized similarity metric able to capture similarities between
individual call profiles, overcoming the limitations of state-
of-the-art approaches that do not exploit the “shape” of the
user profiles (in particular for Residents and Commuters).
The ultimate aim of our research is to provide to the public
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administration a tool, able to process a continuous stream
of phone data to provide useful information for improving
public services, such as transportation and security of the ter-
ritory. To this end, we analyse how the individuals move in
the territory for working reasons or to visit places. We empiri-
cally proved, through an extended experimental testbed, that
our extended approach is able to provide a better estima-
tion of the population and in less time with respect to the
previous version. This is mainly due to its ability to early ter-
minate the execution and to automatically limit the amount
of messages when only marginal improvements can be per-
formed. Furthermore, we give an experimental evidence that
our approach provides a very good estimation of the popu-
lation density within the Italian region of Tuscany. As future
work, we plan to extend the work to provide a real-time esti-
mation of the population, to perform event detection and to
consider data associated with a larger region.
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