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Abstract

Workflow technology is rapidly evolving and, rather than being limited to modeling the control flow in business processes, is
becoming a key mechanism to perform advanced data management, such as big data analytics. This survey focuses on data-centric
workflows (or workflows for data analytics or data flows), where a key aspect is data passing through and getting manipulated by a
sequence of steps. The large volume and variety of data, the complexity of operations performed, and the long time such workflows
take to compute give rise to the need for optimization. In general, data-centric workflow optimization is a technology inevolution.
This survey focuses on techniques applicable to workflows comprising arbitrary types of data manipulation steps and semantic
inter-dependencies between such steps. Further, it servesa twofold purpose. Firstly, to present the main dimensions of the relevant
optimization problems and the types of optimizations that occur before flow execution. Secondly, to provide a concise overview of
the existing approaches with a view to highlighting key observations and areas deserving more attention from the community.
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1. Introduction

Workflows aim to model and execute real-world intertwined
or interconnected processes, named astasksor activities. While
this is still the case, workflows play an increasingly signifi-
cant role in processing very large volumes of data, possiblyun-
der highly demanding requirements. Scientific workflow sys-
tems tailored to data-intensive e-science applications have been
around since the last decade, e.g., [1, 2]. This trend is nowa-
days complemented by the evolution of workflow technology
to serve (big) data analysis, in settings such as business intel-
ligence, e.g., [3], and business process management, e.g.,[4].
Additionally, massively parallel engines, such as Spark, are be-
coming increasingly popular for designing and executing work-
flows.

Broadly, there are two big workflow categories, namely
control-centricanddata-centric. A workflow is commonly rep-
resented as a directed graph, where each task corresponds to
a node in the graph and the edges represent thecontrol flow
or thedata flow, respectively. Thecontrol-centric workflows
are most often encountered in business process management
[5] and they emphasize the passing of control across tasks and
gateway semantics, such as branching execution, iterations, and
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so on; transmitting and sharing data across tasks is a second
class citizen. In control-centric workflows, only a subset of the
graph nodes correspond to activities, while the remainder de-
note events and gateways, as in the BPMN standard. Indata-
centric workflows(or workflows for data analytics or simply
data flows1), the graph is typically acyclic (directed acyclic
graph - DAG). The nodes of the DAG represent solely actions
related to the manipulation, transformation, access and storage
of data, e.g., as in [6, 7, 8, 9] and in popular data flow systems,
such as Pentaho Data Integration (Kettle) and Spark. The to-
kens passing through the tasks correspond to processed data.
The control is modeled implicitly assuming that each task may
start executing when the entire or part of the input becomes
available. This survey considers data-centric flows exclusively.

Executing data-centric flows efficiently is a far from trivial
issue. Even in the most widely used data flow tools, flows are
commonly designed manually. Problems in the optimality of
those designs stem from the complexity of such flows and the
fact that in some applications, flow designers might not be sys-
tems experts [10] and consequently, they tend to design with
only semantic correctness in mind. In addition, executing flows
in a dynamic environment may entail that an optimized design
in the past may behave suboptimally in the future due to chang-

1Hereafter, these three terms will be used interchangeably;the terms work-
flow and flow will be used interchangeably, too.
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ing conditions [11, 12].
The issues above call for a paradigm shift in the way data

flow management systems are engineered and more specifi-
cally, there is a growing demand for automated optimization
of flows. An analogy with database query processing, where
declarative statements, e.g., in SQL, are automatically parsed,
optimized, and then passed on to the execution engine is drawn.
But data flow optimization is more complex, because tasks need
not belong to a predefined set of algebraic operators with clear
semantics and there may be arbitrary dependencies among their
execution order. In addition, in data flows there may be opti-
mization criteria apart from performance, such as reliability and
freshness depending on business objectives and execution en-
vironments [13]. This survey covers optimization techniques2

applicable to data flows, including database query optimiza-
tion techniques that consider arbitrary plan operators, e.g., user-
defined functions (UDFs), and dependencies between them. To
the contrary, we do not aim to cover techniques that perform
optimizations considering solely specific types of tasks, such as
filters, joins and so on.

The contribution of this survey is the provision of a taxon-
omy of data flow optimization techniques that refer to the flow
plan generation layer. In addition, a concise overview of the
existing approaches with a view to (i) explaining the technical
details and the distinct features of each approach in a way that
facilitates result synthesis; and (ii) highlighting strengths and
weaknesses, and areas deserving more attention from the com-
munity is provided.

The main findings are that on the one hand, big advances
have been made and most of the aspects of data flow optimiza-
tion have started to be investigated. On the other hand, data
flow optimization is rather a technology in evolution. Contrary
to query optimization, research so far seems to be less system-
atic and mainly consists of ad-hoc techniques, the combination
of which is unclear.

The structure of the rest of this article is as follows. The
next section describes the survey methodology and providesde-
tails about the exact context considered. Section 3 presents a
taxonomy of existing optimizations that take place before the
flow enactment. Section 4 describes the state-of-the-art tech-
niques grouped by the main optimization mechanism they em-
ploy. Section 5 presents the ways in which optimization propos-
als for data-centric workflows have been evaluated. Section6
highlights our findings. Section 7 touches upon tangential flow
optimization-related techniques that have recently been devel-
oped along with scheduling optimizations taking place during
flow execution. Section 8 reviews surveys that have been con-
ducted in related areas and finally, Section 9 concludes the pa-
per.

2. Survey Methodology

We first detail our context with regards to the architecture
of a Workflow Management System (WfMS). Then we explain

2The termstechnique, proposal, andwork will be used interchangeably.

the methodology for choosing the techniques included in the
survey and their dimensions, on which we focus. Finally, we
summarize the survey contributions.

2.1. Our Context within WfMSs

The life cycle of a workflow can be regarded as an iteration of
four phases, which cover every stage from the workflow mod-
eling until its output analysis [14]. The four phases arecom-
position, deployment, execution, andanalysis[14]. The type of
workflow optimization, on which this work focuses, is part of
the deployment phase where the concrete executable workflow
plan is constructed defining execution details, such as the en-
gine that will execute each task. Additionally, Liu et al. [14]
introduce a functional architecture for each data-centricWork-
flow Management System (WfMS), which consists of five lay-
ers: i)presentation, which comprises the user interface; ii)user
services, such as the workflow monitoring and data provision
components; iii)workflow execution plan (WEP) generation,
where the workflow plan is optimized, e.g., through workflow
refactoring and parallelization, and the details needed bythe
execution engine are defined; iv)WEP execution, which deals
with the scheduling and execution of the (possibly optimized)
workflow, but also considers fault-tolerance issues, and finally,
v) the infrastructure layer, which provides the interface be-
tween the workflow execution engine and the underlying phys-
ical resources.

According to the above architecture, one of the roles of a
WfMS is to compile and optimize the workflow execution plans
just before the workflow execution. Optimization of data flows,
as conceived in this work, forms an essential part of the WEP
generation layer and not of the execution layer. Although there
might be optimizations in the WEP execution layer as well, e.g.,
while scheduling the WEP, these are out of our scope. More
specifically, the mapping of flow tasks to concrete processing
nodes during execution, e.g, taskX of the flow should run on
processing nodeY, is traditionally considered to be a schedul-
ing activity that is part of WEP execution layer rather than the
WEP generation one, on which we focus. Finally, we use the
terms task and activity interchangeably, both referring toenti-
ties that are not yet instantiated, activated or executed.

2.2. Techniques Covered

The main part of this survey covers all the data flow opti-
mization techniques that meet the following criteria to thebest
of authors’ knowledge:

• They refer to the WEP generation layer in the architecture
described above.

• They refer to techniques that are applicable to any type of
tasks rather than being tailored to specific types, such as
filters and joins.

• The partial ordering of the flow tasks is subject to depen-
dency (or, else precedence) constraints between tasks, as
is the generic case for example of scientific and data anal-
ysis flows; these constraints denote whether a specific task
must precede another task or not in the flow plan.
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We surveyed all types of venues where relevant techniques
are published. Most of the covered works come from the
broader data management and e-science community, but there
are proposals from other areas, such as algorithms. We also in-
clude techniques that were proposed without generic data flows
in mind, but meet our criteria and thus are applicable to generic
data flows. An example is the proposal for queries over Web
Services (WSs) in [15].

2.3. Technique Dimensions Considered

We assume that the user initially defines the flow either at
a high-level non-executable form or in an executable form that
is not optimized. The role of the optimizations considered is
to transform the initial flow into an optimized ready-to-be exe-
cuted one.3 Analogously to query optimization, it is convenient
to distinguish between high-level and low-level flow details.
The former capture essential flow parts, such as the final task
sequencing, at a higher level than that of complete execution
details, whereas the latter include all the information needed
for execution. In order to drive the optimization, a set of meta-
data is assumed to be in place. This metadata can be statis-
tics, e.g., cost per task invocation and size of task output per
input data item, information about the dependency constraints
between tasks, that is a partial order of tasks, which must be
always preserved to ensure semantic correctness, or other types
of information as explained in this survey.

To characterize optimizations that take place before the flow
execution (or enactment), we pose a set of questions when ex-
amining each existing proposal:

1. What is the effect on the execution plan?, which aims to
identify the type of incurred enhancements to the initial
flow plan.

2. Why?, which asks for the objectives of the optimization.
3. How?, which aims to clarify the type of the solution.
4. When?, to distinguish between cases where the WEP gen-

eration phase takes place strictly before the WEP execu-
tion one, and where these phases are interleaved.

5. Where the flow is executed?, which refers to the execution
environment.

6. What are the requirements?, which refers to the input flow
metadata in order to apply the optimization.

7. In which application domain?, which refers to the domain
for which the technique initially targets.

We regard each of the above questions as a different dimen-
sion. As such, we derive seven dimensions: (i) theMechanisms
referring to the process through which an initial flow is trans-
formed into an optimized one; (ii) theObjectivesthat capture

3Through considering optimizations starting from a valid initial flow, we
exclude from our survey the big area of answering queries in the presence of
limited access patterns, in which, the main aim is to construct such an initial
plan [16, 17] through selecting an appropriate subset of tasks from a given task
pool; however, we have considered works from data integration that optimize
the plan after it has been devised, such as [18] or [19], whichis subsumed by
[20].

the one or more criteria of the optimization process; (iii) the
Solution Typesdefining whether an optimization solution is ac-
curate or approximate with respect to the underlying formula-
tion of the optimization problem; (iv) theAdaptivityduring the
flow execution; (v) theExecution Environmentof the flow and
its distribution; (vi) theMetadatanecessary to apply the opti-
mization technique; and finally, (vii) theApplication Domain,
for which each optimization technique is initially proposed.

3. Taxonomy of Existing Solutions

Based on the dimensions identified above, we build a tax-
onomy of existingsolutions. More specifically, for each di-
mension, we gather the values encountered in the techniques
covered hereby. In other words, the taxonomy is driven by the
current state-of-the-art and aims to provide a bird’s eye view
of today’s data flow optimization techniques. The taxonomy is
presented in Figure 1 and analyzed below, followed by a dis-
cussion of the main techniques proposed to date in the next sec-
tion. In the figure, each dimension (in light blue) can take one
or more values. Single-value and multi-value dimensions are
shown as yellow and green rectangles, respectively.

3.1. Flow Optimization Mechanisms
A data flow is typically represented as a directed acyclic

graph (DAG) that is defined asG = (V,E), whereV denotes
the nodes of the graph corresponding to a set of tasks andE
represents a set of pair of nodes, where each pair denotes the
data flow between the tasks. If a task outputs data that cannot
be directly consumed by a subsequent task, then data transfor-
mation needs to take place through a third task; no data trans-
formation takes place through an edge. Each graph element,
either a vertex or an edge, is associated with a triplet of the
form < Impl,ExecEng,Con f ig>, either explicitly or implic-
itly. The Impl property denotes the task or edge implementa-
tion, ExecEngprovides the engine that will execute each ele-
ment; and finally,Con f igcaptures the configuration of the ex-
ecution environment, such as the bandwidth reserved for a data
transfer across a graph edge, or the number of reducer slots in
a Hadoop cluster. Any optimization technique covered in this
survey impacts on either the set ofV or E, or on (part of) the
associated triplets.

Data flow optimization is a multi-dimensional problem and
its multiple dimensions are broadly divided according to the
two flow specification levels. Consequently, we identify the
optimization of thehigh-level (or logical) flow plan and the
low-level (or physical) flow plan, and each type of optimiza-
tion mechanism can affect the set ofV or E of the workflow
graph and their properties.

The problem of the logical data flow optimization is to de-
fine the exact setsV andE, so that an objective function is opti-
mized. As such, the logical flow optimization types are largely
based on workflow structure reformations, while preservingany
dependency constraints between tasks; structure reformations
are reflected as modifications inV and E. The output of the
optimized flow needs to be semantically equivalent as the out-
put of the initial flow, which practically means that two flows
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Figure 1: A taxonomy of data-centric flow optimization for each of the identified dimensions.

receive the same input data and produce the same output data
without considering the way this result was produced. Given
that data manipulation takes place only in the context of tasks,
logical flow optimization is task-oriented. The logical opti-
mization types are characterized as follows (summarized also
in Figure 2):

• Task Ordering, where we change the sequence of the
tasks by applying a set of partial (re)orderings. Task
(re)ordering affects the set ofE of the workflowDAG.

• Task Introduction, where new tasks are introduced in the
data flow plan in order, for example, to minimize the data
to be processed and thus, the overall execution cost. The
changes occurred by introducing tasks increase the set of
V of the flow graph, which also affects the setE, so that
the new vertices are connected to the graph.

• Task Removal, which can be deemed as the opposite of
task introduction. A task can be safely removed from the
flow, if it does not actually contribute to its result dataset.
As in the previous case, task removal impacts both on the
setV, which is reduced, and onE to remove corresponding
edges.

• Task Mergeis the optimization action of grouping flow
tasks into a single task without changing the semantics,
applying changes to the set ofV in order, for example, to
minimize the overall flow execution cost or to mitigate the
overhead of enacting multiple tasks.

• Task Decomposition, where a set of grouped tasks is split-
ted to more than one flow tasks with less complex func-
tionality for generating more optimal sub-tasks. This is

Figure 2: Schematic representation of high-level flow optimizations.

the opposite operation of merge action and may provide
more optimization opportunities, as discussed in [21, 8],
because of the potential increase in the number of valid
(re)orderings. Similar to the task introduction and merge
mechanisms, the optimized workflow plan differs in V
with regards to the initial workflow graph, whileE is also
modified only to reflect changes inV.

At the low level, a wide range of implementation aspects
need to be specified so that the flow can be later executed. These
aspects are captured by the< Impl,ExecEng,Con f ig> triplet,
for each property of which, we identify a different physical data
flow optimization type, as follows (see also Figure 3):

• Task Implementation Selection, which is one of the most
significant lower-level problems in flow optimization.
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Figure 3: Schematic representation of low-level flow optimizations.

This optimization type includes the selection of the ex-
act, logically equivalent, task implementation for each task
that will satisfy the defined optimization objectives [8]. A
well-known counterpart in database optimization is choos-
ing the exact join algorithm (e.g., hash-join, sort-merge-
join, nested loops). In this optimization mechanism case,
the Impl property of one or more task or edges have to be
specified or modified.

• Execution Engine Selection, where we have to decide the
type of processing engine to execute each task. The need
for such optimization stems from the availability of multi-
ple options in modern data-intensive flows [22, 23]. Com-
mon choices, nowadays, include DBMSs, massively paral-
lel engines, such as Hadoop clusters, apart from the execu-
tion engines that are bundled with data flow management
systems. The corresponding decisions affect theExecEng
property in the workflow graph.

• Execution Engine Configuration, where we decide on con-
figuration details of the execution environment, such as the
bandwidth, CPU, memory to be reserved during execution
or the number of cores allocated [12]. This optimization
mechanism refers to the specification of theCon f igprop-
erty.

3.2. Optimization Objectives

An optimization problem can be defined as eithersingleor
multiple objectiveone depending on the number of criteria
that considers. The optimization objectives that are typically
presented in the state-of-the-art include the following:perfor-
mance, reliability, availability, andmonetary cost. The latter is
important when the flow is executed on resources provided at a

price, as in public clouds. Other quality metrics can be applied
as well (denoted asother QoSin 1).

The first two objectives require further elaboration. Perfor-
mance can be defined in several forms, depending, for example,
on whether the target is the minimization of the response time,
or the resource consumption. The detailed definitions of the
performance objective in data flows include the following: min-
imization of the sum of the task and edge costs(Sum Cost), min-
imization of the sum of the task and edge costs along the flow
critical path(Critical Path), minimization of the most expen-
sive task cost in order to alleviate bottleneck problems(Bottle-
neck), and maximization of the throughput(Throughput). Each
of these definitions may be formally expressed as an objective
function, as presented later.

Analogously, reliability may appear in several forms. In our
context, reliability reflects how much confidence we have in a
data flow execution plan to complete successfully. However,
in data flow optimization proposals, we have also encountered
the following two reliability aspects playing the role of opti-
mization objectives:trustworthinessof a flow (Trust), which
is typically based on the trustworthiness of the individualtasks
and avoidance of dishonest providers, that is providers with bad
reputation; andFault Tolerance, which allows the execution of
the flow to proceed even in the case of failures.

3.3. Optimization Solution Types

The optimization techniques that have been proposed con-
stituteaccurate, approximateor heuristicsolutions. Such so-
lutions make sense only when considered in parallel with the
complexity of the exact problem they aim to solve. Unfortu-
nately, a big set of the problems in flow optimization are in-
tractable. For such problems, in the case of accurate solutions,
a scalable technique cannot be provided. In the case of approx-
imate optimization solutions, we typically tackle intractable
problems in a scalable way while being able to provide guaran-
tees on the approximation bound. Finally, in the last category,
we exploit knowledge about the specific problem characteristics
and propose algorithms that are fast and exhibit good behavior
in test cases, without examining the deviation of the solution
from the optimal in a formal manner.

3.4. Adaptivity of Data-Centric Flow

Data flow adaptivity refers to the ability of technique to re-
optimize the data flow plan during the execution phase. So, we
characterize the optimization techniques as eitherstatic, where
once the flow execution plan is derived it is executed in its en-
tirety, or dynamic, where the flow execution plan may be re-
vised on the fly.

3.5. Execution Environment

The techniques that are proposed for data flow optimization
problem differ significantly according to the execution environ-
ment assumed. The execution environment is defined by the
type of resources that execute the flow tasks. Specifically, in
a centralized execution environment, all the tasks of a flow are
executed by a single-node execution engine. Additionally,in a
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parallel execution environment, the tasks are executed in par-
allel by an engine on top of a homogeneous cluster, while in a
distributed execution environment, the tasks are executed by re-
mote and potentially heterogeneous execution engines, which
are interconnected through ordinary network. Typically, opti-
mizations on the logical level are agnostic to the executionen-
vironment, contrary to the physical optimization ones.

3.6. Metadata

The set of metadata includes the information needed to ap-
ply the optimizations and as such, can be regarded as existential
pre-conditions that should hold. The most basic input require-
ment of the optimization solutions is an initial setV of tasks.
However, additional metadata with regards to the flow graph are
typically required as well. These metadata are both qualitative
and quantitative (statistical), as discussed below. Qualitative
metadata include:

• Dependencies, which explicitly refer to the definition of
which vertices in the graph should always precede other
vertices. Typically, the definition of dependencies comes
in the form of an auxiliary graph.

• Task schemata, which refer to the definition of schema of
the data input and/or output of each task. Note that depen-
dencies may be produced by task schemata through sim-
ple processing [24], especially if they contain information
about which schema elements are bound or free[25]. How-
ever, task schemata may serve additional purposes than
deriving dependencies, e.g., to check whether a task con-
tributes to the final desired output of the flow.

• Task profile, which refers to information about the execu-
tion logic of the task, that is the manner it manipulates its
input data; e.g, through analysis of the commands imple-
menting each task. If there is no such metadata, the task
is considered as a black-box. Otherwise, information e.g.,
about which attributes are read and which are written, can
be extracted.

Quantitative metadata include:

• Vertex cost, which typically refers to the time cost, but can
also capture other types of costs, such as monetary cost.

• Edge cost, which refers to the cost associated with edges,
such as data transmission cost between tasks.

• Selectivity, which is defined as the (average) ratio of the
output to the input data size of a task and its knowledge
is equivalent to estimating the data sizes consumed and
produced by each task; sizes are typically measured either
in bytes or in number of records (cardinality).

• QoS properties, such as values denoting the task availabil-
ity, reliability, security, and so on.

• Engine details, which cover issues, such as memory ca-
pacity, execution platform configurations, price of cloud
machines, and so on.

3.7. Application Domain

The final dimension across, which we classify existing solu-
tions, is the application domain assumed when each technique
is proposed. This dimension sheds light into differentiating as-
pects of the techniques with regards to the execution environ-
ment and the data types processed that cannot be captured by
the previous dimensions. Note that the techniques may be appli-
cable to arbitrary data flows in additional application domains
than those initially targeted. In this dimension, we consider two
aspects: (i)domainof initial proposal, which can be one of the
following: ETL flows, data integration, Web Services (WSs)
workflows, scientific workflows, MapReduce flows, business
processes, database queries or generic; (ii)online (e.g., real-
time) vs. batchprocessing. Generic domain proposals aim to
a broader coverage of data flow applications, but due to their
genericity, they make miss some optimization opportunities that
a specific domain proposal could exploit. Also, online applica-
tions require more sophisticated solutions, since data is typi-
cally streaming and employ additional optimization objectives,
such as reliability and acquiring responses under pressingdead-
lines.

4. Presentation of Existing Solutions

Here, we describe the main techniques grouped according to
the optimization mechanism. This type of presentation facili-
tates result synthesis. Grouping by mechanism makes it easier
to reason as to whether different techniques employing the same
mechanism can be combined or not, e.g., because the make in-
compatible assumptions. Additionally, the solutions for each
mechanism are largely orthogonal to the solutions for another
mechanism, which means that, in principle, they can be com-
bined at least in a naive manner. Therefore, our presentation ap-
proach provides more insights into how the different solutions
can be synthesized.

The discussion is accompanied by a summary of each pro-
posal in Table 1 for the dimensions ofmechanisms, objectives,
solution types, and metadata, and Table 2, for theadaptiv-
ity, execution environment, andapplication domaindimensions.
When an optimization proposal comes in the form of an algo-
rithm, we also provide the time complexity with respect to the
size of the set of vertices|V| = n. However, the interpretation
of such complexities requires special attention, when there are
several other variables of the problem size, as is common in
techniques employing optimization mechanisms at the physical
level; details are provided within the main text. The first column
of the table mentions also the publication year of each proposal,
in order to facilitate the understanding of the proposal’s setting
and the time evolution of flow optimization.

Finally, we use a simple running example to present the ap-
plication of the mechanisms. Specifically, as shown in Figure 4,
we consider a data flow that (i) retrieves Twitter posts contain-
ing product tags (Tweets Input), (ii) performs sentiment analysis
(Sentiment Analysis), (iii) filters out tweets according to the re-
sults of this analysis (Filter1), (iv) extracts the product to which
the tweet refers to (Lookup ProductID), and (v) accesses a static
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Table 1: A summary of the main techniques for producing an optimized flow regarding the dimensions:mechanisms, objectives, solution types, andmetadata.
(Refs.,Year) Mechanisms Objectives Solution Types Metadata
([26],2008),
([27],2007)

Merge,
Engine Selection

Performance Heuristic
Task

Profile

([28],2012) Ordering
Performance (Bottleneck/

Critical Path)
Accurate (O(n6))

Dependencies,
Vertex Cost,
Selectivity

([29],2008)
extending [15]

Ordering,
Implementation Selection

Performance Heuristic

Dependencies,
Task Schemata,

Vertex Cost,
Selectivity

([30],1999) Ordering Performance(Sum Cost) Approximate
Vertex Cost,
Selectivity

([31],2009) Implementation Selection
Performance (Critical Path),

Monetary Cost,
Reliability

Heuristic
Vertex Cost,

QoS properties

([32],2014) Removal Performance Heuristic (O(n2)) Task Schemata
([33],2015) Engine Configuration Performance Heuristic Task profile

([34],2005) Removal Performance Heuristic
Dependencies,
Task Schemata

([35],2012) Ordering Performance (Throughput) Accurate (O(n3))
Dependencies,
Vertex Cost,
Selectivity

([36],1998) Ordering Performance(Sum Cost) Approximate
Vertex Cost,
Selectivity

([37],2015) Engine Configuration Performance Heuristic
Task Profile,

Engine Details

([38],2015)
extending [39]

Task Introduction
Engine Selection/

Configuration

Performance,
Monetary Cost,

Reliability(Fault Tolerance)
Accurate (exponential)

Vertex Cost,
Engine Details

([21],2012),
([40],2015)

Ordering,
Introduction/Removal,

Decomposition
Performance (Sum Cost) Accurate (exponential)

Task Schemata/Profile,
Vertex Cost,
Selectivity

([41],2011) Engine Configuration
Performance (Sum Cost),

Monetary Cost
Heuristic Vertex Cost

([20],2015),
([42],2014)

Ordering Performance (Sum Cost)
Accurate (exponential),

Approximate (O(n2))

Dependencies,
Vertex Cost,
Selectivity

([22],2014) Engine Selection Performance (Sum Cost) Heuristic (O(n))
Dependencies

Vertex/Edge Cost

([43],2010) Ordering Performance (Sum Cost) Approximate (O(n2))
Task Schemata,

Vertex Cost,
Selectivity

([44],2013)
Implementation Selection,

Engine Configuration
Performance, Other QoS Heuristic (O(n))

Vertex Cost,
QoS properties

([45],2008) Implementation Selection
Performance,
Availability,

Monetary Cost
Heuristic (O(n))

Vertex Cost,
QoS properties

([46],2012)
Merge,

Engine Configuration
Performance Heuristic

Vertex Cost,
Task Schemata,

Selectivity,
Engine Details

([47],2015) Engine Configuration Performance Heuristic
Vertex Cost,
Task Profile

([48],2014) Engine Configuration Performance Exhaustive
Vertex Cost,

Engine Details

([24],2005)
Ordering,

Merge
Performance (Sum Cost)

Accurate (exponential),

Heuristic (O(n2))
Vertex Cost,

Task Schemata

([8],2012),
([23],2013),
([12],2013)

Ordering,
Decomposition,

Engine/
Implementation Selection

Performance
(Constr. Sum Cost

Bottleneck),
Reliability (Fault Tolerance)

Accurate (exponential),

Heuristic (O(n2))
Task Schemata,

Vertex Cost

([49],2010)
extending [24]

Ordering,
Merge,

Introduction,
Implementation Selection,

Engine Configuration

Performance
(Constr. Sum Cost

Bottleneck),
Reliability (Fault Tolerance)

Heuristic (O(n2))
Task Schemata,

Vertex Cost

([15],2006) Ordering Performance (Bottleneck) Accurate (O(n5))
Dependencies,
Vertex Cost,
Selectivity

([50],2012) Implementation Selection
Performance,

Monetary Cost,
Reliability

Heuristic (O(n)) Vertex Cost

([51, 52], 2011) Ordering Performance (Bottleneck) Heuristic (exponential)
Dependencies,

Vertex/Edge Cost,
Selectivity

([53],2007)
Implementation Selection,

Task Introduction
Performance (Sum Cost) Accurate (exponential) Vertex cost

([54],2007) Merge Performance Heuristic Task Profile

([55],2005) Implementation Selection
Performance,
Availability,

Reliability (Trust)
Heuristic (O(n))

Vertex Cost,
QoS properties

([18],1999) Ordering Performance (Sum Cost) Approximate (O(n2))
Task Schemata,

Vertex Cost

([56], 2015) Engine Selection
Performance,

Monetary Cost
Heuristic

Vertex Cost,
Engine details

external data source with additional product information (Join
with External Source) in order to produce a report (Report Out-
put). In this simple example, in any valid execution plan step
(ii) should precede step (iii) and step (iv) should precede step
(v).

4.1. Task Ordering
The goal ofTask Orderingis typically specified as that of

optimizing an objective function, possibly under certain con-
straints. A common feature of all proposals is that they assign a

Figure 4: A data flow processing Twitter posts.
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Table 2: A summary of the main techniques for producing an optimized flow regarding the dimensions:adaptivity, execution environment, andapplication domain.

(Refs.,Year) Adaptivity Execution Environment
Application

Domain
Static Dynamic Centralized Parallel Distributed

([26],2008),
([27],2007) ⋆ - ⋆ - - ETL (Batch)

([28],2012) ⋆ - - ⋆ - Queries (Online)
([29],2008)

extending [15] ⋆ - - - ⋆ Web Services (Online)

([30],1999) ⋆ - ⋆ - - Queries (Batch)
([31],2009) ⋆ - - - ⋆ Web Services (Batch)

([32],2014) ⋆ - ⋆ - -
Scientific

Workflows (Batch)
([33],2015) ⋆ - - ⋆ - Generic

([34],2005) - ⋆ - ⋆ -
Scientific

Workflows (Batch)
([35],2012) ⋆ - - ⋆ - Queries (Online)
([36],1998) ⋆ - ⋆ - - Queries (Batch)
([37],2015) - ⋆ - ⋆ - Map Reduce (Batch)
([38],2015)

extending [39] ⋆ - - - ⋆
Scientific

Workflows (Batch)
([21],2012),
([40],2015) ⋆ - - ⋆ -

Scientific
Workflows (Batch)

([41],2011) ⋆ - - - ⋆ Scientific (Online)
([20],2015),
([42],2014) ⋆ - ⋆ - - Generic

([22],2014) ⋆ - - - ⋆ Generic
([43],2010) ⋆ - ⋆ - - ETL (Batch)
([44],2013) - ⋆ - - ⋆ Generic
([45],2008) ⋆ - - - ⋆ Web Services (Online)
([46],2012) ⋆ - - ⋆ - Map Reduce (Batch)
([47],2015) ⋆ - - ⋆ - ETL (Batch)
([48],2014) ⋆ - - ⋆ - MapReduce (Batch)
([24],2005) ⋆ - ⋆ - - ETL (Batch)
([8],2012),
([23],2013),
([12],2013)

⋆ - - - ⋆ ETL (Online)

([49],2010)
extending [24] ⋆ - - ⋆ - ETL (Online)

([15],2006) ⋆ - - - ⋆ Web Services (Online)
([50],2012) ⋆ - - - ⋆ Generic

([51, 52], 2011) ⋆ - - - ⋆ Web Services (Online)
([53],2007) ⋆ - ⋆ - - ETL (Batch)

([54],2007) ⋆ - - ⋆ -
Business

Processes (Batch)
([55],2005) ⋆ - - - ⋆ Web Services (Online)

([18],1999) ⋆ - - - ⋆
Data

Integration (Online)
([56], 2015) ⋆ - - - ⋆ Generic

metric m(vi) to each vertexvi ∈ V, i = 1 . . .n. To date, task
ordering techniques have been employed to optimize perfor-
mance. More specifically, all aspects of performance that we
introduced previously have been investigated: the minimiza-
tion of the sum of execution costs of either all tasks (both under
and without constraints) or the tasks that belong to the criti-
cal path, the minimization of the maximum task cost, and the
maximization of the throughput. Table 3 summarizes the ob-
jective functions of these metrics that have been employed by
approaches to task ordering in data flow optimization to date.
Existing techniques can be modeled at an abstract level uni-
formly as follows. The metricm refers either to costs (denoted
asc(vi)) or to throughput values (denoted asf (vi)). Costs are
expressed in either time or abstract units, whereas throughput is
expressed as number of records (or tuples) processed per time
unit. A more generic modeling assigns a cost to each vertex
vi along with its outcoming edgesei j , j = 1 . . .n (denoted as
c(vi , ei j )).

These objective functions correspond to problems with dif-
ferent algorithmic complexities. Specifically, the problems that

target the minimization of the sum of the vertex cost are in-
tractable [58]. Moreover, Burge et al. [58] discuss that“it is un-
likely that any polynomial time algorithm can approximate the
optimal plan to within a factor of O(nθ)” , whereθ is some pos-
itive constant. The generic bottleneck minimization problem is
intractable as well [59]. However, the bottleneck minimization
based only on vertex costs and the other two objective functions
can be optimally solved in polynomial time [57, 35, 15].

Independently of the exact optimization objectives, all the
known optimization techniques in this category assume the ex-
istence of dependency constraints between the tasks eitherex-
plicitly or implicity through the definition of task schemata. For
the cost or throughput metadata, some techniques rely on the
existence of lower-level information, such as selectivity(see
Section 4.1.5).

4.1.1. Techniques for Minimizing the Sum of Costs
Regarding the minimization of the sum of the vertex costs

(first row in Table 3), there have been proposed both accu-
rate and heuristic optimization solutions dealing with this in-
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Table 3: A summary of the objective functions in task ordering.
Description Objective Functions Refs.
Sum cost min

∑
c(vi), wherei = 1 . . .n [21, 42, 43, 40, 24, 18]

Constrained sum cost min
∑

c(vi), wherei = 1 . . .n andg(vi ) < 0 [8, 23, 49, 12]

Bottleneck cost
min max(c(vi )), wherei = 1 . . .n [57, 28, 15]
min max(c(vi ,ei j )), wherei = 1 . . . n [52, 51]

Critical path cost min
∑

c(vi), wherevi belongs tocritical path [57, 28]
Throughput max

∑
f (vi ), wherei = 1 . . .n [35]

tractable problem; apparently the former are not scalable.An
accurate task ordering optimization solution is the application
of the dynamic programming; dynamic programming is exten-
sively used in query optimization [60] and such a technique has
been proposed for generic data flows in [42]. The rationale of
this algorithm is to calculate the cost of task subsets of size
n based on subsets of sizen − 1. For each of these subsets,
we keep only the optimal solution that satisfies the dependency
constraints. This solution has exponential complexity even for
simple linear non-distributed flows (O(2n)) but, for small values
of n, is applicable and fast.

Another optimization technique is the exhaustive production
of all the topological sortings in a way that each sorting is
produced from the previous one with the minimal amount of
changes [61]; this approach has been also employed to opti-
mize flows in [20, 42]. Despite having a worst case complexity
of O(n!), it is more scalable than dynamic programming so-
lution, especially, for flows with many dependency constraints
between tasks.

Another exhaustive technique is to define the problem as a
state space search one [24]. In such a space, each possible task
ordering is modeled as a distinct state and all states are even-
tually visited. Similar to the optimization proposals described
previously, this technique is not scalable either. Anotherform
of task-reordering is when a single input/output task is moved
before or after a multi-input or a multi-output task [24, 49]. An
example case is when two copies of a proliferate single input/

output task are originally placed in the two inputs of a binary
fork operation and after reordering, are moved after the fork. In
such a case, the two task copies moved downstream are merged
into a single one. As another example, a single input/output task
placed after a multi-input task can be moved upstream; e.g.,
when a filter task placed after a binary fork is moved upstream
to both fork input branches (or to just one, based on their predi-
cates). This is similar to traditional query optimization where a
selective operation can be moved before an expensive operation
like a join.

The branch-and-bound task ordering technique is similar to
the dynamic programming one in that it builds a complete flow
by appending tasks to smaller sub-flows. To this end, it exam-
ines only sub-flows in terms of meeting the dependency con-
straints and applies a set of recursive calls until generating all
the promising data flow plans employing early pruning. Such
an optimization technique has been applied in [21, 40] for exe-
cuting parallel scientific workflows efficiently, as part of a new
optimization technique for the development of a logical opti-
mizer, which is integrated into the Stratosphere system [62],
the predecessor of Apache Flink. An interesting feature of this

approach is that following common practice from database sys-
tems it performs static task analysis (i.e., task profiling)in or-
der to yield statistics and fine-grained dependency constraints
between tasks going further from the knowledge that can be de-
rived from simply examining the task schemata.

For practical reasons, the four accurate techniques described
above are not a good fit for medium and large flows, e.g., with
over 15-20 tasks. In these cases, the space of possible solutions
is large and needs to be pruned. Thus, heuristic algorithms have
been presented to find near optimal solutions for larger data
flows. For example, Simitsis et al. [24] propose a technique of
task ordering by allowing state transitions, which corresponds
to orderings that differ in the ordering of only two adjacent
tasks. Such transitions are equivalent to a heuristic, which
swaps every pair of adjacent tasks, if this change yields lower
cost, always preserving the defined dependency constraints, un-
til no further changes can be applied. This heuristic, initially
proposed for ETL flows, can be applied to parallel and dis-
tributed execution environments with streaming or batch input
data. Interestingly, this technique is combined with another set
of heuristics using additional optimization techniques, such as
task merge. In general, this heuristic is shown to be capable
of yielding significant improvements. Its complexity isO(n2),
but there can be no guarantee for how much its solutions can
deviate from the optimal one.

There is another family of techniques that minimizing the
sum of the tasks by ordering the tasks based on their rank value
defined as1−sel(vi)

c(vi)
, wheresel(vi) is the selectivity ofvi . The first

examples of these techniques were initially proposed for opti-
mizing queries containing UDFs, while dependency constraints
between pairs of a join and UDF are considered [30, 36]. How-
ever, they can be applied in data flows by considering flow tasks
as UDFs and performing straightforward extensions. For exam-
ple, an extended version of [30], also discussed in [42], builds a
flow incrementally inn steps instead of starting from a complete
flow and performing changes. In each step, the next task to be
appended is the one with the maximum rank value, for which all
the prerequisite tasks have been already included. This results
in a greedy heuristic ofO(n2) time complexity.

This heuristic has been extended by Kougka et al. [20] with
techniques that leverage the query optimization algorithmfor
join ordering by Krishnamurthy et al. [63] with appropriate
post-processing steps in order to yield novel and more efficient
task ordering algorithms for data flows. In [43], a similar ra-
tionale is followed with the difference that the execution plan is
built from the sink to source task. Both proposals build linear
plans, i.e., plans in the form of a chain with a single source and a
single sink. These proposals for generic or traditional ETLdata
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Figure 5: An example of optimized task ordering.

flows are essentially similar to theChainalgorithm proposed by
Yerneni et al. [18] for choosing the order of accessing remote
data sources in online data integration scenarios. Interestingly,
in [18], it is explained that such techniques aren-competitive,
i.e., they can deviate from the optimal plan up ton times.

The incurred performance improvements can be significant.
Consider the example in Figure 4, where let the cost per single
input tweet of the five steps be 1, 10, 1, 1, and 5 units, respec-
tively. Let the selectivities be 1, 1, 0.1, 1, and 0.15, respec-
tively. Then the average cost in Figure 4 for each initial tweet is
1+10+1+0.1+0.5=12.6, whereas the cost of the flow in Figure
5 is 1+1+5+1.5+0.15=7.65. In general, for ordering arbitrary
flow tasks in order to minimize the sum of the task costs, any of
the above solutions can be used. If the flow is small, exhaustive
solutions are applicable; otherwise the techniques in [20]are
the ones that seem to be capable of yielding the best plans.

Finally, minimizing the sum of the tasks cost appears also in
multi-criteria proposals that consider also reliability,in the form
of fault tolerance [8, 49]. These proposals employ a further
constraint in the objective function denoted as functiong() (see
2nd row in Table 3). In these proposals,g() defines the number
of faults that can be tolerated in a specific time period. The
strategy for exploring the search space of different orderings
extends the techniques that proposed by Simitsis et al. [24].

4.1.2. Techniques for Minimizing the Bottleneck Cost
Regarding the problem of minimizing the maximum task cost

(3rd row in Table 3), which acts as the performance bottleneck,
there is aTask Orderingmechanism initially proposed for the
parallel execution of online WSs represented as queries [15].
The rationale of this technique is to push the selective flow tasks
(i.e., those withsel < 1) in an earlier stage of the execution
plan in order to prune the input dataset of each service. Based
on the selectivity values, there may be cases where the output
of a service may be dispatched to multiple other services for
executing in parallel or in a sequence having time complexity
in O(n5) in the worst case. The problem is formulated in a way
that it is tractable and the solutions is accurate.

Another optimization technique that considers task ordering
mechanism for online queries over Web Services appears in
[52, 51]. The formulation in these proposals extends the one
proposed by Srivastava et al. [15] in that it considers also edge
costs. This modification renders the problem intractable [59].
The practical value is that edge costs naturally capture thedata
transmission between tasks in a distributed setting. The solution
proposed by Tsamoura et al. [52, 51] consists of a branch-and-
bound optimization approach with advanced heuristics for early

pruning and despite of its exponential complexity, it is shown
that it can apply to flows with hundreds of tasks, for reasonable
probability distributions of vertex and edge costs.

The techniques for minimizing the bottleneck cost can be
combined with those for the minimization of the sum of the
costs. More specifically, the pipelined tasks can be groupedto-
gether and for the corresponding sub-flow, the optimizationcan
be performed according to the bottleneck cost metric. Then,
these groups of tasks can be optimized considering the sum of
their costs. This essentially leads to a hybrid objective func-
tion that aims to minimize the sum of the costs for segments
of pipelining operators, where each segment cost is defined ac-
cording to the bottleneck cost. A heuristic combining the two
metrics has appeared in [49].

4.1.3. Techniques for Optimizing the Critical Path
A technique that considers the critical path providing an ac-

curate solution has appeared in [28]. This work hasO(n6) time
complexity and has been initially proposed for online queries in
parallel execution environments, but is also applicable todata
flows. The strong point of this solution is that it can performbi-
objective optimization combining the bottleneck and the critical
path criteria.

4.1.4. Techniques for Maximizing the Throughput
Reordering the filter operators of a workflow can be used to

find an optimal query execution plan that maximizes through-
put leveraging pipelined parallelism. Such a technique hasbeen
presented by Deshpande et al. [35] considering queries with
tree-shaped constraints for parallel execution environment pro-
viding an accurate solution that hasO(n3) time complexity. In
this proposal, each task is assumed to be executed on a distinct
node, where each node has a certain throughput capacity that
should not be exceeded. The unique feature of this proposal is
that it produces a set of plans that need to be executed concur-
rently in order to attain throughput maximization. The draw-
back is that it cannot handle arbitrary constraint graphs, which
implies that its applicability to generic data flows is limited.

4.1.5. Task Cost Models
Orthogonally to the objective functions in Table 3, different

cost models can be employed to derivec(vi), the cost of theith

taskvi . The important issue is that a task cost model can be
used as a component in any cost-based optimization technique,
regardless of whether it has been employed in the original work
proposing that technique. A common assumption is thatc(vi)
depends on the volume of data processed byvi , but this feature
can be expressed in several ways:

• c(vi) =
∏|Tprec

i |

j=1 selj ∗ cpii : this cost model defines the cost

of the ith task as the product of i) the cost per input data
unit (cpii) and ii) the product of the selectivitiesselof pre-
ceding tasks;Tprec

i is the set of all the tasks between the
data sources andvi . This cost model is explicitly used in
proposals such as [20, 25, 42, 43, 18].
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• c(vi) = rs(vi) : In this case, the cost model is defined as the
size of the results (rs) of vi ; it is used in [18], where each
task is a remote database query.

• c(vi) = αi ·CPU(vi)+βi ·IO(vi)+γi ·S hip(vi): this cost model
is a weighted sum of the three main cost components,
namely the cpu, I/O, and data shipping costs. Further,

CPU(vi) can be elaborated and specified as
∏|Tprec

i |

j=1 selj ∗
cpii (defined above) plus a startup cost. I/O costs depends
on the cost per input data unit to access secondary storage.
Data communication costS hip(vi) depends on the size of
the input ofvi , which, as explained earlier, depends also
on previous tasks and the vertex selectivityseli . α, β, and
γ are the weights. Such an elaborate cost model has been
employed by Hueske et al. [21].

• c(vi) = proc(vi)+part(vi): This cost model is suggested by
Simitsis et al. [49]. It explicitly covers task parallelization
and splits the cost of a tasks into the processing costproc
and the cost to partition and merge datapart. The former
cost is divided into a part that depends on input size and a
fixed one. The proposal in [49] treats differently the tasks
in the flow that add recovery points or create replicas by
providing specific formulas for them.

4.1.6. Additional Remarks
Regarding the execution environment, since the task (re-

)ordering techniques refer to the logical WEP level, they can be
applied to both centralized and distributed flow execution envi-
ronments. However, in parallel and distributed environments,
the data communication cost needs to be considered. The dif-
ference between these environments with regards to the com-
munication cost is that in the latter, this cost depends bothon
the sender and receiver task and as such, it needs to be repre-
sented, not as a component of vertex cost but as a property of
edge cost.

Additionally, very few techniques, e.g. [24], explicitly con-
sider reorderings between single input/output and multiple-
input or multiple-output tasks; however, this type of optimiza-
tion requires further investigation in the context of complex
flow optimization.

Finally, none of the proposed techniques for task ordering
technique discussed are adaptive ones, that is they do not con-
sider workflow re-optimization during its execution phase.In
general, adaptive flow optimization is a subarea in its infancy.
However, Böhm et al. [64] has proposed solutions for choos-
ing when to trigger re-optimization, which, in principle, can be
coupled with any cost-based flow optimization technique.

4.2. Task Introduction

Task introduction has been proposed for three reasons.
Firstly, to achieve fault-tolerance through the introduction of

recovery points and replicator tasks in online ETLs [49]. For
recovery points, a new node storing the current flow state is
inserted in the flow in order to assist recovering from failures
without needing to recompute the flow from scratch. Adding
a recovery (to a specific point in the plan) depends on a cost

Figure 6: Examples ofTask Introductiontechniques.

function that compares the projected recovery cost in case of
failure against the cost to maintain a recovery point. Addition-
ally, the replicator nodes produce copies of specified sub-flows
in order to tolerate local failures, when no recovery pointscan
be inserted, e.g., because the associated overhead increases the
execution time above a threshold. In both cases of task intro-
duction, the semantics of the flow are immutable. The proposed
technique extends the state space search in [24] after having
pruned the state search space. The objective function employed
is the constrained sum cost one (2nd row in Table 3), where the
constraint is on the number of places where a failure can oc-
cur. The cost model explicitly covers the recovery maintenance
overhead (last case in Sec. 4.1.5). The key idea behind the prun-
ing of search space is first to apply task reordering and then,to
detect all the promising places to add the recovery points based
on heuristic rules. An example of the technique is in Figure 6
and suppose that we examine the introduction of up to two re-
covery points. The two possible places are just after theSort
andJoin tasks, respectively. Assume that the most beneficial
place is the first one, denoted asRP1. Also, givenRP1, RP2

is discarded because it incurs higher cost than re-executing the
Join task. Similarly to the recovery points above, the technique
proposed by Huang et al. [38] introduces operations that copy
intermediate data from transient nodes to primary ones, using a
cluster of machines containing both transient and primary cloud
machines; the former can be reclaimed by the cloud provided
at any time, whereas the latter are allocated to flow execution
throughout its execution.

Secondly, task introduction has been employed by
Rheinländer et al. [40] to automatically insert explicit fil-
tering tasks, when the user has not initially introduced them.
This becomes plausible with a sophisticated task profiling
mechanism employed in that proposal, which allows the
system to detect that some data are not actually needed. The
goal is to optimize a sum cost objective function, but the
technique is orthogonal to any objective function aiming at
performance improvement. For example, in Figure 6, we
introduce a filtering task if the final report needs only a subset
of the initial data, e.g., it refers to a specific range of products.

Third, task introduction can be combined withImplementa-
tion Selection(Section 4.6). An example appears in [53], where
the purpose is to exploit the benefit of processing sorted records.
To this end, it explores the possibility of introducing new ver-
tices, called sorters, and then to choose task implementations
that assume sorted input; the overhead of the insertion of the
new tasks is outweighed by the benefits of sort-based imple-
mentations. In Figure 6, we add such a sorter task just before
theJoin if a sort-based join implementation and report output is
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Figure 7: An example of theTask Removaltechnique.

preferred. Proactively ordering data to reduce the overallcost
has been used in traditional database query optimization [65]
and it seems to be profitable for ETL flows as well.

Finally, all these three techniques can be combined; e.g., in
the example all can apply simultaneously yielding the complete
plan in the figure.

4.3. Task Removal

A set of optimization proposals support the idea of removing
a task or a set of tasks from the workflow execution plan without
changing the semantics in order to improve the performance;
these proposals have been proposed mostly for offline scientific
workflows, where it is common to reuse tasks or sub-flows from
previous workflows without necessarily examining whether all
tasks included are actually necessary or whether some results
are already present. Three techniques adopt this rationale[32,
34, 40], which are discussed in turn.

The idea of Rheinländer et al. [40] is to remove a task or
multiple tasks until the workflow consists only of tasks thatare
necessary for the production of the desired output. This implies
that the execution result dataset remains the same regardless of
the changes that have been applied. It aims to protect users that
have carelessly copied data flow tasks from previous flows. In
Figure 7, we see that, initially, the example data flow contains
anExtract Datestask, which is not actually necessary.

The heuristic of Deelman et al. [34] has been proposed for a
parallel execution environment and is one of the few dynamic
techniques allowing the reoptimization of the workflow during
the workflow execution. At runtime, it checks whether any in-
termediate results already exist at some node, thus making part
of the flow obsolete. Both [40] and [34] are rule-based and do
not target an objective function directly.

Another approach for applying task removal optimization
mechanism is to detect the duplicate tasks, i.e., tasks perform-
ing exactly the same operation and keep only a single copy in
the execution workflow plan [32]. This might be caused by
carelessly combining existing smaller flows from a repository,
e.g., myExperiment4 A necessary condition in order to ensure
that there will be no precedence violations is that these tasks
must be dependency constraint free, which is checked with the
help of the task schemata. Such a heuristic hasO(n2) time com-
plexity.

4.4. Task Merge

Task Mergehas been also employed for improving the per-
formance of the workflow execution plan. The main technique

4www.myexperiment.org/ in bio-informatics.

is to apply re-writing rules to merge tasks with similar functions
into one bigger task. There are three techniques in this group,
all tailored to a specific setting. As such, it is unclear whether
they can be combined.

First, in [54], tasks that encapsulate invocations to an under-
lying database are merged so that fewer (and more complex)
invocations take place. This rule-based heuristic has beenpro-
posed for business processes, for which it is common to ac-
cess various data stores, and such invocations incur a largetime
overhead.

Second, a related technique has been proposed for SQL state-
ments in commercial data integration products [26, 27]. The
rationale of this idea is to group the SQL statements into a big-
ger query in order to push the task functionalities to the best
processing engine. Both approaches presented in [26, 27] de-
rive the necessary information about the functionality of each
task with the help of task profiling and produce larger queries
employing standard database technology. For example, instead
of processing a series of SQL queries to transform data, it is
preferable to create a single bigger query. As previously, the
optimization is in the form of a heuristic that does not target
to optimize any objective function explicitly. A generalization
of this idea to languages beyond SQL is presented by Simitsis
et al. [8, 12] and a programming language translator has been
described by Jovanovic et al. [66, 67].

Third, Harold et al. [46] presents a heuristic non-exhaustive
solution for merging MapReduce jobs. Merging occurs at two
levels: first MapReduce jobs are tried to be transformed into
Map-only jobs. Then, sharing common Map or Reduce tasks is
investigated. These two aspects are examined with the help of
a 2-phase heuristic technique.

Finally, in the optimizations in [24, 49], which rely on a state
space search as described previously, adjacent tasks that should
not be separated may be grouped together during optimization.
The aim of this type of merger is not to produce a flow execution
plan with fewer and more complex tasks (i.e., no actual task
merge optimization takes place), but to reduce the search space
so that the optimization is speeded-up; after optimization, the
merged tasks are split.

4.5. Task Decomposition

An advanced optimization functionality isTask Decomposi-
tion, according to which, the operations of a task are split into
more tasks, this results in a modification of the setV of vertices.
This mechanism has appeared in [21, 40] as a pre-processing
step, before the task ordering takes place. Its advantage isthat
it opens-up opportunities for ordering, i.e., it does not optimize
an objective function in its own but it enables more profitable
task orderings.

Task decomposition is also employed by Simitsis et al.
[8, 23, 12]. In these proposals, complex analysis tasks, such
as sentiment analysis presented in previous examples, can be
split into a sequence of tasks at a finer granularity, such as tok-
enization, and part-of-speech tagging.

Note that both these techniques are tightly coupled to the task
implementation platform assumed.
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Figure 8: An example whereTask Implementation Selectionis applicable,
where there are four equivalent ways to implement sentimentanalysis and three
ways to extract product ids.

4.6. Task Implementation Selection

A set of optimization techniques target theImplementation
Selectionmechanism. At a high level, the problem is that there
exist multiple equivalent candidate implementations for each
task and we need to decide which ones to employ in the exe-
cution plan. For example, a task encapsulating a call to a re-
mote WS, can contact multiple equivalent WSs, or a task may
be implemented to run both in a single-machine mode or in as
a MapReduce program. These techniques typically require as
input metadata the vertex costs of each task implementational-
ternative. Suppose that, for each task, there arem alternatives.
This leads to a total ofO(mn) of combinations; thus a key chal-
lenge is to cope with the exponential search space. In general,
the number of alternatives for each task may be different and the
total number of combinations is the product of these numbers.
For example, in Figure 8, there are four and three alternatives
(Impl1, ..., Impln) for theSentiment AnalysisandLookup Prod-
uct tasks, respectively, corresponding to twelve combinations.

It is important to note that, conceptually, the choice of theim-
plementation of each task is orthogonal to decisions on taskor-
dering and the rest of the high-level optimization mechanisms.
As such, the techniques in this section can be combined with
techniques from the previous sections.

A brute force, and thus of exponential complexity approach
to finding the optimal physical implementation of each flow
task before its execution has appeared in [53]. This approach
models the problem as a state space search one and, although it
assumes that the sum cost objective function is to be optimized,
it can support other objective functions too. An interesting fea-
ture of this solution is that it explicitly explores the potential
benefit from processing sorted data. Also, the ordering and task
introduction algorithm in [49] allows for choosing parallel fla-
vors of tasks. The parallel flavors, apart from cloning the tasks
as many times as the degree of partitioned parallelism decided,
explicitly consider issues, such as splitting the input data, dis-
tributing them across all clones, and merging all their outputs.
These issues are reflected in an elaborate cost function as men-
tioned previously, which is used to decide whether paralleliza-
tion is beneficial.

Additionally to the optimization techniques above, there is
a set of multi-objective optimization approaches forImple-
mentation Selection. These multi-objective heuristics, apart
from the vertex cost, require further metadata that depend on

the specified optimization objectives. For example, several
multi-objective optimization approaches have been proposed
for flows, where each task is essentially an invocation to an on-
line WS that may not be always available; in such settings, the
aim of the optimizer is the selection of the best service for each
service type taking into account both performance and avail-
ability metadata.

Three proposals that target this specific environment are
[45, 50, 55]. To achieve scalability, each task is checked in
isolation, thus resulting inO(nm) time complexity, but at the
expense of finding local optimal solutions only. Kyriazis etal.
[45] consider availability, performance, and cost for eachtask.
As initial metadata, scalar values for each objective and for can-
didate services are assumed to be in place. The main focus of
the proposed solution is (i) on normalizing and scaling the ini-
tial values for each of the objectives and (ii) on devising aniter-
ative improvement algorithm for making the final decisions for
each task. The multi-objective function is either the optimiza-
tion of a single criterion under constraints on the others orthe
optimization of all the objectives at the same time. However,
in both cases, no optimality guarantees (e.g., finding a Pareto
optimal solution) are provided.

The proposal in [55] is similar in not guaranteeing pareto op-
timal solutions. It considers performance, availability,and reli-
ability for each candidate WS, where each criterion is weighted
and contributes to a single scalar value, according to whichser-
vices are ordered. The notion of reliability in this proposal
is based on its trustworthiness. [50] is another service selec-
tion proposal that considers the three objectives, namely per-
formance, monetary cost, and reliability in terms of successful
execution. The service metadata are normalized and the tech-
nique proposed employs a max-min heuristic that aims to select
a service based on its smallest normalized value. An additional
common feature of the proposals in [45, 50, 55] is that no ob-
jective function is explicitly targeted.

Another multi-objective optimization approach to choosing
the best implementation selection of each task consists of linear
complexity heuristics [44]. The main value of those heuris-
tics are that they are designed to be applied on the fly, thus
forming one of the few existing adaptive data flow optimization
proposals. Additionally, the technique proposed by Braga et
al. [29] extends the task ordering approach in [15] so that, for
each task, the most appropriate implementation is first selected.
None of these proposals employ a specific objective functionas
well. Finally, multi-objective WS selection mechanism canbe
performed with the help of ant colony optimization algorithms;
an example of applying this optimization technique for select-
ing WS instantiations between multiple candidates in a setting
where the workflows mainly consist of a series of remote WS
invocations appears in [31], which is further extended by Tao et
al. [68].

Based on the above descriptions, two main observations can
be drawn regarding the majority of the techniques. Firstly,they
address a multi-objective problem. Secondly, they are proposed
for a WS application domain. The latter may imply that trans-
ferring the results to dataflows where tasks exchange big vol-
umes of data directly may not be straightforward.
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4.7. Execution Engine Selection

The techniques in this category focus on choosing the best
execution engine for executing the data flow tasks in distributed
environments, where there are multiple options. For example,
assume that the sentiment analysis in our running example can
take place on either a DBMS server or a MapReduce cluster. As
previously, for the techniques using this mechanism, the vertex
cost of each task for each candidate execution engine is a nec-
essary piece of metadata for the optimization algorithm. Also,
corresponding techniques are orthogonal to optimizationsrefer-
ring to the high-level execution plan aspects.

For those tasks that can be executed by multiple engines, an
exhaustive solution can be adopted for optimally allocating the
tasks of a flow to different execution engines in order to meet
multiple objectives. The drawback is that an exhaustive solu-
tion in general does not scale for large number of flow tasks
and execution engines similarly to the case of task implemen-
tation selection. To overcome this, a set of heuristics can be
used for pruning the search space [8, 23, 12]. This technique
aims to improve not only the performance, but also the reliabil-
ity of ETL workflows in terms of fault tolerance. Additionally,
a multi-objective solution for optimizing the monetary cost and
the performance is to check all the possible execution plansthat
satisfy a specific time constraint; this approach cannot scale for
execution plans with high number of operators. The objective
functions are those mentioned in Section 4.1. The same ap-
proach to deciding the execution engine, can be used to choose
the task implementation in [8, 23, 12].

Anytime single-objective heuristics for choosing between
multiple engine have been proposed Kougka et al. [22]. Such
heuristics take into account, apart from vertex costs, the edge
costs and constraints on the capability of an engine to exe-
cute certain tasks and are coupled with a dynamic program-
ming pseudo-polynomial algorithm that can find optimal allo-
cation for a specific form of DAG shapes, namely linear ones.
The objective function is minimizing the sum of the costs for
both tasks and edges, extending the definition in Table 3: min
∑

c(vi , ei j ), wherei, j = 1 . . .n.
A different approach to engine selection has appeared in the

commercial tools in [27, 26]. There, the main option is ETL
operators to execute on a specialized data integration server,
unless a heuristic decides to delegate the execution of someof
the tasks to the underlying databases, after merging the tasks
and reformulating them as a single query.

Finally, the engine selection mechanism can be employed in
combination with configuration of execution engine parame-
ters. An example technique is presented by Huang et al. [39],
where the initial optimization step deals with the decisionof
the best type of execution engine and then, the configuration
parameters are defined, as it is analyzed in Section 4.8. This
technique is extended by Huang et al. [38], which focuses on
how to decide on the usage of a specific type of cloud machines,
namely spot instances. The problem of deciding whether to em-
ploy spot instances in clouds is also considered by Zhou et al.
[56].

4.8. Execution Engine Configuration

This type of flow optimization has recently received attention
due to the increasing number of parallel data flow platforms,
such as Hadoop and Spark. TheEngine Configurationmecha-
nism can serve as a complementary component of an optimiza-
tion technique that applies implementation or engine selection,
and in general, can be combined with the other optimization
mechanisms. For example, the rationale of the heuristic pre-
sented by Kumbhare et al. [44] (based on variable sized bin
packing) is also to decide the best implementation for each task
and then, dynamically configure the resources, such as the num-
ber of CPU cores allocated, for executing the tasks. A common
feature of all the solutions in this section is that they dealwith
parallelism, but from different perspectives depending on the
exact execution environment.

A specific type of engine configuration, namely to decide the
degree of parallelism in MapReduce-like clusters for each task
and parameters, such as the number of slots on each node, ap-
pears in [39]. The time complexity of this optimization tech-
nique is exponential. This is repeated for each different type of
machines (i.e., different type of execution engine), assuming a
context where several heterogeneous clusters are at user’sdis-
posal. Both of these techniques have been proposed for cloud
environments and aim to optimize multiple optimization crite-
ria.

In general, execution engines come with a large number of
configuration parameters and fine tuning them is a challeng-
ing task. For example, MapReduce systems may have more
than one hundred configuration parameters. The proposal in
[48] aims to provide a principle approach to their configura-
tion. Given the number of MapReduce slots and hardware de-
tails, the proposed algorithm initially checks all combinations
of four key parameters, such as the number of map and reduce
waves, and whether to use compression or not. Then, the values
of a dozen other configuration parameters that have significant
impact on performance are derived. The overall goal is to re-
duce the execution time taking to account the pipeline nature of
MapReduce execution.

An alternative configuration technique is employed by Lim et
al. [46], which leverages the what-if engine initially proposed
by Herodotou et al. [69]. This engine is responsible to con-
figure execution settings, such as memory allocation and num-
ber of map and reduce tasks, by answering questions on real
and hypothetical input parameters using a random search algo-
rithm. What-if analysis is also employed by [37] for optimally
configuring memory configurations. The distinctive featureof
this proposal is that it is dynamic in the sense that it can take
decisions at runtime leading to task migrations.

In a more traditional ETL setting, apart from the optimiza-
tions described previously, an additional optimization mecha-
nism has been proposed by Simitsis et al. [49] in order to define
the degree of parallelism. Specifically, due to the large size of
data that a workflow has to process, data is partitioned to be ex-
ecuted following the intra-operator parallelism paradigm. The
parallelism is considered profitable whenever the overheadof
data partitioning and merging does not incur an overhead higher
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Table 4: Experimental Evaluation of Proposals
Evaluation

(Refs.,Year)
Workflow

Type
Data
Type

Implemen-
tation
Envir.

Max.
DAG
Size

([36],1998) Synthetic Synthetic Real 4
([30],1999) Synthetic Synthetic Real 16
([18],1999) Synthetic Synthetic Simul. 15
([24],2005) Synthetic Synthetic Simul. 70
([34],2005) Real Real Real N/A
([55],2005) Synthetic Synthetic Simul. 200
([15],2006) Synthetic Synthetic Real 4
([53],2007) Synthetic Synthetic Simul. 15
([54],2007) Synthetic Synthetic Real N/A
([29],2008) Real Real Simul. 7
([45],2008) Synthetic Synthetic Real 8
([31],2009) Synthetic Synthetic Simul. 120
([43],2010) Synthetic Synthetic Simul. 60
([49],2010) Real Synthetic Real 80
([41],2011) Real Synthetic Real 500

([51, 52],2011) Synthetic Synthetic Simul. 100
([21],2012),
([40],2015)

Real Real Real 15

([46],2012) Real Synthetic Real 14
([8],2012),

([23, 12],2013)
Real Real Real 15

([39],2013),
([38],2015)

Real Synthetic Real N/A

([44],2013) Synthetic Synthetic Simul. 4
([22],2014) Real Synthetic Simul. 200
([48],2014) Real Synthetic Real < 10
([32],2014) Real Real Real N/A
([33],2015) Real Synthetic Real N/A
([37],2015) Real Real Real N/A
([20],2015),
([42],2014)

Synthetic Synthetic Simul. 200

([47],2015) Real Synthetic Real 11
([56],2015) Real Synthetic Both > 10000

then the expected benefits. Sometimes it might be worth inves-
tigating whether splitting an input dataset into partitions could
reduce the latency in ETL flow execution on a single server as
well. An example study can be found in [47].

Another approach to choosing the degree of parallelism ap-
pears in [41], where a set of greedy and simulated annealing
heuristics that decide the degree of parallelism are proposed.
This proposal considers two objectives, performance and mon-
etary cost assuming that resources are offered by a public cloud
at a certain price. The objective function targets either the min-
imization of the sum of the task costs constrained by a defined
monetary budget, or the minimization of the monetary cost un-
der a constraint on runtime. Additionally, both metrics canbe
minimized simultaneously using an appropriate objective func-
tion, which expresses the speedup when budget is increased.

Another optimization technique in [33] proposes a set of op-
timizations at the chip processor level and more specifically,
proposes heuristics to drive compiler decisions on whetherto
execute low-level commands in a pipelined fashion or to em-
ploy SIMD (single instruction multiple data) parallelism.In-
terestingly, these optimizations are coupled with traditional
database-like ones at a higher level, such as pushing selections
as early as possible.

5. Evaluation Approaches

Here, we describe the evaluation methods used in each pro-
posed work. We can divide the proposals in three categories.

The first category includes the optimization proposals that
are theoretical in their nature and their results are not accom-
panied by experiments. Examples of this category are [28, 35].
The second category consists of optimizations that have found
their way into data flow tools; the only examples in this cate-
gory are [26, 27].

The third category covers the majority of the proposals, for
which experimental evaluation has been provided. We are
mostly interested in three aspects of such experiments, namely
theworkflow typeused in the experiments, thedata typeused to
instantiate the workflows, and theimplementation environment
of the experiments. In Table 4, the experimental evaluationap-
proaches are summarized, along with the maximum DAG size
(in terms of number of tasks) employed. Specifically, the im-
plementation environment defines the execution environment of
a workflow during the evaluation procedure. The environment
can be areal-world one, which considers either the customiza-
tion of an existing system to support the proposed optimization
solutions or the design of a prototype system, which is essen-
tially a new platform, possibly designed from scratch and tai-
lored to support the evaluation. A common approach consists
of a simulationof a real execution environment. Discussing
the pros and cons of each approach is out of our scope, but in
general, simulations allow the experimentation with a broader
range of flow types, whereas real experiments can better reveal
the actual benefits of optimizations in practice.

As shown in Table 4, the majority of the optimization tech-
niques have been evaluated by executing workflows in a simu-
lated environment. The real environments that have been em-
ployed are as follows. The techniques in [8, 23, 49, 12] that
focused on (complex) ETL data flows have been evaluated with
the help of extensions to the Pentaho Data Integration (Kettle)
tool, a commercial database, and a MapReduce engine. The
proposals in [21, 40] have been tested in the Stratosphere a Big
Data Analytics platform [62]. A MapReduce-inspired proto-
type, called Cumulon, is used for the evaluation of the tech-
niques in [39, 38]. Other MapReduce extensions have been
employed in [37, 46, 48]. To evaluate techniques initially pro-
posed for flows consisting of calls to WSs, both ad-hoc proto-
types [45, 15] and extensions to engines, such as Taverna [32]
and Web-Sphere Process Server [54] have been used. Part of the
evaluation of [56] involved running Pegasus on a public cloud.
The techniques in [33] and [41] are part of broader prototype
systems, called Tupleware and ADP, respectively. Finally,the
early works on database queries including UDFs were imple-
mented in a DBMS [30, 36].

The type of the workflows considered are either synthetic or
real-world. In the former case, arbitrary DAGs are produced,
e.g., based on the guidelines in [70]. In the latter case, theflow
structure is according to real-world cases. For example, the
evaluation of [31, 32, 34, 41, 22, 56] is based on real-world sci-
entific workflows, such as the Montage and Cybershake ones
described in [71]. Another example of real-world workflows
are derived by TPC-H queries (used for some of the evaluation
experiments in [21, 46, 40] along with real world text mining
and information extraction examples). In [8, 23, 49, 12], the
evaluation of the optimization proposals is based on workflows
that represent arbitrary, real-world data transformations and text
analytics. The case studies in [33, 46] include standard analyti-
cal algorithms, such as PageRank, k-means, logistic regression,
and naive bayes.

The datasets used for workflow execution may affect the
evaluation results, since they specify the range of the sta-
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tistical metadata considered. The processed datasets can
be either synthetic or real ones extracted by repositories,
such as the Twitter repository with sample data of real
tweets. Examples of real datasets used in [21, 40] in-
clude biomedical texts, a set of Wikipedia articles, and
datasets from DBpedia. Additionally, Braga et al. [29]
have evaluated the proposed optimization techniques us-
ing real data extracted bywww.conference-service.com,
www.accuweather.com, andwww.bookings.com. Typically,
when employing standard scientific flows, the datasets used are
also fixed; however, in [22] a wide-range of artificially created
metadata have been used to cover more cases.

Finally, for many techniques, only small data flows compris-
ing no more than 15 nodes were used, or the information with
regards to the size of the flows could not be derived. In the
latter case, this might be due to the fact that well-known algo-
rithms have been used (e.g., k-means in [33] and matrix-multi-
plication in [39]) without explaining how these algorithmsare
internally translated to data flows. All experiments with work-
flows comprising hundreds of tasks used synthetic datasets.

6. Discussion on findings

Data flow optimization is a research area with high poten-
tial for further improvements given the increasing role of data
flows in modern data-driven applications. In this survey, we
have listed more than thirty research proposals, most of which
have been published after 2010. In the previous sections, we
mostly focused on the merits and the technical details of each
proposal. They can lead to performance improvements, and
more importantly, they have the potential to lift the burdenof
manually fixing all implementation details from the data flow
designers, which is a key motivation for automated optimiza-
tion solutions. In this section, we complement any remarks
made before with a list of additional observations, which may
also serve as a description of directions for further research:

• In principle, the techniques described previously can serve
as building block towards more holistic solutions. For in-
stance, task ordering can, in principle, be combined with
i) additional high-level mechanisms, such as task introduc-
tion, removal, merge, and decomposition; and ii) low-level
mechanisms, such as engine configuration, thus yielding
added benefits. The main issue arising when mechanisms
are combined is the increased complexity. An approach
to mitigating the complexity is a two-phase approach, as
commonly happens in database queries. Another issue is
to determine which mechanism should first be explored.
For some mechanisms, this is straight-forward, e.g., de-
composition should precede task ordering and task re-
moval should be placed afterwards. But, for mechanisms,
such as configuration, this is unclear, e.g., whether it is
beneficial to first configure low-level details before higher
level ones remains an open issue.

• In general, there is little work on low-complexity, holis-
tic, and multi-objective solutions. Toward this direction,

Simitsis et al. [49] considers more than one objective and
combines mechanisms at both high and low level execu-
tion plan details; for instance, both task ordering and en-
gine configuration are addressed in the same technique.
But clearly more work is needed here. In general, most of
the techniques have been developed in isolation, each one
typically assuming a specific setting and targeting a subset
of optimization aspects. This and the lack of a common
agreed benchmark makes it difficult to understand how ex-
actly they compare to each other, the details of how the
various proposals can be combined in a common frame-
work and how they interplay.

• There seems to be no common approach to evaluating the
optimization proposals. Some proposals have not been
adequately tested in terms of scalability, since they have
considered only small graphs. In some data flow evalua-
tions, workloads inspired from benchmarks such as TPC-
DI/DS have been employed, but as most of the authors re-
port as well, it is doubtful whether these benchmarks can
completely capture all dimensions of the problem. There
is a growing need for the development of systematic and
broadly adopted techniques to evaluate optimization tech-
niques for data flows.

• A significant part of the techniques covered in this sur-
vey have not been incorporated in tools, nor have been ex-
ploited commercially. Most of the optimization techniques
described here, especially regarding the high level execu-
tion plan details, have not been implemented in real data
flow systems apart from very few exceptions, as explained
earlier. Hence, the full potential and practical value of the
proposals have not been investigated in actual execution
conditions, despite the fact that evaluation results thus far
are shown to provide improvements by several orders of
magnitude over non-optimized plans.

• A plethora of objective functions and cost models have
been investigated, which, to a large extent, they are com-
patible with each other, despite the fact that original pro-
posals have examined them in isolation. However, it is
unclear whether any of such cost models can capture as-
pects, such as the execution time of parallel data flows,
which are very common nowadays, in a fairly accurate
manner. A more sophisticated cost model should take into
account sequential, pipelined and partitioned execution in
a unified manner, essentially combining the sum, bottle-
neck and critical path cost metrics.

• Developing adaptive solutions that are capable of revising
the flow execution plan on the fly is one important open
issue, especially for online, continuous, and stream pro-
cessing. Also, very few optimization techniques consider
the cost of the graph edges. Not considering edge meta-
data does not reflect entirely real data flow execution in
distributed settings, where the cost of transmitting data de-
pends both on sender and receiver.
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• In this survey, we investigated single flow optimizations.
Optimizing multiple flows simultaneously, is another area
requiring attention. An initial effort is described by Jo-
vanovic et al. [72], which builds upon the task ordering
solutions of [24].

• There is early work on statistics collection [11, 73, 74, 75],
but clearly, there is more to be done here given that
without appropriate statistics, cost-based optimizationbe-
comes problematic and prone to significant errors.

• On the other hand, a different school of thought advocates
that in contrast to relational databases, automated opti-
mization cannot help in practice in flow optimization due
to flow complexity and increased difficulty in maintain-
ing flow statistics, and developing accurate cost models.
Based on that, there is a number of commercial flow exe-
cution engines (e.g., ETL tools) that instead of offering a
flow optimizer they provide users with tips and best prac-
tices. No doubt, this is an interesting point, but we con-
sider this category as out of the scope of this work.

Given the above observations and the trend in developing
new solutions in the recent years, data flow optimization seems
to be technology in evolution rather than an area, where most
significant problems have been resolved. Moreover, providing
solutions to all these problems is more likely to yield signifi-
cantly different and more powerful new approaches to data flow
optimization, rather than delta improvements on existing solu-
tions.

7. Additional Issues in Data-centric Flow Optimization

Additional issues are split into four parts. First, we describe
optimizations enabled in current state-of-the-art parallel data
flow systems, which, however, cannot cover arbitrary DAGs
and tasks, and as such, have not been included in the previous
sections. Next, we discuss techniques that, although they do not
perform optimization in their own, they could, in principle, fa-
cilitate optimization. We provide a brief overview of optimiza-
tion solutions for the WEP execution layer, complementing the
discussion of existing scheduling techniques in Section 8.We
conclude with a brief note on implementing the optimization
techniques into existing systems.

7.1. Optimization In Massively Parallel Data Flow Systems

A specific form of data flow systems are massively par-
allel processing (MPP) engines, such as Spark and Hadoop.
These data flow systems can scale to a large number of com-
puting nodes and are specifically tailored to big data manage-
ment taking care of parallelism efficiency and fault tolerance
issues. They accept their input in a declarative form (e.g.,
PigLatin [76], Hive, SparkSQL), which is then automatically
transformed into an executable DAG. Several optimizations
take place during this transformation.

We broadly classify these optimizations in two categories.
The first category comprises database-like optimizations,such

as pushing filtering tasks as early as possible, choosing thejoin
implementation, and using index tables, corresponding totask
orderingand implementation selection, respectively. This can
be regarded as a direct technology transfer from databases to
parallel data flows and to date, these optimizations do not cover
arbitrary user-defined transformations.

The second category is specific to the parallel execution
environment with a view to minimizing the amount of data
read from disk, transmitted over the network, and being pro-
cessed. For example, Spark groups pipelining tasks in larger
jobs (called stages) to benefit from this type of parallelism.
Also, it leverages cached data and columnar storage, performs
compression, and reduces the amount of data transmitted dur-
ing data shuffling through early partial aggregation, when this
is possible. Grouping tasks into pipelining stages is a formof
runtime scheduling. Early partial aggregation can be deemed
as atask introductiontechnique. The other forms of of opti-
mizations (leveraging cached data, columnar storage, and com-
pression) can be deemed as specific forms ofimplementation
selection. Flink is another system employing optimizations, but
it has not yet incorporated all the (advanced) optimizationpro-
posals in its predecessor projects, as described in [21, 40]. The
proposal in [77] is another example that proposes optimizations
for a specific operator, namelyParFOR.

We do not include these techniques in Tables 1 and 2 be-
cause they apply to specific DAG instances and have not ma-
tured enough to benefit generic data flows including arbitrary
tasks.

7.2. Techniques Facilitating Data-centric Flow Optimization
Statistical metadata, such as cost per task invocation and se-

lectivity, play a significant role in data flow optimization as dis-
cussed previously. [74, 11, 75, 73] deal with statistics collec-
tion and modeling the execution cost of workflows; such issues
are essential components in performing sophisticated flow op-
timization. [78] analyze the properties of tasks, e.g., multiple-
input vs single-input ones; such properties along with depen-
dency constraint information complement statistics as thebasis
on top of which optimization solutions can be built.

Some techniques allow for choosing among multiple imple-
mentations of the same tasks using ontologies, rather than per-
forming cost-based or heuristic optimization [79]. In [80], im-
proving the flow with the help of user interactions is discussed.
Additionally, in [7], different scheduling strategies to account
for data shipping between tasks are presented, without however
proposing an optimization algorithm that takes decisions as to
which strategy should be employed.

Apart from the optimizations described in Section 4, the pro-
posal in [49] considers also the objective of data freshness. To
this end, the proposal optimizes the activation time of ETL data
flows, so that the changes in data sources are reflected on the
state of a Data Warehouse within a time window. Nevertheless,
this type of optimization objective leads to techniques that do
not focus on optimizing the flow execution plan per se, which
is the main topic of this survey.

For the evaluation of optimization proposals, benchmarks
for evaluating techniques are proposed in [70, 81]. Finally, in

17



[82, 83], the significant role of correct parameter configuration
in large-scale workflow execution is identified and relevantap-
proaches are proposed. Proper tuning of the data flow execution
environment is orthogonal and complementary to optimization
of flow execution plan.

7.3. On Scheduling Optimizations in Data-centric Flows

In general, data flow execution engines tend to have built-
in scheduling policies, which are not configured on a single
flow basis. In principle, such policies can be extended to take
into account the specific characteristics of data flows, where
the placement of data and the transmission of data across tasks,
represented by the DAG edges, requires special attention [84].
For example, in [85], a set of scheduling strategies for improv-
ing the performance through the minimization of memory con-
sumption and the execution time of Extract-Transform-Load
(ETL) workflows running on a single machine is proposed. As
it is difficult to execute the data in pipeline in ETLs due to the
blocking nature of some of the ETL tasks, the authors suggest
splitting the workflow into several sub-flows and apply different
scheduling policies if necessary. Finally, in [86], the placement
of data management tasks is decided according to the mem-
ory availability of resources taking into account the trade-off
between co-locating tasks and the increased memory consump-
tion when running multiple tasks on the same physical compu-
tational node.

A large set of scheduling proposals target specific execution
environments. For example, the technique in [87] targets shared
resource environments. Proposals, such as [88, 31, 83, 89, 90,
91] are specific to grid and cloud data-centric flow scheduling.
[92] discusses optimal time schedules given a fixed allocation
of tasks to engines, provided that the tasks belong to a linear
workflow.

Also, a set of optimization algorithms for scheduling flows
based on deadline and time constraints is analyzed in [93, 94].
Another proposal of flow scheduling optimization is presented
in [95] based on soft deadline rescheduling in order to deal
with the problem of fault tolerance in flow executions. In [88],
an optimization technique for minimizing the performance fluc-
tuations that might occur by the resource diversity, which also
considers deadlines, is proposed. Additionally, there is aset of
scheduling techniques based on multi-objective optimization,
e.g., [96].

7.4. On incorporation Optimization Techniques into Existing
Systems

Without loss of generality, there are two main types of de-
scribing the data flow execution plan in existing tools and pro-
totypes: either in an appropriately formatted text file or using
internal representations in the code. These two approachesare
exemplified in systems, like the Pentaho Kettle, Spark, Taverna,
and numerous others. In the former case, an optimization tech-
nique can be inserted as a component that processes this text
file and produces a different execution plan. As an example, in
Pentaho, each task and each graph edge are described as dif-
ferent XML elements in an XML document. Then, a technique

that performs task reordering can consist of an independentpro-
gramming module that parses the XML file and modifies the
edge elements. On the other hand, systems, such as Spark,
transform the flow submitted by the user in a DAG, but without
exposing a high level representation to the end user. The in-
ternal optimization component, called Catalyst, then performs
modifications to the internal code structure that captures the ex-
ecutable DAG. Extending the optimizer to add new techniques,
such as those described in this survey, requires using the Cata-
lyst extensibility points. The second approach seems to require
more effort from the developer and be more intrusive.

8. Related Work

To the best of our knowledge, there is no prior survey or
overview article on data flow optimization; however, there are
several surveys on related topics.

Related work falls into two categories: (i) surveys on generic
DAG scheduling and on narrow-scope scheduling problems,
which are also encountered in data flow optimization; and (ii)
overviews of workflow systems.

DAG scheduling is a persisting topic in computing and has
received a renewed attention due to the emergence of Grid and
cloud infrastructures, which allow for the usage of remote com-
putational resources. For such distributed settings, the pro-
posals tend to refer to the WEP execution layer and to focus
on mapping computational tasks ignoring the data transfer be-
tween them, or assume a non-pipelined mode of execution that
does not fit will into data-centric flow setting [97]. A more re-
cent survey of task mapping is presented in [98], which dis-
cusses techniques that assign tasks to resources for efficient
execution in Grids under the demanding requirements and re-
source allocation constraints, such as the dependencies between
the tasks, the resource reservation, and so on. In [99], an
overview of the pipelined workflow time scheduling problem is
presented, where the problem formulation targets streaming ap-
plications. In order to compare the effectiveness of the proposed
optimization techniques, they present a taxonomy of workflow
optimization techniques taking into account workflow charac-
teristics, such as the structure of flow (i.e., linear, fork,tree-
shaped DAGs), the computation requirements, the size of data
to be transferred between tasks, the parallel or sequentialtask
execution mode, and the possibility of executing task replicas.
Additionally, the taxonomy takes into consideration a perfor-
mance model that describes whether the optimization aims to
a single or multiple objectives, such as throughput, latency, re-
liability, and so on. However, in data-centric flows, tasks are
activated upon receipt of input data and not as a result of an ac-
tivation message from a controller, as assumed in [99]. Noneof
the surveys above provides a systematic study of the optimiza-
tions at the WEP generation layer.

The second class of related work deals with a broader-scope
presentation of workflow systems. The survey in [2] aims to
present a taxonomy of the workflow system features and ca-
pabilities to allow end users to take the best option for each
application. Specifically, the taxonomy is inspired by the work-
flow lifecycle and categorizes the workflow systems according
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to the lifecycle phase they are capable of supporting. How-
ever, the optimizations considered suffer from the same limi-
tations as those in [97]. Similarly, in [100], an evaluationof
the current workflow technology is also described, considering
both scientific and business workflow frameworks. The control
and data flow mechanisms and capabilities of workflow sys-
tems both for e-science, e.g., Taverna and Triana, and business
processes, e.g., YAWL and BPEL-based engines, are discussed
in [1]. [101] discusses how leading commercial tools in the
data analysis market handle SQL statements, as a means to per-
form data management tasks within workflows. Liu et al. [14]
focus on scientific workflows, which are an essential part of
data flows, but does not delve into the details of optimization.
Finally, Jovanovic et al. [102] present a survey that aims to
present the challenges of modern data flows through different
data flow scenarios. Additionally, related data flow optimiza-
tion techniques are summarized, but not surveyed, in order to
underline the importance of low data latency in Business Intel-
ligence (BI) processes, while an architecture of next generation
BI systems that manage the complexity of modern data flows in
such systems is proposed.

Modeling and processing ETL workflows [103] focuses on
the detailed description of conceptual and logical modeling of
ETLs. Conceptual modeling refers to the initial design of ETL
processes by using UML diagrams, while the logical modeling
refers to the design of ETL processes taking into account re-
quired constraints. This survey discusses the generic problems
in ETL data flows, including optimization issues in minimizing
the execution time of an ETL workflow and the resumption in
case of failures during the processing of large amount of data.

Data flow optimization bears also similarities with query op-
timization over Web Services (WSs) [104], especially when the
valid orderings of the calls to the WSs are subject to depen-
dency constraints. This survey includes all the WSs related
techniques that can also be applied to data flows.

Part of the optimizations covered in this survey can be
deemed as generalizations of the corresponding techniquesin
database queries. An example is the correspondence between
pushing selections down in the query plan and moving filtering
tasks as close to data source as possible [105]. Comprehen-
sive surveys on database query optimization are in [106, 107],
whereas lists of semantic equivalence rules between expres-
sions of relational operators that provide the basis for query
optimization can be found in classical database textbooks (e.g.,
[65]). However, as discussed in the introduction, there arees-
sential differences between database queries and data flows,
which cannot be described as expressions over a limited set of
elementary operations. At a higher level, data flow optimization
covers more mechanisms (e.g., task decomposition and engine
selection) and a broader setting with regards to the criteria con-
sidered and the metadata required.

Nevertheless, it is arguable that data flow task ordering bears
similarities to optimization of database queries containing user-
defined functions (UDFs) (or, expensive predicates), as reported
in [30, 36]. This similarity is based on the intrinsic correspon-
dence between UDFs and data flow tasks, but there are two
main differences. First, the dependency constraints considered

in [30, 36] refer to pairs of a join and a UDF, rather than be-
tween UDFs. As such, when joins are removed and only UDFs
are considered, the techniques described in these proposals are
reduced to unconstrained filter ordering. Second, the straight-
forward extensions to the proposals [30, 36] are already covered
and improved by solutions targeting data flow task ordering ex-
plicitly as discussed in Section 4.1.

9. Summary

This survey covers an emerging area in data management,
namely optimization techniques that modify a data-centric
workflow execution plan prior to its execution in an automated
manner. The survey first provides a taxonomy of the main di-
mensions characterizing each optimization proposal. These di-
mensions cover a broad range, from the mechanism utilized to
enhance execution plans to the distribution of the setting and the
environment for which the solution is initially proposed. Then,
we present the details of the existing proposals, divided into
eight groups, one for each of the identified optimization mech-
anisms. Next, we present the evaluation approaches, focusing
on aspects, such as the type of workflows and data used during
experiments. We complete this survey with a discussion of the
main findings, while also, for completeness, we briefly present
tangential issues, such as optimizations in massively parallel
data flow systems and optimized workflow scheduling.
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[99] A. Benoit, U. V. Çatalyürek, Y. Robert, E. Saule, A survey of pipelined
workflow scheduling: Models and algorithms, ACM Comput. Surv. 45
(2013) 50:1–50:36.

[100] A. Barker, J. I. van Hemert, Scientific workflow: A survey and research
directions., in: PPAM, volume 4967 ofLecture Notes in Computer Sci-
ence, 2007, pp. 746–753.

[101] M. Vrhovnik, H. Schwarz, S. Radeschütz, B. Mitschang, An overview
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