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M Abstract

Workflow technology is rapidly evolving and, rather thanreiimited to modeling the control flow in business processes
becoming a key mechanism to perform advanced data managesueim as big data analytics. This survey focuses on daigice
workflows (or workflows for data analytics or data flows), wdarkey aspect is data passing through and getting manigidgte
—Sequence of steps. The large volume and variety of datapthelexity of operations performed, and the long time suchkflmwvs
take to compute give rise to the need for optimization. Ineyah data-centric workflow optimization is a technologwirolution.
D This survey focuses on techniques applicable to workflowsprtsing arbitrary types of data manipulation steps andasgin
(/5 inter-dependencies between such steps. Further, it setvesfold purpose. Firstly, to present the main dimensidrib@relevant
optimization problems and the types of optimizations treatw before flow execution. Secondly, to provide a concisaew of
—ithe existing approaches with a view to highlighting key olbagons and areas deserving more attention from the corityaun
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(N 1. Introduction so on; transmitting and sharing data across tasks is a second
class citizen. In control-centric workflows, only a subsethe
graph nodes correspond to activities, while the remainéer d

[~ Workflows aim to model and execute real-world intertwined
O ‘orinterconnected processes, namethaksor activities While note events and gateways, as in the BPMN standardata-

this is still the case, workflows play an increasingly signifi o pnyric workflows(or workflows for data analytics or simply

cant r_oIe in process;_ing veryllarge volume§ Of,O,'ata' possitly  j5ta rova), the graph is typically acyclic (directed acyclic
[~ .der highly demanding requirements. Scientific workflow SYS‘graph - DAG). The nodes of the DAG represent solely actions
« ‘tems tailored to data-intensive e-science applicatious haen

! . = : ) related to the manipulation, transformation, access ardgé
> around since the last decade, e..,[[l, 2]. This trend is howag, data, e.g., as ilﬂ[@ 718 9] and in popular data flow systems

.= 'days complemented by the evolution of workflow technologyg,cp, a5 pentaho Data Integration (Kettle) and Spark. The to-
7S\ o serve (big) data analysis, in settings such as busingsis in yang passing through the tasks correspond to processed data
g ligence, e.g.[3], and business process management(41.9., e control is modeled implicitly assuming that each task ma

Additionally, massively parallel engines, such as Spamk/@-  giart executing when the entire or part of the input becomes
coming increasingly popular for designing and executingwo 5 ijaple. This survey considers data-centric flows esailis
flows. _ , Executing data-centric flowsfeciently is a far from trivial
Broadly, there are two big workflow categories, namelyjsq e Even in the most widely used data flow tools, flows are
control—centrlcan_ddata-centrlcAworkflow is commonly rep- commonly designed manually. Problems in the optimality of
resented as a directed graph, where each task correspondsylqe gesigns stem from the complexity of such flows and the
a node in the graph and the edges representaimrol flow ¢, that in some applications, flow designers might not Ise sy
or thedata flow respectively. Theeontrol-centric workflows 1o yg experts [10] and consequently, they tend to design with
are most often encountered in business process managemglfy, semantic correctness in mind. In addition, executiogs|
[5] and they emphasize the passing of control across tasks agy, dynamic environment may entail that an optimized design

gateway semantics, such as branching execution, itesa@onl  j, o past may behave suboptimally in the future due to chang
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gounaria@csd.auth.gr (Anastasios Gounarisjlkis@hpe.com (Alkis IHereafter, these three terms will be used interchangeétmyterms work-
Simitsis) flow and flow will be used interchangeably, too.

January 27, 2017


http://arxiv.org/abs/1701.07723v1

ing conditionsZ]. the methodology for choosing the techniques included in the
The issues above call for a paradigm shift in the way dataurvey and their dimensions, on which we focus. Finally, we
flow management systems are engineered and more speciammarize the survey contributions.
cally, there is a growing demand for automated optimization
of flows. An analogy with database query processing, wher@.1. Our Context within WfMSs
declarative statements, e.g., in SQL, are automaticallygua The life cycle of a workflow can be regarded as an iteration of
optimized, and then passed on to the execution engine isdrawfour phases, which cover every stage from the workflow mod-
But data flow optimization is more complex, because taskd neeeling until its output analysis [14]. The four phases eoen-
not belong to a predefined set of algebraic operators withr cle position, deployment, executi,mndanalysis[lﬂ]. The type of
semantics and there may be arbitrary dependencies amang theorkflow optimization, on which this work focuses, is part of
execution order. In addition, in data flows there may be optithe deployment phase where the concrete executable workflow
mization criteria apart from performance, such as religtaind  plan is constructed defining execution details, such asrhe e
freshness depending on business objectives and execution gjine that will execute each task. Additionally, Liu et ﬂ}l
vironments([18]. This survey covers optimization techeifu  introduce a functional architecture for each data-ceiock-
applicable to data flows, including database query optimizaflow Management System (WfMS), which consists of five lay-
tion techniques that consider arbitrary plan operatogs, @ser-  ers: i)presentatiopnwhich comprises the user interface tiger
defined functions (UDFs), and dependencies between them. Bervices such as the workflow monitoring and data provision
the contrary, we do not aim to cover techniques that perforntomponents; iii\workflow execution plan (WEP) generatjon
optimizations considering solely specific types of taskshsas ~ where the workflow plan is optimized, e.g., through workflow
filters, joins and so on. refactoring and parallelization, and the details neededhky
The contribution of this survey is the provision of a taxon- execution engine are defined; MJEP executionwhich deals
omy of data flow optimization techniques that refer to the flowwith the scheduling and execution of the (possibly optird)ze
plan generation layer. In addition, a concise overview @f th workflow, but also considers fault-tolerance issues, arallfin
existing approaches with a view to (i) explaining the techhi v) the infrastructure layer, which provides the interface be-
details and the distinct features of each approach in a waty thtween the workflow execution engine and the underlying phys-
facilitates result synthesis; and (ii) highlighting stgéims and  ical resources.
weaknesses, and areas deserving more attention from the com According to the above architecture, one of the roles of a
munity is provided. WIMS is to compile and optimize the workflow execution plans
The main findings are that on the one hand, big advancgsist before the workflow execution. Optimization of data fiow
have been made and most of the aspects of data flow optimizas conceived in this work, forms an essential part of the WEP
tion have started to be investigated. On the other hand, datgeneration layer and not of the execution layer. Althougineh
flow optimization is rather a technology in evolution. Ca@myt  might be optimizations in the WEP execution layer as wed,,e.
to query optimization, research so far seems to be lesssyste while scheduling the WEP, these are out of our scope. More
atic and mainly consists of ad-hoc techniques, the comibimat  specifically, the mapping of flow tasks to concrete procegsin
of which is unclear. nodes during execution, e.g, ta¥kof the flow should run on
The structure of the rest of this article is as follows. Theprocessing nod¥, is traditionally considered to be a schedul-
next section describes the survey methodology and prodiles ing activity that is part of WEP execution layer rather thae t
tails about the exact context considered. Sedfion 3 present WEP generation one, on which we focus. Finally, we use the
taxonomy of existing optimizations that take place beftve t terms task and activity interchangeably, both referringrit-
flow enactment. Sectidd 4 describes the state-of-the-@lit te ties that are not yet instantiated, activated or executed.
niques grouped by the main optimization mechanism they em-
ploy. Sectiofib presents the ways in which optimization pssp 2.2. Techniques Covered
als for data-centric workflows have been evaluated. Sefion The main part of this survey covers all the data flow opti-
highlights our findings. Sectidl 7 touches upon tangent&! fl - mjzation techniques that meet the following criteria to tiest
optimization-related techniques that have recently besmeld  of authors’ knowledge:
oped along with scheduling optimizations taking place migiri ) ) _
flow execution. Sectiofl8 reviews surveys that have been con- ® They refer to the WEP generation layer in the architecture
ducted in related areas and finally, Secfibn 9 concludesdhe p described above.

per. e They refer to techniques that are applicable to any type of
tasks rather than being tailored to specific types, such as
2. Survey Methodology filters and joins.

We first detail our context with regards to the architecture ® The partial ordering of the flow tasks is subject to depen-

of a Workflow Management System (WfMS). Then we explain dency (or, else precedence) constraints between tasks, as
is the generic case for example of scientific and data anal-

ysis flows; these constraints denote whether a specific task
2The termgechnique, proposakndwork will be used interchangeably. must precede another task or not in the flow plan.




We surveyed all types of venues where relevant techniqueke one or more criteria of the optimization process; (lig t
are published. Most of the covered works come from theSolution Typeslefining whether an optimization solution is ac-
broader data management and e-science community, but thererate or approximate with respect to the underlying foanul
are proposals from other areas, such as algorithms. Weralso ition of the optimization problem; (iv) th&daptivityduring the
clude techniques that were proposed without generic data flo flow execution; (v) theExecution Environmerdf the flow and
in mind, but meet our criteria and thus are applicable to gene its distribution; (vi) theMetadatanecessary to apply the opti-
data flows. An example is the proposal for queries over Welmization technique; and finally, (vii) thapplication Domain
Services (WSs) irm5]. for which each optimization technique is initially propdse

2.3. Technique Dimensions Considered 3. Taxonomy of Existing Solutions

We assume that the user initially defines the flow either at
a high-level non-executable form or in an executable forat th
is not optimized. The role of the optimizations considered i
to transform the initial flow into an optimized ready-to-bee

Based on the dimensions identified above, we build a tax-
onomy of existing solutions. More specifically, for each di-
mension, we gather the values encountered in the techniques

cuted ond Analogously to query optimization, it is convenient COVered hereb;;. Ln other V(VjO“?'S' the taxopdomy:j (;flven by the
to distinguish between high-level and low-level flow detail CY'Tent state-of-the-art and aims to provide a bird's eyswi
! §f today’s data flow optimization techniques. The taxonosy i

presented in Figurel 1 and analyzed below, followed by a dis-

details, whereas the latter include all the informationdeeke c_ussion of th_e maintechni_ques proppse_d to date in the next se
for execution. In order to drive the optimization, a set otane tion. In the figure, _each dimension (in "th que).can tgke on
data is assumed to be in place. This metadata can be statfdl More values. Single-value and mult-value Fhmensmns ar
tics, e.g., cost per task invocation and size of task output p shown as yellow and green rectangles, respectively.
input data item, information about the dependency comgai
between tasks, that is a partial order of tasks, which must b
always preserved to ensure semantic correctness, or pes t
of information as explained in this survey.

To characterize optimizations that take place before thve flo
execution (or enactment), we pose a set of questions when e
amining each existing proposal:

sequencing, at a higher level than that of complete exatutio

%.1. Flow Optimization Mechanisms
A data flow is typically represented as a directed acyclic
graph (DAG) that is defined & = (V, E), whereV denotes
the nodes of the graph corresponding to a set of tasksEand
(epresents a set of pair of nodes, where each pair denotes the
data flow between the tasks. If a task outputs data that cannot
be directly consumed by a subsequent task, then data transfo
1. What is the gect on the execution planWhich aims to  mation needs to take place through a third task; no data-trans
identify the type of incurred enhancements to the initialformation takes place through an edge. Each graph element,

flow plan. either a vertex or an edge, is associated with a triplet of the
2. Why? which asks for the objectives of the optimization. form < Impl, ExecEngConfig >, either explicitly or implic-
3. How?, which aims to clarify the type of the solution. itly. The Impl property denotes the task or edge implementa-

4. When?to distinguish between cases where the WEP gent—'on’ ExecEngorowdeg the engine that W'!I execute each ele-
ent; and finallyConfigcaptures the configuration of the ex-

eration phase takes place strictly before the WEP execy'e" . .
tion one, and where these phases are interleaved. ecution environment, such as the bandwidth reserved fotaa da

. . . transfer across a graph edge, or the number of reducer slots i
S Z\;Cﬁfntrzzglfw Is executed@hich refers to the execution a Hadoop cluster. Any optimization technique covered is thi

, , , survey impacts on either the set\éfor E, or on (part of) the
6. What are the requirements®hich refers to the input flow

. S associated triplets.
metadata in order to apply the optimization. Data flow optimization is a multi-dimensional problem and

7. In which application domainvhich refers to the domain jts muyltiple dimensions are broadly divided according te th

for which the technique initially targets. two flow specification levels. Consequently, we identify the
optimization of thehigh-level(or logical) flow plan and the
low-level (or physica) flow plan, and each type of optimiza-
tion mechanism canfiect the set oV or E of the workflow
graph and their properties.

The problem of the logical data flow optimization is to de-
fine the exact set¢ andE, so that an objective function is opti-

3Through considering optimizations starting from a validtiah flow, we mized. As such, the logical flow optimization types are large
exclude from our survey the big area of answering querieseénpresence of based on workflow structure reformations, while preseraimg

limited access patterns, in which, the main aim is to comstsuch an initial  dependency constraints between tasks; structure refiamsat

plan [16L1V] through selecting an appropriate subset &btiom a given task  gre reflected as modifications W and E. The output of the
pool; however, we have considered works from data integretiat optimize

the plan after it has been devised, such as [18] dr [19], wisigubsumed by ~ OPtimized flow needs to be semantically equivalent as the out
[2q). put of the initial flow, which practically means that two flows

3

We regard each of the above questions adferint dimen-
sion. As such, we derive seven dimensions: (i)NMechanisms
referring to the process through which an initial flow is gan
formed into an optimized one; (ii) th@bjectivesthat capture
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Figure 1: A taxonomy of data-centric flow optimization fockaof the identified dimensions.

receive the same input data and produce the same output data
without considering the way this result was produced. Given
that data manipulation takes place only in the context dfstas
logical flow optimization is task-oriented. The logical bpt
mization types are characterized as follows (summarizea al

in Figure2):

Task Ordering where we change the sequence of the
tasks by applying a set of partial (re)orderings. Task
(re)ordering &ects the set of of the workflowDAG.

Task Introductionwhere new tasks are introduced in the
data flow plan in order, for example, to minimize the data
to be processed and thus, the overall execution cost. The
changes occurred by introducing tasks increase the set of
V of the flow graph, which alsoffects the seE, so that

the new vertices are connected to the graph.

Task Removalwhich can be deemed as the opposite of
task introduction. A task can be safely removed from the
flow, if it does not actually contribute to its result dataset
As in the previous case, task removal impacts both on the
setV, which is reduced, and dato remove corresponding
edges.

Task Mergeis the optimization action of grouping flow

Non-optimized execution plan

®"2-9-®

Optimized execution plan

Task Ordering: o e 9 9
Task Introduction: @-’@CLSP’@_’@ @"@"@'@_'@
Task Removal: @—»%»@—’@ @'@_'@
Task Merge: @»@—;@—’@ @_'
Y
Decompos;l;?j:: @’. . . . . .

Figure 2: Schematic representation of high-level flow optations.

the opposite operation of merge action and may provide
more optimization opportunities, as discusse 1, 8],
because of the potential increase in the number of valid
(re)orderings. Similar to the task introduction and merge
mechanisms, the optimized workflow planffdis in V
with regards to the initial workflow graph, whike is also
modified only to reflect changesih

tasks into a single task without changing the semantics, At the low level, a wide range of implementation aspects
applying changes to the set fin order, for example, to need to be specified so that the flow can be later executede Thes

minimize the overall flow execution cost or to mitigate the aspects are captured by thémpl, ExecEngConfig> triplet,

overhead of enacting multiple tasks.

flow
Task Decompositignwvhere a set of grouped tasks is split-

ted to more than one flow tasks with less complex func-
tionality for generating more optimal sub-tasks. This is

4

for each property of which, we identify aftrent physical data

optimization type, as follows (see also Figlife 3):

Task Implementation Selectiowhich is one of the most
significant lower-level problems in flow optimization.



Task implementation price, as in public clouds. Other quality metrics can be iggpl
' as well (denoted asther QoSn/[I).

'"S‘ameg‘@ @« ‘ ‘@ @ @‘ ‘@ @ @ ‘ ‘@ @‘ The first two objectives require further elaboration. Perfo

mance can be defined in several forms, depending, for example

Optimized execution plan: (@)~ ~@ on whether the target is the minimization of the response,tim
or the resource consumption. The detailed definitions of the
Exegution Engine performance objective in data flows include the followingnm
Execution imization of the sum of the task and edge c@Stsm Cost)min-
Engines: ‘ ©® @‘ ‘ @‘ ‘ ® ‘ ‘@ ) ‘ imization of the sum of the task and edge costs along the flow
v v v Ve critical path(Critical Path), minimization of the most expen-
@ @ @ sive task cost in order to alleviate bottleneck probléBusttle-
Optimized execution plan: (Vo>V} ~(V5}>(v,) neck) and maximization of the throughp(throughput) Each
of these definitions may be formally expressed as an obgectiv
Execution Engine function, as presented later.

par

Configuration:

Analogously, reliability may appear in several forms. Inmou

3.2.

Lo @ @B @O OB ® @O context, reliability reflects how much confidence we have in a
\'1 V, V3 V,

data flow execution plan to complete successfully. However,

in data flow optimization proposals, we have also encoudtere
000 the following two reliability aspects playing the role ofte
- ) ;)W) €10 g Y_p playing _p
Optimized execution plan: mization objectivestrustworthinessof a flow (Trust), which
is typically based on the trustworthiness of the individiaaks
Figure 3: Schematic representation of low-level flow optiations. and avoidance of dishonest providers, that is providetts batl

reputation; andrault Tolerancewhich allows the execution of

This optimization type includes the selection of the ex—the flow to proceed even in the case of failures.

act, logically equivalent, task implementation for eactkta L )

that will satisfy the defined optimization objectives [g]. A 3-3- Optimization Solution Types

well-known counterpart in database optimization is choos- The optimization techniques that have been proposed con-

ing the exact join algorithm (e.g., hash-join, sort-merge-Stitute accurate approximateor heuristicsolutions. Such so-

join, nested loops). In this optimization mechanism caselutions make sense only when considered in parallel with the

the Impl property of one or more task or edges have to becomplexity of the exact problem they aim to solve. Unfortu-

specified or modified. nately, a big set of the problems in flow optimization are in-
tractable. For such problems, in the case of accurate snhiti

Execution Engine Selectiowhere we have to decide the 3 scalable technique cannot be provided. In the case of ppro

type of processing engine to execute each task. The negghate optimization solutions, we typically tackle intralste

for such optimization stems from the availability of multi- proplems in a scalable way while being able to provide guaran

ple options in modern data-intensive flows|[22, 23]. Com-tees on the approximation bound. Finally, in the last catggo

mon choices, nowadays, include DBMSs, massively paralye exploit knowledge about the specific problem charadiesis

lel engines, such as Hadoop clusters, apart from the execdnd propose algorithms that are fast and exhibit good behavi

tion engines that are bundled with data flow managemenh, test cases, without examining the deviation of the sofuti
systems. The corresponding decisiofieet theExecENg  from the optimal in a formal manner.

property in the workflow graph.

Execution Engine Configuratiowhere we decide on con- 3.4. Adaptivity of Data-Centric Flow

figuration details of the execution environment, such as the Data flow adaptivity refers to the ability of technique to re-

bandwidth, CPU, memory to be reserved during executio®ptimize the data flow plan during the execution phase. So, we

or the number of cores allocated [12]. This optimizationcharacterize the optimization techniques as eigtetic where

mechanism refers to the specification of @enfigprop-  once the flow execution plan is derived it is executed in its en

erty. tirety, or dynamic where the flow execution plan may be re-
vised on the fly.

Optimization Objectives 3.5. Execution Environment

An optimization problem can be defined as eitkgrgle or The techniques that are proposed for data flow optimization
multiple objectiveone depending on the number of criteria problem difer significantly according to the execution environ-
that considers. The optimization objectives that are glpic ment assumed. The execution environment is defined by the
presented in the state-of-the-art include the followipgrfor-  type of resources that execute the flow tasks. Specifically, i
mancereliability, availability, andmonetary costThe latter is  a centralized execution environmeatl the tasks of a flow are
important when the flow is executed on resources provided at @xecuted by a single-node execution engine. Additionglg,
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parallel execution environmenthe tasks are executed in par- 3.7. Application Domain
allel by an engine on top of a homogeneous cluster, while in a
distributed execution environmette tasks are executed by re-
mote and potentially heterogeneous execution engineghwhi
are interconnected through ordinary network. Typicaliyti-o
mizations on the logical level are agnostic to the execution
vironment, contrary to the physical optimization ones.

The final dimension across, which we classify existing solu-
tions, is the application domain assumed when each tecéniqu
is proposed. This dimension sheds light intelientiating as-
pects of the techniques with regards to the execution emviro
ment and the data types processed that cannot be captured by
the previous dimensions. Note that the techniques may de app
cable to arbitrary data flows in additional application dama

3.6. Metadata . . . than those initially targeted. In this dimension, we coastto
The set of metadata includes the information needed to aspects: (idomainof initial proposal, which can be one of the

ply the optimizations and as such, can be regarded as eti@ten fo|lowing: ETL flows, data integration, Web Services (WSs)
pre-conditions that should hold. The most basic input megui \yorkflows, scientific workflows, MapReduce flows, business
ment of the optimization solutions is an initial sétof tasks. processes, database queries or genericpfiline (e.g., real-
However, additional metadata with regards to the flow graph a time) vs. batchprocessing. Generic domain proposals aim to
typically required as well. These metadata are both qui&iita 5 proader coverage of data flow applications, but due to their
and quantitative (statistical), as discussed below. @&l  genericity, they make miss some optimization opportusittiet
metadata include: a specific domain proposal could exploit. Also, online apgpli
tions require more sophisticated solutions, since datgps t

which vertices in the graph should always precede othe?ally strear_nin_g_ and emp'OY fidditional optimization Oh}fﬂs'
vertices. Typically, the definition of dependencies come .UCh as reliability and acquiring responses under presiag-

in the form of an auxiliary graph. INES.

e Dependencieswhich explicitly refer to the definition of

e Task schematawhich refer to the definition of schema of
the data input andr output of each task. Note that depen-

dencies may be produced by task schemata through sim- . . . .
le processind [24], especially if they contain informatio Here_, we dgscrlbe the main tec_hnlques grouped a‘?cofd'”.g ©
b ’ the optimization mechanism. This type of presentationlifaci

about which schema elements are bound orlfrée[25]. How: : . : . .
. tates result synthesis. Grouping by mechanism makes #reasi
ever, task schemata may serve additional purposes th

deriving dependencies, e.g., to check whether a task coﬁg reasonas to whetherfté_renttechniques employing the same
tributes to the final desired output of the flow. mechamsm can be c_omblned ornot, e.g., becau;e the make in-
compatible assumptions. Additionally, the solutions facte
o Task profile which refers to information about the execu- mechanism are largely orthogonal to the solutions for agroth
tion logic of the task, that is the manner it manipulates itsmechanism, which means that, in principle, they can be com-
input data; e.g, through analysis of the commands implebined at least in a naive manner. Therefore, our presentagio
menting each task. If there is no such metadata, the tagkroach provides more insights into how théfelient solutions
is considered as a black-box. Otherwise, information e.g.gan be synthesized.
about which attributes are read and which are written, can The discussion is accompanied by a summary of each pro-
be extracted. posal in Tablé€ll for the dimensions wiechanismsbjectives
solution types and metadata and TabldR, for theadaptiv-
ity, execution environmerandapplication domairdimensions.

« Vertex costwhich typically refers to the time cost, but can WWhen an optimization proposal comes in the form of an algo-

also capture other types of costs, such as monetary cost.fithm, we also provide the time complexity with respect te th
size of the set of verticd¥| = n. However, the interpretation

e Edge costwhich refers to the cost associated with edgespf such complexities requires special attention, whenetlaee
such as data transmission cost between tasks. several other variables of the problem size, as is common in
. o i _ techniques employing optimization mechanisms at the ghysi
* Selectivity which is defined as the (average) ratio of the o e|. details are provided within the main text. The firsticon
output to the input data size of a task and its knowledg&,¢ ihe table mentions also the publication year of each sabo

is equivalent to estimating the data sizes consumed angl e to facilitate the understanding of the proposaiisisg
produced by each task; sizes are typically measured elth%rnd the time evolution of flow optimization
in bytes or in number of records (cardinality).

4. Presentation of Existing Solutions

Quantitative metadata include:

Finally, we use a simple running example to present the ap-
e Q0S propertiessuch as values denoting the task availabil-Plication of the mechanisms. Specifically, as shown in Feghr
ity, reliability, security, and so on. we consider a data flow that (i) retrieves Twitter posts cionta
ing product tagstweets Inpyt (ii) performs sentiment analysis
e Engine detailswhich cover issues, such as memory ca-(Sentiment Analysjs(iii) filters out tweets according to the re-
pacity, execution platform configurations, price of cloud sults of this analysisHilter), (iv) extracts the product to which
machines, and so on. the tweet refers td(©okup ProductlD), and (v) accesses a static



Table 1: A summary of the main techniques for producing amoped flow regarding the dimensionsiechanismsbjectives solution typesandmetadata

(Refs.,Year) Mechanisms Objectives Solution Types Metadata
([26],2008), Merge, . Task
(271,2007) Engine Selection Performance Heuristic Profile
Dependencies,
([281.2012) Ordering Performance (Bottlenek Accurate O(nf)) Vertex Cost,
— Critical Path) =
Selectivity
Dependencies,
([29],2008) Ordering, Performance Heuristic Task Schemata,
extending [15] Implementation Selection Vertex Cost,
Selectivity
. . Vertex Cost,
([30],1999) Ordering Performance(Sum Cost) Approximate Selectivity

Performance (Critical Path),

Vertex Cost,

([31],2009) Implementation Selection Monetary Cost, Heuristic QoS properties
Reliability
([32],2014) Removal Performance Heuristic O(nz)) Task Schemata
([33],2015) Engine Configuration Performance Heuristic Task profile
L Dependencies,
([34],2005) Removal Performance Heuristic Task Schemata
Dependencies,
([35],2012) Ordering Performance (Throughput) Accurate Q(n3)) Vertex Cost,
Selectivity
. . Vertex Cost,
([36],1998) Ordering Performance(Sum Cost) Approximate Selectivity
. ) . L Task Profile,
([37],2015) Engine Configuration Performance Heuristic Engine Details
Task Introduction Performance,
ei%i ]c"izfl[s;g] Engine Selectioh Monetary Cost, Accurate (exponential) Evneritne: S;Sa‘ivls
915 Configuration Reliability(Fault Tolerance) 9
(1211,2012) Ordering, Task SchematRrofile,
21], . IntroductionRemoval, Performance (Sum Cost) Accurate (exponential) Vertex Cost,
({40),2015) =" ~C
—_ Decomposition Selectivity
. . . Performance (Sum Cost), .
([41],2011) Engine Configuration Monetary Cost Heuristic Vertex Cost
X Dependencies,
A it tial :
(([[2%;]]22%254)) Ordering Performance (Sum Cost) Accura ? (ef"""e'z‘ ial), Vertex Cost,
—_ pproximate O(n%)) Selectivity
. . . Dependencies
([2_2],2014) Engine Selection Performance (Sum Cost) Heuristic O(n)) VerteyEdge Cost
Task Schemata,
([43],2010) Ordering Performance (Sum Cost) Approximate O(nz)) Vertex Cost,
Selectivity
Implementation Selection, . Vertex Cost,
([44],2013) Engine Configuration Performance, Other QoS Heuristic O(n)) QoS properties
Performance, Vertex Cost
([45],2008) Implementation Selection Availability, Heuristic ©O(n)) o
QoS properties
Monetary Cost
Vertex Cost,
Merge, - Task Schemata,
(1481.2012) Engine Configuration Performance Heuristic Selectivity,
Engine Details
([47],2015) Engine Configuration Performance Heuristic Vertex Cost,
—"" 9 9 Task Profile
([48],2014) Engine Configuration Performance Exhaustive Vertex Cost,

Engine Details

Ordering, Accurate (exponential), Vertex Cost,
([241,2005) Merge Performance (Sum Cost) Heuristic O(nZ)) Task Schemata
({81,2012) Ordering, Performance
([2-3j 20135 Decomposition, (Constr. Sum Cost Accurate (exponential), Task Schemata,
(@]' 2013)' Enging Bottleneck), Heuristic O(n2)) Vertex Cost
"’ Implementation Selection |  Reliability (Fault Tolerance)
OA;Z?;ZQ, Performance
([49],2010) y (Constr. Sum Cost - 2 Task Schemata,
extending [24] Introdqcl\on, . Bottleneck), Heuristic O(n%) Vertex Cost
= Implementation Selection, s
. - - Reliability (Fault Tolerance)
Engine Configuration
Dependencies,
([15],2006) Ordering Performance (Bottleneck) Accurate O(ns)) Vertex Cost,
Selectivity
Performance,
([50],2012) Implementation Selection Monetary Cost, Heuristic ©O(n)) Vertex Cost
Reliability

Dependencies,

([51, 52], 2011) Ordering Performance (Bottleneck) Heuristic (exponential) VerteyEdge Cost,
- Selectivity
([53],2007) Implggi"l;?::;uisfnc“on' Performance (Sum Cost) Accurate (exponential) Vertex cost
([54],2007) Merge Performance Heuristic Task Profile
Performance, Vertex Cost
([55],2005) Implementation Selection Availability, Heuristic O(n)) -
= Reliability (Trust) QoS properties
([18],1999) Ordering Performance (Sum Cost) Approximate O(nz)) Tﬂrzihg;;?ta,
. . Performance, L Vertex Cost,
([56], 2015) Engine Selection Monetary Cost Heuristic Engine details
external data source with additional product informatidwirg Sentiment Lookup ,
X | Analysis Filter, ProductiD Join
with External Sourcgin order to produce a repoiRgport Out- > AN ™ A
: : . . . Tweets —» - —» >
puf). In this simple example, in any valid execution plan step = \_ _ _ 0

(i) should precede step (iii) and step (iv) should precede s i
(V). —

External
Source

4.1. Task Ordering

The goal ofTask Orderingis typically specified as that of
optimizing an objective function, possibly under certagne
straints. A common feature of all proposals is that theyggsai

7
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Table 2: A summary of the main techniques for producing amopéd flow regarding the dimensionadaptivity, execution environmenandapplication domain

- - ] Application
(Refs.,Year) Adaptivity Execution Environment FE)pom ain
Static | Dynamic Centralized Parallel Distributed
(( 2767] 22%%87)) * * - - ETL (Batch)
([28],2012) * * - Queries (Online)
e)((é—z diznogoil)s] * * Web Services (Online)
([30],1999) * * - - Queries (Batch)
([31],2009) * - * Web Services (Batch)
Scientific
(182].2014) * * ] ) Workflows (Batch)
([33],2015) * - * - Generic
Scientific
([34].2005) ] * * Workflows (Batch)
([35],2012) * - * Queries (Online)
([36],1998) * - * - Queries (Batch)
([37],2015) - * - * - Map Reduce (Batch)
([38],2015) * i i j * Scientific
extending [39] Workflows (Batch)
([21],2012), * * Scientific
([40],2015) Workflows (Batch)
([41],2011) * * Scientific (Online)
([20],2015), -
([7_2] 2014) * * - - Generic
([22],2014) * - - * Generic
([43],2010) * * - - ETL (Batch)
([44],2013) - * - - * Generic
([45],2008) * * Web Services (Online)
([46],2012) * * - Map Reduce (Batch)
([471,2015) * * ETL (Batch)
([48],2014) * - * - MapReduce (Batch)
([24],2005) * * - - ETL (Batch)
[6],2012),
([23],2013), * * ETL (Online)
([12],2013)
([49],2010) !
ex[taldingjg4] * * - ETL (Online)
([15],2006) * * Web Services (Online)
([50],2012) * * Generic
([51, 52], 2011) * * Web Services (Online)
([53],2007) * * ETL (Batch)
Business
([54],2007) * * Processes (Batch)
([55],2005) * * Web Services (Online)
Data
([18],1999) * * Integration (Online)
([56], 2015) * * Generic

metric m(v;) to each vertex; € V,i = 1...n. To date, task target the minimization of the sum of the vertex cost are in-
ordering techniques have been employed to optimize perfoMactabIeElS]. Moreover, Burge et a[[SS] discuss tlitas un-
mance. More specifically, all aspects of performance that wéikely that any polynomial time algorithm can approximate t
introduced previously have been investigated: the miramiz optimal plan to within a factor of )", whereg is some pos-

tion of the sum of execution costs of either all tasks (bottharn itive constant. The generic bottleneck minimization pesblis

and without constraints) or the tasks that belong to thé- crit intractable as well [59]. However, the bottleneck minintiaa

cal path, the minimization of the maximum task cost, and théased only on vertex costs and the other two objective fansti
maximization of the throughput. Tadlé 3 summarizes the obean be optimally solved in polynomial tirﬂa@ 15].

jective functions of these metrics that have been employed b Independently of the exact optimization objectives, a# th
approaches to task ordering in data flow optimization to.dateknown optimization techniques in this category assumexhe e
Existing techniques can be modeled at an abstract level unistence of dependency constraints between the tasks either
formly as follows. The metrien refers either to costs (denoted pilicitly or implicity through the definition of task schenaatFor
asc(v;)) or to throughput values (denoted &&#)). Costs are the cost or throughput metadata, some techniques rely on the
expressed in either time or abstract units, whereas thymuigdh  existence of lower-level information, such as selectiige
expressed as number of records (or tuples) processed per tirBectiof4.1)5).

unit. A more generic modeling assigns a cost to each vertex

v; along with its outcoming edges;, j = 1...n (denoted as

4.1.1. Techniques for Minimizing the Sum of Costs
c(vi, &j))-

Regarding the minimization of the sum of the vertex costs
These objective functions correspond to problems with dif<first row in Table[), there have been proposed both accu-
ferent algorithmic complexities. Specifically, the prabkethat  rate and heuristic optimization solutions dealing witrsthi-
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Table 3: A summary of the objective functions in task ordgrin

Description Objective Functions Refs.
Sum cost min Y c(v;), wherei = 1...n 21,42, 43, 40, 24, 18]
Constrained sum cosf min Y, c(vi), wherei = 1...nandg(v;) <0 8, 23,49, 12]
min maxc(vj)), wherei =1...n 57, 28,15
Bottleneck cost min maicgvi?)aj)), wherei =1...n 62,51] .
Critical path cost min Y’ c(v;), wherey; belongs tacritical path [57, 28]
Throughput max; f(v), wherei=1...n [35]

tractable problem; apparently the former are not scalalte. approach is that following common practice from database sy
accurate task ordering optimization solution is the apgpiénn ~ tems it performs static task analysis (i.e., task profiliimgdr-

of the dynamic programming; dynamic programming is exten-der to yield statistics and fine-grained dependency cansira
sively used in query optimization [60] and such a technicage h between tasks going further from the knowledge that can be de
been proposed for generic data flowslinl [42]. The rationale ofived from simply examining the task schemata.

this algorithm is to calculate the cost of task subsets o siz g, practical reasons, the four accurate techniques tiestri
n based on subsets of sire- 1. For each of these subsets, 4poye are not a good fit for medium and large flows, e.g., with
we keep only the optimal solution that satisfies the depenyden qer 15-20 tasks. In these cases, the space of possiblosslut
constraints. This solution has exponential complexitynefeg o large and needs to be pruned. Thus, heuristic algoritiaves h
simple linear non-distributed flow®(2")) but, for small values  peen presented to find near optimal solutions for larger data
of n, is applicable and fast. flows. For example, Simitsis et al. |24] propose a technidue o
Another optimization technique is the exhaustive produrcti task ordering by allowing state transitions, which cororsfs
of all the topological sortings in a way that each sorting isto orderings that dier in the ordering of only two adjacent
produced from the previous one with the minimal amount oftasks. Such transitions are equivalent to a heuristic, lwhic
changes@l]; this approach has been also employed to opswaps every pair of adjacent tasks, if this change yieldetow
mize flows in Eb@lz] Despite having a worst case complexitycost, always preserving the defined dependency constramts
of O(n!), it is more scalable than dynamic programming so-til no further changes can be applied. This heuristic, atiti
lution, especially, for flows with many dependency constisai  proposed for ETL flows, can be applied to parallel and dis-
between tasks. tributed execution environments with streaming or batguin

Another exhaustive technique is to define the problem as gata. Interestingly, this technique is combined with aeptet
state space search ohel[24]. In such a space, each possible +9f heuristics using addltlopal optimization techniquesstsas
ordering is modeled as a distinct state and all states are eve!@Sk merge In general, this heuristic is shown to be capable
tually visited. Similar to the optimization proposals désed ~ Of Yielding significant improvements. Its comp!exﬂy@t{rf),
previously, this technique is not scalable either. Anofoem but _there can be no guarantee for how much its solutions can
of task-reordering is when a single infautput task is moved deviate from the optimal one.
before or after a multi-input or a multi-output ta@[@, 48h There is another family of techniques that minimizing the
example case is when two copies of a proliferate single jnputsum of the tasks by ordering the tasks based on their rank valu
output task are originally placed in the two inputs of a bynar defined asl’cs(%, whereselV;) is the selectivity of;. The first
fork operation and after reordering, are moved after thie for ~ examples of these techniques were initially proposed fdir op
such a case, the two task copies moved downstream are mergaizing queries containing UDFs, while dependency consisai
into a single one. As another example, a single ifguiputtask  between pairs of a join and UDF are conside@@g, 36]. How-
placed after a multi-input task can be moved upstream; e.gever, they can be applied in data flows by considering flonstask
when a filter task placed after a binary fork is moved upstreanas UDFs and performing straightforward extensions. Fomexa
to both fork input branches (or to just one, based on theitipre ple, an extended version MBO], also discussed ifh [42]dbw@
cates). This is similar to traditional query optimizatiohave a  flow incrementally im steps instead of starting from a complete
selective operation can be moved before an expensive aperat flow and performing changes. In each step, the next task to be
like a join. appended is the one with the maximum rank value, for which all

The branch-and-bound task ordering technique is similar 1€ Prerequisite tasks have been already included. Thidtses
the dynamic programming one in that it builds a complete flow!" & greedy heuristic od(n?) time complexity.
by appending tasks to smaller sub-flows. To this end, it exam- This heuristic has been extended by Kougka et al. [20] with
ines only sub-flows in terms of meeting the dependency contechniques that leverage the query optimization algoritbm
straints and applies a set of recursive calls until genagall  join ordering by Krishnamurthy et al.[_[63] with appropriate
the promising data flow plans employing early pruning. Suchpost-processing steps in order to yield novel and méteient
an optimization technique has been appliecErh [2]1, 40] ferex task ordering algorithms for data flows. 43], a similaf ra
cuting parallel scientific workflowsfgciently, as part of a new tionale is followed with the dference that the execution plan is
optimization technique for the development of a logicali-opt built from the sink to source task. Both proposals build dine
mizer, which is integrated into the Stratosphere sys@z [62 plans, i.e., plansin the form of a chain with a single sourzka
the predecessor of Apache Flink. An interesting featurdisft single sink. These proposals for generic or traditional Hata
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Lookup Sentiment pruning and despite of its exponential complexity, it iswho

I ProductID Join Analysis Filter, S i i

— N N AN —_— that it can apply to flows with hundreds of tasks, for reastsab

Tweets | —- - - Report . . . .

It | SR AR AR Outout probability distributions of vertex and edge costs.
1 The techniques for minimizing the bottleneck cost can be
Ex;;,;ﬂq combined with those for the minimization of the sum of the
(o) costs. More specifically, the pipelined tasks can be grotped

gether and for the corresponding sub-flow, the optimizatam
Figure 5: An example of optimized task ordering. be performed according to the bottleneck cost metric. Then,
these groups of tasks can be optimized considering the sum of
their costs. This essentially leads to a hybrid objectivacfu
tion that aims to minimize the sum of the costs for segments
of pipelining operators, where each segment cost is deficed a
cording to the bottleneck cost. A heuristic combining the tw
metrics has appeared 49].

flows are essentially similar to ti&hainalgorithm proposed by
Yerneni et al. |L_;L|8] for choosing the order of accessing remot
data sources in online data integration scenarios. Integhg
in [1€], it is explained that such techniques areompetitive,
i.e., they can deviate from the optimal plan umttmes.

The incurred performance improvements can be significant.
Consider the example in Figul® 4, where let the cost peraingl4.1.3. Techniques for Optimizing the Critical Path
input tweet of the five steps be 1, 10, 1, 1, and 5 units, respec- A technique that considers the critical path providing an ac
tively. Let the selectivities be 1, 1, 0.1, 1, and 0.15, respe curate solution has appeared|in/[28]. This work B&s?) time
tively. Then the average cost in Figlile 4 for each initialétie ~ complexity and has been initially proposed for online gegin
1+10+1+0.1+0.5=12.6, whereas the cost of the flow in Figure parallel execution environments, but is also applicabldatm
is 1+1+5+1.5+0.15=7.65. In general, for ordering arbitrary flows. The strong point of this solution is that it can perfdrim
flow tasks in order to minimize the sum of the task costs, any obbjective optimization combining the bottleneck and thgaal
the above solutions can be used. If the flow is small, exhausti path criteria.
solutions are applicable; otherwise the techniquegh g26]

the ones that seem to be capable of yielding the best plans. 4 1 4 Techniques for Maximizing the Throughput

Finally, minimizing the sum of the tasks cost appears also in Reordering the filter operators of a workflow can be used to

cr;}uflglﬁtr'Eg:;;;gg%;ﬁ;?m_?ﬁngergg’gs;ells'a:::y:; ;O;Trthe;ind an optimal query execution plan that maximizes through-
. A ; ; ut leveraging pipelined parallelism. Such a techniquedleas
constraint in the objective function denoted as functibn(see P ging pip P q

2 row in Table(B). In these proposat) defines the number presented by Deshpande et dD[SS] considering queries with

. o . tree-shaped constraints for parallel execution envirarimpieo-
of faults that can be tolerated in a specific time period. The . b b m

: . . viding an accurate solution that h@$n®) time complexity. In
strategy for exploring the search space dfaetent orderings 9 %) plextty

. L this proposal, each task is assumed to be executed on actlistin
extends the techniques that proposed by Simitsis etal. [24] node, where each node has a certain throughput capacity that

should not be exceeded. The unique feature of this propesal i
4.1.2. Techniques for Minimizing the Bottleneck Cost that it produces a set of plans that need to be executed concur
Regarding the problem of minimizing the maximum task costrently in order to attain throughput maximization. The draw
(3" row in Table[B), which acts as the performance bottleneckback is that it cannot handle arbitrary constraint graptsciv
there is aTask Orderingmechanism initially proposed for the implies that its applicability to generic data flows is liett
parallel execution of online WSs represented as qudﬂs [15
The rationale of this technique is to push the selective fasks 415 Task Cost Models

(i.e., those withsel < 1) in an earlier stage of the execution orth IIv to the obiective func in Talle 3ffdient
plan in order to prune the input dataset of each service. Base rthogonally fo the objective functions in fa T reg
ost models can be employed to derdg), the cost of the

on the selectivity values, there may be cases where the tout f ) ) .
y y p}askvi. The important issue is that a task cost model can be

of a service may be dispatched to multiple other services fo d (i t-based optimization teotni

executing in parallel or in a sequence having time complexit use gls a cofmp;}or:ﬁn !tnhanybcos ] asel Ozl.m'tﬁa on _ea{nlqu

in O(n®) in the worst case. The problem is formulated in awayregar ess ofwhether it has been employed in the originetvo
proposing that technique. A common assumption is t\a}

that it is tractable and the solutions is accurate. depends on the volume of data pr & bbut this featur
Another optimization technique that considers task ordgri €pends on he volume of data processe iPut this feature
can be expressed in several ways:

mechanism for online queries over Web Services appears i
[@,@]. The formulation in these proposals extends the one e

proposed by Srivastava et dl. [15] in that it considers e * cv)=1II;.; sel=cpi: this cost model defines the cost
costs. This modification renders the problem intractﬁ[S of theih task as the product of i) the cost per input data

The practical value is that edge costs naturally capture e unit (cpi;) and ii) the product of the selectivitieglof pre-
transmission between tasks in a distributed setting. Thiisn ceding tasks?l’iprec is the set of all the tasks between the
proposed by Tsamoura et ﬂ@ 51] consists of a branch-and  data sources andg. This cost model is explicitly used in
bound optimization approach with advanced heuristicsddye proposals such BQZIQ_JE 42| 43, 18].
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e (Vi) =rs(vi) : Inthis case, the cost model is defined as the Sontiment Lookup _ j%[
size of the resultsrg) of v;; it is used in [18], where each [Wi]_:'ys% —~ F.'"e" &
task is a remote database query. = v W e

RP, -

e (Vi) = ;-CPU(V))+8;-10(V)+y;-S hipgv): this cost model [7]
is a weighted sum of the three main cost components, :
namely the cpu,/O, and data shipping costs;e.c Further, Figure 6: Examples dFask Introductiortechniques.

CPU(v;) can be elaborated and specifiedﬁlg:‘l ‘sel,— *

cpi; (defined above) plus a startup cogO kosts depends ) ) )

on the cost per input data unit to access secondary storagélnction that compares the projected recovery cost in cése o
Data communication co& hip(v}) depends on the size of failure against the cost to maintain a recovery point. Addi

the input ofv, which, as explained earlier, depends also2!ly: the replicator nodes produce copies of specified subsfl

on previous tasks and the vertex selectiag}. @, 8, and " order to tolerate local failures, when no recovery poaas

y are the weights. Such an elaborate cost model has bed® inserted, e.g., because the associated overhead extbas
employed by Hueske et al. [21]. execution time above a threshold. In both cases of task-intro

duction, the semantics of the flow are immutable. The praghose
e c(vi) = proo(vi)+ part(v;): This cost model is suggested by technique extends the state space search_in [24] after dravin
Simitsis et al.[[49]. It explicitly covers task paralleltzan ~ pruned the state search space. The objective function gegblo
and splits the cost of a tasks into the processing post  is the constrained sum cost on@{2ow in Table[B), where the
and the cost to partition and merge dptrt. The former  constraint is on the number of places where a failure can oc-
cost is divided into a part that depends on input size and aur. The cost model explicitly covers the recovery mainteea
fixed one. The proposal in [49] treatsi@irently the tasks overhead (last case in S€c.4]1.5). The key idea behindtine pr
in the flow that add recovery points or create replicas bying of search space is first to apply task reordering and tioen,

providing specific formulas for them. detect all the promising places to add the recovery poirgedba
on heuristic rules. An example of the technique is in Fiduire 6
4.1.6. Additional Remarks and suppose that we examine the introduction of up to two re-

Regarding the execution environment, since the task (resovery points. The two possible places are just afterSbhe
)ordering techniques refer to the logical WEP level, thayloa  andJoin tasks, respectively. Assume that the most beneficial
applied to both centralized and distributed flow executiovie€  place is the first one, denoted B®;,. Also, givenRPy, RP,
ronments. However, in parallel and distributed environteen is discarded because it incurs higher cost than re-exegtite
the data communication cost needs to be considered. The didointask. Similarly to the recovery points above, the technique
ference between these environments with regards to the comroposed by Huang et aﬂSB] introduces operations thay cop
munication cost is that in the latter, this cost depends bath intermediate data from transient nodes to primary oneagusi
the sender and receiver task and as such, it needs to be repedister of machines containing both transient and primianyat
sented, not as a component of vertex cost but as a property ofachines; the former can be reclaimed by the cloud provided

edge cost. at any time, whereas the latter are allocated to flow exegutio
Additionally, very few techniques, e.d. [24], explicitipe-  throughout its execution.
sider reorderings between single infouttput and multiple-  Secondly, task introduction has been employed by

input or multiple-output tasks; however, this type of opie®  Rheinlander et al. [ [40] to automatically insert explicit fi
tion requires further investigation in the context of coel tering tasks, when the user has not initially introducedrthe
flow optimization. This becomes plausible with a sophisticated task profiling
Finally, none of the proposed techniques for task orderingnechanism employed in that proposal, which allows the
technique discussed are adaptive ones, that is they do net cosystem to detect that some data are not actually needed. The
sider workflow re-optimization during its execution phase. goal is to optimize a sum cost objective function, but the
general, adaptive flow optimization is a subarea in its iafan technique is orthogonal to any objective function aiming at
However, Bohm et al. [64] has proposed solutions for choosperformance improvement. For example, in Fighte 6, we
ing when to trigger re-optimization, which, in principl@rcbe introduce a filtering task if the final report needs only a siibs

coupled with any cost-based flow optimization technique. of the initial data, e.g., it refers to a specific range of pcid.
) Third, task introduction can be combined withplementa-
4.2. Task Introduction tion Selectior{SectioiZp). An example appearslin/[53], where

Task introduction has been proposed for three reasons.  the purpose is to exploit the benefit of processing sorteatdsc

Firstly, to achieve fault-tolerance through the introdoiciof ~ To this end, it explores the possibility of introducing nearv
recovery points and replicator tasks in online ETLS [49]r Fo tices, called sorters, and then to choose task implemengati
recovery points, a new node storing the current flow state ishat assume sorted input; the overhead of the insertioneof th
inserted in the flow in order to assist recovering from fakir new tasks is outweighed by the benefits of sort-based imple-
without needing to recompute the flow from scratch. Addingmentations. In Figurgl6, we add such a sorter task just before
a recovery (to a specific point in the plan) depends on a cogheJoinif a sort-based join implementation and report output is
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_ Cemayee’ Fiter,  Prodiettp  Datee Join - is to apply re-writing rules to merge tasks with similar ftinns
[Tl;n,gz;: (D) (OO S:E‘ﬂ into one bigger task. There are three techniques in thispgrou
- i - all tailored to a specific setting. As such, it is unclear Vileet
== they can be combined.
1 First, in [54], tasks that encapsulate invocations to aresnd
lying database are merged so that fewer (and more complex)
Figure 7: An example of thgask Removaechnique. invocations take place. This rule-based heuristic has peen

posed for business processes, for which it is common to ac-

preferred. Proactively ordering data to reduce the oversit ~ C€SS various data stores, and such invocations incur atlarge

has been used in traditional database query optimizatigh [6 ©verhead. .
and it seems to be profitable for ETL flows as well. Second, arelated technique has been proposed for SQL state-

Finally, all these three techniques can be combined; @g., iMents in commercial data integration produéts [26, 27]. The
the example all can apply simultaneously yielding the catepl rationale of this idea is to group the SQL statements intaa bi

plan in the figure. ger query in order to push the task functionalities to the bes
processing engine. Both approaches present@ilﬂt& 27] de
4.3. Task Removal rive the necessary information about the functionality a¢te

A set of optimization proposals support the idea of removingIaSk W't_h the help of task profiling and produce larger querne
atask or a set of tasks from the workflow execution plan withou€MPI0ying standard database technology. For exampleadst
changing the semantics in order to improve the performanc&f Processing a series of SQL queries to transform data, it is
these proposals have been proposed mostlyfftine scientific pre.fer.abl_e to create a single bigger query. As previoubly, t
workflows, where itis common to reuse tasks or sub-flows frorert'm'_za_'“On IS 1N t_he form of a heunstuc_ that does not_ targe
previous workflows without necessarily examining whetHer a to op_tw_mze any objective function expll_C|tIy. A generaiim_n _
tasks included are actually necessary or whether sometsesuP! this idea to languages beyond SQL is presented by Simitsis
are already present. Three techniques adopt this ratif@@le €t @ B’@] and a programming language translator has been
134,[40], which are discussed in turn. described by Jovanovic et al. [66]67]. o .

The idea of Rheinlander et all_}40] is to remove a task or 1hird, Harold et al. ([46] presents a heuristic non-exhaesti
multiple tasks until the workflow consists only of tasks tagg ~ SClution for merging MapReduce jobs. Merging occurs at two
necessary for the production of the desired output. Thidigap levels: f|rs_t MapReduce qus are tried to be transformed mtp
that the execution result dataset remains the same regaufle Map-only jobs. Then, sharing common Map or Reduce tasks is
the changes that have been applied. It aims to protect uwars t investigated. The;e two a_lspects are examined with the fielp o
have carelessly copied data flow tasks from previous flows. I/ 2-Phase heuristic technique. _

Figure[T, we see that, initially, the example data flow corgai ~ Finally, in the optimizations "@Dg]’ which rely on atea
anExtract Dategask, which is not actually necessary. space search as described previously, adjacent tasksithads

The heuristic of Deelman et al. [34] has been proposed for 80t be separated may be grouped together during optimizatio
parallel execution environment and is one of the few dynamid he aim of this type of mergeris not to produce a flow execution
technigues allowing the reoptimization of the workflow aigri  P!an with fewer and more complex tasks (i.e., no actual task
the workflow execution. At runtime, it checks whether any in- Merge optimization takes place), but to reduce the seartesp
termediate results already exist at some node, thus matirig p SO that the optimization is speeded-up; after optimizatibe
of the flow obsolete. Both [40] antl [34] are rule-based and dénerged tasks are split.
not target an objective function directly.

Another approach for applying task removal optimization4.5. Task Decomposition
mechanism is to detect the duplicate tasks, i.e., taskoipesf
ing exactly the same operation and keep only a single copy iﬂ
the execution workflow plar1__[$2]. This might be caused by
carelessly combining existing smaller flows from a repogijto
e.g., myExperimeltA necessary condition in order to ensure
that there will be no precedence violations is that thedestas
must be dependency constraint free, which is checked wéth th
help of the task schemata. Such a heuristicD@sg) time com-
plexity.

An advanced optimization functionality sk Decomposi-
on, according to which, the operations of a task are split into
more tasks, this results in a modification of the\seff vertices.
This mechanism has appeared [ﬂ 40] as a pre-processing
step, before the task ordering takes place. Its advantéabatis
it opens-up opportunities for ordering, i.e., it does ndirojze
an objective function in its own but it enables more profigabl
task orderings.

Task decomposition is also employed by Simitsis et al.

4.4. Task Merge [@ @,@]. In these proposals, complex analysis taskdy suc

Task Meraehas b | loved for i ina th as sentiment analysis presented in previous examples,ean b
ask Mergenas been aiso employed for Improving the per'split into a sequence of tasks at a finer granularity, sucblas t

formance of the workflow execution plan. The main teChmqueenization, and part-of-speech tagging.

Note that both these techniques are tightly coupled to gie ta
4www.myexperiment . org/|in bio-informatics. implementation platform assumed.
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Sentiment the specified optimization objectives. For example, sévera

Analysis

(e P:gg;c"go multi-objective optimization approaches have been pregos
= @) for flows, where each task is essentially an invocation toran o
o @ el Join o line WS that may not be always available; in such settings, th
e L p | (imp) | (D = aim of the optimizer is the selection of the best service &mhe
et }_> - A D U g?“r{ service typep taking into account both performance and -avail
e (p)) i ability metadata.
‘,'i'mpn;]‘ B Esfmw Three proposals that target this specific environment are

o | ' — [@ 50, ]. To achieve scalability, each task is checked in

_ , . _ isolation, thus resulting i©(nm) time complexity, but at the
Figure 8: An example wher@ask Implementation Selectidas applicable,

where there are four equivalent ways to implement sentimealysis and three expense Qf f'”d'”g Io.c.al optimal solutions only. Kyriazisaét
ways to extract product ids. ] consider availability, performance, and cost for etagk.

As initial metadata, scalar values for each objective andda-
) . didate services are assumed to be in place. The main focus of
4.6. Task Implementation Selection the proposed solution is (i) on normalizing and scaling tiie i
A set of optimization techniques target theplementation tial values for each of the objectives and (ii) on devisingtar
Selectiormechanism. At a high level, the problem is that thereative improvement algorithm for making the final decisioos f
exist multiple equivalent candidate implementations facke  each task. The multi-objective function is either the ojtamn
task and we need to decide which ones to employ in the exdion of a single criterion under constraints on the otherther
cution plan. For example, a task encapsulating a call to a resptimization of all the objectives at the same time. However
mote WS, can contact multiple equivalent WSs, or a task main both cases, no optimality guarantees (e.g., finding at®are
be implemented to run both in a single-machine mode or in asptimal solution) are provided.
a MapReduce program. These techniques typically require as The proposal iHES] is similar in not guaranteeing pareto op
input metadata the vertex costs of each task implementakion timal solutions. It considers performance, availabilityd reli-
ternative. Suppose that, for each task, therenaadternatives.  ability for each candidate WS, where each criterion is wigdh
This leads to a total add(m") of combinations; thus a key chal- and contributes to a single scalar value, according to wégch
lenge is to cope with the exponential search space. In generaices are ordered. The notion of reliability in this proposa
the number of alternatives for each task may lfkedént and the is based on its trustworthinesﬂ[SO] is another servicecsel
total number of combinations is the product of these numbergion proposal that considers the three objectives, namety p
For example, in Figurgl8, there are four and three alterestiv formance, monetary cost, and reliability in terms of susfids
(Imply, ..., Impl,) for the Sentiment AnalyssndLookup Prod-  execution. The service metadata are normalized and the tech
ucttasks, respectively, corresponding to twelve combination nique proposed employs a max-min heuristic that aims tasele
Itis importantto note that, conceptually, the choice ofithe  a service based on its smallest normalized value. An ad@aitio
plementation of each task is orthogonal to decisions ondask common feature of the proposals E[EI 50, 55] is that no ob-
dering and the rest of the high-level optimization mechasis jective function is explicitly targeted.
As such, the techniques in this section can be combined with Another multi-objective optimization approach to choaggsin
techniques from the previous sections. the best implementation selection of each task consistsesi
A brute force, and thus of exponential complexity approachcomplexity heuristics|E4]. The main value of those heuris-
to finding the optimal physical implementation of each flowtics are that they are designed to be applied on the fly, thus
task before its execution has appeared_Tn\ [53]. This approadorming one of the few existing adaptive data flow optimiaati
models the problem as a state space search one and, althougprioposals. Additionally, the technique proposed by Braga e
assumes that the sum cost objective function is to be opgiiniz al. [29] extends the task ordering approac [15] so tloat, f
it can support other objective functions too. An interegfiéa-  each task, the most appropriate implementation is firstsale
ture of this solution is that it explicitly explores the pot@l  None of these proposals employ a specific objective funetion
benefit from processing sorted data. Also, the orderingasid t well. Finally, multi-objective WS selection mechanism damn
introduction algorithm in|_[_A|9] allows for choosing pardalita- performed with the help of ant colony optimization algomitt
vors of tasks. The parallel flavors, apart from cloning trekéa an example of applying this optimization technique for sele
as many times as the degree of partitioned parallelism ddcid ing WS instantiations between multiple candidates in arggtt
explicitly consider issues, such as splitting the inputiddis-  where the workflows mainly consist of a series of remote WS
tributing them across all clones, and merging all their atgp  invocations appears ih [1], which is further extended by &a
These issues are reflected in an elaborate cost functionras meal. @].
tioned previously, which is used to decide whether paia#el Based on the above descriptions, two main observations can
tion is beneficial. be drawn regarding the majority of the techniques. Firtiigy
Additionally to the optimization techniques above, these i address a multi-objective problem. Secondly, they areqseg
a set of multi-objective optimization approaches forple-  for a WS application domain. The latter may imply that trans-
mentation Selection These multi-objective heuristics, apart ferring the results to dataflows where tasks exchange big vol
from the vertex cost, require further metadata that depend oumes of data directly may not be straightforward.
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4.7. Execution Engine Selection 4.8. Execution Engine Configuration

. o _ This type of flow optimization has recently received attemti
The techniques in this category focus on choosing the beg o 15 the increasing number of parallel data flow platforms,
execution engine for executing the data flow tasks in disted ., 45 Hadoop and Spark. TEegine Configuratiomecha-
environments, where there are multiple options. For exampl i< can serve as a complementary component of an optimiza-
assume that thg sentiment analysis in our running example C&ion technique that applies implementation or engine sielec
take place on either a DBMS server or a MapReduce Cluster. A, in general, can be combined with the other optimization
previously, for the techniques using this mechanism, thxe o hanisms. For example, the rationale of the heuristie pre
cost of each task for each candidate execution engine is-a neg,1aq by Kumbhare et allj44] (based on variable sized bin
essary piecg of metgdata for the optimization glgqrithm;oAl packing) is also to decide the best implementation for eask t
gorrespondl_ng techniques are orthogonal to optimizatiefes- and then, dynamically configure the resources, such as the nu
ring to the high-level execution plan aspects. ber of CPU cores allocated, for executing the tasks. A common
For those tasks that can be executed by multiple engines, Bature of all the solutions in this section is that they deith
exhaustive solution can be adopted for optimally allocatire  parallelism, but from dferent perspectives depending on the
tasks of a flow to dferent execution engines in order to meetexact execution environment.
multiple objectives. The drawback is that an exhaustivesol A gpecific type of engine configuration, namely to decide the
tion in general does not scale for large number of flow taskgjegree of parallelism in MapReduce-like clusters for eask t
and execution engines similarly to the case of task implemenyng parameters, such as the number of slots on each node, ap-
tation selection. To overcome this, a set of heuristics @n bpears in([39]. The time complexity of this optimization tech
used for pruning the search spacel[g, (23, 12]. This techniqugique is exponential. This is repeated for eadfedent type of
aims to improve not only the performance, but also the réfiab achines (i.e., dierent type of execution engine), assuming a
ity of ETL workflows in terms of fault tolerance. Additiongll  -ontext where several heterogeneous clusters are at dgr’s
a multi-objective solution for optimizing the monetarytaad  posal. Both of these techniques have been proposed for cloud
the performance is to check all the possible execution fif@ts  eyironments and aim to optimize multiple optimizatiorteri
satisfy a specific time constraint; this approach canndedoa  i5.
exeCl_Jtion plans with high.numb_er of operators. The objectiv In general, execution engines come with a large number of
functions are those mentioned in Section| 4.1. The same apyniguration parameters and fine tuning them is a challeng-
proach to deciding the execution engine, can be used to ehOOﬁ]g task. For example, MapReduce systems may have more
the task implementation if[3, 23.]1.2]. than one hundred configuration parameters. The proposal in
Anytime Single'ObjeCtive heuristics for ChOOSing between[@] aims to provide a princip|e approach to their Conﬁgura-
multiple engine have been proposed Kougka etlall [22]. Suchion. Given the number of MapReduce slots and hardware de-
heuristics take into account, apart from vertex costs, 4gee tajls, the proposed algorithm initially checks all comhioas
costs and constraints on the capability of an engine to exesf four key parameters, such as the number of map and reduce
cute certain tasks and are coupled with a dynamic programyaves, and whether to use compression or not. Then, thesvalue
ming pseudo-polynomial algorithm that can find optimal allo of a dozen other configuration parameters that have signffica
cation for a specific form of DAG shapes, namely linear onesimpact on performance are derived. The overall goal is to re-
The objective function is mlnlleIng the sum of the costs fOfduce the execution time taking to account the pipe”ne eadtir
both tasks and edges, extending the definition in Table 3: MiMapReduce execution.
2 c(vi. &), wherei, j = 1...n. An alternative configuration technique is employed by Lim et
A different approach to engine selection has appeared in thsg, ], which leverages the what-if engine initially poszd
commercial tools in[[27, 26]. There, the main option is ETL by Herodotou et al.[[69]. This engine is responsible to con-
operators to execute on a specialized data integratioreiserv figure execution settings, such as memory allocation andnum
unless a heuristic decides to delegate the execution of sbme ber of map and reduce tasks, by answering questions on real
the tasks to the underlying databases, after merging tlke tasand hypothetical input parameters using a random searoh alg
and reformulating them as a single query. rithm. What-if analysis is also employed @37] for optiryal
Finally, the engine selection mechanism can be employed inonfiguring memory configurations. The distinctive featofe
combination with configuration of execution engine paramethis proposal is that it is dynamic in the sense that it cae tak
ters. An example technique is presented by Huang et al. [39fjecisions at runtime leading to task migrations.
where the initial optimization step deals with the decisain In a more traditional ETL setting, apart from the optimiza-
the best type of execution engine and then, the configuratiotions described previously, an additional optimizationchee
parameters are defined, as it is analyzed in Se€fidn 4.8. Thisism has been proposed by Simitsis etlall [49] in order to defin
technique is extended by Huang et [38], which focuses otthe degree of parallelism. Specifically, due to the large siz
how to decide on the usage of a specific type of cloud machineslata that a workflow has to process, data is partitioned txbe e
namely spotinstances. The problem of deciding whether to enecuted following the intra-operator parallelism paradigrhe
ploy spot instances in clouds is also considered by Zhou. et aparallelism is considered profitable whenever the overloéad
1. data partitioning and merging does not incur an overheduthnig
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Table 4: Experimental Evaluation of Proposals The third category covers the majority of the proposals, for

Evalation which experimental evaluation has been provided. We are
(Refs.yeay | Wolow | Data 'mgﬁﬁf”' “é,ié mostly interested in three aspects of such experimentsgiyam
nvir. 1ze H H
Tolo00 | Syetc | syl | Fe : theworkflow typeused in the experiments, thlata typeused to
L1 nthetic nthetic Real 1 H H o : H
(ST e B S = instantiate the workflows, and t@plementation environment
([24],2005) Syntheti Syntheti Simul. 70 i i i
(W L L i of the experiments. In -TabIE 4, the experimental evaluaipn
(B512005) [ Synthetic | Synthetic | Simul 200 proaches are summarized, along with the maximum DAG size
([15],2006; Synthetic Synthetic Real 4 R . .
G707 | Syrivetc | Syrthetc | S ) (in terms (_)f numt_)er of tasks)_employed. Sp_eC|f|caI_Iy, the im-
([291,2008) Real Real Simu. 7 plementation environment defines the execution environofen
([45],2008) Synthetic Synthetic Real 8 . . .
(3112009 | Synetc | _Synietc | Smi. 20 a workflow during the evaluation procedure. The environment
43],2010; S i S! i Simul. 60 - . . .
(912010 Rear Sy |— e %0 can be aeal-world one, which considers either the customiza-
e e e tion of an existing system to support the proposed optiritinat
(ol 00y Real Real Real 15 solutions or the design of a prototype system, which is essen

([46],2012) Real Synthetic Real 14
([8],2012),

tially a new platform, possibly designed from scratch arid ta

Real Real Real 15 . n
(¥ L O B = - lored to support the evaluation. A common approach consists
(@201 | Fedl | oynhewe | Red e of a simulationof a real execution environment. Discussing
([44],2013) Synthetic Synthetic Simul. 4 ) )
([221,2014) Real | Synthelic | Simul. 200 the pros and cons of each approach is out of our scope, but in
([48],2014) Real Synthetic Real <10 . . . . .
(EE) Fed _|_Fe Fed WA general, simulations allow the experimentation with a deva

15, Real nthetic Real N/A .
(G71.2015) Real Rear Real NA range of flow types, whereas real experiments can bettealreve
20],2015), . . . . . A . n .

(@1z019 | Syninetc Synthetic | Simul. 200 the actual benefits of optimizations in practice.
(52018 Siiieic T bon om0 As shown in Tablg}4, the majority of the optimization tech-

niques have been evaluated by executing workflows in a simu-
lated environment. The real environments that have been em-
then the expected benefits. Sometimes it might be worthinve%byed are as follows. The techniques fih [[8] 23,49, 12] that
tigating whether splitting an input dataset into partisaould  focused on (complex) ETL data flows have been evaluated with
reduce the latency in ETL flow execution on a single server ag,e help of extensions to the Pentaho Data Integration Ig§ett
well. An example study can be found [n [47]. tool, a commercial database, and a MapReduce engine. The
Another approach to choosing the degree of parallelism aMhroposals in@ﬂO} have been tested in the Stratospheig a B
pears in|[4ll], where a set of greedy and simulated annealingatg Analytics platform[[62]. A MapReduce-inspired proto-
heuristics that decide the degree of parallelism are peghos type called Cumulon, is used for the evaluation of the tech-
This proposal considers two objectives, performance anagtmo niques in [30/38]. Other MapReduce extensions have been
etary cost assuming that resources dfered by a public cloud employed in@j@g]_ To evaluate techniques initialig-p
at a certain price. The objective function targets eithemtiin-  ,5seqd for flows consisting of calls to WSs, both ad-hoc proto-
imization of the sum of the task costs constrained by a definegl,pes Et] and extensions to engines, such as Ta\,{&%a [32
monetary budget, or the minimization of the monetary cost ungpq Web-Sphere Process Serlef [54] have been used. Pat of th
der a constraint on runtime. Additionally, both metrics &  oyajuation of|[56] involved running Pegasus on a public dlou
minimized simultaneously using an appropriate objectiv®f  The techniques irl [33] and [41] are part of broader prototype
tion, which expresses the speedup when budget is increased.systemS, called Tupleware and ADP, respectively. Fintily,
Another optimization technique ih [33] proposes a set of OP+early works on database queries including UDFs were imple-
timizations at the chip processor level and more specificall nented in a DBMS [30, 36].
proposes heuristics to drive compiler decisions on whelher  The type of the workflows considered are either synthetic or
execute low-level commands in a pipelined fashion or to emregg|.world. In the former case, arbitrary DAGs are prodyced
ploy SIMD (single instruction multiple data) parallelisnin- e.g., based on the guidelines[70]. In the latter casefldie
terestingly, these optimizations are coupled with traddil  sirycture is according to real-world cases. For example, th
database-like ones at a higher level, such as pushingiselect oy ajuation ofl[31, 32, 34, 41, 22,|56] is based on real-wazid s
as early as possible. entific workflows, such as the Montage and Cybershake ones
described inﬂl]. Another example of real-world workflows
5. Evaluation Approaches are derived by TPC-H queries (used for some of the evaluation
experiments in@ﬂ 0] along with real world text mining
Here, we describe the evaluation methods used in each prand information extraction examples). [ [8] 23| 49, 12g th
posed work. We can divide the proposals in three categories. evaluation of the optimization proposals is based on wondlo
The first category includes the optimization proposals thathat represent arbitrary, real-world data transformastemd text
are theoretical in their nature and their results are nobrmec analytics. The case studies [@l 46] include standartyagna
panied by experiments. Examples of this category@@& 35cal algorithms, such as PageRank, k-means, logistic reigres
The second category consists of optimizations that havedou and naive bayes.
their way into data flow tools; the only examples in this cate- The datasets used for workflow execution mdieet the
gory arel[_zb7]. evaluation results, since they specify the range of the sta-
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tistical metadata considered. The processed datasets can
be either synthetic or real ones extracted by repositories,
such as the Twitter repository with sample data of real
tweets. Examples of real datasets used [in I!Zi 40] in-
clude biomedical texts, a set of Wikipedia articles, and
datasets from DBpedia. Additionally, Braga et all_|[29]
have evaluated the proposed optimization techniques us-
ing real data extracted kiyww.conference-service.con,
www.accuweather. com, andwww.bookings.com. Typically,
when employing standard scientific flows, the datasets used a
also fixed; however, ir@Z] a wide-range of artificially cteg
metadata have been used to cover more cases.

Finally, for many techniques, only small data flows compris-

ing no more than 15 nodes were used, or the information with e

regards to the size of the flows could not be derived. In the
latter case, this might be due to the fact that well-knowmalg
rithms have been used (e.g., k-means in [33] and matriximult
plication in @]) without explaining how these algorithrage
internally translated to data flows. All experiments withriwo
flows comprising hundreds of tasks used synthetic datasets.

6. Discussion on findings

Data flow optimization is a research area with high poten-
tial for further improvements given the increasing role afal
flows in modern data-driven applications. In this survey, we
have listed more than thirty research proposals, most ofhwhi
have been published after 2010. In the previous sections, we
mostly focused on the merits and the technical details df eac
proposal. They can lead to performance improvements, and
more importantly, they have the potential to lift the buraén
manually fixing all implementation details from the data flow
designers, which is a key motivation for automated optimiza
tion solutions. In this section, we complement any remarks
made before with a list of additional observations, whichyma
also serve as a description of directions for further redear

e In principle, the techniques described previously caneserv
as building block towards more holistic solutions. For in-
stance, task ordering can, in principle, be combined with
i) additional high-level mechanisms, such as task intreduc
tion, removal, merge, and decomposition; and ii) low-level
mechanisms, such as engine configuration, thus yielding
added benefits. The main issue arising when mechanisms
are combined is the increased complexity. An approach
to mitigating the complexity is a two-phase approach, as
commonly happens in database queries. Another issue is
to determine which mechanism should first be explored.
For some mechanisms, this is straight-forward, e.g., de-
composition should precede task ordering and task re-
moval should be placed afterwards. But, for mechanisms,
such as configuration, this is unclear, e.g., whether it is
beneficial to first configure low-level details before higher
level ones remains an open issue.

e In general, there is little work on low-complexity, holis-
tic, and multi-objective solutions. Toward this directjon
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Simitsis et al.[[49] considers more than one objective and
combines mechanisms at both high and low level execu-
tion plan details; for instance, both task ordering and en-
gine configuration are addressed in the same technique.
But clearly more work is needed here. In general, most of
the techniques have been developed in isolation, each one
typically assuming a specific setting and targeting a subset
of optimization aspects. This and the lack of a common
agreed benchmark makes iffittult to understand how ex-
actly they compare to each other, the details of how the
various proposals can be combined in a common frame-
work and how they interplay.

There seems to be no common approach to evaluating the
optimization proposals. Some proposals have not been
adequately tested in terms of scalability, since they have
considered only small graphs. In some data flow evalua-
tions, workloads inspired from benchmarks such as TPC-
DI/DS have been employed, but as most of the authors re-
port as well, it is doubtful whether these benchmarks can
completely capture all dimensions of the problem. There
is a growing need for the development of systematic and
broadly adopted techniques to evaluate optimization tech-
niques for data flows.

e A significant part of the techniques covered in this sur-

vey have not been incorporated in tools, nor have been ex-
ploited commercially. Most of the optimization techniques
described here, especially regarding the high level execu-
tion plan details, have not been implemented in real data
flow systems apart from very few exceptions, as explained
earlier. Hence, the full potential and practical value @& th
proposals have not been investigated in actual execution
conditions, despite the fact that evaluation results thus f
are shown to provide improvements by several orders of
magnitude over non-optimized plans.

A plethora of objective functions and cost models have
been investigated, which, to a large extent, they are com-
patible with each other, despite the fact that original pro-
posals have examined them in isolation. However, it is
unclear whether any of such cost models can capture as-
pects, such as the execution time of parallel data flows,
which are very common nowadays, in a fairly accurate
manner. A more sophisticated cost model should take into
account sequential, pipelined and partitioned execution i
a unified manner, essentially combining the sum, bottle-
neck and critical path cost metrics.

Developing adaptive solutions that are capable of revising
the flow execution plan on the fly is one important open
issue, especially for online, continuous, and stream pro-
cessing. Also, very few optimization techniques consider
the cost of the graph edges. Not considering edge meta-
data does not reflect entirely real data flow execution in
distributed settings, where the cost of transmitting data d
pends both on sender and receiver.


www.conference-service.com
www.accuweather.com
www.bookings.com

¢ In this survey, we investigated single flow optimizations.as pushing filtering tasks as early as possible, choosinjgitihe
Optimizing multiple flows simultaneously, is another areaimplementation, and using index tables, correspondirtggk
requiring attention. An initial #ort is described by Jo- orderingandimplementation selectiomespectively. This can
vanovic et al. |{TZ|2], which builds upon the task ordering be regarded as a direct technology transfer from databases t
solutions of|[24]. parallel data flows and to date, these optimizations do narco

arbitrary user-defined transformations.

e There is early work on statistics collection {11, EZ,JS] The )s/econd category is specific to the parallel execution
but clearly, there is more to be done here given thagpironment with a view to minimizing the amount of data
without appropriate statistics, cost-based optimizaien  reaq from disk, transmitted over the network, and being pro-
comes problematic and prone to significant errors. cessed. For example, Spark groups pipelining tasks indarge

« On the other hand, afiérent school of thought advocates jobs (_called stages) to benefit from this type of parallelism
that in contrast to relational databases, automated optﬁ‘lso’ It Iev_erages cached data and columnar storage, !nesfor
compression, and reduces the amount of data transmitted dur

to flow complexity and increased fifculty in maintain- ing data shfiling through early partial aggregation, when this
sis possible. Grouping tasks into pipelining stages is a fofm

ing flow statistics, and developing accurate cost model ; . . ;
Based on that, there is a number of commercial flow exefuntime scheduling. Early partial aggregation can be dekme

cution engines (e.g., ETL tools) that instead fednga 25 atr_:\sk introducti_ontechnique. The other forms of of opti-
flow optimizer they provide users with tips and best prac-m'zat'_OnS (leveraging cached data, _c_olumnz_ir storage,(an_mel ¢
tices. No doubt, this is an interesting point, but we con-Pression) can be deemed as specific formsrgiementation
sider this category as out of the scope of this work. ;electmn Fllnk is another system employing Optln’iIZf’itIOiis, but
it has not yet incorporated all the (advanced) iﬁimizaptm
Given the above observations and the trend in developin§0Sals in its predecessor projects, as describ rithlT#@i
new solutions in the recent years, data flow optimizatiomsee Proposal |_n_ ]is another example that proposes optinciaat
to be technology in evolution rather than an area, where mod@r & specific operator, nameRarFOR
significant problems have been resolved. Moreover, progidi e do not include these techniques in Taljles 1[dnd 2 be-
solutions to all these problems is more likely to yield sfgni cause they apply to specific DAG instances and have not ma-
cantly diferent and more powerful new approaches to data floviured enough to benefit generic data flows including arlyitrar
optimization, rather than delta improvements on existiolg-s ~ {aSks.
tions.

mization cannot help in practice in flow optimization due

7.2. Techniques Facilitating Data-centric Flow Optimimet
Statistical metadata, such as cost per task invocationend s
7. Additional Issues in Data-centric Flow Optimization lectivity, play a significant role in data flow optimizatios dis-
. ) o i . cussed previously.mﬂﬂﬁ 73] deal with statisticderol
Additiopal issues are_spllt into four parts. First, we déser tion and modeling the execution cost of workflows; such issue
optimizations ena_bled in current state-of-the-art paiadhta are essential components in performing sophisticated flow o
flow systems, which, however, cannot cover art_)ltrary DACf‘S[imization. @1 analyze the properties of tasks, e.g.,tiple-
and _tasks, and as siJch, have nqt been included in the preV'OHﬁ)ut vs single-input ones; such properties along with depe
sections. Next, we discuss techniques that, althoughthept o0y constraint information complement statistics adtsss
perform optimization in their own, they could, in principfa- on top of which optimization solutions can be built.
qilitate optimization. We provide a brief overview of opiira- Some techniques allow for choosing among multiple imple-
t|9n 50"4“0”5 for_ th_e WEP exe_cuuon Iay_er, cor_nplementmgt mentations of the same tasks using ontologies, rather than p
discussion Qf eX|st|iig scheduhiig technlqiies in Sect'_f_lok_zi\/e._ forming cost-based or heuristic optimization|[79]. E[SW-
conclude with a brief note on implementing the optimization , .,\ing the flow with the help of user interactions is dis@ss
techniques into existing systems. Additionally, in [], different scheduling strategies to account
o . for data shipping between tasks are presented, withoutVewe
7.1. Optimization In Massively Parallel Data Flow Systems proposing an optimization algorithm that takes decisigoa
A specific form of data flow systems are massively par-which strategy should be employed.
allel processing (MPP) engines, such as Spark and Hadoop. Apart from the optimizations described in Secf{idn 4, the pro
These data flow systems can scale to a large number of comesal in [49] considers also the objective of data freshnEss
puting nodes and are specifically tailored to big data managehis end, the proposal optimizes the activation time of E@tad
ment taking care of parallelismfficiency and fault tolerance flows, so that the changes in data sources are reflected on the
issues. They accept their input in a declarative form (e.g.state of a Data Warehouse within a time window. Nevertheless
PigLatin E‘S], Hive, SparkSQL), which is then automatigall this type of optimization objective leads to techniques tha
transformed into an executable DAG. Several optimizationsiot focus on optimizing the flow execution plan per se, which
take place during this transformation. is the main topic of this survey.
We broadly classify these optimizations in two categories. For the evaluation of optimization proposals, benchmarks
The first category comprises database-like optimizatisnsh  for evaluating techniques are proposedmp[ﬂ), 81]. Finably
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[@,@], the significant role of correct parameter configjora  that performs task reordering can consist of an indepermtent

in large-scale workflow execution is identified and relevagpt  gramming module that parses the XML file and modifies the
proaches are proposed. Proper tuning of the data flow executi edge elements. On the other hand, systems, such as Spark,
environment is orthogonal and complementary to optimazati transform the flow submitted by the user in a DAG, but without

of flow execution plan. exposing a high level representation to the end user. The in-
ternal optimization component, called Catalyst, then quens
7.3. On Scheduling Optimizations in Data-centric Flows modifications to the internal code structure that capturegk-

In general, data flow execution engines tend to have built-eCUtable DAG. Extending the optimizer to add new technigues

in scheduling policies, which are not configured on a singl such as those described in this survey, requires using ttze Ca

flow basis. In principle, such policies can be extended te takqut extensibility points. The second approaph seems woireq
more dfort from the developer and be more intrusive.

into account the specific characteristics of data flows, wher
the placement of data and the transmission of data acrdss tas
represented by the DAG edges, requires special attentéjn [8 8. Related Work
For example, in|E5], a set of scheduling strategies for oapr

ing the performance through the minimization of memory con- To the best of our knowledge, there is no prior survey or

. 2 Ooverview article on data flow optimization; however, there a
sumption and the execution time of Extract-Transform-Loa .
several surveys on related topics.

(ETL) workflows running on a single machine is proposed. As Related work falls into two categories: (i) surveys on gener

it is difficult to execute the data in pipeline in ETLs due to the AG scheduling and on narrow-scope scheduling problems
blocking nature of some of the ETL tasks, the authors suggesIR 9 P 9p '

splitting the workflow into several sub-flows and applffelient \cl)v\t](:;\k/]iéiv:g iisﬁoiﬂﬁgxn;e;?:rég data flow optimization; and (i
scheduling policies if necessary. Finally, |E|[86], thegalment Y i

of data management tasks is decided according to the mem- DAG scheduling is a pgrsstmg topic in computing and. has
- S received a renewed attention due to the emergence of Grid and
ory availability of resources taking into account the tradie

. g cloud infrastructures, which allow for the usage of rematee
between co-locating tasks and the increased memory corsum . o .
utational resources. For such distributed settings, tioe p

tion when running multiple tasks on the same physical compu* .
tational node 9 P phy P posals tend to refer to the WEP execution layer and to focus

. . ._on mapping computational tasks ignoring the data transer b
A large set of scheduling proposals target specific exegutio e .
) . tween them, or assume a non-pipelined mode of execution that
environments. For example, the techniqu

87] targedsesh N, . :
resource environments. Proposals, sucﬂﬁij[}ﬂ}[%b»sg, gdoes not fit will into data-centric flow setting [97]. A more re

o . . -’ “cent survey of task mapping is presentedLin [98], which dis-
91] are specific to grid and cloud data-centric flow schedulin cusses techniques that assign tasks to resourcesHcient

] discusses optimal time schedules given a fixed allopati L . . X
) . . _execution in Grids under the demanding requirements and re-
of tasks to engines, provided that the tasks belong to arlinea . . .
source allocation constraints, such as the dependendiesdre
workflow. S . . the tasks, the resource reservation, and so on.[_In [99], an
Also, a set of optimization algorithms for scheduling flows ' ' '

. : S overview of the pipelined workflow time scheduling problesm i
based on deadline and time constraints is analyzdﬂ 3,94 PP , gp .
. L presented, where the problem formulation targets stregapn
Another proposal of flow scheduling optimization is present .~~~ .
. . L lications. In order to compare th&ectiveness of the proposed
in [95] based on soft deadline rescheduling in order to deal ..~ .~ . .
. . . optimization techniques, they present a taxonomy of wovkflo
with the problem of fault tolerance in flow executions. [In[[[38 L . R
o . T optimization techniques taking into account workflow cleara
an optimization technique for minimizing the performancefl

. . . . . teristics, such as the structure of flow (i.e., linear, fdrke-
tuations that might occur by the resource diversity, whilso a . : :
. X . o . shaped DAGS), the computation requirements, the size af dat
considers deadlines, is proposed. Additionally, theresstaf

scheduling techniaues based on multi-obiective optiropat to be transferred between tasks, the parallel or sequeasial
9 q ) pumoRat — oxecution mode, and the possibility of executing task oagli

e.g., [26] Additionally, the taxonomy takes into consideration a perf
mance model that describes whether the optimization aims to
a single or multiple objectives, such as throughput, laterez
liability, and so on. However, in data-centric flows, tasks a
Without loss of generality, there are two main types of de-activated upon receipt of input data and not as a result o€an a
scribing the data flow execution plan in existing tools anat pr tivation message from a controller, as assumed in [99]. Nbne
totypes: either in an appropriately formatted text file ongs the surveys above provides a systematic study of the ogimiz
internal representations in the code. These two approachkes tions at the WEP generation layer.
exemplified in systems, like the Pentaho Kettle, Spark, ifeve The second class of related work deals with a broader-scope
and numerous others. In the former case, an optimizatidn tec presentation of workflow systems. The surveth [2] aims to
nique can be inserted as a component that processes this t@xesent a taxonomy of the workflow system features and ca-
file and produces a fferent execution plan. As an example, in pabilities to allow end users to take the best option for each
Pentaho, each task and each graph edge are described as djfplication. Specifically, the taxonomy is inspired by therkv
ferent XML elements in an XML document. Then, a techniqueflow lifecycle and categorizes the workflow systems accardin
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to the lifecycle phase they are capable of supporting. Howin [@,@] refer to pairs of a join and a UDF, rather than be-
ever, the optimizations consideredfgu from the same limi- tween UDFs. As such, when joins are removed and only UDFs
tations as those irﬂb?]. Similarly, i|’uI1|OO], an evaluatiohh  are considered, the techniques described in these prepasal
the current workflow technology is also described, congider reduced to unconstrained filter ordering. Second, thegsttai
both scientific and business workflow frameworks. The cdntroforward extensions to the propos@ [@ 36] are alreadgeal/
and data flow mechanisms and capabilities of workflow sysand improved by solutions targeting data flow task orderig e
tems both for e-science, e.g., Taverna and Triana, anddmssin plicitly as discussed in Sectién 4.1.
processes, e.g., YAWL and BPEL-based engines, are digstusse
in [E|]. [@] discusses how leading commercial tools in the
data analysis market handle SQL statements, as a means to per
form data management tasks within workflows. Liu et [14] This survey covers an emerging area in data management,
focus on scientific workflows, which are an essential part olhamely optimization techniques that modify a data-centric
data flows, but does not delve into the details of optimizatio workflow execution plan prior to its execution in an autondate
Finally, Jovanovic et al. [[102] present a survey that aims tananner. The survey first provides a taxonomy of the main di-
present the challenges of modern data flows througlerént  mensions characterizing each optimization proposal. @des
data flow scenarios. Additionally, related data flow optiaiz mensions cover a broad range, from the mechanism utilized to
tion techniques are summarized, but not surveyed, in omler tenhance execution plans to the distribution of the settintie
underline the importance of low data latency in Businesslint environment for which the solution is initially proposechéh,
ligence (BI) processes, while an architecture of next geti@r e present the details of the existing proposals, dividéd in
Bl systems that manage the complexity of modern data flows i@ight groups, one for each of the identified optimization mec
such systems is proposed. anisms. Next, we present the evaluation approaches, fagusi
Modeling and processing ETL workflows [103] focuses onon aspects, such as the type of workflows and data used during
the detailed description of conceptual and logical modetin  experiments. We complete this survey with a discussion®f th
ETLs. Conceptual modeling refers to the initial design oLET main findings, while also, for completeness, we briefly pnese
processes by using UML diagrams, while the logical modelingangential issues, such as optimizations in massivelyllphra

refers to the design of ETL processes taking into account regata flow systems and optimized workflow scheduling.
quired constraints. This survey discusses the generidgmrsh
in ETL data flows, including optimization issues in mininmgi
the execution time of an ETL workflow and the resumption in
case of failures during the processing of large amount @f.dat  [1] V. Curcin, M. Ghanem, Scientific workflow systems - can aiee fit

Data flow optimization bears also similarities with query op all?, in: Biomedical Engineering Conference, 2008. CIBEXO& Cairo
imization over W Vi W 4 ially when International, 2008, pp. 1-9.

t l atio O € (;,'the I(l:eS( hsmo ]’ eSpeC.a y t [2] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflowsdae-

valid ordenng; of the (.:a stot e WSs are SUb]eCt to depen- science: An overview of workflow system features and cajtisi] Fu-

dency constraints. This survey includes all the WSs related ture Gener. Comput. Syst. 25 (2009) 528-540.

techniques that can also be applied to data flows. [3] S. Chaudhuri, U. Dayal, V. Narasayya, An overview of imesis intelli-
it ; : gence technology, Commun. ACM 54 (2011) 88-98.

Part of the Optlmlza.tlons covered in this .Survey C.an be [4] K. Bhattacharya, R. Hull, J. Su, A data-centric designthodology
deemed as ge_nerallzatlons of th_e corresponding technigues for business processes, in: Handbook of Research on BasRtesess
database queries. An example is the correspondence between Modeling, chapter 23, 2009, pp. 503-531.
pushing selections down in the query plan and moving filgerin  [5] J. vom Brocke, C. Sonnenberg, Business process manageme busi-
tasks as close to data source as pOSS@ [105 Comprehen- ness process analysis, in: Computing Handbook, Third dditinfor-

A o : mation Systems and Information Technology, 2014, pp. 2811—
sive Surve_ys on databas? query optimization ar m” 107 [6] U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson, [Raintegration
whereas lists of semantic equivalence rules between expres  flows for business intelligence, in: Proc. of EDBT, 2009, ppl1.
sions of relational operators that provide the basis foryue [] tE S. OgAasaWIar% D. de O“Ve"ﬁ' o Vgldtunez,tJ_. D'a*?vd*"tf,?v M. Mat-

P . . . 0SO0, n aigepraic approac or aata-centric scientric KNOWS,
optimization can be fpund in clgssma_l databas_e textbomkss, ( PVLDB 4 (2011) 1328-1339.

1). However, as discussed in the introduction, thereesre  [g] A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal, Qpizing ana-

sential diferences between database queries and data flows, lytic data flows for multiple execution engines, in: SIGMODIger-

which cannot be described as expressions over a limitecfset o ___ €nce, 2012, pp. 829-840. . B
[9] D. Zinn, S. Bowers, T. McPhillips, B. Ludascher, Sciéntworkflow
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