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Abstract
Stream classification algorithms traditionally treat arriving instances as independent. However, in many applications, the
arriving examples may depend on the “entity” that generated them, e.g. in product reviews or in the interactions of users
with an application server. In this study, we investigate the potential of this dependency by partitioning the original stream
of instances/“observations” into entity-centric substreams and by incorporating entity-specific information into the learning
model. We propose a k-nearest-neighbour-inspired stream classification approach, in which the label of an arriving obser-
vation is predicted by exploiting knowledge on the observations belonging to this entity and to entities similar to it. For the
computation of entity similarity, we consider knowledge about the observations and knowledge about the entity, potentially
from a domain/feature space different from that in which predictions are made. To distinguish between cases where this
knowledge transfer is beneficial for stream classification and cases where the knowledge on the entities does not contribute to
classifying the observations, we also propose a heuristic approach based on random sampling of substreams using k Random
Entities (kRE). Our learning scenario is not fully supervised: after acquiring labels for the initialm observations of each entity,
we assume that no additional labels arrive and attempt to predict the labels of near-future and far-future observations from
that initial seed. We report on our findings from three datasets.
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We use the terms observations and instances interchangeably, since
we speak of a time series of property values that exist at all times but
are observed at different points in time.
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1 Introduction

Most data sources analysed for decision making are of a
dynamic nature. Purchases, reviews and ratings are subject
to changes in customers’ attitudes and in products’ popu-
larities. User interaction with mobile apps and social media
reflects the people’s changes in interests, preferences and
mood. Stream classification algorithms treat streaming data
as data/observations that arrive independently. This seems
oversimplifying, since the sales of a specific product or the
recordings of a patient interacting with an mHealth app
certainly depend on the associated entity—the product or
patient. So, it is reasonable to expect that information on the
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specific data-generating entity and on other entities (prod-
ucts, patients) that the query entity is similar to can improve
model quality. For instance, predicting future blood glucose
levels for a diabetic patient may benefit from considering
other, similar patients with diabetes. This approach is also
potentially useful given that most real-world applications
have to deal with data sparsity issues, and inferring infor-
mation from the neighbourhood may improve the quality of
predictions. Towards this end, we propose a neighbourhood-
based approach that trains entity-specific stream classifiers
and exploits similarity among entities for learning, rather
than similarity among the individual instances comprising
them, i.e. the entity is assumed to have both static and
dynamic information associated with it, and the static infor-
mation is used to compute the similarity neighbourhood,
while information from similar entities is exploited to make
predictions in the dynamic space.

There are abundant advances in stream classification, as
reflected in recent surveys like [6,13], where major chal-
lenges are identified, including the non-stationarity of the
data-generating process and the need to learn and adapt the
model efficiently. Although ensembles are seen as a very
competitive learning paradigm for stream classification [13],
the idea of learning entity-specific models has received little
attention in stream learning [3], in contrast to the obvious
entity-centric learning in time series analysis (where each
time series, usually generated by an entity, is treated sep-
arately from those generated by others). In our work, we
attempt to bring the two fields closer by exploiting the his-
tory of an entity and that of entities similar to it to predict the
labels of the arriving observations.

Similarity amongentities is traditionally exploited in time-
series analysis, and many extensions have been proposed
since the introduction of the first principles (cf. [28] for one
of the early papers). The core idea is to compare the series of
observations appertaining to different entities, thereby using
dynamic time warping and its variants to align time series of
different lengths [11]. However, this idea does not transfer
to the context of entity-centric learning on a stream for two
reasons. First, there is no reason to suppose that the obser-
vations on two independent entities will arrive at the same
speed. For example, if during a period of 24 months a patient
(entity) has been inspected by a physician twice (two obser-
vations), while another patient has been inspected 24 times
(e.g. once per month), it seems inappropriate to align these
two time series. Second, time series are finite, so each obser-
vation in them can be labelled, while streams are infinite.
Hence, the assumption of a constantly available oracle that
supplies fresh labels on demand must be questioned. Solu-
tions should therefore be developed that take into account the
fact that different entities are tracked at different rates, and
that labels may not always be available.

In this work, we propose an entity-centric stream classifi-
cation method that predicts the labels of the observations
belonging to an entity without requiring that the streams
of the individual entities have similar speeds, and without
demanding that fresh labels are made available at any time
by an oracle. To achieve this, we transfer similarity informa-
tion among entities from a static domain, and we learn on an
initial, small set of labelled observations, assuming that no
labels arrive thereafter. We investigate how far in the future
of each entity we can predict, given this limited amount of
labelled data.

Our approach encompasses the following components:
an entity-level classifier for numerical data (i.e. a regres-
sor), a method for computing k-nearest neighbours (kNN),
a baseline method for computing predictions using k Ran-
dom Entities (kRE) and comparing the learners in order to
reject irrelevant domains (from the transfer), and a method
for building a predictive subspace for a domain. We investi-
gate our approach on three datasets: patients interacting with
anmHealth app, product reviews, and sensor data on air qual-
ity. Since the predicted labels in this study are numeric, kNN
predictions are evaluated on RMSE and compared against
that from the kRE model.

It is to be noted that our proposed method does not
use kNN as a classifier, and more as a tool mitigating
label sparsity for an entity by expanding to its neighbour-
hood. Our approach also differs from kNN-based regression,
because the feature space in which kNN is computed is not
the feature space seen by the classifier making the predic-
tions.

The paper is organised as follows. The next Sect. 2 dis-
cusses related work, and the following Sect. 3 describes the
proposed workflow. In Sect. 4 we present our experiments
and discuss our findings, before closing in Sect. 5 with a
summary and outlook.

2 Related work

In our recent work [3], we propose an entity-centric learn-
ing approach for opinionated document streams.We compare
the performance of a classifier trained on all opinionated texts
to that of classifiers that see only the data associated to the
entity itself, and show that in some cases even basic entity-
centric models achieve competitive performance. However,
this approach ignores all variables except the document label
(prediction using only timestamp, and ‘without reading con-
tent’ of the arriving instances). Here, we build upon this
conceptualmodel but exploit further timestamped data,while
wedonot assume label availability beyond thefirst fewobser-
vations per entity.
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2.1 kNN-based predictions in time series data

The task of prediction over a sequence of observations for
an entity is addressed in the context of time series analysis,
where kNN is used to identify an entity’s nearest neigh-
bours and exploit them for learning. In [2], Ban et al. use
a kNN-based regression method to predict future values
of stock prices. The fundamental assumption is based on
economic intuition from [5] that within-industry returns cor-
relate highly compared to cross-industry returns. A two-tier,
multivariate regression method for financial time series fore-
casting is used to exploit this fact. The first step computes
the nearest neighbour for each entity (companies belong-
ing to S&P500, in this case) based on degree of correlation
over historical data, and the next step builds a multivariate
regressor to predict future values using each of the neigh-
bours identified.

This two-step approach of first identifying neighbours and
then learning on them is an idea that is very close to what
we propose. However, the chief difference in our approach
is that unlike in [2], we do not assume that all time series
have equal lengths. In addition, the dataset in [2] subsets the
S&P500 to select stocks from four sectors, while we do not
subset the original set of time series.

Several papers ([18,19,26], and [17]) assess the efficacy
of kNN-based systems in forecasting electricity prices. The
works of both [1] and [19] adapt a method very similar to
that in [2] for prediction of electricity prices (in the UK and
Spain, respectively). For this prediction task, each day’s elec-
tricity price information is stored as a 24-value time series
(one observation per hour). The neighbours are discovered
with kNN using Euclidean distance. Since all time series
are aligned and of equal length, more sophisticated distance
functions are not necessary.Themethodology in [1] improves
on the shortcomings of [19], where the time series are pre-
processed to exclude weekends and holidays. This is done
by using multiple regression to forecast prices while accom-
modating additional variables like temperature, cloudcover,
wind chill, etc., and dummy variables to flag holidays and
weekends.

2.2 Time series prediction with deep learning
algorithms

Time series prediction with help of deep learning algorithms
is enjoying increasing attention. This invites the question
of whether simplistic kNN-based approaches are still an
appropriate first choice for predicting the label of the next
observation of an entity. In their “Review of Unsupervised
Feature Learning and Deep Learning for Time SeriesModel-
ing” [15], Längkvist et al. state that “Time series data consists
of sampled data points taken from a continuous, real-valued

process over time.” This rather obvious statement is reflected
in modelling and analysis of time series of observations gen-
erated by a set of entities, e.g. flow of crowds from different
residual units inside a city [29], or flow of vehicles [21].

In our research context, the statement of [15] is not
guaranteed to hold: it would be rather surprising if the opin-
ions on all products belonging to the same category (e.g.
watches) would adhere to the same data-generating process.
Similarly, patients with the same disease but with differ-
ent static characteristics like birthdate, sex, and time since
disease onset, and with different comorbidities, should not
be assumed to generate observations according to the same
overarching process. Hence, an exploitation of the static
information on the entities seems essential next to the times-
tamped data. Studies on the use of clinical recordings, e.g.
for predicting the outcome of an intervention [25], take also
patient static data into account, including phenotypes and lab
tests.

Given the availability of both static and timestamped data,
it seems most appropriate to use advanced machine learning
algorithms that can exploit both. However, the streams of the
individual entities may vary substantially on the number of
observations per entity. This corresponds to time series of dif-
ferent lengths per time frame, since streams are endless time
series. The authors of [4] use recurrent neural networks for
predicting time series with missing values within each time
frame. This approach seems promising for entities that have a
comparable total number of observations. However, we con-
centrate on predictions after acquiring a minimal number of
observations per entity, without making assumptions on the
time frame in which they arrive.

2.3 Label prediction under infinite verification
latency

Conventional stream classification algorithms assume that an
oracle (e.g. a human expert) provides a label for each arriving
observation. The temporary unavailability of the oracle, i.e.
the verification latency leads to semi-supervised and active
learning solutions for stream classification [14]. If there are
no new labels at all, i.e. in the case of infinite verifica-
tion latency, semi-supervised stream classification methods
are employed, see, e.g. [7,27]. These methods have been
designed for a single stream of observations though, not for
entity-centric streams.

In the domain of time series prediction, semi-supervised
algorithms are less widespread. Short-term prediction in the
stock exchange market with help of semi-supervised algo-
rithms is proposed in [12]. In our work, we do not transfer
derived labels, as in semi-supervised learning, but similarity
information from another domain, and consider this infor-
mation for short-term and long-term predictions.
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2.4 Short- and long-range forecasting

Recent work has also called into attention the need for
short- and long-term forecasts for time series under various
constraints like missing values, etc. [8] proposes forecast-
ing methods for cross-sectional observations of multiple
multivariate time series and makes the distinction between
‘Continuous Approach’es and ‘Distance Approach’es. Con-
tinuous methods use already forecasted values to make
forecasts farther in the future (like ARIMA), and distance
methods do not. The latter is handled by varying the ‘target
cross section’ (the time at which the cross-sectional observa-
tion of all time series are made) while holding the rest of the
data constant. This is close to what we propose in this work,
but is subtly different from our approach, since our work
focuses on using all variables except the class label from the
multivariate time series when making a short- or long-range
forecast.

3 Neighbourhood-assisted predictions

Thiswork postulates thatwhilemaking predictions for obser-
vations of an entity, observations of entities that fall in its
neighbourhood can be leveraged to improve predictions. This
involves three steps: finding the neighbours of an entity,
choosing how to learn models on data of the entity and its
neighbours, and combining each model’s prediction to cre-
ate a final prediction. As already described in Sect. 1, we
generalise the notion of an entity here to something that has
both static properties (like the age, gender of a patient) and
dynamic properties (like daily blood sugar levels). This has
the consequence that neighbour discovery can work on a set
of attributes that are outside the dynamic attribute space. In
the following parts of this section, Sect. 3.1 provides a more
formal definition of the problem we aim to solve. Section
3.2 describes how the similarity between two entities can
be defined in a feature space other than that where the pre-
dictions are made. Section 3.3 describes the various options
available for dealing with timestamps while combining data
from individual entities. Subsequently, Sects. 3.4 and 3.5
describe how predictions are made from entity data aug-
mentedwith neighbourhoods, andhow these neighbourhoods
can be pruned to exclude false neighbours.

3.1 Formalisation of the prediction problem

We study a stream of instances linked to predefined entities,
and we investigate the problem of predicting the labels of
arriving observations, given static information on the enti-
ties, next to the observations themselves. We formalise this
problem as follows.

Assume E be a set of entities, the static properties ofwhich
are expressed in attribute space Do, while the observations
on each entity e ∈ E constitute an “entity-centric” stream Te
over the domain-specific attribute space Dp. An observation
arrives at a time point t j , so that the total number of obser-
vations at t j is j . For an entity e, the number of observations
seen until t j constitutes the “entity length” (or “length”) of
e at t j , length(e, tj) and is upper bounded by j and lower
bounded by zero.

The supervised learning goal over this stream would be to
label the observation arriving at t j , given the past observa-
tions and a fixed set of labelsL. Rather, assume that the oracle
which provides the labels delivers an initial set of labels,
namely for the first m observations for each entity. After this
seed of labelled observations, no more labels arrive, i.e. the
oracle is no longer available. Then, the classification prob-
lem is as follows: for each entity e and observation oe, j on
e, with j > m, predict the label of oe, j .

In this study, we concentrate on numerical labels only.
Our approach does not propagate labels, as in typical semi-
supervised stream learning, but rather focuses on predicting
the labels for j > m given the first m labels per entity and
the static information on the entities from Do. In our exper-
iments, we investigate how prediction performance changes
as j moves from m + 1 towards values much larger than m.

For our prediction task, we consider following steps: (a)
computing an entity’s neighbourhood in domain Do—with
kNN; (b) using this neighbourhood to inform themodel of an
entity e, by finding a suitable way to augment this data; (c)
using the model for prediction—in the near future and in the
far future, requiring a specification ofwhat is near andwhat is
far in the future. The following parts of this section detail the
various components that the various subtasks detailed above.

3.2 Borrowing an entity’s neighbours from another
domain

For a given domain Do with feature space F , we specify
the notion of similarity between entities, compute an entity’s
nearest neighbours and verify whether these neighbours lead
to better performance than randomly selected entities. This
means that for each entity e, the nearest-neighbour compu-
tation is performed on attribute space Do, but supplemented
with aggregated information from the time series attribute
space Dp. For example, if predictions are being made for
blood sugar values (a variable in Dp space), then the average
of the training-set blood sugar value for the entity in question
can be added as one of the features in Do. Ideally, this would
mitigate the problem that kNN can compute neighbourhoods
in Do with no regard to the values of prediction interest in
Dp. These steps to include information from Do in the neigh-
bourhood computation can be seen as borrowing the notion
of similarity from domain Do to improve the predictions in
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domain Dp. The use of aggregated information helps miti-
gate the problems created by computing similarities for time
series of very different lengths, and/or those with large gaps.
We explore the simplest case by including the aggregated
value only for the variable of prediction interest from Dp (i.e.
only one of the variables from Dp , the one forwhichwemake
predictions is included along with Do). The nearest neigh-
bours of an entity are computed using the kNN algorithm.
We only use Euclidean distance in this work, and the distance
between two entities is defined as the total distance between
the values for each of their relevant attributes weighting all
attributes equally. As already discussed, the attributes used
may be a subset of the total attributes available. The optimal
value of k is discovered experimentally. However, Euclidean
distance can be replaced with other distance functions.

3.2.1 Selecting a predictive subspace over Do

An optional step before applying kNN would be to select
from the list of available features in Do, the ones most suited
for the prediction task for the variable of interest in Dp. The
feature selection step is guided either by human intuition,
or is discovered in a way that maximises performance. It is
clear that manual feature selection is only feasible in cases
that Do does not have a large number of variables, and the
dependencies between variables in Do and Dp are intuitive
(e.g. the inclusion of stress as a variable that affects tinnitus).

We propose a solution that simultaneously optimises the
selected features and evaluates the quality of the selected fea-
ture space, using an evolutionary algorithm. Each individual
in the evolutionary algorithm is a Boolean vector Vi , with
i ∈ 1 . . . |Do|. The fitness of each individual is the perfor-
mance of the model built on the neighbourhood defined by
the features that had Vi = True, i ∈ 1 . . . |Do|.

3.2.2 Testing the relevance of Do by building a model from
random entities

The main assumption of this work is that for a set of entities
E , each of which consists of static, unchanging attributes
in an attribute space Do, and a sequence of timestamped
observations oi1 . . . oit of arbitrary length in attribute space
Dp, the ‘neighbourhood’ of an entity in Do can inform on
the future observations of the entity (in space Dp). Most
existing work optimises for the neighbourhood size k, but
does not verify whether the specific neighbourhood chosen
is responsible for the lowerrors.We therefore propose a novel
method for evaluating the contribution of the neighbourhood
towards prediction—for a given k and particular entity ep,
we pick k Random Entities er1 . . . erk , and build a regression
model on each, as detailed in Sect. 3.4. It is expected that this
will show the degree to which the neighbourhood improves
prediction.

3.3 Time alignment in Dp

The kNN step provides a list of similar entities for each entity
e. However, a model can be learned on the entities in the
neighbourhood of e either by time-aligning each entity’s first
observation to time 0, or to preserve the global time in the
dataset as is. This can help understand if the global time in the
dataset can inform on the tendencies of an entity, or whether
the model parameters depend only on an entity’s own past
(relative time w.r.t. entity), and not the exact time at which
the observations were made.

To investigate the effect of the global, dataset-level
‘clock’, we investigate two variants of treating the obser-
vations oz ∈ ep ∈ E . The first variant is a ‘global clock’,
which uses this timestamp of each observation oi as-is, with-
out any modification. The second variant gives each entity a
‘local clock’, which begins with the first observation arriv-
ing for that entity, i.e. we pre-process the observation time
stamps so aligned_t imestamp(oz) = t imestamp(oz) −
min_t imestamp(ep). The details of how a model can be
built on data from either variant is detailed in the following
Sect. 3.4.

3.4 Creating augmented regressors

Once the kNN step is complete, the prediction for an entity
ep can be made using the entities ei , i ∈ 1 . . . k, where
ei ∈ kN N (ep) and i �= p or in case of the random base-
line ei ∈ kRE(ep) and i �= p. For each ei (with an arbitrary
number of observations t), we have a sequence of observa-
tions oi1 . . . oit in the feature space Dp, over which a model
can be learned. In this early exploratory work, we use the first
m observations oi from entity ei to train a linear regression
model. We also investigate two ways to combine the data
from the entities in the neighbourhood.

Model augmentation The firstmethod trains a linear regres-
sion model mi on each of the entities ei ∈ kN N (ep), and
averages the parameters me,slope and me,intercept for each of
the models to create a final model. The RMSE is then com-
puted on predictions made for test observations for e. This
method is analogous to learning the tendencies for each entity
in the neighbourhood (including the entity itself), and aver-
aging all the tendencies to make a prediction for the entity in
question. This method is referred to as model augmentation.

Data augmentation for regression Since our time series can
differ in length and have large gaps,we also propose amethod
to retainmodel quality in the case that there are too fewobser-
vations to learn a reliable model on entity ep and/or entities
ei ∈ kN N (ep). We propose pooling all observations into a
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set oall such that oall = ⋃
oi∀o ∈ ei . Since we train one

common model on the pooled observations from the entire
neighbourhood, the problems with gaps and unequal lengths
can be mitigated to some extent. This method is called data
augmentation. In case of the random baseline, everything
stays the same but we use ei ∈ kRE(ep) instead.

Model Retraining In this early work, we always build our
linear regression models on the first m observations belong-
ing to ep. The regression models are not updated after a new
observation belonging to ep arrives, but we do plan to inves-
tigate in this direction in the future.

3.5 Neighbourhood-pruning

The idea that the kNN algorithm might not always find the
optimal neighbourhood, thereby leading to suboptimal pre-
dictions is described in [19]. Though it is possible to examine
data in Dp to exclude two entities ei and e j that are in close
proximity in the Do space, in this work we attempt to use
domain knowledge to guide the kNN algorithm by excluding
certain entities from each other’s neighbourhoods. Experts
can exploit information in Do to inform the kNN algorithm
that entities ei and e j should be excluded from each others’
neighbourhoods even though their data in Do are very simi-
lar. For example, the medical expert can provide the intuition
that people with type 1 and type 2 diabetes are fundamen-
tally different, even though theymay both have similarly high
values for blood sugar.

In this work, we use neighbourhood pruning on the
mHealth dataset, where we exploit the discrepancy between
tinnitus loudness and tinnitus annoyance. Tinnitus loudness
is the severity of the symptom, while annoyance or distress
is the psychological effect it has on the patient. It has been
noted by in [9] that there is a subset of patients where the
loudness of tinnitus and the psychological annoyance that the
patient suffers show are discordant. The degree of psycholog-
ical annoyance due to tinnitus ismeasured using theMini-TQ
questionnaire, which consists of a 12-question questionnaire
with answers in the scale of 0–2 (higher values are worse). To
measure the loudness level of the tinnitus symptom, Hiller
andGoebel use theGlockhoff andLindblom’s loudness grad-
ing system. They have noted that of the tinnitus patients,
about a third have low annoyance scores in spite of high
loudness levels. In addition, they have found a ‘specific psy-
chological profile’ that characterises high-annoyance tinnitus
sufferers, for example, not feeling low/depressed, not feeling
like a victim of their noises, etc., were all predictors of low
annoyance even in patients of high loudness [9].

This work investigates if the ‘psychological profiles’
found by Hiller and Goebels may be found in the mHealth

dataset. To this effect, we investigate whether the neighbour-
hoods in the kNN algorithm may be restricted to subgroups
that may be similar in their perception of annoyance given a
particular loudness.

We do not investigate this case for the AQI and Amazon
datasets because the concept ofwhat constitutes a false neigh-
bour is less clearly defined. However, in the abstract sense,
it is possible to exlude certain products from each others’
neighbourhoods. For example, a cheap knock-off of a luxury
watch should not be allowed to be in the neighbourhood of
the original product, or two air quality sensors should not be
in each others’ neighbourhoods if separated by a relatively
small distance but fall on different sides of a mountain range
trapping ambient pollution on one side.

4 Experiments

Goal of our experiments is to study the performance of
our method for the prediction of the labels of observations.
We concentrate on studying the predictive power achieved
through the exploitation of entity similarity, and hence focus
on prediction rather than adaption. We partition each dataset
into an early part used for learning (first 60% of each entity’s
time series) and the subsequent part used for testing.

As part of the evaluation, we perform near and far predic-
tions, predicting the labels of the first N%, and respectively,
the last N% of the test data. In a real scenario, the first N%
of the observations would correspond to the first time win-
dow, after which the classifier would need to be adapted.
The far predictions are used for gauging model quality, since
we expect that a model would perform better in the near
future than in the far future. All predictions are measured by
root-mean-squared error (RMSE) against the true values, and
performance improvement from kNN is compared against
the k Random Entities (kRE) introduced in Sect. 3.2.2. The
RMSE reported in the experiments is computed over all the
predictions made for each observation in each entity’s test
trajectory. The RMSE may be computed only for the first
part of this test trajectory, as in the case of the first N%, or
only for the last part of the test trajectory, as in the case of
the last N%.

4.1 Datasets

We consider three datasets: one from the domain of environ-
ment monitoring, in which the entities are sensors; one from
the domain of mHealth, where the entities are patients inter-
acting with a mobile app; one from e-commerce, where the
entities are products on which opinions have been submitted.

For each of the datasets, we remove entities that have too
few observations to learn, and then build a train and test set

123



International Journal of Data Science and Analytics

from each of the trajectories (time series) of the remaining
entities. For each entity e remaining in the dataset after the
filtering step, we use the first 60% of the data for training the
augmented regressor, and the remaining data for testing.

AQI—yearly EPA carbon monoxide datasets: These
are public domain dedicated datasets collected by the US
Environmental Protection Agency. The two datasets used
in this study are the daily and the yearly carbon monox-
ide summaries, containing the daily and yearly observations,
respectively. The daily carbon monoxide (CO) summaries
contain daily observed information for mean CO levels at
different sites located all across theUS. In addition toCO lev-
els, various other metrics are also available (PM2.5, PM10,
etc.), though this work focuses on predictions for CO lev-
els only. However, the ‘Air Quality Index’ (AQI) and the
daily Max_Observed_CO_Value information are also used
at the daily level. The selection of attributes was done in
a way that balances relevance to the prediction variable
as well as data quality. The dataset consists of 200 enti-
ties, with 577482 observations for the period from 1990
to 2017. The prediction variable is the mean CO values
observed in ppm as measured daily, and has the following
values: average = 0.742, min = 0.004, max = 8.461 and
standard_deviation = 0.519.

Attribute Space Do for kNN computation: The yearly CO
summary dataset gives the average CO levels observed at
these sites over the whole year. In addition to the yearly aver-
age observed CO, we also use the latitude and longitude of
the measuring site, the standard deviation of the measure-
ment, the first and second max values encountered, as well
as 90th and 50th percentile values.

Feature selection: For both the daily and the yearly
datasets, we removed several variables to focus only on those
associated with CO levels. Whenever a particular measuring
site had more than one device measuring CO levels, only
measurements from the primary devicewere used. It was also
seen that several observations were possible within the day,
with averageCO levels computed over varying time intervals.
In this case, we kept only the average CO levels measured
over the longest time. The attribute space Dp therefore
has 3 variables (the timestamp, AQI, and max_CO_Value).
The daily CO level dataset contains data between 1990 and
2017, while for the yearly summary we only keep data from
1989.

Figure 1 shows the distribution of entity lengths in the
AQI dataset. Note that while there is indeed a large range of
lengths, the distribution of #entities for varying entity lengths
is not as skewed as in the other datasets.

mHealth dataset: The mHealth dataset is not public
domain. It contains data on patients interacting with an
mHealth app called TrackYourTinnitus, to which they enter
data several times a day. The feature space of the entity tra-
jectories contains seven variables, one of which captures the

Fig. 1 AQI: #Entities (Y-axis) for various entity lengths (X-axis)

Fig. 2 mHealth: #Entities (Y-axis) for various entity lengths (X-axis)

patient’s overall state of health at the moment of the observa-
tion. This variable is numeric with a value between [0,1], and
we use it as target variable. For patient similarity, we use an
additional dataset that contains 31 variables on the patients
themselves (including sociodemographics and symptoms of
the disease). We use this second dataset as Do. The data
from this application has already been used to create mean-
ingful insights, like in [22], which has studied the difference
between prospective and retrospective ratings on the Track-
YourTinnitus mHealth platform.

Attribute Space Do for kNN computation: The attribute
space for the kNN computation is quite large, and the dis-
covery of the best subspace over which the kNN could be
built was done using a genetic algorithm, as discussed in
3.2.1.

Feature Selection: From the list of features available in
Dp, all features were used to train the regression model.

All entities with less than five observations were removed,
leaving a total of 516 entities in the dataset. A histogram of
entity lengths is given in Fig. 2.

Amazon—the tools&home improvementdataset:This
is a subset of the Amazon product reviews dataset introduced
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in [20], including only reviews for products belonging to
the category ‘Tools & Home Improvement’. Only the review
star rating, review timestamp, review text, and productID
information is exploited from this dataset. The productID
and review text combine to form Do with the timestamp and
star rating forming the Dp. The star rating is the prediction
variable, and takes values 1, 2, 3, 4 or 5.

The minimum cutoff for the Amazon dataset was set at
least 2 reviews. As can be seen in Fig. 3, the skew in entity
lengths is rather extreme in the Amazon dataset, with the
25th percentile, 50th percentile, and the 100th percentile
being 2, 4 and 4770, respectively. There are 139508 enti-
ties in the dataset after filtering, with a mean entity length of
12.9. In addition, [3] has also noted that the most reviews in
the dataset cluster towards the last timestamps, along with an
increased bias towards high ratings.

Attribute Space Do for kNN computation: Since the Ama-
zon dataset provides no clear set of variables in Do regarding
the static properties of the product, we use an aggregated
version of the information in the domain Dp. Toward this
end, we build a paragraph vector model as described in
[16] on the textual reviews for each product. The paragraph
vector model creates an embedding space not only for the
words in the review, but also for the documents that those
words are a part of. This comes with the great advantage
that the documents (products generating the reviews) and
the words are described in the same latent space. For this
work, we train a doc2vec model using the gensim library
[23].

Feature selection in Dp is unnecessary because only the
timestamp is used to predict the arriving ratings. While this
approach (of predicting an arriving rating based only on
the timestamp) might seem unrealistic from the point of
view of the dataset, the reader is encouraged to remember
that the goal of this work is to assess the degree to which
knowing the entity influences the predictability of its future
observations.

Fig. 3 Amazon: #Entities (Y-axis) for various entity lengths (X-axis)

4.2 Experimental runs and results

As introduced in Sect. 3, the main point is to evaluate the per-
formance of a regressor augmented with entities belonging
to the k neighbourhood of an entity. However, as discussed in
Sect. 3.2.2,we need to first verify how the neighbourhood can
augment the computed kNN, and whether this augmentation
should be done with absolute or relative timestamps.

4.2.1 Data v/s model augmentation

Figures 4, 5 and 6 show the RMSE values achieved by the
entity-centric models using the two approaches to augment
kNN data to improve predictions. It can be seen that the
data augmentation performsmuch better than the model aug-
mentation for the Amazon and AQI datasets, while for the
mHealth dataset the two methods are fairly similar.

FromFig. 4,we see that theRMSEdrops rapidly aswe add
neighbours, but increases again asmore andmore neighbours
are added. The curve for the model-augmented predictions is

Fig. 4 mHealth: RMSE for data augmentation (blue) v/s model aug-
mentation (green) (color figure online)

Fig. 5 Amazon: RMSE for data augmentation (blue) v/s model aug-
mentation (green) (color figure online)
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Fig. 6 AQI: RMSE for data augmentation (blue) v/s model augmenta-
tion (green) (color figure online)

only slightly worse than the curve for data-augmented pre-
dictions. This indicates that there might be no dataset-level
tendencies in any direction, i.e. all entities have roughly the
same slope. It is also possible that the kNN successfully
identifies neighbouring entities of similar tendency. But this
requires further investigation for the concrete dataset.

For the Amazon and AQI datasets, however, the data-
augmented method shows almost the opposite tendency
(though for AQI the quality improves as we add more and
more neighbours). It is also to be noted that the graphs show
results for up to 50 neighbours, which is a much larger pro-
portion of the total number of entities in the AQI dataset
(which has 200 entities), as compared to the Amazon dataset.
It is therefore possible that the Amazon dataset would have
shown the same initially upward, but subsequently decreas-
ing tendency for large neighbourhoods if the neighbourhood
size were expanded to thousands of entities. This test with
such a large neighbourhood size was not performed due to
performance considerations. It is also to be noted that the
results shown for the mHealth and the AQI datasets are on
the Z-score normalised value of the prediction variable as
in the training dataset. This is because unlike in the Ama-
zon five-star rating system, a fixed-magnitude deviation can
have different implications for the entity. For example, in the
mHealth dataset, a patient feeling worse by 0.2 points may
or may not be twice as bad as a patient feeling worse by 0.1
points.

4.2.2 Global v/s local time

For each of the entities ek ∈ kN N (ep), k ∈ {1 . . . k}, we have
a set of timestamped observations. However, the timestamps
can be defined in two ways, one that considers each entity to
have a separate clock (local time), beginning at the timewhen
the first observation on that entity is recorded. The other case

Fig. 7 mHealth: RMSE for Global time (green) v/s Local-time (blue)
(color figure online)

Fig. 8 Amazon: RMSE for Global time (green) v/s Local-time (blue)
(color figure online)

is the default case of using the timestamps as they are (global
time), without modifying them in any way.

We perform this experiment only for the mHealth and the
Amazon dataset. We skip the AQI dataset, because no align-
ment is needed: almost all AQI entities have observations
at the beginning of time in the dataset (1990). The differ-
ent lengths are a consequence of the fact that not all entities
have recordings for as long into the future (from 1990) as
others.

Figures 7 and 8 show that time aligning each entity to 0
makes predictions worse, though the effect is much larger
in the Amazon dataset, where the difference between the
youngest and oldest entities is much larger. Another possible
reason for this result is that most entities are very short (see
Fig. 2 and 3). When short entities are time aligned before
learning a regressor on them, this causes the slopes to become
steeper than if entities with the same amount of variation (but
far apart in absolute time) use the global clock.
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4.3 Comparison with kRE baseline

Since the past two experiments suggest that non-aligned
(global time), data-augmented regressors outperform the
other configurations, these two methods were compared
against the kRE baseline introduced in Sect. 3.2.2. The base-
line method numbers reported for the AQI and mHealth
datasets are averages computed over 30 runs. The size of the
Amazon dataset implied very slow computations, so we per-
formed only 5 runs. However, this does not appear to be a big
drawback, since the variation exhibited for each k was very
small (with minimum, mean and maximum std. deviations
for RMSE of 0.00022, 0.00046 and 0.00082. respectively).
The results of running these experiments on the three datasets
are shown in Figs. 9, 10 and 11.

The results on the Amazon dataset (Fig. 9) are partic-
ularly remarkable. This is the only dataset for which the
RMSE begins at low values and continuously increases, as
we increase the neighbourhood size. It is quite likely that
the very large number of very short entities (of length = 2,
for example—see Fig. 3) are best predicted without consid-
ering any neighbours, and the addition of each neighbour
distracts the local model with noise. Also, range of values k
over which the current experiments have been conducted are
a tiny fraction of the total number of entities in the dataset
(100,000+). However, it can also be seen that though the kNN
model does have a high RMSE at the beginning, the RMSE
drops steadily as we add more neighbours. The drop in the
RMSE (compared to the rise in the case of random entities)
seems to suggest that the neighbours that are being added are
informative with respect to the true tendency.

The behaviour of RMSE might be associated to the use
of word embeddings. Since the study of the role of word
embeddings is beyond the scope of our work, we did not
compare different word embeddings. Rather, we selected the
doc2vec model [16] by checking whether the kNN of a doc-

Fig. 9 Amazon: Data-Augmented Regressor (blue) v/s kRE Baseline
(red) (color figure online)

Fig. 10 mHealth: Data-Augmented Regressor (blue) v/s kRE (red)
Baseline (color figure online)

Fig. 11 AQI: data-augmented regressor (blue) v/s kRE (red) baseline
(color figure online)

ument were mostly from the same category of products. So,
the high RMSE values might indicate that doc2vec was a
suboptimal choice for this analysis.

In the mHealth dataset, the kNN and the kRE baseline
performances are very similar, suggesting either that the
neighbourhood computation task has failed to identify fea-
tures in Do that improve predictability in Dp , or that the static
attributes of the respondents are not predictive of disease
evolution. However, the deviation of the kNN away from the
random beyond neighbourhood sizes of 15 suggests that the
attributes on which neighbourhoods are computed do have
an impact on predictions.

In the AQI dataset, it can be seen that the kNN does indeed
help to predict future values of an entity. It also appears that
the increase in neighbourhood size does not affect prediction
quality to a very large extent. Given that it has been observed
in the dataset that almost all entities have coinciding obser-
vations in the early parts of the time series (almost all entities
have observations starting from 1990, the beginning of the
dataset), this could suggest that all entities in the dataset have
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similar slopes, and addingmore neighbours does not improve
the models as much, at least for the simple models that we
have considered in this work.

It is also important to note two interesting observations
that hold true across all three datasets: It can be seen that for
all three datasets, predictions based on using entity informa-
tion alone (neighbourhood size of 0) was always worse than
those based on a neighbourhood. This means that neighbour-
hoods are useful in improving predictions. Unexpectedly,
RMSE decreases even for k Random Entities. A possible
explanation is that there are entities which ‘run with the
crowd’, and this tendency helps even to improve predictions
on an entity e even by using k randomly selected entities,
since they can inform on the global tendency. The Amazon
dataset is the only one we tested where we see an upward
slope for k Random Entities from the very beginning.

4.4 Predictive performance in the near and the far
future

To look deeper at the kNN results, we broke down theRMSEs
by predictions for observations near in the future and pre-
dictions far in the future (first x% and last x% of the test
trajectory). Various bounds (10%, 20% and 50%) were tried
for near and far on the test data (which are the last 40%
of the observations belonging to an entity). On Figs. 12, 13
we show the results only for near = first 10%, and far =
last 10%. The RMSE curves for the first 20% observations
showed a similar trend. The RMSE curves for the 50% of the
observations had also the same trend but were closer to each
other.

In the mHealth dataset, the near-RMSE is lower than the
far-RMSE (Fig. 12). This is quite expected, since the health
condition of a patient for some time period is more likely to
be similar to the patient’s condition just before that period.

Fig. 12 mHealth: RMSE (Y-axis) versus neighbourhood size (X-axis)
for near (green) v/s far predictions (red) (mean RMSE in blue) (color
figure online)

Fig. 13 AQI: RMSE (Y-axis) versus neighbourhood size (X-axis) for
near (green) v/s far predictions (red) (mean RMSE in blue) (color figure
online)

Fig. 14 Amazon: RMSE (Y-axis) versus neighbourhood size (X-axis)
for near (green) v/s far predictions (red) (mean RMSE in blue) (color
figure online)

Figure 12 shows that the near- and far- RMSEs have the same
trends with increasing k.

The mHealth dataset is the only one where the near-
RMSE is lower than the far-RMSE. The difference is most
remarkable for the AQI dataset: Fig. 13 shows that as the
neighbourhood size increases, the near-RMSE curve quickly
deteriorates compared to the far-RMSE. The mean of the
RMSE follows the same trend as the far-RMSE. A possible
explanation is that the near-RMSE refers to a time period
in which the recordings were more noisy or there were less
sensors in total (and more far apart).

In the AQI dataset, the curves of near-RMSE and far-
RMSEcross close to zero, i.e. for very lowvalues of k. For the
Amazon dataset (Fig. 14), the two curves do not even cross
for small neighbourhoods: the near-RMSE drops, but the
far-RMSE begins at much lower values and then increases,
though very slowly. The two curves seem to approach each
other asymptotically. In [3], it has been reported that the rat-
ings in this dataset exhibit a long-term tendency, whichmight
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indicate that the far-RMSE is the result of many observations
with similar labels.

4.5 Neighbourhood pruning: usingmedical
intuition to exclude ‘false neighbours’

The idea that some of the neighbours computed by the k-
nearest neighbours algorithmmight not contribute positively
to prediction ismentioned in [19]. In order to keeponlyneigh-
bours that help improve the predictions, the authors suggest
a method that excludes ‘false neighbours’. However, the cri-
teria on which a neighbour may be declared ‘false’ are not
clearly defined in [19]. For our problem specification, one
way to decide if a neighbour is indeed negatively affecting
model performance is to check whether the neighbour of
entity x in static space Do is also a neighbour of the time
series of x in Dp. To do so, we need to observe the time
series for a while before deciding whether the time series of a
neighbour in Do diverges from the given entity. As explained
already in the earlier sections, the time series for individual
entities may be too short, making it necessary to wait too
long before such a test becomes reliable.

In light of these difficulties, this work focuses on exploit-
ing expert knowledge regarding entities in the Do domain
to identify ‘false neighbours’, which can then be excluded
from the kNN output for a particular entity. More precisely,
we build upon the findings of [9] on the association between
tinnitus loudness and distress, not simply to investigate how
distress can be predicted among similar patients, as done
in Sect. 3.4, but also to refine patient neighbourhoods and
to exclude patients that exhibit dissimilar distress despite
similar loudness levels. As already explained in Sect. 3.5,
restricting neighbourhoods computed by kNN to groups
of participants that have the same combination of loud-
ness/annoyance scores may be beneficial in the discovery
of subgroups.

The approach used by Hiller & Goebels in [9] can-
not be applied directly to our problem, since they measure
‘loudness’ using variables that are not part of the mHealth
dataset. However, the mHealth dataset does collect a vari-
able regarding registration-time tinnitus loudness.We cluster
the response values for this variable into three groups using
kMeans. The clusters are not well separated, but the three
clusters that are thus discovered amongst the respondents
form groups of participants with high, medium and low tin-
nitus loudness as shown in Fig. 15. Unlike for loudness, the
variable used by Hiller and Goebels to measure distress does
exist in the mHealth dataset—as in [9], we use the total score
computed byMini-TQ, the ‘tfsum’ variable, for our analysis:
we varied the number of clusters but fixed them at 2. Figure
16 shows the two groups of patients discovered by kMeans
on the ‘tfsum’ variable. The minimum and maximum pos-
sible values are 0 and 24, respectively. As with loudness,

Fig. 15 Clusters for loudness measurements: black (low loudness),
green (moderate loudness) and red (high loudness) (color figure online)

Fig. 16 Clusters for distress measured as total ’tfsum’: green (low dis-
tress) and red (high distress) (color figure online)

Table 1 Number of participants and their average loudness and distress
levels per group

N Avg. Distress Avg. Loudness

Group1 97 18.3 82.2

Group2 168 17.0 54.4

Group3 52 15.7 26.8

Group4 35 9.2 77.1

Group5 83 8.1 53.0

Group6 81 7.4 28.1

the clusters are not well separated, so subgroups of low- and
high-distress participants correspond to cuts in continuous
strata.

On this basis, we create subgroups of participants that are
more similar in their loudness and distress ratings using the
following steps:

– Create six groups, and assign each participant into one
group, depending on his/her loudness and distress clus-
ter. The six possible groups are: High distress + High
Loudness, High Distress + Moderate Loudness, High
Distress + Low Loudness, Low Distress + High Loud-
ness, Low Distress + Moderate Loudness, Low Distress
+ Low Loudness

– Perform the classification task with kNN restricted
to finding neighbours from within each participant’s
group. Compare the performance of the neighbourhood-
augmented models within the groups to the global model
without restricting kNN to the group.

Table 1 shows the number of participants and the mean
loudness and distress levels for each of the groups. It is
noted that our workflow has identified ‘discrepant’ partic-
ipants with both high loudness and low distress as well as
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Fig. 17 RMSE’s for pruned neighbourhood-augmented predictions
for six participant groups in the mHealth Dataset: Neighbourhoods
restricted to groups of participants of similar (Distress =< L/H >,

Loudness =< L/M/H >)

low loudness and high distress values in agreement with [9].
The low distress, high loudness group is the smaller of the
two, with only 35 participants. It is also seen that while Hiller
& Goebel found about a third of tinnitus patients to be dis-
cordant, only about 16% of the participants in the mHealth
dataset showed this peculiarity. While this could be a short-
coming of the workflow design, it is also possible that the
mHealth application is more accessible to tinnitus sufferers
who did not go to the hospital ([9] refers to hospital data)

Figure 17 shows the predictions in Dp achieved after
segmenting the patients on loudness+distress in Do. Two
conclusions, in particular, can be drawn from the results. It
can be seen that in four of the six groups, expert knowledge
guided intuition contributed to improving prediction qual-
ity. In addition, among the groups of patients described in
Hiller & Goebel [9] as discrepant in their loudness-distress
measurements, one of the corresponding discrepant partici-
pant groups (high distress, low loudness) is improved to the
greatest extent by the neighbourhood pruning process in the
mHealth dataset. In contrast, the predictability in Group4
(low distress, high loudness) is the lowest. This suggests
that of the two possible ways in which a patient could be
‘discrepant’, the ones that are distressed to a high degree
even with a relatively lower loudness levels are somehow
more similar to each other than those of the opposite group
(low distress in spite of high loudness). In other words, it
could be that participants who find ways do deal with their
symptom find their own different ways to deal with it, while
those that are easily distressed are more psychologically
alike. The RMSE of the global model on Figure 17 indi-
cates that the improvements on somegroups are cancelled out
by the low predictability on Group 4. Hence the refinement
into segments is necessary in order to improve performance.

Indeed, the idea of eliminating false neighbours does have a
small positive impact on predictive performance, with four
of the six groups showing small improvements in predic-
tive performance compared to the global model that does not
exclude neighbours. Since the neighbourhood computations
are already (non-randomly) restricted to be within group, we
do not compare these results against rNN.

5 Summary and future work

The goal of the study was to investigate whether a k-nearest
neighbours constructed on a feature space outside the pre-
diction space of an entity can guide a labelling process for
future observations of an entity. Towards this end, we pro-
posed a k-nearest-neighbour method that canwork on a static
attribute space Do, and transfer the knowledge about entity
similarities to label future instances of the entity in dynamic
domain Dp. The efficacy of the proposed method is evalu-
ated against a baseline which challenges the assumption that
Do yields ‘transferable information’ (by choosing k Random
Entities).

Two methods of combining information from the related
entities were observed, and it was seen that a data-augmented
method had the best performance. However, more work
is needed on a wider range of datasets, before a general
conclusion can be reached regarding the selection of the aug-
mentation type with respect to dataset characteristics. It is
also to be noted that this early exploratory work only consid-
ers the case of linear regression models, and the performance
of more complex models such as polynomial regression or
ARIMAmay be affected to different extents by data augmen-
tation (for example, the fact that data augmentation forcefully
aligns all time series can affect ARIMA models in the case
of two out-of-sync time series with repeating patterns). Sur-
prisingly, it was found that depending on the dataset and
its average tendencies, even choosing random entities can
improve the prediction quality. This means that even a ran-
dom entity transfers some level of knowledge about the
dataset-level tendency. In other words, it can be argued that a
random entity is able to mitigate the sparsity in the available
labels. More work needs to be done to verify whether this is
generally true across all datasets, and if yes, whether a heuris-
tically discoverable k exists that can be used for entities (new,
privacy-protected, etc.) that do not have easily computable
neighbourhoods.

In this first study on predicting observation labels in an
entity-centric way, we did not consider model adaption.
Albeit our results show that it is possible to make even far-
future predictions by using solely an initial seed of labelled
observations per entity. In addition, we also see that it is pos-
sible to incorporate domain-specific expert information to
improve predictions by restricting the kNN computation to
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groups of entities in a way that excludes ‘false neighbours’
as suggested in [19]. The adaption of the model with means
of semi-supervised or active learning is our next planned
task. For this, we intend to build upon our recent works on
semi-supervised sentiment classification [10] and on active
learning for sentiment classificationwith an irregularly avail-
able oracle [24], both of which are designed for conventional
streams though.Our current approachwas not optimisedwith
respect to training time and runtime. We want to investi-
gate the impact of dataset characteristics on training time,
and to optimise the cost of retraining and adaption if labels
can be acquired through an irregularly available oracle or
derivedwith self-learning. The effects of neighbourhood size
onmodel quality and execution time need also further investi-
gation. In our current experiments, the number of neighbours
did not exceed 50, whereupon the error values seemed rather
stable. Since the number of entities is much smaller than the
number of observations, it is worth investigating whether it
would be beneficial to set the neighbourhood size relative to
the number of entities in the dataset. Several avenues also
remain for possible improvements to the core method. The
poor gains in predictive performance from the kNN in the
Amazon dataset is also possibly due to a poorly trained word
embedding model. The evaluation process for the paragraph
embedding can possibly be improved by considering a Jac-
card coefficient-like measure for the number of neighbours
a product has from the same product subcategory.
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M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou,
M., et al.: Open challenges for data stream mining research. ACM
SIGKDD Explorations Newslett. 16(1), 1–10 (2014)

15. Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised
feature learning and deep learning for time-seriesmodeling. Pattern
Recogn. Lett. 42, 11–24 (2014)

16. Le, Q., Mikolov, T.: Distributed representations of sentences and
documents. In: International Conference on Machine Learning, pp
1188–1196 (2014)

17. Lora, A.T., Santos, J.R., Santos, J.R., Ramos, J.L.M., Expósito,
A.G.: Electricity market price forecasting: Neural networks versus
weighted-distance k nearest neighbours. In: International Confer-
ence on Database and Expert Systems Applications, Springer, pp
321–330 (2002)

18. Lora, A.T., Santos, J.M.R., Riquelme, J.C., Expósito, A.G., Ramos,
J.L.M.: Time-series prediction: Application to the short-term elec-
tric energy demand. Current Topics in Artificial Intelligence pp
577–586 (2004)

19. Lora, A.T., Santos, J.M.R., Exposito, A.G., Ramos, J.L.M., San-
tos, J.C.R.: Electricity market price forecasting based on weighted
nearest neighbors techniques. IEEE Trans. Power Syst. 22(3),
1294–1301 (2007)

20. McAuley, J., Yang, A.: Addressing complex and subjective
product-related queries with customer reviews. In: Proceedings
of the 25th International Conference on World Wide Web, Inter-
national World Wide Web Conferences Steering Committee, pp
625–635 (2016)

21. Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic
flow prediction. Transportation Research Part C: Emerging Tech-
nologies 79, (2017)

22. Pryss, R., Probst, T., Schlee, W., Schobel, J., Langguth, B., Neff,
P., Spiliopoulou, M., Reichert, M.: Prospective crowdsensing ver-
sus retrospective ratings of tinnitus variability and tinnitus-stress
associations based on the trackyourtinnitus mobile platform. Int. J.
Data Sci. Anal. (2018). https://doi.org/10.1007/s41060-018-0111-
4
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