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Abstract
Clustering is an important task in knowledge discovery with the goal to identify structures of similar data points in a dataset. 
Here, the focus lies on methods that use a human-in-the-loop, i.e., incorporate user decisions into the clustering process 
through 2D and 3D displays of the structures in the data. Some of these interactive approaches fall into the category of visual 
analytics and emphasize the power of such displays to identify the structures interactively in various types of datasets or to 
verify the results of clustering algorithms. This work presents a new method called interactive projection-based clustering 
(IPBC). IPBC is an open-source and parameter-free method using a human-in-the-loop for an interactive 2.5D display and 
identification of structures in data based on the user’s choice of a dimensionality reduction method. The IPBC approach 
is systematically compared with accessible visual analytics methods for the display and identification of cluster structures 
using twelve clustering benchmark datasets and one additional natural dataset. Qualitative comparison of 2D, 2.5D and 3D 
displays of structures and empirical evaluation of the identified cluster structures show that IPBC outperforms comparable 
methods. Additionally, IPBC assists in identifying structures previously unknown to domain experts in an application.
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1  Introduction

The term “visual analytics” was introduced as “the sci-
ence of analytical reasoning facilitated by interactive visual 
interfaces” [1]. However, it was pointed out that, based on 
current practice, a more specific definition would be that 
visual analytics combines automated analysis techniques 
with interactive displays of structures in data for an effec-
tive understanding, reasoning, and decision making based 
on large and complex datasets [2]. In systems such as the 
visual cluster rendering system (VISTA) [3], the objective 
is to display the dataset in such a way that it would be easy 

for a human to manually cluster data and verify existing 
clustering results visually.

Projections from high-dimensional data spaces into two 
or three dimensions are typical methods used in visual ana-
lytics [4]. If the output space is two dimensions, the result is 
a scatter plot. Scatter plots generated by a projection method 
are the state-of-the-art methods in cluster analysis to visual-
ize data structures [5–7]. The goal of such a scatter plot is 
to display the distance or to a certain extent density-defined 
structures in the data. However, the Johnson–Lindenstrauss 
lemma [8, 9] states that the two-dimensional similarities in 
a scatter plot cannot coercively represent high-dimensional 
distances. Projections of several datasets with distance and 
density-based structures yield a misleading interpretation of 
the underlying structures [10, 11]. One particular problem 
of these systems is the special case in which the dataset does 
not possess any cluster structures at all. Systems for visual 
analytics usually involve a large number of parameters that 
are usually left to be fine-tuned by the human-in-the-loop. 
At the core of these problems lies the assumption that the 
distances in the scatterplot are directly proportional to the 
distances of the data points in a high-dimensional space.
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In this work, we propose an interactive, parameter-free, 
open-source display of structures in data based on the gen-
eralized U-matrix visualization method which is based on a 
simplified emergent self-organizing map [12]. This method 
displays the high-dimensional distances between the points. 
The density properties of the data space can also be incorpo-
rated. The method leads to a landscape like representation 
“called topographic map” on top of a scatterplot. Emerging 
structures such as walls, ridges and separate valleys can then 
be used for either clustering or the assessment that there are 
no cluster structures in the data.

The interactive projection based clustering (IPBC) 
method proposed here can be used with any projection 
method for the display and identification of cluster structures 
in the data. This work shows that

•	 Comparable interactive in 2D and 3D displays are mis-
leading for a large variety of structures in data

•	 IPBC outperforms comparable methods in task of inter-
active identification of structures in data

•	 IPBC is the only visual analytics approach that accounts 
for the Johnson–Lindenstrauss lemma through the topo-
graphic map

Prior benchmarking showed that automatic PBC is 
always able to find the correct cluster structure, while the 
performance of the best of the 32 clustering algorithms 
varies depending on the dataset [11]. In this work, IPBC 
is compared to publicly available visual analytic methods 
for clustering artificial and high-dimensional datasets from 
real-world experiments. This work is an extension of the 
manuscript initially presented at DSAA 2020 to four exam-
ples [13].

2 � Related works

Many visual analytics systems are either developed for a spe-
cific commercial solution or are no longer used.. To compare 
IPBC to other methods, we restricted our comparisons to 
publicly available systems that are still in use. In interactive 
clustering approaches scatter-plots are used in interactive 
principal component analysis (iPCA) [14], Clustrophile 2 
[15], Morpheus [16], and Clustervision [17]. iPCA is an 
interactive system for PCA-based visual analytics. How-
ever, this system seems to no longer be publicly available. 
Clustervision enables the human-in-the-loop to choose from 
a variety of clustering techniques and parameters and then 
ranks the clustering results utilizing five quality metrics, 
additionally showing the scatter plots of the projected data 
[17]. Unfortunately, the web interface was not working for 
new data. Clustrophile 2 displays structures in data using 
heatmap visualizations of discrete clusters with scatterplots 

for dimensionality reduction [15]. It also enables what-if 
analyses through direct manipulation of the dimensionality 
reduction scatterplots [18]. However, the software was not 
accessible.

In systems such as the visual cluster rendering system 
(VISTA) [3], the objective is to display the dataset in such 
a way that it would be easy for a human to manually cluster 
the data and verify existing clustering results visually. While 
VISTA is often intended to import an existing clustering to 
validate or modify the clustering, it is also able to produce 
clusterings by itself through its interactive display of struc-
tures in data.

It should be noted that linear affine mapping, which is 
used by VISTA to render a 2D plot, has some disadvantages. 
While “gaps” in the visualized point clouds represent real 
gaps in the data, clusters can overlap, and outliers can even 
produce fake clusters. The mapping technique used is called 
α-mapping. To mitigate the previously mentioned effects, 
the display of structures in data is made dynamic by ena-
bling the human-in-the-loop to modify the projection plane 
interactively. This allows the continuous observation of the 
dataset from different perspectives.. This α-mapping aims to 
preserve the N-dimensional information of the dataset in 2D 
space using a N-parameter-adjustable display of structures 
in data, which maps to 2D star coordinates as introduced in 
[19]. The two essential properties of this mapping are its 
linearity and its adjustability. Linearity means that gaps in 
the display of the structures in the data always correspond 
to gaps within the data space, and the adjustability enables 
changing the weight of each dimension, which indicates 
how significant the given dimension is in the display of the 
structures in the data. By changing a weight continuously, 
the effect of its corresponding dimension on the cluster dis-
tribution can be observed. Since VISTA smoothly animates 
the weight changes for one or even multiple dimensions, this 
method can also provide insights on the clustering process.

The first of its interactive options is the manual subset 
selection: the user uses a freehand drawing tool to create 
an enclosed region on-screen to select the point in this area 
of the 2D display. First, the whole dataset is defined as one 
subset. The clusters are defined as subsets from then on. 
The next operation is to enable the merging and splitting 
of subsets which enables the precise redefinition of cluster 
borders or the subdivision of subsets. Another option the 
user has, is to import already existing domain knowledge 
about the dataset.

The ability to define hierarchical cluster structures can 
be used to zoom in on a subset and define a sub-layer within 
it. This approach is used to model cluster details at differ-
ent levels, for example, when clusters can be found that are 
distinct from one another but are very similar to one another 
compared to other clusters. Since the manual definition of 
cluster hierarchies is not found in the other visual analytics 
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approaches, it should be noted that this can potentially be 
quite an interesting feature. However, it cannot be compared 
to other solutions.

Graphical clustering toolkit (gCLUTO) by [20] is also an 
approach to 3D assisted clustering. In gCLUTO, the display 
of structures in data is used after applying a nonvisual clus-
tering algorithm to verify the clustering results. One of the 
most interesting parts of this system from a visual analyt-
ics standpoint is the so-called mountain visualization. The 
focus lies in understanding high-dimensional datasets. The 
mountain visualization in a 3D display aims to provide a 
low-dimensional graphical representation of the clusters, 
including their relationship to another, their internal simi-
larity, size, and standard deviation. This terrain consists of a 
horizontal plane that rises in peaks in several locations. Each 
peak in the plane represents a cluster from the clustering 
results, and its location, height, volume, and color represent 
various characteristics. The most visually recognizable fea-
ture is the distance between peaks which represents the rela-
tive similarity of the clusters using the similarity measure 
selected for the clustering algorithm. This means that similar 
clusters are represented by nearby peaks, and clusters that 
are dissimilar are displayed as distant peaks. This display 
of structures in data is achieved by using multidimensional 
scaling on the cluster midpoints to find a mapping that mini-
mizes the data’s distortion. The height of a peak is propor-
tional to the internal similarity of the corresponding cluster. 
This internal similarity is calculated from a similarity func-
tion set during clustering. The internal similarity is therefore 
the average result of the similarity function for all pairs of 
points within the cluster. The volume of a peak represents 
the number of objects within the cluster, and the color vis-
ualizes the standard deviation of the cluster’s objects; red 
corresponds to a large standard deviation while blue corre-
sponds to a small standard deviation. In summary, this plot 
is used to visualize the relative similarity of classically cal-
culated clusters as well as their size, internal similarity, and 
internal deviation. With this display of the structures in the 
data, the human-in-the-loop should quickly gain insights into 
the clustering results, which in turn should help to improve 
the parameters of the clustering algorithm. gCLUTO itself 
is not a solution for clustering, but rather a method to find a 
valid clustering schemes by trying many possibilities. Here 
a good display of structures in data for clustering must be 
found by the human-in-the-loop, which is especially true for 
high-dimensional data, and is not a trivial task.

Using the categorization from [21] for visual analytics 
systems, the IPBC, U-matrix, and clustering methods [22] 
belong to the dimension reduction and clustering groups. In 
both fields, there are also other current approaches such as 
the efforts of [23] who cluster trajectory data with interactive 
self-organizing maps. Hossain et al. [24], on the other hand, 
tried to improve clustering by allowing the system to learn 

from a domain expert by incorporating user feedback to steer 
the result of their scatter/gather clustering algorithm. This 
algorithm starts with a basic k-means clustering, which can 
be refined in multiple scatter and gather steps. However, its 
performance is limited in the high-dimensional data because 
it relies on two- or three-dimensional data plots created for 
the user to steer the algorithm. The last two methods demon-
strate current approaches in visual analytics. The first is the 
specialization of a specific kind of data [23, 25], which also 
works on the interactive clustering of movement data. Other 
areas in domain-specific visual analytics are data from bio-
informatics or climate change research. The IPBC approach 
differs from these methods since it is not fine-tuned to a 
specific use case, and it works on any numerical dataset.

Another approach in visual analytics is the restriction 
of a specific number of dimensions like the scatter/gather 
approach by [24]. Algorithms such as this are pure clustering 
approaches restricted on two or three dimensions because 
their display of structures in data is based on the dimension-
ality of the input data. This makes structures with more than 
three-dimension hard to detect and makes it nearly impos-
sible to understand for a domain expert not explicitly trained 
in these displays of structures in data.

2.1 � Displaying information in 2D versus 3D

In line with the definitions of Kraus et al. [26], in this work, 
2D displays of the structure in the data are defined as the 
static presentation of two dimensions of information on the 
screen, e.g., a scatter plot of data in a two-dimensional plane 
defined by Cartesian coordinates x and y. In the case of a 3D 
display of the structures in the data, the observer is looking 
on a screen at a projection of a visualization defined by three 
dimensions that can be rotated in an arbitrary direction, e.g., 
a scatter plot of data in a three-dimensional space defined by 
Cartesian coordinates x, y and z.

In general, the displays of information in 3D versus 2D 
have been debated many times in many scenarios because 
both display approaches for information visualization have 
advantages and disadvantages [25–28]. For example, a 3D 
interface for browsing an image folder not only does not 
offer any real benefits to user interaction, but also creates 
an unnecessary cognitive load on the users, which can lead 
to a lower performance and frustration [29]. In contrast, 3D 
shaded displays can add a significant amount of information 
to the visualization of high-dimensional structures in data 
[30]. 3D displays tend to be more comprehensible for the 
task of identifying clusters [26]. 3D displays are most use-
ful when the viewer is free to change the viewpoint relative 
to the scene, to peer around occlusions or to view the scene 
from a different perspective [31]. However, 3D displays 
“are often vulnerable to artifacts caused by the rendering of 
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depth-related information, such as line-of-sight ambiguities, 
occlusion, and perspective distortion”[26].

Hence, it is easy create a bad 3D implementation [27]. 
Thus, Munzer strongly argues that most tasks involving 
abstract data do not benefit from 3D displays, and that such 
displays of structures in data must be justified. Tory and 
Munzer stated that simpler features like colored points 
support the best performance; 2D colored landscapes 
performed second best and may therefore be suitable for 
some applications [32] but 3D landscapes that redundantly 
encoded the data using color and height were slower than 
2D landscapes using color alone, with no difference in accu-
racy [32]. Subsequent research by Tory et al indicates that 
dot-based displays may lead to better user performance in 
memory retrieval tasks [33]. In both publications contours 
were shown through the use of color bands without a deeper 
meaning for the colors. Hence, their findings cannot be gen-
eralized and contradict those of vision research.

For example, Marx et al confirmed a benefit of color over 
grayscale images for object detection [34]. Moreover, global 
color manipulation has an effect on the perception of natural 
scenes and the recognition of objects [35]. For instance, the 
performance is mostly similar to that of grayscale for stimuli 
in which the color hue is inverted [34]. Consequently, it can 
be argued that the performance of 3D compared with 2D 
depends on the chosen color band for the 3D landscape. 
Furthermore, attention is dominated by objects in natural 
sciences rather than lower features [36]. Therefore, vision 
research motivated the generation of topographic maps with 
an accurate color mapping [37] that looks similar to a natural 
scene using the CIELab color space [38] which is only very 
slightly outperformed by the UCS but has the advantage of 
a simple color distance calculation equation [39].

Another way of addressing the 3D versus 2D display dis-
cussion “is to apply more than a century of research into 
the psychology of space perception meaning that 3D is 
not a simple unified concept in perceptual terms. We can 
have degrees of three dimensionality, using different spa-
tial “depth cues” and we can choose to increase or decrease 
the amount and type of 3D information” [40]. In the litera-
ture, the term 2.5 D is usually used to describe a pseudo-3D 
visualization; that is, it is not a true 3D space, but perhaps 
a rendering making the scene look 3D [31]. In this case, 
research indicates that subjects’ performance deteriorates in 
both physical and virtual systems as their freedom to locate 
items in the third dimension increases [41]. However, the 
performance in virtual 2.5 D displays was slightly better 
than that in 2D displays (Fig. 3b in [41].) A reported user 
evaluation outlined the benefit of interactive visual data min-
ing of text documents in a 2.5 D display [42]. For precise 
tasks, combination 2.5D displays were better than strict 2D 
or 3D displays [43]. Consequently, perceived issues with 
3D (c.f. [44]) are solvable and successful, and specialized 

information visualizations can be built [27]. In our work, a 
2.5D display is defined as the static top view of a 3D display 
(e.g. top view of the topographic map described below).

In summary, three visual analytic methods are compared. 
VISTA displays information in 2D. gCLUTO displays infor-
mation in 3D and interactive projection-based clustering 
(IPBC) displays information in 2.5D but has the separate 
option to provide 3D displays after the clustering process 
is finished.

3 � Interactive projection‑based clustering 
(IPBC)

The IPBC method is, at its core, a combination of a nonlin-
ear dimensionality reduction method with clustering aimed 
at preserving high-dimensional neighborhoods within its 
structure, which leads to no limitations on the dimensional-
ity of the input data for clustering while retaining most of 
the important information about the structures of the dataset 
within its 2.5D and 3D. (Automatic) projection-based clus-
tering (PBC) itself works in three steps. First, a nonlinear 
projection method projects the data into a two-dimensional 
plane. Second, the Delaunay graph [45] between projected 
points is computed. Each vertex of the graph is weighted 
with the high-dimensional distance between the two cor-
responding high-dimensional points. Third, the shortest 
paths between every two projected points, which are com-
puted with the Dijkstra algorithm [46], are used in an auto-
matic clustering process. The automatic clustering process 
requires the number of clusters and a Boolean parameter 
defining the structure type as the input (details in [47]). 
Both parameters can be derived from the displays of the 
structures in the data of the topographic map which is 
described below.

3.1 � The display of the topographic map

The task of clustering is performed interactively through 
the use of the topographic map generated by the generalized 
unified distance matrix (U-matrix) of an arbitrary projec-
tion method. A topographic map (landscape) is constructed 
on top of a scatterplot generated by any type of projection 
method as follows: the wall of the Voronoi cells (VCs) in 
the scatterplot between the projections xp and yp of two 
high-dimensional data points x and y represents the bor-
derline where the affiliation to x, i.e., its closest neighbor, 
changes to y [48]. At these borderlines, the distance between 
x and y, d(x,y), in the high-dimensional space is displayed 
as the height of the wall of the VCs. This structure, called 
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the abstract U-matrix [49], faithfully represents the high-
dimensional distance structure of the data on top of the scat-
terplot. However, these walls are infinitely thin, and adjacent 
walls have very different heights. To practically visualize the 
high-dimensional distance structure on top of a scatterplot 
a simplified method of self-organized maps (SOM) and the 
U-matrix is used [50]: the scatterplot is sampled using a 
finite grid on which each grid point is an artificial neuron 
representing in its weight vector a point in the data space. 
This is regarded as a two-dimensional SOMs where the rep-
resentations (BMUs) of the data points are fixed [12]. Using 
Kohonen’s learning algorithm for SOMs the interpolating 
weight vectors can be adapted [12].

In the literature, the information stored in the weights 
of the neurons of the SOMs is visualized by the U-matrix 
which represents the folding of the high-dimensional space 
performed by an SOM projection [51]. At the end of this 
learning phase, the generalized U-matrix is constructed as 
the sum of the high-dimensional distances at each neuron 
[12, 52]. The U-matrix [51] or one of its variants [52–55] 
represents the distances between neurons as U-heights by 
using proportional intensities of gray values, color hues, 
shapes or sizes. For example, every neuron can correspond 
to a pixel [53]. The U-height corresponding to a gray value 
of each pixel is determined by the maximum unit distance 
from the neuron to its four neighbors (up, down, left, and 
right). The larger the distance is, the lighter the gray value 
is. In summary, a visualization of the U-matrix presents the 
high-dimensional structures of a dataset [56, 57] and can 
be generalized to be computed for every projection method 
[12]. After an extensive literature survey, it was argued that 
the best visualization of high-dimensional structures is to 
encode the U heights as a topographic map with hypsometric 
tints [37].

The topographic map can be interpreted as follows: the 
projected points and their mapping to high-dimensional data 
points predefine the display of the topographic map. The 
color scale of the topographic map is chosen to display vari-
ous valleys, ridges, and basins: blue indicates small high-
dimensional distances and high densities (sea level), green 
and brown indicate middle high-dimensional distances and 
densities (small hills) and white indicates large distances and 
small densities (snow and ice of tall mountains) [58]. The 
valleys and basins indicate clusters, and the watersheds of 
hills and mountains indicate the borderlines of clusters [58]. 
The color scale is combined with contour lines. The topo-
graphic map with hypsometric tints can be 3D printed such 
that through its haptic form, it is even more understandable 
by domain experts [58]. The topographic map looks like a 
3D landscape and can be presented either as a top view in 
2.5D or interactively rotated in 3D. The additional informa-
tion encoded on top of the 2D display has been proven to be 
informative and useful [47, 59, 60].

3.2 � Interactive construction of display of structures 
in data

After the IPBC method is executed by the user, a Shiny 
interface [61], as shown in Fig. 1, opens with the first menu 
(1). The human-in-the-loop or user can perform the follow-
ing actions: first, an arbitrary linear (e.g., PCA) or nonlinear 
projection method (e.g., NeRV [4]) can be selected to pro-
ject high-dimensional data onto a two-dimensional plane 
(2). Some projection methods have adjustable parameters 
(e.g., NeRV); some have none (e.g., Pswarm, and MDS), 
which can be set in (3). In addition to the parameters of 
the projection method, no other parameters must be set by 
the user. In the next step, the generalized U-matrix [50] is 
computed (4) and can be visualized in 2.5D by the top view 
of the topographic map [58]: see (10) in Fig. 1. The struc-
ture of the topographic map is toroidal; i.e., the borders of 
the map are cyclically connected, which allows the problem 
of projected points on borders and, consequently, boundary 
effects to be avoided. Display options can be set with (5-8): 
(5) changes the size of the points, (6) allows the user to 
extend the topographic map by x neurons in each direction 

Fig. 1   High-level process flow of IPBC for which the interface is pre-
sented in Figs. 1 and 2. Clusters and valleys do not overlap if a cluster 
is either divided into separate valleys or several clusters lie within the 
same valley, c.f. [11]. The human-in-the-loop can modify clusters or 
outliers interactively after the (optional) automatic projection-based 
clustering (PBC). If no valleys are visible, the dataset does not pos-
sess any natural cluster structures
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(for the def. please see [12]) for which then the extension 
of the topographic map is activated or deactivated with (7), 
(8) provides a four-tiled view of the toroidal topographic 
map which means that each point in the 3D landscape as 
well as the landscape itself is presented four times. Then, 
the interactive clustering procedure can be started. Select-
ing “Clustering” in the top menu (1) guides the user to the 

interactive clustering of Fig. 2. Here, interactive tools from 
plotly [62] can be used (17) to create clusters manually (11) 
and to modify them (12). For every projection method, 
automatic projection-based clustering is activated by click-
ing button (15) after setting the number of clusters as the 
number of visible valleys with (13), and the cluster struc-
ture type [11] can be changed optionally with (14) in Fig. 2. 

Fig. 2   Screenshot of the interface of the “Clustering” menu of the 
IPBC method after holding the left mouse button and framing a val-
ley but before clicking on “Create Cluster” in (11). The human-in-

the-loop can frame points with the mouse (8) and by clicking “Add 
Cluster” (9), a new cluster is separated from a given cluster

Fig. 3   Screenshot of the interface of the “Projection” menu of the 
IPBC method after loading the Chainlink dataset in Listing 1 and 
clicking on the button in (4) resulting in a topographic map shown 

in (1) of the NeRV projection selected previously in (2). The human-
in-the-loop can select the projection method (2) and by clicking (4) a 
new topographic map is visualized
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Appropriate clustering is found if mountains do not divide a 
cluster but separate clusters, and all the clusters lie in valleys 
[11]. Then, the IPBC method can be closed with (16). The 
high-level process-flow of the IPBC method is presented 
in Fig. 3. It includes the automatic PBC, which is optional 
because clusters can be marked exclusively in the interac-
tive approach.

R libraries Shiny by [61] and plotly [62] are used in 
order to achieve interactive clustering in the 2.5D display. 
Shiny enables the building of interactive applications 
for data analysis. These features will be used to display 
information about the data or to add or remove clusters 
interactively. Plotly is a visualization tool that is used to 
produce the top view of the topographic map, lets the user 
interact with it, and send the user interactions to Shiny. 
This combination gives a high degree of interactivity 
with the the plot itself which is a property an method in 
visual analytics should have. Presently the identification 
of clusters is based on the top view of the 3D landscape 
in a 2.5D display. The 3D display can be visualized on 
the screen and interactively rotated if the function “plot-
TopographicMap” is called (see below) which is based 
on the R package “rgl” available on CRAN[63]. The fol-
lowing projection methods were used: t-SNE [64], NerV 

[4], Pswarm [65], and uniform manifold approximation 
projection [66]. The interactive method uses the 2.5D dis-
play of the topographic map, and can be accessed via the 
R package ‘ProjectionBasedClustering’ [67] on CRAN.

After closing the tool with the 2.5D display of the IPBC 
method, either 2.5D, or 3D high-resolution figures and 
STL files for 3D printing can be prepared in the last step 
by calling the plotTopograpahicMap for a 3D display or 
the TopviewTopographicMap function for a 2.5D display. 
Optionally, an island can be cut out interactively by encir-
cling the most prominent mountain ranges. However this 
step is not necessary for the interactive clustering. The R 
code for these steps is presented in "Appendix A," List-
ing 1.

4 � Evaluation

The evaluation section is divided into four sections. After the 
description of the datasets, the first two sections qualitatively 
evaluate the different displays of structures in data from arti-
ficial and real-world examples. The topographic maps are 
presented in the form of a 3D display in comparison with the 
3D display from gCLUTO and the 2D display from Vista. 

Table 1   Summary of the description and challenges of the 10 artificial and two natural datasets of the FCPS for cluster analysis because the 
FCPS offers a variety of real-world challenges [68].

“FCPS is a collection of intentionally low-dimensional artificial datasets of user-defined sample sizes and an unique class labeling generated 
under the hypothesis that humans are most often able to group objects in two- or three-dimensional plots by eye. Additionally, two high-dimen-
sional real-world datasets with a clear cluster structure are provided” [68]. These datasets are available in the R package “FCPS” on CRAN

Dataset Name Number 
of Points

Number of 
Dimensions

Short Description of the Shapes Challenge

Hepta 212 3 Six balls, each centered at each one of the six 
corners of a large octahedron with the 7th ball 
having a higher density at its center

Nonoverlapping convex hulls with varying 
intracluster distances

Chainlink 1000 3 Two intertwined chains Linear nonseparable entanglements
Atom 800 3 Core enclosed by a hull Completely overlapping convex hull
EngyTime 4096 2 Two Gaussian mixtures with different variances Overlapping clusters separable only by density
GolfBall 4002 3 Empty sphere No distance-based cluster structures
Lsun3D 404 3 One full sphere, two bricks perpendicular to each 

other, and outliers
Varying geometric shapes with noise defined by 

one group of outliers
Target 770 2 Circular disk enclosed by a circle with outliers in 

four corners
Overlapping convex hulls combined with noise 

defined by four groups of outliers
Tetra 400 3 Four close full spheres at the four corners of a 

tetrahedron
Narrow distances between the clusters

TwoDiamonds 800 2 Two rhombuses with one touching corner Identification of the weak link in chain-like con-
nected clusters

WingNut 1016 2 Two rectangles, each having a density that 
increases towards one corner in direction of the 
other rectangle

Short intercluster distances combined with vast 
intracluster distances

Tetragonula 236 13 Distance matrix easy associable with geographic 
origins of cases

Smooth transition between clusters and outliers, 
and the clusters have to be coherent with the 
geographic origins

Leukemia 554 12,692 Distance matrix with patient diagnosis for cases Reproducing highly unbalanced class sizes
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The 2.5D displays of the same topographic maps of the 
benchmark datasets from Table 1 are provided in "Appendix 
C", Fig. 20. The third section presents the empirical evalu-
ation of the identification of the displayed structures in the 
data by comparing the resulting interactively performed 
clusterings with previously given classifications and the 
fourth section presents an application.

4.1 � Comparison approach

IPBC, VISTA and gCLUTO will be compared to each 
other using the SCADI dataset [69] and twelve bench-
marking datasets called the “Fundamental Clustering 
Problems Suite” (FCPS) [68]. In this case, automatic 
projection-based clustering will not be used. The twelve 
datasets of the FCPS are extensively described in [68], 
and an overview is provided in Table 1. There are ten 
low-dimensional (3D) datasets called Hepta, Chainlink, 
Atom, EngyTime, GolfBall, Lsun3D, Target, Tetra, Two-
Diamonds and WingNut. Additionally the FCPS provides 
two high-dimensional datasets called Tetragonula and 
Leukemia. The Tetragonula bee dataset from [70] consists 
of genetic data of 236 worker bees from 9 different spe-
cies, each from an individual hive (see details in [68]). The 
Tetragonula dataset has the challenge of smooth transitions 
between clusters and outliers [68]. The Leukemia dataset 
is a microarray dataset that measures the gene expressions 
of 554 subjects who are either healthy or have one of the 
following illnesses: acute promyelocytic leukemia, chronic 
lymphocytic leukemia, or acute myeloid leukemia.

Additionally, the SCADI dataset was taken from [69]. 
It contains 206 attributes of 70 children with physical or 
motor disabilities. The classification refers to 7 different 
levels of self-care problems. As an application, the Bos-
ton Housing Dataset published in [71] was taken from the 
UCI Machine Learning Repository (https://​archi​ve.​ics.​uci.​
edu/​ml/​machi​ne-​learn​ing-​datab​ases/​housi​ng/). It consists 
of 506 data points of 14 features and is the only dataset 
investigated here without a prior classification scheme. 
Harrison et al showed that as the air pollution stored in 
the feature “NOX” increase, the home values of the owner-
occupied homes storied in “MEDV” decrease [71].

Using the 2D, 2.5D and 3D displays, the identified 
structures in data will be compared with the prior clas-
sification. The Rand index R [72] corrected for chance by 
the method of Hubert and Arabie [73] with the following 
equation (Eq. 4, p.198 [73]) is used:

ARI =
R − ExpectedIndex

MaximumIndex − ExpectedIndex

Given a contingency table, the mathematical details can 
be found in (Eq. 5, p.198 [73] and are implemented by the 
R package “phyclust” available on CRAN [74].

Additionally, the displays of structures in data leading 
to the clustering or verifying the clustering scheme will 
be shown. No default parameters other than the number 
of clusters for IPBC were changed. The number of clus-
ters was estimated in the topographic map by counting the 

Fig. 4   Displays of the structures in the artificial Hepta dataset. a Top-
ographic maps for which cluster analysis is performed interactively 
by IPBC based on the NeRV projection by using the top view. b 
Mountain visualization using gCLUTO graph-clustering with 6 clus-
ters. c VISTA clustering

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
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number of valleys. The parameters modified in gCLUTO 
are the similarity measure, the number of clusters, and 
the clustering algorithm. Because gCLUTO requires the 
number of clusters in advance, a different number of clus-
ters will be tested, and the best number will be presented. 
For VISTA, the number of parameters increases with the 
number of dimensions, which leads to an impractically 
large number of parameters to print here.

4.2 � Artificial datasets

For the first dataset called Hepta, the topographic map 
in Fig. 4a clearly shows seven distinct groups of data in 
different valleys, which are surrounded by mountains. In 
addition, behind each mountain, a new valley begins. This 
figure shows that there should be 7 clusters with low inter-
nal dissimilarities that are distinctively separate from one 
another. Using the matrix- and mountain-visualization and 
experimenting with different numbers of clusters and clus-
tering approaches, six clusters seem to give the best display 
of structures in the data in Fig. 4b. Reducing the number 
of clusters shows that at least one cluster is massive, and 
the points within it have a high standard deviation. Increas-
ing the number of clusters seems to only subdivide existing 
clusters into less clearly defined clusters or produces new 
exiguous clusters. The mountain visualizations show that 
there is, in every case, high internal deviation within the 
clusters, and they do not seem to be separated from one 
another. However, no such clustering could be found with 
gCLUTO. Graph clustering with six clusters gave the best 
combination of the matrix- and mountain-visualization, so 
it is used and presented in Fig. 4b. The seven cluster result 
is the default after importing the dataset into VISTA. The 
cluster assignment is visible in Fig. 4c.

The topographic map of the Chainlink dataset in Fig. 5a 
clearly shows two clusters in two separate valleys. One point 
which marked with an arrow is assigned to an incorrect clus-
ter by the human-in-the-loop (user) as it lies in the incor-
rect valley. gCLUTO mountain- and matrix-visualization are 
both not suited to visualize linear nonseparable entanglements 
(Fig. 5b). Using mountain visualizations, the number of clus-
ters is hard to guess. If roughly equally sized clusters were 
to be expected, which yields a low internal dissimilarity and 
produces visible groups in the matrix-visualization no less 
than 6 clusters should be used. With only minimal manipula-
tion in VISTA (Fig. 5c), the user can see and understand that 
the Chainlink dataset consists of two interlocking rings, but 
the cluster assignment tools do not support selecting all the 
points of a cluster without selecting some points from the 
other. The workaround used here is to select 3 clusters: select-
ing the first half of a ring, rotating the projection so that the 
intersection lies in the already clustered part, and selecting 
the rest of the first ring and then the second ring as separate 

clusters. Afterward, these clusters could be merged manually 
into two clusters again; however, this step cannot be com-
pleted within VISTA. It should also be pointed out that some 
rare points can be found that are not labeled according to their 
surrounding group.

In the case of Lsun3D in Fig. 6 all three clusters and the 
outliers are distinctively separated in the topographic map 

Fig. 5   Displays of the structures in the artificial Chainlink dataset. 
a Topographic maps for which cluster analysis is performed interac-
tively by IPBC based on the NeRV projection by using the top view. 
The arrow points to the clearly misclassified point by the human-in-
the-loop (user) because it lies in the incorrect valley. b Mountain vis-
ualization using gCLUTO shows 6 clusters for which then "repeated 
bisection" clustering is applied. c VISTA clustering
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(a), gCLUTO with bisection clustering (b) and VISTA (c). 
It seems that varying geometric shapes with noise defined 
by outliers does not pose a problem for these methods. This 
finding is in contrast to conventional clustering algorithms 
such as spectral clustering of subspace clustering which fail 
to reproduce such cluster structures [47].

The displays of the structures in the data of the artifi-
cial datasets Atom (Fig. 7a), GolfBall (Fig. 8a), and Target 
(Fig. 9a) all have their points distributed within a sphere 

around the origin. All were clustered with repeated bisection 
in gCLUTO and seemed to produce similar mountain plots 
(Figs. 7b, 8b, 9b, respectively), which seemingly correctly 
indicates the similarities between these datasets, yet the red 
color indicates that the identified clusters seem to have a 
high standard deviation. Additional, for all these datasets, 
the mountain plots for 4 or 5 clusters look better. However, 
GolfBall has no existing cluster structure and Atom has 

Fig. 6   Displays of structures in the artificial Lsun3D dataset. a Topo-
graphic maps for which cluster analysis is performed interactively by 
IPBC based on the t-SNE projection by using the top view. b Moun-
tain visualization using gCLUTO with agglomerative clustering. c 
VISTA clustering

Fig. 7   Displays of structures in the artificial Atom dataset. a Topo-
graphic maps for which cluster analysis is performed interactively 
by IPBC based on the NeRV projection by using the top view. One 
outlier lies in a volcano which is marked by a red arrow. b Moun-
tain visualization using gCLUTO for which then "repeated bisection" 
clustering is applied. c VISTA clustering
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only two clusters. In contrast, the same datasets in VISTA 
(Figs. 7c, 8c, 9c, respectively), show three different results. 
While these three datasets seem to be easily understood visu-
ally in VISTA, Atom becomes hard to cluster in Fig. 7c. This 
phenomenon is due to the clusters having overlapping con-
vex hulls. The workaround used for the linear nonseparable 
entanglements of Chainlink does not work in Vista here, 
as points from outside the central cluster always overlap 
with the central cluster. In the case of GolfBall in Fig. 8c, 

one can find discrete rings within the dataset on which the 
points reside, which would suggest a large number of small 
clusters. In Fig. 9c, Target, due to being a two-dimensional 
dataset, looks similar to a scatterplot, and the clusters and 
can simply be visually separated. The topographic map of 
Atom in Fig. 7a shows one outlier incorrectly, in addition to 
this error, it is able to separate the two clusters. The outlier, 
which is marked with a red arrow, lies in a volcano and is 
slightly concealed by a hill and serves as an example that 

Fig. 8   Displays of structures in the artificial GolfBall dataset. a Topo-
graphic maps for which cluster analysis is performed interactively by 
IPBC based on the NeRV projection by using the top view. b Moun-
tain visualization using gCLUTO for which then "repeated bisection" 
clustering is applied. c VISTA clustering

Fig. 9   Displays of structures in the artificial Target dataset. a Topo-
graphic maps for which cluster analysis is performed interactively by 
IPBC based on the NeRV projection by using the top view. b Moun-
tain visualization using gCLUTO for which then "repeated bisection" 
clustering is applied. c VISTA clustering



260	 International Journal of Data Science and Analytics (2021) 12:249–271

1 3

occlusion can hide information [44]. The 3D view of the 
topographic map must be interactively moved to obtain a full 
overview of the structures in the data. Contrary to Fig. 7a 
of the topographic map of Atom, Fig. 8a of the topographic 
map of GolfBall shows no cluster structures at all because 
every point lies in its own valley. In Fig. 9a the topographic 
map of Target clearly distinguishes the two clusters from 

the outliers but the separation of the two clusters is not by a 
high mountain range.

Similar to the Target dataset, EngyTime, TwoDia-
monds and WingNut, are 2-dimensional datasets and 
therefore can be seen as scatterplots in VISTA, which 
leads to clear results (Figs. 10c, 11c, 12c, respectively). 
gCLUTO’s mountain visualization uses repeated bisec-
tion and suggests the same number of clusters in these 

Fig. 10   Displays of structures in the artificial EngyTime dataset. a 
Topographic maps for which luster analysis is performed interactively 
by IPBC based on the Pswarm projection by using the top view. b 
Mountain visualization using gCLUTO for which then "repeated 
bisection" clustering is applied. c VISTA clustering

Fig. 11   Displays of structures in the artificial TwoDiamonds dataset. 
a Topographic maps for which cluster analysis is performed interac-
tively by IPBC based on the uniform manifold approximation projec-
tion by using the top view. b Mountain visualization using gCLUTO 
for which then "repeated bisection" clustering is applied.. c VISTA 
clustering
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cases (Figs. 10B, 11b, 12b, respectively), except for Two-
Diamonds in Fig. 12b, for which a three cluster solution 
with one cluster with high deviation seems to be the most 
likely. In Figs. 11a and 12a the topographic maps and Two 
Diamonds and WingNut, respectively, as well as those 
in Fig. 10a (right) for EngyTime outline the given two 
clusters.

For the final artificial dataset, Tetra in Fig.  13c , 
VISTA provides a great interactive display of structures 
in data that can only be partially utilized to create proper 
clustering. Similar to Chainlink and Atom (Fig. 5c and 
7c, respectively), here, we can see the clusters during 
animation, but they become not clearly separable in a 

Fig. 12   Displays of structures in the artificial WingNut dataset. a 
Topographic maps for which cluster analysis is performed interac-
tively by IPBC based on the uniform manifold approximation projec-
tion by using the top view. b Mountain visualization using gCLUTO 
for which then "repeated bisection" clustering is applied. c) VISTA 
clustering

Fig. 13   Displays of structures in the artificial Tetra dataset. a Topo-
graphic maps for which cluster analysis is performed interactively by 
IPBC based on the uniform manifold approximation projection by 
using the top view. b Mountain visualization using gCLUTO with 
agglomerative clustering. c VISTA clustering



262	 International Journal of Data Science and Analytics (2021) 12:249–271

1 3

still image. gCLUTO on the other hand, quickly provides 
a clear display of the structures in the data with 4 clusters 
of similar sizes and densities which would be expected 
in this case in Fig. 13b. The topographic map of Tetra in 
Fig. 13a shows that the four clusters lie in four distinct 
valleys separated by mountain ranges.

4.3 � Real‑world examples

The topographic map of the Tetragonula datasets shown in 
Fig. 14a has eight valleys and some outliers. The marking 
of the outliers is not easy. For eight or more clusters, the 
mountain visualization in Fig. 14b shows clusters close to 
one another and sometimes also exiguous clusters of just a 
few points. This persists in all available cluster methods. 
Therefore, using gCLUTO, one would assume six or seven 
clusters depending on the clustering method. Agglom-
erative gCLUTO clustering would suggest six clusters, 
while gCLUTO’s “repeated bisection” clustering func-
tion produces a better display of the structures in the data 
with seven clusters. Both produce useful and quite similar 
mountain visualizations (not shown), but due to Occam’s 
razor, the six-cluster solution will be used (Fig. 14b). Since 
the Tetragonula dataset has some outliers, it is a question 
whether this or the number of clusters was known previ-
ously. Then, solutions using eight or nine clusters would still 
produce good or at an least expected display of the struc-
tures in the data. In Fig. 14c, for VISTA many dimensions 
only seem to rotate points around one another. The most 
substantial effects of alpha changes can be seen in the first 
dimension and decrease with the number of dimensions. 
This finding is not surprising since MDS created the points 
from a distance matrix. It does not appear that meaningful 
clusters could be found in this display of structures in data. 
Another approach for the Tetragonula dataset is to reduce 
the number of dimensions. As shown in Fig. 14c, only the 
first four dimensions are loaded into VISTA. Here changing 
the α-mapping shows groups of data quickly. The clusters 
are estimated by selecting a group of points and then fur-
ther modifying the α-mapping to see if it splits into other 
clusters if the alpha values are changed. A group that stays 
together even when the projection is changed is defined as 
a cluster. It should be noted that this can only be done since 
it is known that this dataset was produced with MDS from 
a distance matrix.

With the Leukemia dataset VISTA becomes unusable (see 
Fig. 15c). The high number of dimensions leads to more UI 
elements of the tool than what can be distinguished. The 
process collapses to pure guessing of the alphas for every 
dimension without containing any properly displayed struc-
tures in the data at all. With gCLUTO, the mountain plot 
using repeated bisection suggests 6 clusters with clearly sep-
arated centroids and a mostly low deviation in Fig. 15b. Only 
the topographic map of the leukaemia dataset in Fig. 15a 
shows 6 valleys more clearly, some of which clearly show 
outliers with just individual points within them.

The topographic map the SCADI dataset in Fig. 16a 
shows data inhomogeneity; several points lie alone in 

Fig. 14   Displays of structures in the natural Tetragonula dataset. 
a Topographic maps for which cluster analysis is performed inter-
actively by IPBC based on the Pswarm projection by using the top 
view. b Mountain visualization using the agglomerative clustering in 
gCLUTO with 6 clusters. c VISTA clustering
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a valley. In Fig. 16b, using agglomerative clustering in 
gCLUTO gives clusters with the lowest standard devia-
tion, which are also distinct from each other according to 
the mountain plots. The likely number of clusters seems 
to be within the range of three to six. The cluster with 
ID 0 has the highest standard deviation but is never split 
while for less than seven clusters, but with seven or more 
clusters, the clusters begin to be less clearly defined in the 

mountain plot. Therefore, the six clusters with repeated 
bisection clustering from CLUTO are used. In Fig. 16c, 
VISTA requires many user inputs that do not impact the 
display of the structures in the data. Groups of data points 
are visible when animating changes in a specific dimen-
sion, but when viewing other dimensions, other groups 
may appear. It is not possible for the user to distinguish 
which groups are more relevant or occur more often due to 

Fig. 15   Displays of structures in the high-dimensional Leukaemia 
dataset. a Topographic maps for which cluster analysis is performed 
interactively by IPBC based on the NeRV projection by using the top 
view. b Mountain visualization using gCLUTO with agglomerative 
clustering. c VISTA clustering

Fig. 16   Displays of structures in the natural SCADI dataset. a Topo-
graphic maps for which cluster analysis is performed interactively by 
IPBC based on the NeRV projection by using the top view. b Moun-
tain visualization using the agglomerative clustering in gCLUTO. c 
VISTA clustering
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the number of parameters the user can adjust is too high. 
For VISTA, this is a direct consequence out of the high 
number of dimensions. The display of the structures in the 
SCADI dataset does not have clearly defined clusters, but 
due to the animations, while changing the α-mapping, the 
user can still try to find groups, that behave similarly to 
one another and are close to one another. Additionally, it 
is difficult to repeat the clustering process to achieve the 
same results.

4.4 � Cluster evaluation

Table 2 shows the adjusted Rand index [72] between the 
given correct clustering of a dataset and a result for each 
approach. The results are the ones for which the displays of 
the structures in the data have been shown. The best values 
are marked in bold. For the Leukemia dataset, clustering 

with VISTA was impossible because the number of UI ele-
ments for the multiple dimensions overlaid the data points. 
Automatically switching through all the dimensions would 
take a long time without generating any usable display of 
the structures in the data due to UI overlap. Additionally, 
the adjusted Rand indices for the SCADI natural dataset 
are 0.7206 for gCLUTO, 0.1392 for VISTA, and 0.787 for 
IPBC.

4.5 � Application: Boston Housing

The Boston Housing Dataset was clustered with IPBC and the 
results are shown in Fig. 17. Welch’s two sample t-test for the 
MEDV variable indicates that cluster one has a greater MEDV 
(median value of homer owner-occupied houses) values than 
cluster two (t = 10.181, df = 240.41, p-value < 2.2e−16)). 
Additionally, The Welch two sample t-test indicates that clus-
ter one has greater NOX (air pollution) values than cluster two 
((t = − 21.342, df = 401, p-value < 2.2e−16)). Adapting the 
XAI procedure described in [75] to this dataset, the clustering 
can be explained by one rule stating that TAX values below 
568 define cluster one and cluster TAX values above 558 clus-
ter two with an accuracy of 100%.

4.6 � Computation time

Evaluation of the computation time of the interactive projec-
tion-based clustering is based on the computations of four 
components: projection method, generalized U-matrix, topo-
graphic map and clustering. Obviously, the computation time 
will vary depending on the projection method, hence, we will 
use the method of multidimensional scaling (MDS) (for the 
computation time of other projection methods, the reader is 
referred to the corresponding publications). The four com-
ponents are evaluated in combination disregarding the time 

Table 2   Comparison of the clusterings using the adjusted Rand index on the twelve benchmark datasets for various clustering challenges

Name of Dataset/Method gCLUTO VISTA IPBC

Chainlink: nonoverlapping convex hulls with varying intracluster distances 0.2083 0.992 0.996
Hepta: linear nonseparable entanglements 0.763 0.990 1
Atom: completely overlapping convex hull 0.003 0.946 0.998
Engytime: overlapping clusters separable only by density 0.0349 0.815 0. 856
Golfball: no distance-based cluster structures 0 0 1
lsun3d: varying geometric shapes with noise defined by one group of outliers 0.472 1 1
Target: overlapping convex hulls combined with noise defined by four groups of outliers 0.001 0.999 1
Tetra: narrow distances between the clusters 1 0.777 1
Twodiamonds: identification of the weak link in chain-like connected clusters 0.210 1 0.995
Wingnut: short intercluster distances combined with vast intracluster distances 0.885 1 1
Tetragonula: smooth transition between clusters and outliers, and the clusters have to be coherent 

with the geographic origins
0.979 0.8365 0.979

Leukemia: reproducing highly unbalanced class sizes 0.643 No result 0.998

Fig. 17   Topographic map of the NeRV projection of the natural 
Boston Housing Datasets shows two clusters within IPBC. Cluster 
one consists of owner-occupied homes in yellow and cluster two in 
magenta
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required for user-interactivity. In total, 100 trials for a given 
number of cases N or dimensionality d of the data points are 
evaluated in two mirrored density plots (MD plots), which are 
presented in "Appendix B", Figs. 18 and 19, respectively. The 
MD plots indicate that the computation time increases lin-
early with dimensionality and quadratically with the number of 
cases. The main portion of the computation time is required to 
compute the internal sESOM algorithm [12] prior to U-matrix 
calculation, the display of the structures in the data in either 
2.5D or 3D and clustering. Details about the evaluation pro-
cedure are described in "Appendix B".

5 � Discussion

Comparison studies between different interactive clustering 
approaches are seldom done. VISTA [3] and gCLUTO [20] 
are compared with selected conventional clustering algo-
rithms; iPCA [14], and Clustrophile 2 [15] provide user 
studies instead of a benchmarking study; Clustervision [17] 
provides only results on specific datasets without any com-
parison at all. Contrary to prior works, this work compared 
its results to accessible software. Automatic benchmarking 
with 32 conventional clustering algorithms was performed 
previously in [11].

While the more visualization- and animation-intense 
VISTA delivers only slightly worse results for low dimen-
sional datasets, compared with the IPBC method, it is 

evident by the first clustering attempt for the Tetragonula 
and SCADI datasets that it fails to find any meaningful struc-
ture as soon as the number of dimensions becomes too high. 
For 40 and over 200 dimensions, it is also no longer easy 
to use since there are too many variables the user needs to 
adjust to obtain a projection of the data. The exceptions are 
clusters with low-intercluster distances for which VISTA 
seems to be inappropriate. Furthermore, VISTA shows clus-
ters even if they do not exist in the data. For higher dimen-
sionality, the advantage of the topographic map becomes 
apparent. Although the single display of structures in the 
data is more computationally intensive to create, it does not 
require additional adjustments of parameters from the user 
the higher the number of dimensions in the dataset is.

For the high-dimensional datasets, the IPBC method 
gives the best results. For the gCluto and IPBC methods give 
results of similar quality on the SCADI and Tetragonula data-
sets. Both methods also provide displays of the structures in 
the data that showed that the SCADI dataset does not seem to 
have an as clearly defined clusters as the Tetragonula dataset. 
While gCLUTO relies more on computational results and 
letting the user find the correct parameters by giving dis-
plays of the structures in the data primarily for error check-
ing, the IPBC method lets the user perform the clustering 
herself or himself. In contrast, the gCLUTO method fails 
in case of very high-dimensionality in the Leukemia data-
set for which IPBC provides accurate results. gCLUTO has 
some restrictions regarding the use of the Euclidean distance 

Fig. 18   MD plot of the computation time for IPBC with an increasing number of cases N indicating computation time of O(N2)
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that probably led to the failures at clustering the Hepta data-
set, which is partly based on varying density. This insight 
and also the substandard performance for linear nonsepa-
rable clusters in the Chainlink and Atom datasets show that 
gCLUTO seems to be built with implicit assumptions about 
the input. It is surprising that for overlapping clusters sepa-
rable only by density, gCLUTO shows the correct number of 
clusters but is unable to cluster the dataset correctly. Here the 
authors tried every option available in gCLUTO but were not 
able to improve the result in Table 2. It is possible that the 
density-based EngyTime dataset cannot be clustered with the 
distance metrics provided in gCLUTO. Moreover, gCLUTO 
shows a distinct cluster structure in Fig. 8b for a dataset with-
out any natural clusters similar to datasets with natural cluster 
structures, for example in Fig. 13b.

Overall, the IPBC method seems to be the most versatile 
approach, without compromising on the quality of the results 
and without much need for adjustment on a specific dataset. 
IPBC also works very well on high-dimensional datasets. This 
finding makes the IPBC a valuable method for any interactive 
cluster analysis since it produces relatively fast results without 
first having to test several different parameters of projection 
methods or clustering methods. However, the user must select 
the appropriate projection method. If an appropriate projec-
tion method is selected, neither the curse of dimensionality up 
to d = 7.700 (Leukemia data set) nor the number of cases up 
to n = 4096 (EngyTime dataset) effects the outcome of IPBC. 
It should be noted that some projection methods will take a 
longer time to compute for a larger number of cases.

In addition, IPBC provides even more insights about the 
data than the other approaches, where the different border 
heights between clusters provide insight into which clusters 
are closer to one another, which for a gene dataset could 
be used to argue earlier for the closer relatedness of these 
groups. Additionally, IPBC yield clusters that have some 
points with higher dissimilarity to the rest of the cluster than 
others but are still clearly part of the cluster. Such informa-
tion cannot be as easily obtained by the other solutions.

In summary, it is visible in Table 2 that a user is only able 
to cluster datasets in gCLUTO with very specific cluster 
structures of low-intercluster distances for which VISTA 
seems less appropriate. With VISTA it is also impossible 
to cluster datasets of very high-dimensionality. The results 
showed that IPBC outperformed VISTA and gCLUTO in 
terms of the adjusted Rand index on the clustering bench-
mark set of twelve datasets and the SCADI dataset. Applying 
IPBC to the Boston Housing Dataset reproduced the results 
in [71] as follows. Statistical testing showed that the clus-
ter one consisted of houses with a lower market value and 
higher air pollution than cluster two. A clustering structure 
was not reported in [71]. Additionally, an explainable AI 

procedure [75] explained the clustering by one rule stating 
that the taxes were lower in cluster one than in cluster two.

6 � Conclusion

This work investigated various displays of the structures in 
data and introduced interactive projection-based clustering 
(IPBC) for visual analytics. Contrary to iPCA [14], Clustro-
phile 2 [76], Clustervision [77], Morpheus [16], and VISTA 
[3], it interactively shows the high-dimensional density and 
distance-based structures in the third dimension on top of 
the scatter plot of projected points in either a 2.5D display 
or a 3D display of a topographic map. With this approach 
for information display, IPBC is the only visual analytics 
approach that accounts for the challenge stated in the John-
son–Lindenstrauss lemma [8, 9] that points in a scatter plot 
cannot accurately visualize high-dimensional distances. 
Unconventional for interactive clustering approaches (e.g. 
[76, 77]), the visual displays of IPBC are a parameter-free 
and open-source. The interactive projection-based clustering 
was compared with two available methods: gCLUTO which 
displays information about the structures in data in 3D and 
VISTA which displays information about the structures in 
data in 2D. IPBC outperformed these two accessible methods 
in twelve artificial and natural benchmark datasets as well as 
two additional natural datasets. The clustering performed by 
IPBC reproduced domain knowledge of one application and 
extended it further. IPBC can be accessed as a module in the 
R package “ProjectionBasedClustering” on CRAN. Further 
research on IPBC is required with the goal of performing a 
user study to investigate if 2.D displays or 3D displays serve 
better for the cluster identification task..

Appendix A: Implementation details

By default the IPBC algorithm starts with the NeRV pro-
jection of the parameter settings defined by Venna et al.
[79] which are shown in Fig. 3: iterations=20, lambda=0.1, 
neighbors=20. Linear projection methods are included 
(PCA, ICA, projection pursuit) but are not recommended 
(see [47] for details). Accessible nonlinear projection meth-
ods are MDS, NeRV, Sammons mapping, uniform manifold 
approximation projection, Pswarm and t-SNE. The exist-
ence and number of parameters depend on the projection 
method. The algorithms yielding the topographic map does 
not require any parameters. The recommendation of the 
automatic projection-based clustering procedure requires the 
setting of the Boolean parameter structure type (checkbox, 
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Fig. 2) and the number of clusters that can be derived from 
the number of valleys in the topographic map. Listing 1 pre-
sents an example of IPBC.

> install.packages(ProjectionBasedClustering,dependen
cies = T)

> require(FCPS)
> data(”Chainlink”)#from FCPS
> library(ProjectionBasedClustering)
> V = interactiveProjectionBasedClustering(Hepta$D

ata)
> imx = interactiveGeneralizedUmatrixIsland(V$Umatr

ix,V$Bestmatches,V$Cls)
> require(GeneralizedUmatrix)
> GeneralizedUmatrix::plotTopographicMap(V$Umatri

x,V$Bestmatches,V$Cls, Imx = imx)
> GeneralizedUmatrix:: TopviewTopographicMap 

(V$Umatrix,V$Bestmatches,V$Cls, Imx = imx)
Listing 1: Exemplary source code for applying IPBC to 

the Chainlink dataset. Visualization of the results can be 
either performed as a top view of the topographic map in 2D 
using plotly or with rgl with interactivity in 3D.

Appendix B: Computation time

Computations were performed in R 4.0.1 on an iMac Pro 
2017 with the specification of 18-core Intel Xeon W, 256 
GB RAM with the R package ’parallel’ in R-core for paral-
lel computation.

The computation time in minutes is shown via MD plots 
[80] in Fig. 19 for an increasing number of cases N and in 
Fig. 19 for an increasing number of dimensions d in 100 
trials.

Mirrored-density (MD) plot visualize density estimation 
in a similar way to violin plots [80]. It can be shown that 
comparable methods have difficulties in visualizing the prob-
ability density function in the case of uniform, multimodal, 
skewed, and clipped data if the density estimation parame-
ters remain in a default setting [80]. In contrast, the MD plot 
is particularly designed to discover interesting structures in 
continuous features and can outperform conventional meth-
ods[80]. The MD-plot is available in the R package ‘Data-
Visualizations’ on CRAN.

Fig. 19   MD plot for IPBC with an increasing dimensionality indicating a computation time of O(d)
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In Fig. 16, the specific datasets of FCPS datasets are 
Hepta(N  =  212), Lsun3D(N  =  404), Atom(N  =  800), 
Chainlink(N = 1000), Golfball(N = 4004). Additionally 
several samples of GolfBall are taken between N = 1500 
and N = 4000 (see [78] for details).

In Fig, 16 N = 554 data points of the Leukemia dataset 
with varying dimensionality between d = 2 and d = 500 are 
used. The MDS transformation is applied to transform the 
published distance matrix into a dataset with a priorly speci-
fied dimensionality priorly.

Appendix C: Topographic maps in the 2.5 
Displays for FCPS

In Fig. 20, the ten topographic maps for the FCPS datasets 
are presented in 2.5D display and used in the interactive 
clustering process of the IPBC method. The TopviewTopo-
graphicMap function is used here.

Fig. 20   Topographic maps in 2.5D display using plotly for the 10 artificial and two natural datasets of the FCPS for cluster analysis because the 
FCPS offers a variety of real-world challenges [68]
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