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Abstract
Advanced validation of cluster analysis is expected to increase confidence and allow reliable implementations. In this work, we
describe and test CluReAL, an algorithm for refining clustering irrespective of themethod used in the first place.Moreover, we
present ideograms that enable summarizing and properly interpreting problem spaces that have been clustered. The presented
techniques are built on absolute cluster validity indices. Experiments cover a wide variety of scenarios and six of the most
popular clustering techniques. Results show the potential of CluReAL for enhancing clustering and the suitability of ideograms
to understand the context of the data through the lens of the cluster analysis. Refinement and interpretability are both crucial
to reduce failure and increase performance control and operational awareness in unsupervised analysis.

Keywords Cluster validity · Machine learning interpretability · Cluster refinement

1 Introduction

Clustering is a method for discovering data groups (or clus-
ters) based on the location and density of data points in the
space drawn by point features. In addition to othermathemat-
ical tools, clustering is used to obtain descriptions of data and
discover patterns hidden inside. It becomes particularly use-
ful in multi-dimensional, large datasets that are difficult to
analyze by means of traditional methods and are commonly
deemed as chaotic, messy, and challenging.

However, clustering algorithms are habitually very sen-
sitive, non-robust, and biased by their own algorithmic
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approach andhyperparameters. Thus, clusteringoften “explains”
data with forced structures that do not match the analyzed
data. Main reasons behind unsatisfactory clustering are:

– The algorithm fails because it lacks capabilities or due to
a wrong parameterization.

– The data do notmatch structures that are explainablewith
clustering.

Regardless of the reason that caused the failure, we need
to know whether the clustering output is misleading; other-
wise, the purpose of the analysis will be affected. Therefore,
we need to assess how reliable and representative clustering
results are. Internal validity algorithms cope with this task
by ranking solutions with metrics that are commonly based
on cluster separation and compactness. However, they have
some downsides, one of which is being relative in nature; that
is, they are useful for establishing comparisons and discrim-
ination between various solutions, but rarely for evaluating
them alone. Except for extreme cases, validity algorithms do
not state if a solution space is suitable or not, but only what
is the best solution space in a comparison. Note that they
could all be wrong and not be noticed by the analyst (or the
system in which clustering is embedded).

We previously addressed this problem and consequently
proposed a set of indices to validate clustered spaces in an
absolute manner [20]. On the basis of this work, we here
developed ideograms to represent clustered data in a compact
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way and an algorithm to improve clustering regardless of
the chosen technique. Ideograms are useful as keys for the
human analyst to interpret and understand datasets, but also
as codes to support automated decision making in systems
that incorporate clustering for explaining data contexts.

Internal validity indices often apply assumptions and
suffer from limitations, namely: globularity (aimed clus-
ters are assumed globular); subjectivity (different clustering
solutions can be equally valid); uncertainty (the best cluster-
representation might be unreachable); suboptimality (subop-
timal solutions are acceptable); unsolvability (data might not
fit cluster structures). Further discussion on these aspects can
be found at [20]. Here, we briefly discuss globularity, since
at least this constraint is common and extensible to most
clustering validity approaches.

Themethods presented in this paper are suitable for multi-
dimensional spaces in which globular clusters (or globular
approximations) are expected. Therefore, our methods (alike
most cluster validity methods) are not useful for applications
like spatial clustering, in which accurately capturing cluster
shapes plays a determining role. Methods typically applied
in such scenarios are density-based techniques that require
special validation measures [10,31]. A second exception is
subspace clustering [25]. In subspace clustering, clusters are
searched in lower dimensions, meaning that in the original
space clusters might be hyperplanes or lines in hyperplanes,
again requiring specialized validity methods for their evalu-
ation.

Note that complex shapes have a strong connection
with visual information and maps, but not necessarily
with data. For instance, the difference between an “S”-
shaped cluster in a five-dimensional space when compared
with the same cluster taken as globular might be irrel-
evant or arbitrary for the application purpose. Our pro-
posal subscribes this principle for many real-life applica-
tions, in particular when the suboptimality assumption also
applies.

This paper is an extension of a conference contribution
[21]. This extended version presents the enhanced implemen-
tation ofCluReAL.v2. In addition to changes in the algorithm
core, CluReAL.v2 uses fast kernel density estimations,
graph-based rules to fuse sub-clusters (or micro-clusters),
and a deeper definition of cluster kinship relationships. Addi-
tionally, it solves multimodal clusters, which previously
remained untreated. Evaluation experiments are much more
demanding now, since we compare CluReAL.v2 with other
clustering optimization techniques based on random param-
eter search and parameter sweeps. Additional algorithms
and datasets are used (including high-dimensional and other
popular ones taken from the related literature for cluster-
ing evaluation). Evaluations are now conducted with external
validation metrics that use ground-truth labels. Finally, criti-

cal difference diagrams are also used to show if performance
differences among testedmethods are statistically significant.

In the following sections, we give a short summary of
internal cluster validation methods and the theoretical back-
ground of our approach (Sect. 2) andwe explainCluReAL for
clustering refinement (Sect. 3) and SK ideograms for inter-
preting clustered data (Sect. 4). We evaluate our proposals
with experiments that are described in Sect. 5. Results are
shown and discussed in Sect. 6. Thework closeswith the con-
clusions in Sect. 7. Additionally, Appendix shows CluReAL
configurations to cope with high overlap and comparisons
between CluReAL.v1 and CluReAL.v2.

2 Clustering validation

Clustering validation (a.k.a. cluster validity or internal val-
idation) consists in the evaluation of clustering only using
topological or geometrical characteristics of the data. In other
words, there is no ground-truth partition to compare with.
Several studies provided comprehensive comparisons of dif-
ferent cluster validity indices [2,44], to cite some of the
most popular: Silhouette [37], Calinski–Harabasz [7], or the
Davies–Bouldin index [11].

2.1 GOI: Absolute internal validation

Validity indices are often based on different ways of evalu-
ating cluster separation and compactness. Note that, if it is
possible to assume that the algorithmworked properly, valid-
ity indices would be giving information about how compliant
the input space is to cluster-like structures. This concept is
the basis of the GOI validation [20], which proposed two
types of indices: individual overlap indices for each cluster
(oi) and global overlap indices for the joined solution (G),
and two modalities: strict and relaxed.

The mathematical formulations of oi indices are:

oirex,A = min
j=1,...,k
j �=A

({�Aj − �cor,A − �cor, j }
)

(1)

oistr,A = min
j=1,...,k
j �=A

({�Aj − �ext,A − �ext, j }
)

(2)

where �Aj is the cluster inter-distance (centroid-to-centroid)
between clusters A and j . �cor,A is the radius of the core
volume of cluster A, which is defined as the median intra-
distance of cluster A (datapoints in A to the centroid cA).
�ext,A is the radius of the extended volumeof cluster A,which
is defined as the mean plus two times the standard devia-
tion of intra-distances in cluster A. This follows Chebyshev’s
inequality, which ensures that the extended radius covers at
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least 75% of datapoints regardless of the underlying distri-
bution [39].

Therefore, oi indices measure cluster separation and com-
pactness after representing each cluster as a pair of concentric
hyperspheres, in which the inner one assumes homogeneous
cores by using robust statistics and the outer one uses Cheby-
shev’s inequality to force external layers to adapt to any
possible point distribution. Such approach provides a sim-
plified model of the space that can be treated mathematically
(Fig. 1).

Finally,G indices can be defined for estimating separation
and compactness in the whole dataset. Given a dataset with
k clusters, a G function takes the form:

G(oi,�) =

k∑

j=1

oiA j |A j |

k∑

j=1

�A j |A j |
. (3)

From here, we can derive either a strict index or a relaxed
index for the whole dataset depending on the radii (�) and
oi indices used, specifically:

Gstr = G(oistr,�ext) (4)

Grex = G(oirex,�cor). (5)

Additionally, a minimum G index is defined to satisfy
applications in which any cluster overlap is deemed as highly
undesirable:

Gmin = min
j∈k

({
oistr, j
�ext, j

})
. (6)

Together, Gstr, Grex, and Gmin are capable of describing
and evaluating the clustered space in an absolute manner. In
[20], the keys to interpret G indices and a methodology to
apply them for improving the quality of clustering are given.
We build the methods presented here on such knowledge,
oi and G indices becoming the backbone of the algorithm
outlined in Sect. 3 and the ideograms described in Sect. 4.

2.2 External validation

Since traditional validation is based on cluster compactness
and separation estimations, it might show limitations in cer-
tain scenarios [26]. When the ground truth is available, the
validation techniques used are called external validation (or
just evaluation). These methods measure the match between
the found classification and the ideal partition given by the
ground truth. Among the most popular, we find: the Jaccard
index [22], the Rand index [34], or the mutual information
score [41]. Since we have the ground-truth available in our

experiments (and also to improve the contrast with the opti-
mization methods under test, which use internal validation),
we use external methods in the final evaluation.

3 CluReAL

General-purpose methods to improve or refine clustering are
scarce. Precedents commonly focus on the establishment of
best parameters, particularly the number of clusters [30,48],
either they are designed for specific algorithms [6], or devise
ways to make the manual correction easier [18].

In this work, we design and develop CluReAL (from
Clustering Refinement ALgorithm), a general-purpose tool
to refine clustering regardless of the algorithm used. The
rationale behind CluReAL is modeling discovered clusters
with � and � radii hyperspheres, later merging, splitting,
or dismantling them based on oi distances, relative densi-
ties, and the detection of multiple point cores in singular
clusters. Ultimately, CluReAL aims to improve G indices.
An early prototype of CluReAL(.v1) was introduced in [21].
Here, we describe the current, enhanced version of the algo-
rithm (CluReAL.v2), which considerably differs from the
previous version in that parameterization has been simpli-
fied, graphs are used to connect clusters, a deeper kinship
definition is used, and automatic resolution of multimodal
clusters is incorporated. Both versions are compared in Sec-
tion A.2.

3.1 Algorithm Description

The pseudocode of CluReAL.v2 is shown in Algorithm 1.
We comment on relevant aspects:

#0 Preliminaries. CluReAL operates with some values
obtained from the clustering. These are context variables:

(a) The number of clusters (k), with K being the set of
clusters.

(b) Cluster cardinality (mass or number of elements).
|A| for cluster A.

(c) Cluster centroids. cA for cluster A.
(d) Cluster inter-distance. Given clusters A and B with

centroids cA and cB , respectively, and d as the
Euclidean distance, the cluster inter-distance between
A and B can be defined as:

�AB = d(cA, cB). (7)

(e) Cluster core and extended radii. Given cluster Awith
datapoints A = {x0, x1, ..., xN } and centroid cA, the
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Fig. 1 �, �, and oi allow
modeling the clustered space as
hyperspheres. For easy viewing,
only magnitudes for calculating
Gstr are shown. In the example,
negative oistr ,1 and oistr ,2
capture the overlap between
Cluster 1 and Cluster 2

Algorithm 1 CluReAL.v2
1: preliminaries (calculate clustering context) {#0}
2: for each cluster i in K do
3: if i is multimodal then
4: split i {#1}
5: end if
6: end for
7: recalculate clustering context {#2}
8: for each cluster i in K do
9: if i is hazy or has low-mass then {#3}
10: transform datapoints in i into outliers
11: end if
12: end for
13: recalculate clustering context
14: build graph with kinship matrix as edges {#4}
15: for each edge i in graph do
16: if nodes of edge i are acquaintances then
17: remove edge
18: else if nodes of edge i are friends then
19: merge clusters of edge i in subspace a {#5}
20: if a is multimodal then
21: remove edge i
22: end if
23: end if
24: end for
25: merge clusters that are connected in graph
26: recalculate clustering context
27: either reassign or consolidate outliers {#6}

set of intra-distances is:

DA =
{
d(x0, cA), d(x1, cA), ..., d(xN , cA)

}
. (8)

The core radius is defined as the median intra-
distance:

�cor,A = Q0.5(DA) (9)

with Q0.5 being the quantile function with p = 0.5,
ergo the Median. The extended radius is established
as:

�ext,A = μDA
+ 2σDA

(10)

with μ and σ being the mean and standard deviation
of cluster A intra-distances, respectively.

(f) Cluster density. CluReAL uses cluster densities that
are relative to the density of the whole dataset taken
as a single cluster O . Therefore, the relative density
of a cluster A is:

ρA =
|A|

�cor,A
− |O|

�ext,O

|O|
�ext,O

. (11)

(g) Cluster kinship. Extended and core radii and cluster
inter-distances are used to define types of cluster kin-
ship. They are described in the set of equations 12.
Figure 2 shows graphical diagrams to better under-
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Fig. 2 Types of cluster kinship
for two random clusters A and
B. Symbols are described in
Sect. 3.1

stand kinship relationships.

unrelated �AB > (�ext,A + �ext,B)

acquaintances �AB ≤ (�ext,A + �ext,B) ∧
�AB > (�cor,A + �cor,B)

friends �AB ≤ (�cor,A + �cor,B) ∧
�AB > max(�ext,A,�ext,B)

relatives �AB ≤ max(�ext,A,�ext,B) ∧
�AB > min(�ext,A,�ext,B)

parent-child �AB ≤ min(�ext,A,�ext,B).

(12)

(h) Cluster multimodality. A multimodal cluster is any
cluster that shows more than one peak of point
concentration. To establish whether cluster A is
multimodal, CluReAL searches for peaks in one-
dimensional kernel density estimations (KDE) of
cluster features separately [42]. If any feature shows
more than one peak, cluster A is labeled as “multi-
modal”. There are diversemethods to implement very
fast KDE [35]. By default, CluReAL.v2 opts for a
convolution FFT-based computation with the Silver-
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man’s rule of thumb for the bandwidth calculation
[43].

#1 Solvingmultimodal clusters. In contrast toCluReAL.v1,
CluReAL.v2 solves multimodal clusters by analyzing
them separately as isolated subspaces. By default, the
algorithm used for splitting multimodal clusters is a k-
means variation [40]. A cluster detected as multimodal
may not be finally split if it conflicts with subsequent fus-
ing rules (e.g., multimodal clusters show close kinship).

#2 Recalculating the clustering context.Each time that the
clustering structure is modified, recalculating clustering
context variables (inter-distances, intra-distances, densi-
ties, radii, masses, etc.) is required to fit the new solution.

#3 Removing superfluous clusters. CluReAL transforms
hazy clusters and low-mass clusters into outliers. The
qualities of being hazy and low-mass are controlled by
the external hyperparameters MRD (minimum relative
density) and MCR (minimum cardinality ratio), respec-
tively. CluReAL admits configurations in which defining
outliers is not allowed and all points must be assigned to
clusters (see point #6).

#4 Connecting clusters with graphs. After removing low-
density and low-mass clusters, a graph is built in which
nodes represent clusters and edges are kinship relation-
ships. Edges among acquaintances are cut, and edges
between friends are also cut if the cluster resulting from
merging such nodes forms a multimodal cluster; other-
wise, edges among friends are kept (Fig. 3). Such rules
for cutting edges become automaticallymore radical (i.e.,
the tolerated kinship levels are reduced) whenever only
one cluster is detected in the solution. The level of sever-
ity of these rules can also be controlled by an external,
optional parameter (Section A.1).

#5 Merging clusters. Clusters that are connected by graph
edges are merged together.

#6 Reassigning or consolidating outliers. Regardless of
the fact that we consider outliers as noise, extreme values,
or isolated points between clusters, labeling data points
as outliers is an application design option. CluReAL.v2
uses a hyperparameter called OS (outlier sensitivity) to
establish how far from centroids outliers discovered by
the initial algorithm or by the CluReAL refinement can
remain. OS is a coefficient that divides �cor. High OS
values allow more outliers, whereas OS = 0 reassigns
all potential outliers to clusters. The reassignment uses
the closest centroid for setting the final label.

3.2 Parameterization

CluReAL.v2 uses three main hyperparameters: MCR,MRD,
and OS. They are intuitive and can be left with default values

Fig. 3 Example of CluReAL graph before processing. Nodes represent
clusters, and edge widths correspond to kinship relationships. Nodes
that are not connected are unrelated. The thinnest edges (acquaintances
and friends) are likely to be cut, and the nodes that remain will be
merged. This example shows a clustering that does require refinement,
namely: either the original clustering was conducted with a too-high k,
or a considerable number of multimodal clusters were detected

for most scenarios, since they concern to the minimum mass
of clusters (relative to the totalmass),minimumdensity (rela-
tive to the overall density), and sensitivity to outliers (relative
to sizes of the cluster cores modeled with robust statistics).

The subjectivity and suboptimality assumptions intro-
duced in Sect. 1 make the use of hyperparameters and
thresholds unavoidable. As a general rule, clustering cannot
escape from certain ambiguity, therefore being impossible to
clearly determine a best solution in certain situations (Fig-
ure 4 shows some examples).

3.3 Complexity

As defined in Algorithm 1, CluReAL.v2 is a straightfor-
ward, low-complex procedure. The main bottleneck appears
in the KDE used for calculating multimodality. Considering
that from the three variable magnitudes—n: number of data
points,m: number of dimensions, and k: number of clusters—
the critical factor is n, fast solutions (as the FFT-based one
used in CluReAL.v2) show O(n log n) time complexity [35].
Note that CluReAL calculates density estimations in a one-
dimensional fashion, this being extremely faster than KDE
in multi-dimensional spaces.

CluReAL.v2 incorporates k-means to solve multimodal
clusters by default. K-means methods are habitually varia-
tions of the Lloyd’s algorithm [27], whose time complexity is
considered linear [3]. If CluReAL is adjusted to use a differ-
ent algorithm for solving multimodality, complexity should
be accordingly recalculated, but note that multimodal clus-
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ters are expected to take a small fraction of the whole mass
in normal cases.

4 Context interpretation based on clusters

Interpreting clustering is required in all applications, and
key when clustering is used as a tool to provide informa-
tion about the data context. Note that this is a problem
different to dimensionality reduction, visualization of high-
dimensional spaces, or clustering spaces that have been
previously reduced. Here, the cluster analysis already sum-
marized data and the challenge is properly interpreting
clustering outputs in connection with input data altogether.

Dendrograms [9,32] and Silhouette plots [37] are tradi-
tionally the most common methods to visualize clustering
results. Another popular approach is leveraging the high-
interpretability of decision trees andusing them for extracting
rules from clustering outcomes [4]. Among other transforma-
tion techniques, multi-dimensional scaling (MDS), principal
component analysis (PCA), and self-organizingmaps (SOM)
have been proposed for projecting the clustering solution into
two dimensions while respecting as much as possible topolo-
gies and distances [46].

These options are still complicated to interpret, might be
incomplete, require the careful attention of an expert, and
hardly offer a quick impression of the context. Additionally,
they are not easily translatable for a machine decision-
making process. More complete reads of the context are
possible by using several clustering outputs such as the
number of clusters, inter-distances, intra-distances, masses,
and densities. An example is the 3D mountain visualization
implemented inCLUTO[24],which also usesMDSfor locat-
ing centroids. Here, clusters are represented with Gaussian
curves, the shape being a rough estimate of the data distri-
bution within clusters. The peak height reflects the cluster
internal similarity, the volume represents the mass, and col-
ors are proportional to cluster-internal deviations (red for low,
blue for high).

4.1 SK Ideograms

Based on the GOI indices and other measures introduced in
Sects. 2 and 3, we developed a set of symbols that can be
combined to form ideograms. Such ideograms offer an inter-
pretation of the dataset context from the perspective of the
cluster analysis. Figure 5 shows some examples to under-
stand all possible ideograms. Some of the symbols can be
combined together, while others exclude each other. Hence-
forth, we refer to them as SK ideograms (from symbolic
keys).

4.2 Example of clustering interpretation

Figure 6a shows an example of a small dataset with three
dimensions. The cluster analysis correctly found five clus-
ters. The remaining plots are different ways of visualizing
clustering results. (Note that we usually cope with multi-
dimensional spaces that have more than three dimensions,
fact that makes the direct visual examinations much harder.)

The dendrogram (Fig. 6b) does not find an optimal par-
tition, but bisects data based on similarity criteria. Branch
height marks the similarity between the clusters below (alike
clusters will have similar branch heights). Only by check-
ing a dendrogram, it is not possible to unequivocally assess
if cluster overlap happens, if some points were erroneously
clustered, or simply the quality of the clustering from a gen-
eral perspective.

The Silhouette plot (Fig. 6c) shows the Silhouette index of
every single datapoint, which will be close to 1 when max-
imum compactness/separation is achieved. The plot places
the “green” cluster as the best one (far, dense) and the “blue”
cluster as the worst one (close to others, low density). Sil-
houette indices are easy to interpret when they take extreme
values, but confusing for intermediate cases. For instance, we
cannot discern if the “blue” cluster is legitimate or if, instead,
it is an arbitrarymerger of some subclusters. Figure 6d shows
a two-dimensional projection of the original space by using
MDS. Only cluster centroids are projected, surrounded by
circles that represent average and maximum intra-distances.
Although helpful, such projections can lead towrong impres-
sions of cluster volumes and inter-distances. In the example,
the MDS projection suggests a cluster overlap that does not
actually happen in the original problem space.

The mountain visualization in Fig. 6e adds some extra
information to the MDS case that is useful; however, it may
raise misleading interpretations about the cluster quality and
actual overlap. Unlike the previous options, the SK ideogram
is a simple symbol focused on interpreting the quality of
the clustering from a cluster compactness–separation per-
spective. Note that, in the example (Fig. 6f), it is the only
representation that clearly summarizes the problem as “a
spacewith fivewell-separated clusters with inter-cluster den-
sity differences.” Compared to the other options, the SK
ideogram is not only a visualization, but also intrinsically
incorporates the interpretation and evaluation of the clus-
tered space. As such, it is useful for the data scientist, but can
also be easily shared and integrated into stand-alonemachine
learning frameworks.

5 Evaluation experiments

We conducted evaluation experiments by comparing the
effect of CluReAL refining a wrong parameterized cluster-
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 4 Examples of ambiguity in clustering. How many clusters are
shown in Example 1? Two clusters with different densities or four clus-
ters, three of them strongly overlapped? Should external data points
in Example 2 be considered outliers and how many of them? Do data

points in low density areas in Example 3 form clusters? Should they be
considered outliers/noise instead? How many clusters does the space
in Example 4 show?

ing against a traditional clustering optimization performed by
selecting the best clustering among a set of candidates that
used different parameterizations. Figure 7 displays the exper-
imental setup scheme with a block diagram. Experiments are
organized in two sets:

– Two-dimensional data. We use 12 different datasets for
these experiments and one clustering algorithm (a k-
means variant, introduced in Sect. 5.2). In addition to
showingfinal scores,we plot the clustered spaces for both
competing methods. We also show SK ideograms. These
two-dimensional examples are provided to enable the
reader to visually understand and further assessCluReAL
refinements and SK interpretations, which would be
hardly feasible in spaces with more dimensions.

– Multi-dimensional data. Here,we test CluReALwith 134
multi-dimensional synthetic datasets designed according
to seven possible characteristics intrinsic to the input
space. We use six different underlying clustering algo-
rithms (Sect. 5.2).

All experiments in addition to examples, codes, extended
results, method implementations, and other material are
available for reuse and replication in our GitHub repository.1

Ground-truth labels for all datasets used are also available.

5.1 Datasets

Most of the datasets used in the experiments were generated
with the MDCGen tool [19], which has been particularly
designed for testing clustering. Note that Arbelaitz et al. [2]
have proven that there is not a significant difference between
synthetic and real datasets when using them for evaluating
cluster validity algorithms. Datasets are divided into the fol-
lowing groups:

1 https://github.com/CN-TU/py_clureal-experiments.

– Separated clusters datasets consist of spaces between 2
and 23 dimensions, with a number of clusters between
3 and 7, and 5000 data points without outliers. Clus-
ters are multivariate2 Gaussian shape and designed to
show high inter-distances. There are 20 datasets for the
multi-dimensional tests and one dataset for the two-
dimensional tests.

– Close clusters datasets use the same configuration as sep-
arated clusters datasets, but the number of clusters is
between 10 and 14, showing low inter-distances. Again,
there are 20 datasets for the multi-dimensional tests and
one dataset for the two-dimensional tests.

– Density-differences datasets show the same basic con-
figuration as separated clusters datasets, but the underly-
ing distributions are tuned in both multivariate and radial
ways. Moreover, distributions are set at random among
the following: uniform, Gaussian, logistic, triangular,
gamma, and ring-shaped clusters. There are 20 datasets
for the multi-dimensional tests and one dataset for the
two-dimensional tests. Note that in all groups density
differences occur due to the different cluster cardinali-
ties, but in this specific one they are forced to be more
extreme by varying point generation distributions.

– Low-noise datasets have the same configuration as sep-
arated clusters datasets, but add between 5% and 15%
outliers. There are 20 datasets for the multi-dimensional
tests and one dataset for the two-dimensional tests.

– High-noise datasets have the same configuration as sep-
arated clusters datasets, but add between 15% and 40%
outliers. There are 20 datasets for the multi-dimensional
tests and one dataset for the two-dimensional tests.

2 In multivariate clusters, distributions for the point-value generation
are applied independently for each feature. In radial clusters, point
values are generated ensuring that their distance to the centroid follows
the selected distribution.
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Fig. 5 Models for SK ideograms

– Complex datasets have the sameconfiguration asdensity-
differences datasets, but add between 5% and 15%
outliers. There are 20 datasets for the multi-dimensional
tests and one dataset for the two-dimensional tests.

– High-dimensional datasets have been proposed for
checking clustering algorithms in high-dimensional
spaces byFränti et al. [17].All datasets have nine clusters,
but different numbers of datapoints. In our experiments,
we use ten datasets with dimensions equal to 2, 3, 5, 10,
15, 32, 64, 256, 512, and 1024.

– Popular two-dimensional datasets are taken from previ-
ous publications related to clustering evaluation, namely:
A-sets [23], S-sets [16], and the unbalance dataset [36].

– Real datasets with labels for evaluating clustering are
very scarce in the literature. Instead, real labeled data are
commonly oriented to supervised classification, in which
labels are not necessarily bound to the internal geome-
try of the feature space, but to their utility within the
application. In other words, classes need not be linked to
groups, or not cleanly. To include also real data in our
experiments, we have used four popular datasets that are
addressed for multi-class classification, namely: Breast
Cancer,Diabetes,Digits, andWine datasets 3. To enhance
class separation, we have transformed original spaces by

3 https://scikit-learn.org/stable/modules/classes.html#module-
sklearn.datasets.
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Fig. 6 Example of clustering visualizations. a Original 3D dataset
already clustered (colors correspond to categories). b A dendrogram
shows datapoint IDs in the x-axis and associates them with tree
branches. c In the Silhouette plot, the x-axis is scores and the y-axis
is datapoint IDs. d “MDS” stands for the multidimensional scaling of

centroids, in which circles show average and maximum intra-distances.
eThevisualization used inCLUTO[24] represents clusters asGaussian-
shaped 3D mountains. f SK ideogram. It summarizes clustered data as
five well-separated clusters different densities

using t-SNE, which is prone to create representations
with cluster-like structures [28].

5.2 Algorithms and benchmark

We used six popular clustering algorithms. They can be
divided into two groups: 4

1. Algorithms that require an initial number of clusters as
input:

– Minibatch K-means (mkm) [40].
– Agglomerative Hierarchical Clustering (ahc) [12].
– GaussianMixtureModels (gmm) [5]with theExpectation-

Maximization Algorithm [13].
– Birch (bir) [47].

2. Density-based algorithms:

– HDBSCAN (hdbs) [9].
– OPTICS (opt) [1].

Any clustering algorithm must be adjusted in order to
achieve meaningful results. The main hyperparameter to set
in Group 1 is the expected number of clusters (k). HDB-
SCAN and OPTICS (Group 2) are hierarchical versions of
the original DBSCAN [15]; as such, a hyperparameter with
a strong effect in both is minPts. This parameter defines
how many neighbors a point must have to be considered a
core point, i.e., part of the cluster bulk. HDBSCAN does
not perform clustering, but produces a hierarchy of density
estimates. The final definition of clusters in the HDBSCAN

4 Minibatch K-means, agglomerative hierarchical clustering, Gaus-
sian mixture models, Birch, and OPTICS in our experiments are
Python implementations from Scikit-learn v0.22, https://scikit-learn.
org/stable/index.html. HDBSCAN v0.8.18 is from https://HDBSCAN.
readthedocs.io/en/latest/index.html.

implementation used in our experiments applies flat clus-
ter extraction on top of the discovered hierarchy [8,29]. In
addition to the minimum cluster size, for the cluster extrac-
tion a eps hyperparameter is necessary to establish cluster
separation, ultimately affecting granularity (either a few big
clusters, ormany smaller clusters). Instead, OPTICS requires
a hyperparameter called xi , which determines the minimum
steepness in a reachability distance to fix cluster boundaries.

In our experiments, we compare CluReAL refining a
suboptimal clustering with default or arbitrary parameters
against the best clustering found by traditional methods for
clustering optimization. The competitor method is estab-
lished according to the algorithm group:

– Silhouette k-sweep (Group 1). For every dataset, each
algorithm is run ten times with different k-values. We
use the ground truth to establish sweep values around the
ideal and ensure that this optimizationmethod reaches an
optimal solution. The performance that obtains the best
overall Silhouette score [37] is saved to be comparedwith
CluReAL refinement. Instead, CluReAL refines a delib-
eratelywrongclusteringwith a k considerable higher than
the provided by the ground truth (kCRAL = kGT + 10).

– Random parameter search (Group 2). Here, for each
dataset algorithms are run 20 times with different hyper-
parameter combinations obtained by random search.
minPts and eps are set with values around adjustment
recommendations given by [38] and [33]. xi in OPTICS
is searched between 0.05 and 0.2. In both algorithms,
the minimal cluster size is always fixed at 5% of the total
number of data points. Instead, CluReAL refines the clus-
tering foundwith fixed values ofminPts = 5, xi = 0.08
for all cases, a minimal cluster size of 5%, and the knee
value suggested byRahmah and Sitanggang [33] for each
dataset.
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Table 1 Two-dimensional experiments

Fig. 8 Data Best CRAL

(a) Separated 1.00 1.00

(b) Close 0.93 0.95

(c) Density differences 0.98 1.00

(d) Low noise 0.80 0.93

(e) High noise 0.74 0.90

(f) Complex 0.52 0.76

(g) S1 1.00 0.99

(h) S2 0.99 0.96

(i) S3 0.94 0.78

(j) A2 0.96 0.97

(k) A3 0.98 0.99

(l) Unbalance 0.98 1.00

AMI scores
The best values in the pairwise comparisons are shown in bold

5.3 Evaluationmetrics

Although clustering optimization methods apply internal
validity measures for their adjustment, we use the adjusted
mutual information (AMI) score to evaluate the matching
between the ground truth and the final clustering given by
the competing options. AMI is the adjusted version of the
Mutual Information score (MI) to account for chance [45].
The adjusted version compensates for the fact that MI is usu-
ally higher when comparing solutions with larger number of
clusters, irrespective of whether or not they share more infor-
mation. Thus,AMIobtains a better fit of the score range [0, 1]
(“1” standing for a perfect matching). AMI has been found a
suitable “general-purpose” measure for clustering validation
and algorithm comparison and design.

6 Results

6.1 Two-Dimensional experiments

Figure 8 shows final clusterings for the two-dimensional
datasets. Every subfigure is formed by four plots: (1) The
top-left plot shows the best k-means clustering obtained with
the Silhouette k-sweep; (2) the top-right plot shows the sub-
optimal clustering after CluReAL refinement; and (3) and (4)
bottom plots show the respective SK ideograms for the clus-
tering above. AMI scores are shown in Table 1. We comment
on them case by case.

– Separated clusters (Fig. 8a). This scenario consists of
seven well-separated clusters with different masses, but
the same underlying Gaussian distribution. Both opti-
mizationmethodsfindperfect solutions due to the relative

simplicity of the scenario. SK ideograms are identical,
showing seven well-separated clusters. Also note that SK
finds inter-cluster density differences, long-tailed clus-
ters, andmultimodal clusters, properties that are difficult
to check visually due to the image resolution. Density
differences are marked because clusters with different
masses occupy similar areas (the most-dense and less-
dense clusters have 591 and 91 data points, respectively).
Wrongwarnings aboutmultimodality are sometimes trig-
gered by low-density clusters that do not have enough
points to show a clear, compacted core.

– Close clusters (Fig. 8b). This dataset shows 11 clusters
very close to each other, some of them overlapping and
some of them with low density. This type of scenar-
ios is considerably challenging for clustering. The best
solution from the k-sweep merges some clusters that
overlap, discovering nine clusters; additionally, it also
assigns some data points to the wrong neighbor cluster.
CluReAL refinement obtains a significantly better solu-
tion, but it is not able to separate the two clusters that show
the strongest overlap. On the other hand, SK ideograms
slightly differ, not only in the number of clusters, also in
the global separation of clusters, which is higher for the
CluReAL case. In both ideograms, the small circle on the
top-left part of the figure marks that a strong overlap has
been detected even in spite of the fact that clusters do not
overlap in general.

– Clusters with density differences (Fig. 8c). The dataset
shows different distributions generating three clusters
with varied shapes and sizes. This challenge was cor-
rectly solved by both competing options. SK ideograms
are consistent with the clustered data. They show three
long-tailed, well-separated clusters with different densi-
ties.

– Dataset with low noise (Fig. 8d). This dataset is formed
by five Gaussian clusters surrounded by about 10% out-
liers. This example shows how even low noise affects
normal clustering. The best k-sweep solution is distorted
by noise and merges the central clusters. By refining a
suboptimal k-means, CluReAL correctly discloses the
five clusters and removes most noise data points. The
SK ideogram detects the central multimodal cluster in
the k-sweep solution and the overlap in spite of general
separated clusters in both cases.

– Dataset with high noise (Fig. 8e). This dataset is formed
by six Gaussian clusters surrounded by about 30% out-
liers. The higher the noise, the more distorted traditional
clustering become. Here, the best k-sweep solution is
considerably misleading as it merges four clusters and
forms a fifth cluster out of noise. The refined CluReAL
labeling discloses the six expected clusters and identifies
most outliers. Note how SK symbols inform about the
strong general overlap and multimodality in the best k-

123



344 International Journal of Data Science and Analytics (2021) 12:333–353

internal validation
(Silhouette)

CluReAL

clustering
algorithm

hyper-parameter
search

arbitrary hyper-
parameters

clustering

clustering_1

clustering_n

clustering_2

...
external validation

(AMI)
clustering_BEST

external validation
(AMI)

clustering_CRALcluster
analysis

dataset

params_1

params_n

params_2

...

cluster
analysis

params_sub

ground
truth

score_BEST

score_CRAL

Fig. 7 Scheme of evaluation experiments

sweep clustering due to the heterogeneity of the found
clusters and their big size with coinciding boundaries.

– Complex dataset (Fig. 8f). This dataset is formed by
seven clusters and combines previous data peculiarities:
noise, different shapes, masses and densities, close and
separated clusters, and overlap. Scenarios like this one are
extremely challenging for clustering algorithms. The best
k-sweep solution establishes two clusters that perform a
very rough summary of the problem. On the other hand,
CluReAL refinement is able to disclose the main shapes
and filter intermediate noise, even in spite of the fact that
two clusters are still merged with their closest neighbors.
SK symbols should warn about multimodality in the best
k-sweep case, but it fails due to the specific placement of
clusters, which dodge the feature-by-featuremultimodal-
ity detection. This issue is prone to be less likely themore
dimensions the dataset has.

– S-datasets (Fig. 8g–i). These datasets are formed by 15
Gaussian clusters with 5000 data points and different
degrees of cluster overlap. S1 is satisfactorily solved by
both competitors. In S2, clusters show more overlap;
k-sweep obtains a good performance, while CluReAL
starts finding problems to properly separate clusters and
tends to merge them. Note how the SK ideogram for
CluReAL in S2 reduces the number of clusters to 14,
but still informs about the existence of multimodal clus-
ters that CluReAL was not able to split. The overlap is
even stronger in S3 and CluReAL wrongly merges over-
lapped clusters. The SK ideogram is consistent with the
clustered context and explains it as chaotic, where clus-
tering is merely capturing density differences. k-means
sweep is significantly better in S3, even in spite of cre-
ating an additional cluster from arbitrary splits (green
cluster on the bottom-right part of the top-left plot in
Fig. 8i). CluReAL has two alternatives to properly deal
with high overlap:5 (a) by modifying edge-pruning rules

5 Here, none of these options have been applied in order to maintain
equality in the comparisons.

during the refinement or (b) by using data coresets. Both
options are described in Section A.1.

– A-datasets (Fig. 8j–k). These datasets are formed by
Gaussian clusters of 150 data points that are close to each
other and even show some overlap, A2 with 35 clusters
and A3 with 50 clusters. The refinement of CluReAL on
suboptimal solutions shows slightly better performances
than the best k-sweep options in both cases. Clusters are
better formed, and localminima problems areminimized.
As for the SK representations, note that, since all clusters
have the same size and cardinality, there are no density
differences among them.

– Unbalance dataset (Fig. 8l). This last dataset is extremely
complicated for any algorithm due to the strong differ-
ences in size and density. There are eight clusters, five of
them with 100 data points each and the remaining three
with 2000 data points each. Moreover, the clusters with
lower cardinality occupy larger areas. CluReAL refining
suboptimal k-means overcomes the difficulties, whereas
the best k-sweep fails to correctly split the problem space
andmerges two times two low-density clusters. Note that
the SK ideogram notices it by marking multimodality.

6.2 Multi-Dimensional experiments

Table 3 summarizes AMI scores per dataset group. Addi-
tionally, Fig. 9 shows boxplots with all scores together, each
boxplot corresponding to a different algorithm and a different
optimization method. A critical difference diagram compar-
ing all combinations is also provided in Fig. 10. Both the
boxplot and the critical difference diagram are calculated
over the introduced 134 different datasets and, together with
Table 3, show equivalent results, namely a general tendency
of CluReAL refinement on suboptimal clustering to equal
or outperform traditional optimization by hyperparameter
search and internal validation. This is best seen in Table 2,
which shows the rank obtained by each method in the overall
comparison and, additionally, if there is a statistically sig-
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Fig. 8 Scatter plots showing clustered solutions of the two-dimensional tests. Clustered data points are drawn with different colors, black being for
outliers. SK diagrams are displayed below the scatter plots
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Fig. 8 continued
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Fig. 9 Boxplots of AMI scores
over all 134 multi-dimensional
datasets together

Fig. 10 The critical difference
diagram compares methods with
Wilcoxon signed-rank tests [14].
The best methods are placed on
the right side. Methods that do
not show a significant difference
are connected with thick lines

Table 2 Ranks from Fig. 10 and results of the Wilcoxon test when
taking Sweep–CRAL pairs

rank rank H0
Alg. Sweep CRAL p-value (α = .05)

mkm 5th 3rd 0.000 rejected

bir 10th 8th 0.000 rejected

gmm 2nd 1st 0.000 rejected

ahc 12th 9th 0.000 rejected

hdbs 4th 11th 0.000 rejected

opt 7th 6th 0.828 fail to reject

The null hypothesis (H0) assumes that results come from the same
distribution
The best values in the pairwise comparisons are shown in bold type
(whenever HO is rejected)

nificant difference in results obtained from Sweep vs CRAL
optimizationswhen checked alone for every tested algorithm.
We take a closer look at Table 3 results from twoperspectives:

– Type of data challenge. The type of data challenge does
not considerably affect the performance of CluReAL
refinement when compared to traditional optimization.
It is specially pertinent for cases in which outliers are
present and the algorithm used is not specifically pre-
pared to deal with them (low-outlier and high-outlier

Table 3 Mean scores for multi-dimensional tests

Data group Alg. Method AMI

mkm Best 1.00 ± 0.00

CRAL 1.00 ± 0.00

bir Best 1.00 ± 0.00

CRAL 1.00 ± 0.00

gmm Best 1.00 ± 0.00

separated CRAL 1.00 ± 0.00

ahc Best 1.00 ± 0.00

CRAL 1.00 ± 0.00

hdbs Best 0.99 ± 0.03

CRAL 0.99 ± 0.03

opt Best 0.99 ± 0.03

CRAL 0.99 ± 0.03

mkm Best 1.00 ± 0.01

CRAL 1.00 ± 0.00

bir Best 1.00 ± 0.01

CRAL 1.00 ± 0.00

gmm Best 1.00 ± 0.01

close CRAL 1.00 ± 0.00

ahc Best 1.00 ± 0.01

CRAL 1.00 ± 0.00

hdbs Best 0.94 ± 0.02
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Table 3 continued

Data group Alg. Method AMI

CRAL 0.96 ± 0.04

opt Best 0.92 ± 0.05

CRAL 0.93 ± 0.03

mkm Best 0.97 ± 0.04

CRAL 0.91 ± 0.15

bir Best 0.77 ± 0.17

CRAL 0.84 ± 0.19

gmm Best 0.96 ± 0.09

dens-diff CRAL 0.83 ± 0.29

ahc Best 0.64 ± 0.48

CRAL 0.77 ± 0.37

hdbs Best 0.93 ± 0.14

CRAL 0.75 ± 0.38

opt Best 0.68 ± 0.26

CRAL 0.76 ± 0.27

mkm Best 0.92 ± 0.04

CRAL 0.95 ± 0.03

bir Best 0.71 ± 0.16

CRAL 0.82 ± 0.19

gmm Best 0.96 ± 0.02

low-noise CRAL 1.00 ± 0.00

ahc Best 0.39 ± 0.31

CRAL 0.73 ± 0.15

hdbs Best 0.97 ± 0.02

CRAL 0.60 ± 0.28

opt Best 0.99 ± 0.02

CRAL 0.99 ± 0.02

mkm Best 0.84 ± 0.05

CRAL 0.94 ± 0.04

bir Best 0.72 ± 0.07

CRAL 0.82 ± 0.17

gmm Best 0.90 ± 0.03

high-noise CRAL 1.00 ± 0.00

ahc Best 0.40 ± 0.31

CRAL 0.67 ± 0.18

hdbs Best 0.95 ± 0.03

CRAL 0.49 ± 0.19

opt Best 0.97 ± 0.03

CRAL 0.97 ± 0.03

mkm Best 0.91 ± 0.03

CRAL 0.89 ± 0.09

bir Best 0.82 ± 0.07

CRAL 0.83 ± 0.14

gmm Best 0.94 ± 0.03

complex CRAL 0.95 ± 0.04

ahc Best 0.34 ± 0.33

CRAL 0.62 ± 0.24

Table 3 continued

Data group Alg. Method AMI

hdbs Best 0.94 ± 0.10

CRAL 0.62 ± 0.22

opt Best 0.89 ± 0.14

CRAL 0.92 ± 0.14

mkm Best 1.00 ± 0.00

CRAL 1.00 ± 0.00

bir Best 0.99 ± 0.04

CRAL 1.00 ± 0.00

gmm Best 1.00 ± 0.00

high-dim. CRAL 1.00 ± 0.00

ahc Best 1.00 ± 0.00

CRAL 1.00 ± 0.00

hdbs Best 1.00 ± 0.00

CRAL 1.00 ± 0.00

opt Best 1.00 ± 0.00

CRAL 1.00 ± 0.01

mkm Best 0.59 ± 0.23

CRAL 0.76 ± 0.05

bir Best 0.58 ± 0.21

CRAL 0.68 ± 0.11

gmm Best 0.61 ± 0.20

real CRAL 0.58 ± 0.22

ahc Best 0.63 ± 0.21

CRAL 0.66 ± 0.16

hdbs Best 0.73 ± 0.08

CRAL 0.70 ± 0.16

opt Best 0.55 ± 0.15

CRAL 0.63 ± 0.19

datasets). Datasets that show a higher performance vari-
ability and differences between competing options are
the ones included in the density differences and complex
groups, but the suitability of CluReAL is more related to
the algorithm used than the type of data challenge. Tests
also show that CluReAL is able to refine clustering even
in high-dimensional spaces.

– Clustering algorithm to refine. Experiments show that
CluReAL refinement tends to outperform searching for
the optimal k with k-sweeps regardless of the algo-
rithm used. The improvement is particularly outstanding
for Gaussian mixture models clustering (gmm). Algo-
rithms in Group 2 show a different behavior. The overall
performance of CluReAL compared with random hyper-
parameter search is only slightly better in the case of
OPTICS (opt) and clearly worse for HDBSCAN (hdbs).
It is important to remember that CluReAL does not
carry out clustering per se, but works on a previously
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obtained solution, tolerating a certain degree of error in
the original clustering. Unlike the case of k for Group
1 (which depends on the number of actual clusters),
hyperparameters searched in Group 2 tests depend on
data dimensionality and point separation. Hence, per-
formance scores when using suboptimal parameters are
prone to be more extreme in Group 2 than in Group 1.
In other words, in Group 1 we can expect some corre-
lation between the performance score and the selected
k (the closer to the ideal value the better); instead, in
Group 2 a non-perfect parameterizationwill likely gener-
ate either a good clustering or a very distorted clustering.
In the first case, CluReAL is not necessary; in the sec-
ond case, the refining process can hardly take advantage
of the previous solution. This explains the performances
of CluReAL in the HDBSCAN and OPTIC cases. The
arbitrary parameterization in HDBSCAN tends to gener-
ate very poor clustering; instead, it commonly generates
good clustering in OPTICS. Finally, the critical diagram
in Fig. 10 and Table 2 confirms the CluReAL refine-
ment performed statistically better than hyperparameter
search for agglomerative hierarchical clustering (ahc),
Birch (bir), Gaussian mixture models (gmm), and mini-
batch K-means (mkm), equivalent for OPTICS (opt), and
worse for HDBSCAN (hdbs). It also suggests that refin-
ing Gaussian mixture models clustering with CluReAL
is the most recommended option when highly accurate
clustering is desired and clear insight for parameteriza-
tion is not available.

6.3 Final remarks

Note that the importance of refinement may not be reflected
if only the improvement in AMI scores is taken into account.
This is due to the strong inertia generated by correctly clas-
sified points. Results in close, A2, and A3 two-dimensional
experiments clearly illustrate this issue. Despite CluReAL
only obtaining a slight improvement in AMI scores, its clus-
tering has better quality: It is less prone to localminima errors
and avoids sectioning clusters in an incoherent way.

Moreover, the convenience of simply refining one clus-
tering (CluReAL) over selecting the best of a set (parameter
search or sweep) becomes evident in cases where cluster-
ing is embedded in a framework or as the size of the data
starts increasing. In such cases, parameter search might soon
become unfeasible. This is clearly shown in the example of
Fig. 11. The figure shows time performances of the studied
clustering optimization combinations in a sensitivity analy-
sis in which the parameter under test is the number of data
points: 500, 1000, 2500, 5000, 10000, 25000. The scenario

contains 30 isotropic Gaussian clusters6 of five dimensions.
Sweep-based optimization (“Best”) uses 20 different config-
urations.

7 Conclusions

In this work, we have presented CluReAL, an algorithm for
improving clustering regardless of the used clustering tech-
nique given some fundamental assumptions. Based on the
same principles, we have also introduced SK ideograms,
symbolic representations that enable fast, intuitive, auto-
mated interpretations of clustered spaces.

Experimental tests with six different algorithms have
shown how, as a general rule, CluReAL refining a wrongly
parameterized clustering outperforms the best clustering
obtained from random hyperparameter search, with spe-
cial prominence given to the combination of CluReAL
and Gaussian mixture models. The more than one hundred
datasets usedwere designed tomatch common situations and
challenges in unsupervised setups: separated clusters, close
clusters, low level of outliers, high level of outliers, clusters
that show density differences, complex scenarios that com-
bine all previous characteristics, high-dimensional spaces,
and some popular datasets previously proposed for algorithm
evaluation.

Outcomes of clustering are prone to be misleading and
are traditionally difficult to validate and interpret. Enhancing
cluster refinement and interpretability is strongly required to
increase the reliability of automated systems and clustering-
based artificial intelligence.
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Fig. 11 Time performances of
the clustering optimization
methods in response to
variations in the number of data
points. In spite of the overlap,
values of all CRAL curves are
significantly lower than the best
curves as the number of data
points increases

Fig. 12 Example of adjusting CluReAL to cope with overlap (S2 dataset). From left to right: a ground truth; b CluReAL, default configuration; c
CluReAL, increased pruning; d CluReAL, using coresets; (e) CluReAL, increased pruning and using coresets

Fig. 13 Example of adjusting CluReAL to cope with overlap (S3 dataset). From left to right: a ground truth; b CluReAL, default configuration; c
CluReAL, increased pruning; d CluReAL, using coresets; e CluReAL, increased pruning and using coresets
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A Appendix

A.1 Coping with High Overlap

CluReAL.v2 has two basic configuration options to deal with
datasets that show strong overlapped:

1. Stiffing edge-pruning rules. In this case, rules for cut-
ting edges between clusters during refinement are shifted
one kinship level. This implies that edges between friend
clusters are always removed and relative clusters are only
conditionally merged.

2. Using coresets. This option assumes that cluster densities
are not homogeneous. By using coresets, a significant
part of the data is removed from the analysis, aiming to
mainly retain cluster cores. After the refinement, cluster
labels are extended to excluded data points according to
distances to cluster centroids.

Figures 12 and 13 show S2 and S3 examples when
CluReAL is applied with and without the previous two
configuration options. In both examples, CluReAL refined
minibatch K-means clustering that was set with a wrong ini-
tial k = 25. In both cases, adjusting parameters to deal with
overlap significantly improved clustering, but when the over-
lap is severe and cluster densities tend to be uniform (like in
S3), obtaining ideal performances by refining wrong clus-
tering can be hardly feasible. Note that the last right plot in
Fig. 13, which is when coresets and more rigid edge-pruning
is applied, in spite of the fact that the SK symbol is almost
equivalent to the SK symbol of the ground truth, two legiti-
mate clusters still remain fused and an arbitrary cluster has
been created instead (the pink cluster on the bottom-right
corner).

A.2 CluReAL.v2 vs CluReAL.v1

Although grounded in the same ideas (i.e., G and oi indices
and representations, multimodality estimations, and kin-
ship relationships), CluReAL.v2 differs significantly from
CluReAL.v1 in many aspects. The base algorithm has been
modified to operate much faster and to avoid iterations;
required parameters have been either simplified or made
more robust; the kinship definition is more detailed and
connected to a new graph representation that ultimately
establishes the remaining cluster structure; finally, multi-
modal clusters,whichwere untreated before, are tackled now.
In short, whereas CluReAL.v1 was devised to just enhance
clustering, CluReAL.v2 has been designed as a clustering
optimization alternative that can replace parameter search,
which is commonly too costly for real applications.

The progress from CluReAL.v1 to CluReAL.v2 becomes
obvious when their performances are compared. In Table 4,
we show results after clustering a randomly selected dataset
from each group of the multi-dimensional experiments. The
base clustering uses a minibatch K-means with a deliber-
ately suboptimal parameterization, and this is later refined
with both CluReAL.v1 and CluReAL.v2, respectively. The
advantages of CluReAL.v2 over CluReAL.v1 are clear in
terms of accuracy and time performances.

Table 4 Comparison between
minibatch K-means (mkm)
adjusted with suboptimal k and
the corresponding CRAL.v1 and
CRAL.v2 refinements.
Clustering without any
refinement (mkm) is obviously
the faster option

AMI Time (s)

Dataset mkm CRAL.v1 CRAL.v2 mkm CRAL.v1 CRAL.v2

Real (n.4) 0.56 0.59 0.74 0.04 0.13 0.27

Separated (n.7) 0.55 0.93 1.00 0.07 227.53 1.08

Close (n.2) 0.86 0.99 1.00 0.08 25.49 1.05

Density differences (n.4) 0.70 0.75 1.00 0.05 70.13 0.80

Low noise (n.6) 0.87 0.90 0.98 0.05 180.77 2.58

High noise (n.5) 0.83 0.96 0.97 0.08 1471.69 2.34

Complex (n.3) 0.88 0.89 0.98 0.02 1513.89 2.03

High dimensional (n.32) 0.98 0.99 1.00 0.08 2.22 5.20

The best value in the comparison between the three methods is shown in bold
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