
International Journal of Data Science and Analytics (2022) 13:105–121
https://doi.org/10.1007/s41060-021-00292-y

REGULAR PAPER

Mining subgraph coverage patterns from graph transactions

A. Srinivas Reddy1 · P. Krishna Reddy1 · Anirban Mondal2 · U. Deva Priyakumar1

Received: 23 February 2021 / Accepted: 24 October 2021 / Published online: 2 December 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Pattern mining from graph transactional data (GTD) is an active area of research with applications in the domains of bioin-
formatics, chemical informatics and social networks. Existing works address the problem of mining frequent subgraphs from
GTD. However, the knowledge concerning the coverage aspect of a set of subgraphs is also valuable for improving the per-
formance of several applications. In this regard, we introduce the notion of subgraph coverage patterns (SCPs). Given a GTD,
a subgraph coverage pattern is a set of subgraphs subject to relative frequency, coverage and overlap constraints provided
by the user. We propose the Subgraph ID-based Flat Transactional (SIFT) framework for the efficient extraction of SCPs
from a given GTD. Our performance evaluation using three real datasets demonstrates that our proposed SIFT framework is
indeed capable of efficiently extracting SCPs from GTD. Furthermore, we demonstrate the effectiveness of SIFT through a
case study in computer-aided drug design.

Keywords Graph mining · Subgraph mining · Subgraph coverage patterns · Bio-informatics

1 Introduction

A complex graph can be built from pieces of knowledge
based on the relationships among various entities. Such a
graph contains newkinds of interesting anduseful knowledge
structures.Hence, it can be extremely valuable for opening up
new avenues for enhancing applications in several domains.
In this regard, graph mining [10,33] has become an active
area of research for mining knowledge from graph repre-
sentations in bio-informatics, chemical informatics, social
networks, computer vision, video indexing, text retrieval and
web analysis. Mining the knowledge of frequent subgraphs
from graph transactional data (GTD) is an important and
active area of graph mining [14,17,22,23,40,42]. It has been
demonstrated in [29,34] that frequent subgraph mining can

B A. Srinivas Reddy
srinivas.annappalli@research.iiit.ac.in

P. Krishna Reddy
pkreddy@iiit.ac.in

Anirban Mondal
anirban.mondal@ashoka.edu.in

U. Deva Priyakumar
deva@iiit.ac.in

1 Kohli Centre on Intelligent Systems, IIIT, Hyderabad, India

2 Department of Computer Science, Ashoka University, Delhi,
India

extract interesting patterns fromGTD for providing valuable
knowledge in the domain of bio-informatics.

Knowledge concerning the coverage aspect of a set of
subgraphs can be valuable for improving the performance of
several applications. In the literature, the notion of coverage
has been well explored in set theory and graph theory [7,
11–13,15,19,27,39,47] as well as the extraction of coverage
patterns from transactional data [18,36]. However, none of
the existing works have investigated the issue of extracting
the coverage-related knowledge of patterns from GTD. We
believe that the coverage-related knowledge in the form of
subgraph patterns can be used in improving the performance
of applications in chemical, biological and social network
domains.

Computational biology approaches have become ubiqui-
tous in the process of discovering new drug molecules that
can treat diseases. In the process of drug design, careful and
systematic changes in the molecular structure, which can
maximize the interactions between the drug molecule and
the protein relevant to the given disease, are crucial. Methods
that help us to understand and quantify such intermolecu-
lar interactions between proteins and drug molecules will
open up significant avenues for research in this direction. In
the literature, frequent subgraph mining (FSM) techniques
have been applied in [29,34] to study protein–ligand interac-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-021-00292-y&domain=pdf
http://orcid.org/0000-0003-4212-1460

106 International Journal of Data Science and Analytics (2022) 13:105–121

tions by analyzing the interaction patterns of different drug
molecules with the target protein.

Consider a scenario, where we have identified a number of
low-binding drug molecules. The objective is to improve the
structure of the molecules to increase the binding affinity so
that the drug would work at lower dosages. Existing FSM
techniques are not capable of extracting coverage-related
knowledge of patterns. However, if we develop approaches
for discovering coverage-related knowledge patterns, such
methods can be effectively used to help in optimizing the
binding affinity of the drug molecules w.r.t. the selected pro-
tein, thereby making the drug design process more efficient.

A subgraph coverage pattern (SCP) is a set (or pat-
tern), whose elements are the subgraphs of GTD. This work
addresses the problem of extracting all SCPs, which cover a
given percentage of the graph transactions of GTD. Notably,
in addition to the coverage aspect, we have to consider the
aspect of overlap, which arises as a consequence of consid-
ering the coverage of a set of subgraphs. The sets of graph
transactions covered by the corresponding subgraphs of an
SCP may contain the common transactions, which we refer
to as overlap. In addition to coverage, we consider an SCP
is interesting if there is a minimal overlap among the graph
transactions covered by subgraphs of an SCP.

Given a GTD, the issue is to extract all of the possible
SCPs subject to the constraints associated with coverage and
overlap. A brute-force approach would be to first extract
all of the possible subgraphs of GTD by employing a fre-
quent subgraph extraction algorithm [9,22,25,42] and then
determine the coverage and overlap for each possible pattern
consisting of subgraphs. Intuitively, such an approach would
be prohibitively expensive because the number of possible
subgraphs in a given GTD typically explodes. Consequently,
the number of candidate patterns to be considered for the
extraction of SCPs also explodes.

For efficiently extracting SCPs from a given GTD, we
introduce the model of SCPs and present the framework to
extract SCPs. In the proposed model, we define the notion
of coverage and overlap and present the problem to extract
SCPs. The problem is to extract all SCPs from a given GTD
by satisfying the threshold values of given coverage and
overlap. We present a framework to extract SCPs, which
we designate as subgraph-identifier-based flat transactional
(SIFT) framework. As a part of SIFT framework, we propose
an approach to extract all subgraphs of the graph transac-
tions in GTD and assign a unique subgraph identifier (SID)
to each subgraph. Next, each graph transaction in GTD is
transformed into the corresponding flat transaction, which
consists of the corresponding SIDs. We also propose an
approach to extract SCPs from the flat transactional dataset.
The problem is similar to that of coverage pattern extraction
[36] from flat transactional databases subject to coverage and
overlap constraints. Incidentally, overlap follows the sorted

closure property [28], which we shall use in this work for
facilitating effective pruning. Hence, we extend the exist-
ing pattern extraction approach [36], which employs pruning
strategybasedonoverlap, for the efficient extraction ofSCPs.
Observe that by forming a set of flat transactions, complex
computationally intensive graph operations associated by
coverage and overlap are replaced with the corresponding
simpler and relatively fast set-based operations.

The key contributions of this work are three-fold:

1. We introduce the notion of subgraph coverage patterns
(SCPs) for GTD.

2. We propose the SIFT framework for efficiently extracting
SCPs from a given GTD.

3. We conduct an extensive performance study using three
real datasets to demonstrate that it is indeed feasible to
efficiently extract SCPs using our proposed SIFT frame-
work. We also demonstrate the effectiveness of SIFT
through a case study in computer-aided drug design.

To the best of our knowledge, this is the first work to
consider the extraction of subgraph coverage patterns from
graph transactional data. The remainder of this paper is
organized as follows. Section 2 reviews related works and
background information. Section 3 discusses the proposed
framework of the problem. Section 4 presents our proposed
SIFT framework. Section 5 reports our performance evalua-
tion. Section 6 presents our case study. Finally, we conclude
in Sect. 7.

2 Related work and background

This section discusses related works and background.

2.1 Related work

Research efforts, such as the gindex approach [44], have
designed indexes for extracting subgraphs by considering
line, cycle and star as basic graph query structures.Moreover,
the GString semantic-based approach [24] indexes chemical
compounds databases.

Graphmining techniques have also been applied inGTDs.
The work in [22] used an apriori-based algorithm for dis-
covering frequent subgraphs in GTDs. Moreover, the work
in [25] discussed the frequent subgraph mining algorithm,
which incorporates canonical labelling in conjunction with
sparse graph representation to reduce both time and space
complexity. The work in [42] proposed the gSpan algorithm
for discovering frequent subgraphs without candidate gener-
ation. In particular, gSpan uses a lexicographic ordering for
mapping each graph to a unique minimum depth-first-search
code as its canonical label. A good survey on frequent sub-

123

International Journal of Data Science and Analytics (2022) 13:105–121 107

graph mining techniques for GTDs can be found in [23]. An
algorithm to extract the top-k frequent subgraphs has been
proposed in [17].

The work in [26] proposed REAFUM, an approximate
subgraphmining framework that constructs a list of represen-
tative graphs. It extracts frequent representative subgraphs,
allows approximatematches and extracts consensus patterns.
Another work in [48] proposed HOS-PLOC, a local cluster-
ing framework that extracts a small high-order conductance
cluster, which largely preserves the user-specified network
structures.

The work in [9] proposed an algorithm to mine molecular
fragments based on association rulemining. Thesemolecular
fragments help in discriminating drug classes. Researchers
have made efforts to model protein–ligand complex (PLC)
as graph structures and extracted frequently occurring sub-
graph patterns. The works in [34,35] proposed GReMLIN
(graph mining strategy to infer protein–ligand interaction
patterns), which is a methodology to search for conserved
protein–ligand interactions in a group of related proteins-
ligand complexes. They use frequent subgraph mining to
recognize structural patterns relevant to protein–ligand inter-
action. The work in [29] modeled PLC as a bipartite graph
and used graph topological properties like degree, close-
ness, communicability, eccentricity, node betweenness and
edge betweenness to summarize and extract frequent pat-
terns. The work in [40] proposed FERRARI, which is a
visual exploratory subgraph search framework. In particu-
lar, it employs two index structures VACCINE and ADVISE
for indexing frequent and infrequent subgraphs to improve
efficiency and scalability.

The notion of coverage has been well explored in set the-
ory in the form of the set cover problem [12] and the hitting
set problem [15]. In graph theory, the notion of coverage has
been explored in the form of theminimum vertex cover prob-
lem [11,39], hitting set problem in hypergraph, traversals of
a hypergraph [20], clique cover problem [19] and influence
maximization problem [27,47]. The notion of coverage has
been used in hypergraphs in the form of the minimum hitting
set problem [7], which involves the extraction of the set of
vertices that have a non-empty intersection with every hyper-
edge. Thework in [31] states that a set of k-mers is a universal
hitting set if every possible L-long sequence contains a k-mer
from a given DNA/RNA sequence dataset.

Clique cover is another important problem with applica-
tions in compiler optimization, computational geometry and
applied statistics [19]. Information coverage maximization
in social networks [27,47] also uses coverage. An approach
was proposed in [46] to select a set of influential users. More
recently, the work in [41] proposed TOPKLS, a local search
algorithm for finding diversified top-k cliques from a given
graph. The notion of coverage has been well explored to
solve the maximum coverage problem in facility location

[6]. However, these works explore the notion of coverage for
a single graph as opposed to a GTD, which is our focus.
Moreover, the works in [18,36] find coverage patterns in
transactional data using pattern-growth and level-wise prun-
ing approaches, respectively.

Notably, all of the existing works have addressed the issue
of GTDs for graph search and mining of frequent subgraphs
related knowledge with applications in chemical and biolog-
ical areas. The issue of extracting the knowledge related to
coverage from GTD has not been addressed. In contrast with
the existing works [29,40,42], in this paper, we have made
an effort to propose an approach to extract coverage-related
knowledge from GTDs.

2.2 Background information

We shall now discuss the model of subgraph discovery from
graph transactions and coverage patterns.

2.2.1 Model of subgraph discovery

In the literature, several efforts [4,8] are being made to dis-
cover the knowledge of subgraphs from the given set of
graph transactions. In particular, in the area of bioinformat-
ics, research efforts [22,42] have been made by modeling
chemical compounds as graph transactions. By considering a
given chemical compound as a single unit, the corresponding
graph transaction represents chemical elements as vertices
and chemical bonds among them as edges. We first present
the notion of graph transactions and briefly explain the sub-
graph discovery approach, which was presented in [42].

A graph transaction G = (V ,E ,L ,l) is a labeled, con-
nected, simple and undirected graph, where V is a set of
vertices, E ⊆ V 2 is a set of edges, L is a set of labels and
l : V ∪ E −→ L , where l is a function for assigning labels
to vertices and edges. A graph transactional dataset (GTD)
D comprises n such graph transactions, where the value of
n is typically large. Notably, a vertex/edge may belong to
multiple graph transactions in D. A portion S of a graph
transaction G is called a subgraph of G. Given G = (V , E)
and S = (Vs , Es), we say that S is a subgraph of G or S
exists in G (denoted as S ⊆ G), iff Vs ⊆ V , Es ⊆ E , ∀(u,
v) ∈ Es −→ u, v ∈ Vs .

Example 1 Consider a sample chemical compound shown in
Fig. 1a and its equivalent graph transaction G=(V ,E ,L ,l)
depicted in Fig. 1b. Here, V={v1, v2, . . . ,v13}, E={(v1,v3),
(v2,v3), . . . , (v9,v13)} and L= {C ,F ,H ,N ,O ,1,2,3}. A
mapping function l maps the vertices v1,v2,v3,. . . ,v13 to
H ,N ,N ,. . . ,F and the edges (v1,v3), (v2,v3), . . . , (v9,v13)
to 1, 3,. . . ,1, respectively.

Given a GTD, a subgraph is a potential subgraph if it
is present in certain percentage of graphs in GTD. We can

123

108 International Journal of Data Science and Analytics (2022) 13:105–121

N

N

C

N

C
O

H

F

C

H
C

H

N

N

N

C

N

C
O

H

F

C

H
C

H

N

V1 V2

V3

V4

V5

V10

V6

V11

V7

V8

V9
V13

V12

1

2

1

2

2

1

1

1

2

1 1

3
1

(a) (b)

Fig. 1 a Sample chemical compound, b equivalent graph model

employ a subgraph discovery algorithm (e.g., gSpan [42])
for extracting candidate subgraphs from D. The gSpan algo-
rithm employs a depth-first search (DFS) strategy to extract
all subgraphs without candidate generation. It uses a pattern-
growth approach to build a hierarchical search tree called the
DFS Code Tree. In the DFS Code Tree, every node repre-
sents a subgraph/graph, and any subgraph/graph in GTD can
find its node in the DFS Code Tree. Each node in the tree
is assigned with a lexicographical canonical label called the
DFS code and one subgraph can have multiple DFS codes.
The first DFS code in pre-order traversal over the DFS Code
Tree is called the minimum DFS code and is assigned as the
canonical label to the subgraph.Moreover,gSpan also prunes
all the nodes that contain non-minimum DFS code, thereby
reducing the size of the DFS Code Tree. A depth-first search
over the DFS Code Tree extracts all minimum DFS codes
of all candidate subgraphs in D. The performance of gSpan
improves drastically due to the merging of isomorphism test
and subgraph growth into one procedure.

2.2.2 Model of coverage patterns

We shall now explain the concept of coverage patterns
[18,36]. Coverage patterns are characterized by the notions of
relative frequency, coverage support and overlap ratio. Given
a transactional database D, each transaction is a subset of a set
I of m items {i1,i2,i3,. . ., im}. T ik denotes the set of transac-
tions in which item ik is present. The fraction of transactions
containing a given item ik is designated asRelativeFrequency

of ik (RF(ik)). Hence, RF(ik)=
|T ik |
|D| . A given item is consid-

ered as frequent if its relative frequency is greater than that of
a threshold value, which we designate asminRF. A pattern P
is a subset of items in I, i.e., P⊆I where P={i p, iq , . . ., ir},
where 1 ≤ p, q, r ≤ m. The Coverage Set (CSet(P)) of a pat-
tern P is the set of all the transactions that contain at least one
item from the pattern P, i.e., CSet(P)=T ip ∪ T iq ∪ . . . ∪ T ir .
The Coverage Support of a pattern P (CS(P)) is the ratio of

the size of CSet(P) to the size of D, i.e., CS(P)= |CSet(P)|
|D| . In

order to add a new item to the pattern P such that the cov-
erage support increases significantly, the notion of overlap
ratio is introduced. (This is possible in the case when the
number of transactions, which are common to the new item
and the pattern P, is low.) Given a pattern P, the notion of
overlap ratio of P satisfies the sorted closure property [28],
when the items in P are sorted in decreasing order of their
relative frequencies, i.e., 1 ≤ RF(i p) ≤ RF(iq) ≤ . . . ≤
RF(ir). The Overlap Ratio of a pattern P (OR(P)) is the
ratio of the number of transactions that are common between
CSet(P−ir) and T ir to the number of transactions in T ir , i.e.,

OR(P)= |CSet(P−ir)∩(T ir)|
|T ir | . A high value of coverage support

indicates more number of transactions and a low value of
overlap ratio means less repetitions among the transactions.
A pattern is interesting if its coverage support is greater than
or equal to the user-specified minimum Coverage Support
threshold value (minCS) and its overlap ratio is less than or
equal to the user-specified maximum Overlap Ratio thresh-
old value (maxOR). Given the values of minRF, minCS and
maxOR, a pattern P={i p, iq , . . ., ir} is considered as a cov-
erage pattern if RF(ik) ≥ minRF ∀ ik ∈ P , CS(P) ≥ minCS
andOR(P) ≤ maxOR. By exploiting the sorted closure prop-
erty of overlap ratio, a level-wise apriori-based approach has
been proposed in [36] and a pattern-growth-based approach
has been proposed in [18] for extracting all coverage patterns
from D, given minRF, minCS and maxOR values. Addi-
tionally, a MapReduce-based algorithm to extract coverage
patterns has been proposed in [32].

To extract the knowledge of coverage patterns, the follow-
ing heuristics can be followed for setting minRF, minCS and
maxOR values. Normally, the coverage patterns with maxi-
mum coverage (100%) and minimum overlap ratio (0%) are
interesting. Moreover, the coverage patterns having items
with less relative frequency are not interesting. So, minRF
threshold value can be set based on the characteristics of the
application. In the beginning, as a heuristic, coverage pat-
terns can be extracted by setting maxOR at 0 and minCS at 1
andminRF can be set to 50% ofminCS value. Then, based on
the requirement of the number of coverage patterns, maxOR
can be increased gradually, while minCS and minRF can be
decreased gradually.

3 Proposed framework of the problem

Consider a graph transactional dataset (GTD) D, a minimum
relative frequency threshold minRFg , a minimum coverage
support thresholdminCSg and amaximumoverlap threshold
maxOg . Our proposed SIFT framework returns the set of all
subgraph coverage patterns (SCPs) subject to the minRFg ,
minCSg and maxOg constraints. Note that we employ the

123

International Journal of Data Science and Analytics (2022) 13:105–121 109

Table 1 Summary of notations

Notation Description

Gi Graph transaction

D Graph transactions dataset (GTD)

� Universe of subgraphs

SP Subgraph pattern

Oh Subgraph identifier (SID)

fi Flat transaction

D f Flat transactional dataset

X Set of SIDs or pattern

SCPs Subgraph coverage patterns

notationsminRFg ,minCSg andmaxOg , (i.e., we add a sub-
script g to minRF, minCS and maxO), to represent minimum
relative frequency, minimum coverage support and maxi-
mum overlap thresholds concerning a graph transactional
dataset. Now we shall explain the relevant terminology to
present the framework of the problem. Table 1 depicts the
summary of notations used in this paper.

3.1 Subgraph pattern, cover and cover set

Recall the notions of graph transaction, graph transactional
dataset and subgraph from the discussions in Sect. 2.2. Given
a GTD D and the set � of all possible subgraphs over D, a
subgraph pattern (SP) is a set of subgraphs belonging to �.
Consider a graph transaction Gi ∈ D. A subgraph S j is said
to cover Gi if S j exists in Gi . We define cover(S j ,Gi) as
follows:

cover(S j ,Gi) =
{
1 i f S j ⊆ Gi

0 otherwise
(1)

Computation of cover(S j ,Gi) involves solving the sub-
graph isomorphism problem [25], which is NP-complete
[16]. The gSpan algorithm [42] uses a canonical labeling
systemcalledDFS lexicographical order, which assignsmin-
imum DFS code to each graph as the canonical label. We
compute cover(S j ,Gi) based on DFS codes. The Cover
Set of S j (CSetg(S j , D)) is defined as the set of all graph
transactions covered by S j . Formally, CSetg(S j , D) =
{Gi |cover(S j ,Gi) = 1 & Gi ∈ D}. The Cover Set of SP
(CSetg(SP, D)) is a set of all graph transactions, which are
covered by at least one subgraph of SP . It is equal to the
union of all graph transactions covered by all the subgraphs
in SP . Hence, CSetg(SP, D) = ⋃

∀S j∈SP CSetg(S j , D).

3.2 Relative frequency RFg of a subgraph

Given D and S j , we denote the percentage of graph trans-
actions in D covered by S j as relative frequency RFg of S j .
We compute RFg(S j , D) as follows:

RFg(S j , D) = |CSet(S j , D)|
|D| (2)

Here, 0 ≤ RFg(S j ,D) ≤ 1. We can extract subgraphs of
interest from D based on user-specified minimum relative
frequency (minRFg) threshold.

Example 2 Consider a sample graph transactional dataset D
comprising of 10 graph transactions G1 to G10, shown in
Fig. 2a. Three subgraphs S1, S2 and S3 are shown in Fig. 2b.
Here, S1 is a subgraph of G1, G6 and G10; S2 is a subgraph
of G5, G7 and G8; and S3 is a subgraph of G4 and G7.
The subgraph S1 is said to cover G1 since S1 ⊆ G1. Hence,
cover(S1,G1)=1. Moreover, CSet(S1, D) = {G1,G6,G10}
and RFg(S1, D) = |CSet(S1,D)|

D = 3
10 = 0.3. Similarly, RF

values of S2 and S3 are 0.3 and 0.2, respectively.

3.3 Coverage support

Given D and a subgraph pattern SP , the coverage support
of SP (CSg(SP, D)) is the percentage of graph transactions
in D covered by at least one subgraph in SP . We compute
CSg(SP, D) as follows:

CSg(SP, D) = |CSet(SP, D)|
|D| (3)

Here, 0 ≤ CSg(SP, D) ≤ 1. Notably, CSg(SP, D) = 1
when all of the graph transactions in D are covered by SP .
Conversely, CSg(SP, D) = 0 when none of the graph trans-
actions are covered by SP . A pattern SP is interesting w.r.t
coverage perspective if CSg(SP, D) ≥ minCSg , where
minCSg is a user-definedminimum coverage support thresh-
old for graph transactions.

3.4 Overlap

A pattern SP , which satisfies a given minCSg constraint,
may not be interesting if there is significant overlap among
the sets of transactions covered by subgraphs of SP . In sev-
eral applications, an SP with maximum coverage support
and minimum overlap could be interesting. We now explain
the notion of overlapg for capturing the overlap associated
with graph transactions.

In the literature, the concept of overlap between sets is
most often described using Euler diagrams [5]. Consider two
sets A and B in a universe of objects. The overlap of A and
B is computed by A∩B

A∪B . This equation does not consider the

123

110 International Journal of Data Science and Analytics (2022) 13:105–121

c af

b

a b

cf

c c

a

b

d b

g

11

1 3

2

1

2

1

1

23

3 2

1 1

3

2

1

314 1

2
12

1

1

1

3

1
1

1

1 2

1
e

2 1

a

a c

c

c

cac

g

g

b

d

d e

b

c

G1 G2 G3 G4 G5

G6 G7 G8 G9 G10

b

b

f d

2
1

1

c

c

e
RF=0.3

RF=0.2

(a) (b)

S1

S3

b
1 1

1

2
c

c a

e

c
1 2

1

3

c

b

g d3S2

b
1 1

2
c

c a

Fig. 2 a Sample of 10 graph transactions, b candidate subgraphs with minRFg = 0.2

number of times an object is appearing in either A or B. As
a result, it is not possible to attach a physical meaning unless
we know the nature of repetition of objects in A and B. In this
paper, we present the notion of overlap by considering the
average number of times an object can appear in the given
multi-set (contains duplicate elements). Let M(SP, D) be
the multi-set, which contains all transactions (with duplicate
entries) covered by each subgraph in SP .We define the value
of overlapg as the average number of times a transaction is
repeated in M(SP, D). We define overlapg as follows:

overlapg(SP, D) =
(|M(SP, D)|

|CSet(SP, D)| − 1

)
· 100 (4)

Observe that the value of overlapg can exceed 100% as the
size of |M(SP, D)| could be unbounded. In this paper, we
restrict the size of |M(SP, D)| by considering that a transac-
tion can only appear twice in |M(SP, D)|. Hence, the notion
of overlapg denotes the average number of times a subgraph
appears at most twice in D. Here, overlapg=1 if every trans-
action appears twice in M(SP, D), i.e., the maximum value
of |M(SP, D)|=2·|CSet(SP, D)|. Conversely, overlapg=0
if every transaction appears only once in M(SP, D), i.e.,
the minimum value of |M(SP, D)|=|CSet(SP, D)|. Hence,
0 ≤ overlapg(SP, D) ≤ 1. A pattern SP is interesting
if overlapg(SP, D) ≤ maxOg , where maxOg is a user-
defined maximum Overlap threshold for graph transactions.

In essence, there can be different ways of computing
overlap based on the application requirement. In case of
applications, in which a transaction appears more than
twice, say k times, in |M(SP, D)|, Equation 4 is modi-

fied as overlapg(SP, D) = 1
k−1

(|M(SP,D)|
|CSet(SP,D)| − 1

)
· 100,

where the maximum value of |M(SP, D)| equals k ·
|CSet(SP, D)|.

3.5 Subgraph coverage pattern

We consider an SP as interesting if the cover set of all sub-
graphs of SP satisfies the minRFg threshold, overlap of SP
satisfies the maxOg threshold and coverage support of SP
satisfies the minCSg threshold. We designate such SPs as
subgraph coverage patterns (SCPs). The definition of SCP is
given below.

Definition 1 (Subgraph coverage pattern (SCP)) Consider
D and a pattern SP . We call SP as a subgraph coverage
pattern ifCSg(SP, D) ≥ minCSg and overlapg(SP, D) ≤
maxOg , ∀S j ∈ SP , RFg(S j ,D) ≥ minRFg .

Example 3 In Fig. 2b, let SP be the set {S1, S2, S3}. The RF
values of S1, S2 and S3 are 0.3, 0.3, and 0.2, respectively. The
coverage set of SP , CSet(SP ,D)= {(G1,G4,G5,G6,G7,G8,
G10}.The coverage support of SP ,CSg(SP, D)= |CSet(SP,D)|

|D|
= 7

10 = 0.7. The multi-set of transactions covered by pat-
tern SP ,M(SP, D)= {(G1,G6,G10),(G5,G7,G8),(G4,G7)}.
Therefore, the overlap among transactions covered by sub-
graphs of SP , overlapg(SP, D) = (|M(SP,D)|

|CSet(SP,D)| −1)=(87 −
1) = 0.142. Given the values ofminRFg = 0.2,minCSg = 0.7
and maxOg=0.5, the pattern SP = {S1, S2, S3} is an SCP.

3.6 Problem statement

Given a graph transactional dataset D, and the values of
user-defined constraint parameters minRFg , minCSg and
maxOg , the problem is to extract all subgraph coverage pat-
terns satisfying these user-defined constraints.

It can be noted that the objective is to extract SCPs
with high coverage value for a given application scenario.
Normally, the SCPs having subgraphs with low relative fre-
quency value are not interesting. So, there will be significant
number of SCPs, which cover small portion of GTD. As
minCS threshold increases, the number of SCPs will reduce.
Similarly, as minRF increases, the number of SCPs will

123

International Journal of Data Science and Analytics (2022) 13:105–121 111

reduce. Regarding overlap, we consider that the SCPs with
minimum overlap will be interesting. Therefore, in a dense
data set scenario, a smaller number of SCPs will be returned
for lower value of overlap. As overlap threshold increases,
the number of SCPs explodes.

4 Proposed SIFT framework

This section discusses our proposed SIFT framework.

4.1 Basic idea

Given a GTD D and the threshold values of minRFg ,
minCSg and maxOg as input, the goal is to extract all the
SCPs from D.

A brute-force approach would be to extract all of the
possible subgraphs of D based on minRFg , and then deter-
mine CSg and overlapg for each combination of subgraphs
by computing the corresponding CSetg values of the given
pattern. Each combination of subgraphs of D could be a
candidate SCP. The number of candidate SCPs formed by
the subgraphs of even a small number of graph transactions
would essentially explode, thereby making the extraction of
SCPs extremely challenging and difficult to scale.

The basic idea is as follows. We convert the given graph
transactions into the corresponding flat transactions. For this
purpose, we extract all subgraphs from GTD and assign
unique Subgraph IDentifiers (SID) to each subgraph. Next,
we convert each graph transaction into flat transaction by
including the corresponding SID. Next, we propose an effi-
cient methodology to extract SCPs from flat transactional
dataset. We shall henceforth refer to this framework as sub-
graph ID-based flat transactional (SIFT) framework.

We can intuitively understand that SIFT provides oppor-
tunities for efficient determination of candidate sets. Further,
it provides efficient way to compute coverage and overlap
for each candidate set. This is because by considering each
graph transaction as a set of SIDs, the coverage and over-
lap of a given subgraph pattern can be calculated through a
set-based operation. Thus, we are essentially replacing com-
plex and computationally expensive graph-based operations
by set-based operations, which are typically faster by several
orders of magnitude. Hence, the problem of extracting SCPs
becomes the problem of extracting combinations of SIDs
from the set of flat transactions. Thus, we propose a pattern
mining-based extraction method by exploiting an overlap-
related pruning heuristic, which we shall discuss now.

Incidentally, CSg and overlapg threshold constraints do
not satisfy the downward closure property [21]. However,
we can exploit the overlap ratio measure proposed in [36] for
extracting coverage patterns from a flat transactional dataset.
The overlap ratio constraint satisfies sorted closure prop-

 Extracting subgraphs from D

D minRF

Df

Extraction of SCPs

minCS maxOR

SCPs

Formation of SID-based flat transactions

Fig. 3 Details of the SIFT framework

erty [28]. Consider a candidate pattern SP ={Sp,Sq ,. . . ,Sr},
where the subgraphs in SP are sorted in descending order of
their relative frequencies. When overlap ratio of SP fails to
satisfy the maximum overlap ratio threshold, any superset of
SP cannot possibly satisfy the maximum overlap threshold.
Hence, we can avoid generating supersets of SP . We use
this heuristic in our proposed approach for effective pruning
of candidate patterns. The steps to extract SCPs from flat
transaction are as follows. First, we sort all of the candidate
subgraphs in descending order of their relative frequencies.
Then, starting from individual candidate subgraph as SP , we
continue to generate candidate SP of progressively larger
sizes, while using the pruning heuristic based on sorted clo-
sure property of overlap ratio to efficiently prune candidate
SP .

4.2 Details of the SIFT framework

Given D,minRFg ,minCSg andmaxOg , our proposed SIFT
framework extracts SCPs from D. Figure 3 depicts the details
of the SIFT framework. SIFT framework consists of the fol-
lowing steps (Algorithm 1):

(i) Extracting subgraphs from D
(ii) Formation of SID-based flat transactions and
(iii) Extraction of SCPs

We shall now explain these steps.

4.2.1 Extracting subgraphs from D

Based on theminRFg threshold, a subgraph discovery algo-
rithm gSpan [42] is used to extract all the subgraphs from D
subject tominRFg constraint (refer Sect. 2.2 for gSpan algo-
rithm). We construct the set SG of subgraphs using gSpan
algorithm, where each subgraph S j is of the form <Clabel,
CSet>, where Clabel represents canonical label of S j and
CSet consists of all GIDs of graph transactions that contains
subgraph S j .

123

112 International Journal of Data Science and Analytics (2022) 13:105–121

Algorithm 1 : SIFT(D, minRFg , minCSg , maxORg)
Inputs: D: Graph transactional dataset;
minRFg : Minimum relative frequency threshold;
minCSg : Minimum coverage support threshold;
maxORg : Maximum overlap ratio threshold
Output: SCPs: Set of SCPs
Variables: D f : Set of flat transactions; S j :<Clabel, CSet> A
subgraph, where Clabel refers to canonical label of subgraph and CSet
is a set of graph identifiers that contain S j ; SG: Set of subgraphs

1: SG ← Extract all subgraphs from D using gSpan algorithm that
satisfy minRFg

2: D f = Compute_Flat_Transactions(SG)
3: SCPs = Compute_SCPs(D f , minCSg , maxORg)

4.2.2 Formation of SID-based flat transactions

The input to this step is a set of subgraphs SG of the form
<Clabel, CSet>. In this step, we form the flat transaction
for each graph transaction in D. The flat transaction con-
tains the SIDs corresponding to GID. The details are given
in Algorithm 2. In Algorithm 2, we maintain two hashmaps
SubList: <SID, Clabel> and D f :< fi , S(SID)>, where fi
represents i th flat transaction identifier and S(SID) represents
set of SI Ds corresponding to the i th graph transaction. For
every subgraph S j in SG, we check if the canonical label of
S j exists in SubList.Clabel. If it does not exist, we assign a
new SID to S j and insert SID, Clabel into SubList. Other-
wise, we assign the SID to S j corresponding to Clabel of S j

in SubList.Clabel (see Lines 2-9). In both the cases, for each
subgraph S j and for each GID in CSet of S j , we insert SID
of S j into set S(SI D) of flat transaction identifier fi corre-
sponding to GID (see Lines 9–10). The set < fi , S(SI D) >

forms the SID-based flat transactional dataset D f (see Line
14)).

Themapping of subgraphs in graph transactionGi to SIDs
in flat transaction fi is a bijective function F represented as
follows:

∀S j ∈ Gi ,∀Oh ∈ fi ,F : S j −→ Oh

where Oh is an SID of S j . When Gi has no subgraphs,
fi={φ}. Note that there are no duplicate SIDs in any flat
transaction. The elements in each flat transaction are noth-
ing but SID of subgraphs extracted from D subjective to the
minRFg constraint. The constructed flat transactions do not
represent all the features of original graph transaction, but
represent only the subgraphs which satisfy minRFg con-
straint.

Let�SI D= {O1, O2, . . . , Om} be the set ofm distinct SIDs
in D f . Let D f ={ f1, f2, f3, . . ., fn}, ∀ fi ∈ D f , fi ⊆ �SI D ,
the set D f forms the flat transactional dataset, where fi is
corresponding flat transaction of Gi , ∀i = 1 to n.

Algorithm 2 : Compute_Flat_Transactions(SG)
Input: SG: Set of subgraphs
Output: D f : < fi , S(SI D) > A flat transactional dataset, where fi
represents i th flat transaction identifier and S(SID) represents set of
SIDs corresponding to i th graph transaction
Variables: S j : <Clabel, CSet> a subgraph, where Clabel refers to
canonical label of subgraph and CSet is a set of graph identifiers
containing subgraph; SubList: <SID, Clabel> a hashmap, where SID
is a subgraph identifier and Clabel is a canonical label of subgraph; x,
count: Integers

1: count = 0, D f , SubList ← φ

2: for each subgraph s ∈ SG do
3: if s.Clabel not in SubList .Clabel then
4: Insert < count , s.Clabel > into SubList
5: x ← count
6: count + +
7: else
8: x ← SubList .SI D
9: end if
10: for each graph transaction i in s.CSet do
11: Insert x into the set D f .S(SID) of corresponding flat transac-

tion identifier fi in D f
12: end for
13: end for
14: return D f

4.2.3 Extraction of SCPs

After converting GTD into SID-based flat transactional
dataset, our objective is to extract SCPs subject to the con-
straints ofminRFg ,minCSg andmaxOg . In this section, we
explain the process to extract SCPs subject to the minCSg
and maxOg constraints.

Under a brute-force approach, we would need to compute
the values of CSg(SP, D) and overlapg for a prohibitively
large number of candidate patterns formed by all SIDs. This
is because the minCSg and maxOg constraints do not sat-
isfy the downward closure property [21]. However, we can
exploit the overlap ratiomeasure proposed in [18] for extract-
ing coverage patterns from a flat transactional dataset. The
overlap ratio measure satisfies the sorted closure property
[28]. As explained in Sect. 2.2, the coverage pattern mining
algorithmextracts coverage patterns subject to the constraints
of minimum relative frequency (minRF), minimum coverage
support (minCS) and maximum overlap ratio (maxOR).

Now, we explain the equivalence between the minRF,
minCS andmaxOR constraints for flat transactions (presented
in Sect. 2.2 as defined in [18]) and minRFg , minCSg and
maxOg constraints associatedwith SCPs (defined in Sect. 3).

Recall that for flat transactions, the notion of relative fre-
quency RF(ik) of an item ik is the percentage of transactions,
which contain ik . In case of GTD, RFg(S j , D) denotes the
percentage of graph transactions, which contain a subgraph
S j . Furthermore, for flat transactions, the notion of cover-
age support CS(X) of a pattern X is the percentage of the
union of transactions covered by each item of X . In case of

123

International Journal of Data Science and Analytics (2022) 13:105–121 113

GTD,CSg(SP, D) of a subgraph pattern SP denotes the per-
centage of the union of graph transactions covered by each
subgraph of SP .

Regarding the overlap aspect, we have defined overlapg
concept and maxOg constraint for GTD. First, we explain
the overlap ratio (OR) constraint, which has been defined to
extract coverage patterns for flat transactions [36]. Next, we
explain how to employ the OR constraint to extract SCPs
subject to the maxOg constraint.

Given a pattern X , and if the elements in X are sorted
in the descending order of their relative frequency values,
Overlap Ratio (OR(X)) of a pattern X , which satisfy the
sorted closure property. We shall explain the sorted closure
property after defining the overlap ratio of the pattern. The
notion of CSet of a pattern has been explained in Sect. 2.2.

Definition 2 (Overlap ratio of a pattern X) Let X =
{Op, Oq ,…, Or , Os} be a pattern such that RF(Op) ≥
RF(Oq) ≥ · · · ≥ RF(Or) ≥ RF(Os). (Here, the notations
Op, Oq , Or and Os represent SIDs.) The overlap ratio of a
pattern X is defined as the ratio of the number of transactions
common in CSet(X − {Os}) and CSet(Os) to CSet(Os). It
is defined as follows:

OR(X) = |CSet(X − {Os}) ∩ CSet(Os)|
|CSet(Os)|

For a pattern X , 0 ≤ OR(X) ≤ 1. A pattern X is interest-
ing if OR(X) ≤ maxOR, where maxOR is a user-defined
maximum Overlap Ratio threshold. A pattern X is said to be
non-overlap pattern if OR(X) ≤ maxOR and RF(Oh) ≥
minRF , ∀Oh ∈ X . Incidentally, it can be observed that the
maxOR constraint follows the sorted closure property, which
is explained below.

Definition 3 (Sorted closureproperty)Let the patternX={Op,

Oq , . . . , Or , Os}, 1 ≤ p ≤ q ≤ r ≤ s ≤ m such that the
items in X are sorted in the descending order of their rela-
tive frequency values, i.e., RF(Op) ≥ RF(Oq) ≥ · · · ≥
RF(Or) ≥ RF(Os). If OR(X) is less than or equal to
maxOR, i.e., OR(X) ≤ maxOR, all the non-empty sub-
sets of X containing Os will also have OR less than or equal
to maxOR.

Suppose, we extract the set S of coverage patterns
from a given GTD with OR(X) ≤ α. We can compute
overlapg(X) for all X ∈ S and extract coverage patterns
with overlapg(X) ≤ α. For a given pattern X , the relation-
ship between OR and overlapg is given in Theorem 1.

Theorem 1 Consider a coverage pattern X={O1, O2,. . .,
Op} with OR(X) ≤ α. Then, overlapg(X) ≤ α, when
p ≤ (1+α

α

)
.

Proof From the definition of overlapg in Sect. 3,

overlapg(X) =
(|M(X)|

|CSet(X)| − 1

)
(5)

As X is a coverage pattern, RF(O1) ≥ RF(O2) ≥ · · · ≥
RF(Op). We consider a worst case scenario and assume that
|CSet(O1)| = |CSet(O2)| = . . . = |CSet(Op| = t . So,
M(X) = p.t and CSet(X) = p.t − (p − 1)αt . Substituting
the values of M(X) and CSet(X) in Equation 5,

(
p.t

p.t − (p − 1)αt
− 1

)
= α(p − 1)

p − α(p − 1)
(6)

By equating the above equation to α and solving for p,

α(p − 1)

p − α(p − 1)
= α; �⇒ p = 1 + α

α

Thus, we conclude that for a pattern X , when OR(X) ≤ α,
overlapg(X) ≤ α if p ≤ (1+α

α

)
.
�

Algorithm 3 : Compute_SCPs(D f , minCS, maxOR)
Inputs: D f : Set of flat transactions;
minCS: Minimum coverage support;
maxOR: Maximum overlap ratio
Output: SCPs: Set of subgraph coverage patterns
Variables: NOl : Set of l-size non-overlap patterns; C1: Set of l-size
candidate patterns; X : Pattern; l: Integer

1: NO1 ← Set of frequent elements sorted in decreasing order of their
relative frequencies

2: l=2, SCPs ← φ

3: while NOl−1 not empty do
4: Cl ← NOl−1 �� NOl−1
5: for each pattern X ∈ Cl do
6: if OR(X , D f) ≤ maxOR then
7: NOl ← NOl ∪ X
8: if CS(X , D f) ≥ minCS then
9: SCPs ← SCPs ∪ X
10: end if
11: end if
12: end for
13: l + +
14: end while
15: return SCPs

Notably, we have employed two notions (overlapg and
overlap ratio) to capture the notion of overlap. The notion
of overlapg is intuitive from the user perspective, whereas
overlap ratio (and maxOR) was employed as a pruning mea-
sure for efficient extraction of SCPs. For extracting SCPs, we
can employ an existing coverage pattern algorithm such as
a level-wise pruning based approach [32,36] or a pattern-
growth approach [18], with the value of minCS equal to
minCSg and the value of maxOR equal to maxOg .

123

114 International Journal of Data Science and Analytics (2022) 13:105–121

For extracting SCPs from flat transactional dataset, we
employ coverage pattern mining algorithm proposed in [36].
Algorithm 3 depicts the coverage pattern mining algorithm.
The inputs are flat transactional dataset D f and user param-
eters minCS and maxOR values. Coverage pattern mining
algorithm exploits apriori like level-wise search approach to
find the l-size candidate patterns from (l-1)-size non-overlap
patterns (see Lines 3–4). A non-overlap pattern is a pattern
that satisfies maxOR constraint. It uses sorted closure prop-
erty to prune the search space and extracts all non-overlap
patterns, which become the candidates for the next iteration
(see Lines 5–7). The considered non-overlap patterns that
satisfy the minCS constraint are considered as the SCPs (see
Lines 8–9). This process is repeated until no new non-overlap
patterns are generated.

After extracting the set of SCPs, top-k SCPs can be listed
by considering a ranking criteria based on CSg or a combi-
nation of CSg and overlapg values of SCPs based on the
specific requirements of the application domain.

4.3 Time complexity

The time complexity of the proposed SIFT framework is
equals:

O(kmn + rm) + O(mq) +
m∑
l=1

l(|Cl−1| · |Cl−1|) (7)

where O(kmn + rm) is the complexity of subgraph extrac-
tion, O(mn) is the time complexity of flat transactions
modeling, and

∑m
l=1 l(|Cl−1| · |Cl−1|) is the time complex-

ity of SCPs computation. The explanation of each term in
Equation 7 is as follows:

First, in SIFT framework, we employ gSpan algorithm
to extract subgraphs from GTD. As mentioned in [2], the
complexity of gSpan algorithm to extract all subgraphs from
GTD is O(kmn + rm), where k is the maximum number
of subgraph isomorphism tests, m is the number of frequent
subgraphs, n is the number of graph transactions, and r is
the maximum number of duplicate codes of the frequent
subgraphs that grow from other minimum DFS codes. It
can be noted that extraction of all subgraphs from a given
graph transaction is anNP-complete problem [2]. To improve
performance, the gSpan algorithm employs the notion of
minimum DFS code and converting the subgraph extraction
problem into a pattern mining problem through string com-
parison. In practical scenarios, the value of m ≤ n, the value
of r is much less than n and the value of k is small for sparse
and diverse labels. Hence, the time complexity for subgraph
extraction depends on the value of m × n.

Second, the process to compute the flat transactional
dataset from the set of <canonical label of a subgraph,

set of the corresponding GIDs> produced in the preceding
step consists of two steps. First, we assign an SID to each
unique canonical label (Clabel) and compute an hashmap
< SI D,Clabel >. The search time for the existence of
Clabel in the hashmap take O(1). Second, after mapping the
Clabelwith unique SID, for each correspondingGID, wewill
insert SID into the corresponding flat transaction identifier.
The search time to insert is O(1). Consider that on average,
each SID belongs to q number of transactions. The time com-
plexity to compute the flat transactional dataset is bounded
by O(m × q). Notably, q � m. Therefore, the time com-
plexity to model flat transactions from graph transactions is
proportional to m.

Third, in SIFT framework, we employ an iterative level-
wise apriori based algorithm. The time complexity of an
iterative pruning algorithm is

∑m
l=1 l(|Cl−1| · |Cl−1|), where

|Cl−1| is the number of candidate patterns of size l (Refer
to Chapter 6 of [38]). In the proposed SIFT framework, the
number of candidate patterns generated depends on the value
of overlap ratio thresholdmaxOR. Normally, at lower values
of maxOR, less number of candidate patterns are produced
at each level.

Overall, the time complexity of proposed SIFT framework
depends on the graph transactional dataset size n, number of
subgraphs extractedm and number of candidate patterns gen-
erated. Note that the value ofm depends onminRF threshold
and the number of candidate patterns depends on maxOR
threshold. By choosing proper values of minRF and maxOR
threshold values, it is indeed capable of extracting subgraph
coverage patterns from graph transactional dataset.

5 Performance evaluation

Weconducted our experiments in theADAcluster [1] (at IIIT
Hyderabad), which consists of 42 Boston SYS-7048GR-TR
nodes equipped with dual Intel Xeon E5-2640 v4 processors,
providing 40 virtual cores per node. The aggregate theoret-
ical peak performance of ADA is 47.62 TFLOPS. We have
conducted experiments on 20 virtual machines. Each virtual
machine is allocated with 2 GB memory. We also reported
the experiments on the scalability aspect of our proposed
approach by varying the number of virtual machines from 5
to 40. We implemented our proposed schemes in Python 3.0.
The link to the code for the implementation is provided in
the footnote.1

We used three real datasets, namely Yeast 167 (Yeast anti-
cancer), P388 (Leukemia), from Pubchem [3,43] and Zinc
dataset consisting of drug-likemolecules [37]. TheYeast 167
and P388 datasets consist of chemical compounds, which
are modeled as graph transactions. In these datasets, each

1 https://github.com/srinivas2234/SCPs.

123

https://github.com/srinivas2234/SCPs

International Journal of Data Science and Analytics (2022) 13:105–121 115

Table 2 Summary of the real
datasets

Dataset #graph transactions Avg. density #vertex labels #edge labels Avg. size of graph

Yeast 79601 0.0537 75 3 40.7

P388 41472 0.052 73 3 41.8

Zinc 4672 0.73 15 10 1.8

Table 3 Parameters of the SIFT
framework performance
evaluation

Parameter Default Variations
P388, Yeast Zinc P388, Yeast Zinc

minRF 0.3 0.025 0.3-1 (step size=0.1) 0.025-1 (step size=0.05, 0.1)

maxOR 0.3 0.5 0-1 (step size=0.1) 0-1 (step size=0.1)

minCS 0.7 0.7 0.3-1 (step size=0.1) 0-1 (step size=0.1)

NM 20 20 5-40 (step size=5) NIL

chemical compound is modeled as graph, where chemical
elements are represented as vertices and chemical bonds
among them are represented as edges. We have reported our
case study by considering the Zinc dataset. The Zinc dataset
consists of drug-like molecules docked with 1WOF protein
to form a protein–ligand complex. Table 2 summarizes the
three datasets.

To the best of our knowledge, there exists no other
approach for extracting SCPs from a GTD. As the number of
subgraphs increases, the complexity of a naïve brute-force
approach for extracting SCPs increases exponentially as it
requires the determination of the coverage and overlap values
based on prohibitively expensive graph-based computations.
Hence, in the absence of any meaningful reference approach
for comparison, we define the objective of our performance
evaluation toward demonstrating the feasibility of the pro-
posed SIFT framework in extracting SCPs from a given
dataset.

We have conducted the experiments by implementing
three components of the SIFT framework as follows. First,we
employ the gSpan algorithm [42] for extracting all candidate
subgraphs from a givenGTD and assign SIDs to the extracted
subgraphs. Second,we employ the proposedSIFT framework
to form the transformed flat transactional dataset over the
extracted SIDs. Third, to extract SCPs from the transformed
flat transactions, we use theMapReduce-based coverage pat-
tern mining algorithm [32], which was proposed to extract
coverage patterns from flat transactions. Table 3 summarizes
the parameters of our performance study.

The performance metrics for extracting SCPs are (i) pro-
cessing time (TS) to extract subgraphs, assign SIDs and form
SID-based flat transactions, (ii) number of candidate sub-
graphs (NS), (iii) average number of SIDs (AVG) in the
SID-based flat transactions, (iv) processing time (TSCP) to
extract SCPs from flat transactions, (v) number of patterns
(NP) to be examined for extracting SCPs and (vi) number of
SCPs (NSCP). Here, TS represents the processing time con-

sumed to extract subgraphs by accessing the graph dataset
from the disk. TSCP is the processing time consumed for
extracting SCPs from the SID-based transactional dataset,
which resides on disk.

5.1 Effect of varyingminRF

The results in Fig. 4 depict the effect of varying minRF. The
results in Fig. 4a indicate the performance of TS , while the
results in Fig. 4b show the performance of NS as we vary
minRF for the P388 and Yeast datasets. The results in Fig. 4a
show that when the value of minRF is low, the value of TS is
high. As minRF is increased, the value of TS reduces expo-
nentially due to the pruning effect ofminRF. The value of TS
depends upon the number of subgraphs extracted from the
dataset. The results in Fig. 4b show that the number of SIDs
decreases with increase in the value of minRF. This occurs
due to decrease in the number of subgraphs that satisfy the
minRF constraint. The results in Fig. 4c depict the effect
of varying minRF on AVG. The results show that when the
value ofminRF is low, the value ofAVG is high, and asminRF
increases, the value of AVG is decreased. This is because at
lower value of minRF, there will be a large number of sub-
graphs, which satisfy the minRF constraint. As the value of
minRF increases, the number of subgraphs decreases because
less number of subgraphs satisfy the minRF constraint. The
value of AVG depends on the number of subgraphs that are
extracted. Therefore, at lower values of minRF, a transac-
tional dataset with large AVG is extracted.

The results in Figs. 4d, e and f show that the values of
TSCP , NP and NSCP decrease with the increase in the value
of minRF, respectively. The reason is that at lower value of
minRF, there will be large number of subgraphs satisfying
the minRF constraint. As minRF increases, the value of NP

decreases because less number of patterns satisfy the minRF
constraint. Consequently, the values of TSCP and NSCP also
decrease.

123

116 International Journal of Data Science and Analytics (2022) 13:105–121

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

140
T
S
×

10
2
(s
)

minRF

(a) TS

P388
Yeast

0 0.2 0.4 0.6 0.8 10

2,000

4,000

6,000

8,000

minRF

N
S

(b) NS

P388
Yeast

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1,000

1,200

1,400

minRF

A
V
G

(c) AV G

P388
Yeast

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

70

T
S
C
P
(×

10
2)

(s
)

minCS=0.7
maxOR=0.3

minRF

(d) TSCP

P388
Yeast

0 0.2 0.4 0.6 0.8 10

50

100

150

200

250

N
P
(×

10
3) minCS=0.7

maxOR=0.3

minRF

(e) NP

P388
Yeast

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

minCS=0.7
maxOR=0.3

minRF

N
S
C
P

(f) NSCP

P388
Yeast

Fig. 4 Effect of varying minRF

0 0.2 0.4 0.6 0.8 10

5

10

15

20

T
S
C
P
(×

10
3)
(s
)

minRF=0.3
minCS=0.7

maxOR

(a) TSCP

P388
Yeast

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

N
P
(×

10
4) minRF=0.3

minCS=0.7

maxOR

(b) NP

P388
Yeast

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

N
S
C
P
(×

10
4) minRF=0.3

minCS=0.7

maxOR

(c) NSCP

P388
Yeast

Fig. 5 Effect of varying maxOR

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

50

100

150

200

250

300

T
S
C
P
(×

10
2)
(s
)

minRF=0.3
maxOR=0.3

minCS

(a) TSCP

P388
Yeast

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

N
P
(×

10
4)

minRF=0.3, maxOR=0.3

minCS

(b) NP

P388
Yeast

0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1,000

2,000

3,000

4,000

5,000

minRF=0.3
maxOR=0.3

minCS

N
S
C
P

(c) NSCP

P388
Yeast

Fig. 6 Effect of varying minCS

123

International Journal of Data Science and Analytics (2022) 13:105–121 117

0 0.2 0.4 0.6 0.8 10

200

400

600

800

1,000

minCS=0.7
maxOR=0.5

minRF

N
S
C
P

(a) minRF vs NSCP

Zinc

0 0.2 0.4 0.6 0.8 10

2

4

6

8

N
S
C
P
(×

10
2)

minRF=0.025
maxOR=0.5

minCS

(b) minCS vs NSCP

Zinc

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

N
S
C
P
(×

10
3)

minRF=0.025
minCS=0.7

maxOR

(c) maxOR vs NSCP

Zinc

Fig. 7 Effect of varying minRF, minCS and maxOR on Zinc dataset

0.4 0.6 0.8 1 0
0.1

0.2
0.3

0.4
0

10

20

N
S
C
P
(×

10
3)

P388 dataset
minRF=0.3

minCS m
ax
OR

(a) minCS vs maxOR vs NSCP

0.4 0.6 0.8 1 0.3
0.4

0.5
0.6

0.7
0

20

40

60

N
S
C
P
(×

10
2)

P388 dataset
maxOR=0.3

minCS m
in
RF

(b) minCS vs minRF vs NSCP

0.4 0.6 0.8 1 0
0.1

0.2
0.3

0.4
0

20

40

60

P388 dataset
minCS=0.7

minRF m
ax
OR

N
S
C
P

(c) minRF vs maxOR vs NSCP

Fig. 8 Effect of varying (a) minCS and maxOR b minCS and minRF and c minRF and maxOR

It can be observed that we have reported results starting
from minRF=0.1 as we could not experiment with minRF
less than 0.1 due to explosion in the number of patterns.

5.2 Effect of varyingmaxOR

The results in Fig. 5 depict the effect of varying the value of
maxOR. The results in Figs. 5a, b and c show that TSCP , NP

and NSCP increase with the increase inmaxOR, respectively.
The reason is that at lower value of maxOR, there will be
less number of patterns, which satisfy themaxOR constraint,
thereby resulting in less value of TSCP and NSCP . AsmaxOR
increases, the value of NP increases because more patterns
satisfy the maxOR constraint, which increases the value of
TSCP and NSCP . It can be observed that even at maxOR=0,
there are 48 SCPs in Yeast and 13 SCPs in P388. At higher
values of maxOR, more number of SCPs can be extracted.

5.3 Effect of varyingminCS

The results in Fig. 6 depict the effect of varying the value of
minCS. The results in Fig. 6a and b indicate that the values of
TSCP and NP remain comparable for all the values ofminCS
for both datasets. The reason is as follows. When the values

of minRF and maxOR are fixed, the same number of candi-
date patterns is examined to extract the SCPs. Therefore, as
expected, irrespective of variations in the value of minCS,
both the values of TSCP and NP remain comparable.

The results in Fig. 6c indicate that the value of NSCP

decreases with increase in the value ofminCS. Notably, in the
proposed approach, after satisfying the maxOR constraint,
we prune a candidate pattern if it does not satisfy the minCS
constraint. At higher values of minCS, a candidate pattern
will be pruned even though it satisfies themaxOR constraint.
As a result, the value of NSCP reduces as we increase the
value of minCS.

The results in Figs. 7a–c depict the effect of varying the
values of minRF, minCS and maxOR, respectively, for Zinc
dataset. The results depict trends similar to P388 and Yeast
datasets. The value of NSCP is small due to the small size of
Zinc dataset.

5.4 Performance results with 3D plots

The results in Fig. 8a depict the effect of varying the val-
ues of minCS and maxOR. The result shows that when the
values of minCS and maxOR are low, the value of NSCP is
small due to candidate pruning based on maxOR constraint.

123

118 International Journal of Data Science and Analytics (2022) 13:105–121

When the values of minCS are high and maxOR is low, the
value of NSCP decreases further because very few patterns
satisfy high value of minCS and low value of maxOR. When
the value of minCS is low and maxOR is high, the value of
NSCP is high because more number of patterns satisfy low
value of minCS and high value of maxOR. However, when
the values ofminCS andmaxOR are high, the value of NSCP

will decrease because there are few patterns that may satisfy
the high value of minCS.

The results in Fig. 8b depict the effect of varying the values
of minCS and minRF. The result shows that at low values of
minCS andminRF, the value of NSCP is high. This is because,
large number of candidate patterns will be generated at lower
values of minRF and most of them satisfy the low value of
minCS constraint. When minCS is high and minRF is low,
the value of NSCP low because, less number of candidate
patterns satisfy the high value of minCS threshold. At low
values ofminCS and high values ofminRF, the value of NSCP

is low, due to small number of candidate pattern generation.
Further, when the values of minRF and minCS are high, the
value of NSCP decreases further.

The results in Fig. 8c depict the effect of varying the values
of maxOR and minRF. The results show that NSCP does not
vary much at lower values of minRF and maxOR. When we
increase the value of minRF, the value of NSCP decreases
due to decrease in number of candidate pattern. When the
values of minRF and maxOR are high, the value of NSCP

is less, due to less number of candidate patterns. However,
when the values of minRF and maxOR are high, the number
of SCPs explodes due to large number of candidate pattern
generation.

5.5 Effect of varying NM

Figure 9 depicts the effect of varying the number NM of
machines. Observe that the value of TSCP decreases with
increase in the value of NM . This is due to increase in the
parallel extraction of SCPs. However, the change in the value
of TSCP decreases with increase in NM and exhibits a satura-
tion effect when more than 30 machines are used. This is due
to communication overhead. The results show that the value
of TSCP can be reduced by employing additional resources.

Given a dataset, the processing time to extract SCPs equals
the sum of the processing time to form SID-based graph
transactions (as depicted in Figs. 4a) and the processing time
to extract SCPs (as depicted in Fig. 9). Overall, the results
demonstrate that it is feasible to extract the knowledge of
SCPs by processing a reasonable size dataset of Yeast with
79601 graph transactions.

5 10 15 20 25 30 35 400

10

20

30

40

50

60

T
S
C
P
(×

10
3)

(s
)

minRF=0.3
minCS=0.7
maxOR=0.3

NM

P388
Yeast

Fig. 9 Effect of varying NM

5.6 Discussion about setting thresholds in SIFT

In this approach, conversion of graph transactions into SID-
based flat transactions is one time computation process. Once
graph transactions are transformed to flat transactions, it
is always possible to choose relative frequency thresholds
greater than minRFg and compute SCPs for various values
of minCSg and maxORg .

Now let us discuss how to set the values of the parame-
ters such as minRFg , minCSg and maxORg . The minRFg
threshold value can be set to half the maximum minRFg
value. Then, based on number of coverage patterns,minRFg
can be decreased. The goal is to extract SCPswith maximum
coverage, while minimizing the overlap to zero. Hence, as
a heuristic, we could start with the coverage support value
equal to 1 and then progressively keep decreasing the value of
coverage support until a desired number of SCPs is obtained.
Regarding maxORg , we can start with maxORg equal to 0
and then progressively keep increasing the value ofmaxORg

until a desired number of SCPs can be obtained.
Based on the application, the domain expert can first

extract SCPs by setting maxOR=0 and minCS=1. If the
domain expert needs more number of SCPs, he can increase
maxOR or decrease minCS progressively. Normally, the pro-
cess of pattern mining is an iterative approach. As we have
proposed a pattern mining model, the usual methodologies
employed to set threshold values can be employed in this
case also.

6 Case study: usefulness of SCPs in drug
design

We demonstrate the feasibility of applying knowledge of
SCPs in computer-aided drug design toward developing
a drug for coronavirus. Corona viruses that include the
SARS coronavirus 2 responsible for the COVID-19 pan-
demic are pathogens that cause various diseases that are

123

International Journal of Data Science and Analytics (2022) 13:105–121 119

Fig. 10 a Sample graph
modeling of protein–ligand
complex, b candidate subgraphs
and corresponding minRF
values

a : acceptor, ar : aromatic, d : donor,
h : hydrophobic, hb : hydrogen bond,
+ : positive, - : negative

h hh

ar a/ar/dar
S1

S9

a dhbS11

ar
a/ar/d/+

ar
S10

ar ar

ar ararS13

ar
S14

ar ar
ar

a/ar/d/+

a a/dhbS12

a/ar/d/+ a
hb

S16

ar

ar

a

a/ar/d/+

ar

a/ar/d/+

Protein side Ligand side

v0

v1

v2

v3

v4

v5

ar

ar

hb

ar

hb

(a) (b)

SID

RF 0.48 0.18 0.16 0.06 0.06 0.05 0.04 0.03

S1 S9 S11 S10 S13 S14 S12 S16

Table 4 Top 8 SCPs extracted
from PLC dataset

S.No Subgraph coverage pattern Coverage support Overlap ratio

1 {S1, S9, S11, S12, S16} 0.9 0.25

2 {S1, S9, S11, S12} 0.87 0.12

3 {S1, S9, S11} 0.83 0

4 {S1, S11, S10, S13, S12, S16} 0.83 0.17

5 {S1, S11, S10, S14, S12, S16} 0.81 0.17

6 {S1, S11, S13} 0.72 0.0

7 {S1, S11, S10} 0.71 0.0

8 {S1, S11, S14} 0.7 0.0

sometimes fatal in human beings. Coronavirus main pro-
tease enzymes (CoV-Mpro) are crucial for virus replication.
Drugs designed to inhibit this class of enzymes help in treat-
ing coronavirus infection [45]. We consider Zinc database
comprising 250000 drug-like molecules. We selected Mpro
protein (PDB ID: 1WOF) using the Autodock 4.2 software
program [30].Molecular docking procedure takes each of the
250000 molecules, identifies the best binding mode with the
protein, and gives the binding affinity and the protein–ligand
bound complex (PLC) structure using a scoring function.
Better the intermolecular interactions between the protein
and the ligand, better is the binding affinity and better is the
molecule for it to be a drug. The top-1000 molecules among
the 250000 molecules in the initial dataset that yielded high
binding affinity with the protein molecule were chosen for
mining SCPs.

For our case study, protein–ligand complexes (PLCs) are
converted to graphs transactions using GReMLIN [34]. A
ligand can interact with the same protein at different sites,
producing multiple graphs for the same protein and ligand,
but different vertex and edge label sets. Here, vertices are
amino acids of proteins and atoms of ligands and the edges
are interactions between amino acids and ligands. Example
4 presents the modeling of PLC as a graph transaction.

Example 4 Consider a sample PLC modeled as a graph
transactions G=(V ,E ,L ,l) shown in Fig. 10a. The left side
part nodes belong to protein and the right side part nodes

belong to ligand. Here, V={v0, v1,. . . , v5}, E={(v0,v3),
(v1,v3),. . . ,(v2,v5)}, L={aromatic, acceptor, acceptor/
aromatic/donor/positive,aromatic bond andhydrogenbond}.
A mapping function l maps the vertices v0,v1,. . . ,v5 to aro-
matic, aromatic, . . . , acceptor/aromatic/donor/positive and
edges (v0,v3),(v1,v3), . . . ,(v3,v5) to aromatic bond, aromatic
bond, . . . , hydrogen bond}, respectively.

The top-1000 ligands interact with 1WOF protein and
form 1000 protein–ligand complexes. GReMLIN gener-
ated 4672 graph transactions from these 1000 PLCs. We
extracted SCPs by providing minRF=0.025, minCS=0.7 and
maxOR=0.5. The time consumed to extract subgraph cov-
erage patterns is about 10 seconds (3.52 seconds to model
flat transaction from graph transactions and 6.03 seconds to
extract subgraph coverage patterns from flat transactions).
The top-8 candidate subgraphs along with their correspond-
ing RF values are depicted in Fig. 10b, and the top-8 SCPs
sorted by coverage support and their corresponding overlap
ratio are provided in Table 4.

Consider an SCP {S1, S9, S11} that covers 83% of Zinc
dataset with 0 overlap. Figure 11a depicts the overall struc-
ture of the Mpro protein and highlights the region, where a
drug molecule could bind.We have analyzed the interactions
among all residues that have interactions with at least one of
the 1000 ligands in the dataset. The analysis regarding the
utility of SCPs in understanding protein–ligand interactions
and its possible inputs to drug design efforts is as follows.

123

120 International Journal of Data Science and Analytics (2022) 13:105–121

Fig. 11 a Structure of theMPro protein bound to a ligand.bSix selected
protein amino acids and interactionswith a ligandmolecule correspond-
ing to S1 and S9 subgraphs c Protein–ligand interactions corresponding
to S11 subgraph

Figure 11b depicts an example of a ligand in which inter-
actions corresponding to S1 and S9 subgraphs are possible
(orange and pink arrows). As shown in Fig. 11b, it is evident
that the method captured the hydrophobic interaction S1 and
aromatic interaction S9, which contribute toward the favor-
able binding affinity between the protein and the ligand. On
the other hand, Fig. 11c depicts the protein–ligand hydrogen
bonding interactions involving another ligand that represent
the S11 subgraph. Similar to the aromatic and hydropho-
bic interactions above, the approach captures the hydrogen
bonded interaction efficiently. These three subgraphs have an
overall coverage of 83% with overlap ratio as zero indicat-
ing their prevalence and hence importance for the molecules
to bind to the protein. Such a new knowledge gives possi-
ble directions for improving the molecule by modifying the
structure of these ligands so that multiple modes of interac-
tions are possible and hence, improve the binding affinities.
Therefore, the proposed SIFT framework not only helps in
understanding the protein–ligand interactions, but also helps
in designing better drugs by extracting the knowledge of sub-
graph coverage patterns.

7 Conclusion

Subgraph pattern mining is an active research area with
applications in the domains of chemical, biological and
social networks. Given graph transactional data, existing
works have focused on the problem of extracting frequent
subgraphs, but they have not considered the problem of
extracting the knowledge of coverage-related subgraph pat-
terns. Hence, we have introduced the concept of subgraph

coverage patterns. In particular, we have proposed the
SIFT framework for extracting subgraph coverage patterns
from graph transactional data based on minRF, minCS and
maxO constraints. Our performance evaluation with three
real datasets demonstrates the effectiveness of the proposed
scheme in terms of processing time and pruning efficiency.
We have also demonstrated the feasibility of applying the
knowledge of SCPs through a case study in the bioinformat-
ics domain. To the best of our knowledge, this is the first work
to consider the extraction of subgraph coverage patterns from
graph transactional data. Given the prevalence of graph data
modeling, the proposedmodel of SCPs has a potentially huge
scope for opening up new avenues for the extraction of inter-
esting knowledge from graph datasets in several important
and diverse domains.

Funding The research ofASrinivas Reddy and PKrishnaReddy is sup-
ported by India-Japan Joint Research Laboratory Project entitled “Data
Science based farming support system for sustainable crop production
under climatic change (DSFS),” funded by Department of Science and
Technology, India (DST) and Japan Science and Technology Agency
(JST). The research of U Devapriya Kumar is supported by IHub-Data,
IIIT Hyderabad.

Data Availability The datasets Yeast 167 (Yeast anti-cancer), P388
(Leukemia) are available at https://sites.cs.ucsb.edu/∼xyan/dataset.htm

Declarations

Conflicts of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Code availability The source code is available at https://github.com/
srinivas2234/SCPs.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

1. ADA. http://hpc.iiit.ac.in/wiki/index.php/Ada_User_Guide
(Accessed in September 2021)

2. UIUC technical report, UIUCDCS-R-2002-2296. https://sites.cs.
ucsb.edu/~xyan/papers/gSpan.pdf (Accessed in September 2021)

3. Pubchem. https://pubchem.ncbi.nlm.nih.gov/ (2021)
4. Aida, M., Pieter, M., Wout, B., Pieter, M., Boris, C., Bart Goethals,

K.L.: Grasping frequent subgraph mining for bioinformatics appli-
cations. BioData Min. 11(1), 1–20 (2018)

5. Alsallakh, B., Aigner,W.,Miksch, S., Hauser, H.: Radial sets: inter-
active visual analysis of large overlapping sets. IEEE Trans. Visual
Comput. Gr. 19(12), 2496–2505 (2013)

6. Amiri, A., Salari, M.: Time-constrained maximal covering routing
problem. OR Spectrum 41(2), 415–468 (2019)

7. Andrew,G.D., Paola,V.L.: Theminimal hitting set generationprob-
lem: Algorithms and computation. SIAM 31(1), 63–100 (2017)

123

https://sites.cs.ucsb.edu/\protect \unhbox \voidb@x \penalty \@M \ {}xyan/dataset.htm
https://github.com/srinivas2234/SCPs
https://github.com/srinivas2234/SCPs
http://hpc.iiit.ac.in/wiki/index.php/Ada_User_Guide
https://sites.cs.ucsb.edu/~xyan/papers/gSpan.pdf
https://sites.cs.ucsb.edu/~xyan/papers/gSpan.pdf
https://pubchem.ncbi.nlm.nih.gov/

International Journal of Data Science and Analytics (2022) 13:105–121 121

8. Ayed, R., Hacid, M.S., Haque, R., Jemai, A.: An updated dash-
board of complete search FSM implementations in centralized
graph transaction databases. J. Intell. Inf. Syst. 55, 149–182 (2020)

9. Borgelt, C., Berthold, M.R.: Mining molecular fragments: finding
relevant substructures of molecules. In: Proceedings of the ICDM,
pp. 51–58 (2002)

10. Charu C,A., Haixun,W.:Managing andmining graph data, vol. 40.
Springer (2010)

11. Chen, J., Lin, Y., Li, J., Lin, G., Ma, Z., Tan, A.: A rough set
method for the minimum vertex cover problem of graphs. Appl.
Soft Comput. 42, 360–367 (2016)

12. Chvatal, V.: A greedy heuristic for the set-covering problem.Math.
Oper. Res. 4(3), 233–235 (1979)

13. Cormode, G., Karloff, H., Wirth, A.: Set cover algorithms for very
large datasets. In: Proceedings of the ACM CIKM, pp. 479–488
(2010)

14. Dehaspe, L., Toivonen, H., King, R.D.: Finding frequent substruc-
tures in chemical compounds. In: Proceedings of the KDD, pp.
30–36 (1998)

15. Fazekas, K., Bacchus, F., Biere, A.: Implicit hitting set algorithms
for maximum satisfiability modulo theories. In: Proceedings of the
IJCAR, pp. 134–151 (2018)

16. Fortin, S.: The graph isomorphism problem: Technical report. Univ
Alberta, Edmonton (1996)

17. Fournier Viger, P., Cheng, C., Lin, J.C.W., Yun, U., Kiran, R.U.:
TKG:Efficientminingof top-k frequent subgraphs. In: Proceedings
of the Big Data Analytics, pp. 209–226 (2019)

18. Gowtham Srinivas, P., Krishna Reddy, P., Trinath, A.V., Bhargav,
S., Uday Kiran, R.: Mining coverage patterns from transactional
databases. J. Intell. Inf. Syst. 45, 423–439 (2015)

19. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction
and exact algorithms for clique cover. ACM J. Exp. Algorithm. pp.
2.2–2.15 (2009)

20. Guevara, V.I.G., Calderon, S.G., Cabrera, E.A., Calvo, H.: Sym-
bolic learning for improving the performance of transversal-
computation algorithms. IEEE Access 7, 19752–19761 (2019)

21. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining:
current status and future directions. Data Min. Knowl. Disc. 15(1),
55–86 (2007)

22. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm
for mining frequent substructures from graph data. In: Proceedings
of the European Conference on Principles of Data Mining and
Knowledge Discovery, pp. 13–23 (2000)

23. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph
mining algorithms. Knowl. Eng. Rev. 28(1), 75–105 (2013)

24. Jiang, H., Wang, H., Philip, S.Y., Zhou, S.: GString: A novel
approach for efficient search in graph databases. In: Proceedings
of the ICDE, pp. 566–575 (2007)

25. Kuramochi,M., Karypis, G.: Frequent subgraph discovery. In: Pro-
ceedings of the ICDM, pp. 313–320 (2001)

26. Li, R., Wang,W.: REAFUM: Representative approximate frequent
subgraph mining. In: Proceedings of the ICDM, pp. 757–765.
SIAM (2015)

27. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on
social graphs: A survey. IEEE TKDE 30(10), 1852–1872 (2018)

28. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple
minimum supports. In: Proceedings of the ACM SIGKDD, pp.
337–341 (1999)

29. Medina, S.G., Fassio, A.V., de A. Silveira, S., da Silveira, C.H.,
de Melo-Minardi, R.C.: CALI: A novel visual model for frequent
pattern mining in protein-ligand graphs. In: International Confer-
ence on Bioinformatics and Bioengineering, pp. 352–358 (2017)

30. Morris, G.M., Huey, R., Lindstrom,W., Sanner, M.F., Belew, R.K.,
Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4:
automated docking with selective receptor flexibility. J. Comput.
Chem. 30(16), 2785–2791 (2009)

31. Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.:
Designing small universal k-mer hitting sets for improved analysis
of high-throughput sequencing. PLoS Comput. Biol. 13(10), 1–15
(2017)

32. Ralla, A., Siddiqie, S., Reddy, P.K., Mondal, A.: Coverage pattern
mining based on MapReduce. In: Proceedings of the ACM IKDD
CoDS-COMAD, pp. 209–213 (2020)

33. Rehman, S.U., Khan, A.U., Fong, S.: Graph mining: A survey of
graphmining techniques. In: Proceedings of the International Con-
ference on Digital Information Management, pp. 88–92 (2012)

34. Ribeiro, V.S., Santana, C.A., Fassio, A.V., Cerqueira, F.R., da Sil-
veira, C.H., Romanelli, J.P.R., Patarroyo-Vargas, A., Oliveira,
M.G.A., Gonçalves-Almeida, V., Izidoro, S.C., de Melo-Minardi,
R.C., Silveira, S.d.A.: visGReMLIN: Graph mining-based detec-
tion and visualization of conserved motifs at 3D protein-ligand
interface at the atomic level. BMC Bioinformatics 21(2), 1–12
(2020)

35. Santana, C.A., Cerqueira, F.R., Da Silveira, C.H., Fassio, A.V.,
DeMelo-Minardi, R.C., Silveira, S.d.A.: GReMLIN: A graphmin-
ing strategy to infer protein-ligand interaction patterns. In: IEEE
International Conference on Bioinformatics and Bioengineering,
pp. 28–35 (2016)

36. Srinivas, P.G., Reddy, P.K., Bhargav, S., Kiran, R.U., Kumar, D.S.:
Discovering coveragepatterns for banner advertisement placement.
In: Proceedings of the PAKDD, pp. 133–144 (2012)

37. Sterling, T., Irwin, J.J.: ZINC 15 - Ligand discovery for everyone.
J. Chem. Inf. Model. 55(11), 2324–2337 (2015)

38. Tan, P.N., Steinbach, M., Karpatne, A., Kumar, V.: Introduction to
Data Mining, 2nd edn. Pearson (2018)

39. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in
a minimum vertex cover solver for classes of networks. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, pp.
1704–1711 (2017)

40. Wang, C., Xie, M., Bhowmick, S.S., Choi, B., Xiao, X., Zhou, S.:
FERRARI: an efficient framework for visual exploratory subgraph
search in graph databases. VLDB J. pp. 1–26 (2020)

41. Wu, J., Li, C.M., Jiang, L., Zhou, J., Yin, M.: Local search for
diversified top- k clique search problem. Computers & Operations
Research 116, 104867 (2020)

42. XifengY., JiaweiH.: gSpan:Graph-based substructure patternmin-
ing. In: Proceedings of the ICDM, pp. 721–724 (2002)

43. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph
patterns by leap search. In: Proceedings of the ACM SIGMOD,
pp. 433–444 (2008)

44. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-
based approach. In: Proceedings of the ACM SIGMOD, pp. 335–
346 (2004)

45. Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q.,
Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K.Y.,Wong, L.,
Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., Rao, Z.: Design
of wide-spectrum inhibitors targeting coronavirus main proteases.
PLoS Biol. 3(10), 1742–1752 (2005)

46. Zareie, A., Sheikhahmadi, A., Khamforoosh, K.: Influence maxi-
mization in social networks based on TOPSIS. Expert Syst. Appl.
108, 96–107 (2018)

47. Zhefeng, W., Enhong, C., Qi, L., Yu, Y., Yong, G., Biao, C.: Infor-
mation coverage maximization in social networks. Comput. Res.
Repository arxiv:1510.03822 (2015)

48. Zhou, D., Zhang, S., Yildirim,M.Y., Alcorn, S., Tong, H., Davulcu,
H., He, J.: A local algorithm for structure-preserving graph cut. In:
Proceedings of the ACM SIGKDD, pp. 655–664 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1510.03822

	Mining subgraph coverage patterns from graph transactions
	Abstract
	1 Introduction
	2 Related work and background
	2.1 Related work
	2.2 Background information
	2.2.1 Model of subgraph discovery
	2.2.2 Model of coverage patterns

	3 Proposed framework of the problem
	3.1 Subgraph pattern, cover and cover set
	3.2 Relative frequency RFg of a subgraph
	3.3 Coverage support
	3.4 Overlap
	3.5 Subgraph coverage pattern
	3.6 Problem statement

	4 Proposed SIFT framework
	4.1 Basic idea
	4.2 Details of the SIFT framework
	4.2.1 Extracting subgraphs from D
	4.2.2 Formation of SID-based flat transactions
	4.2.3 Extraction of SCPs

	4.3 Time complexity

	5 Performance evaluation
	5.1 Effect of varying minRF
	5.2 Effect of varying maxOR
	5.3 Effect of varying minCS
	5.4 Performance results with 3D plots
	5.5 Effect of varying NM
	5.6 Discussion about setting thresholds in SIFT

	6 Case study: usefulness of SCPs in drug design
	7 Conclusion
	References

