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Abstract
Eigenvalue analysis is an important tool in economics and nonlinear physics to analyze industrial processes and instability
phenomena, respectively. A model-based eigenvalue analysis of viral load data from eight symptomatic COVID-19 patients
was conducted. The eigenvalues and eigenvectors of the instabilities were determined that give rise to COVID-19. For all eight
patients, it was found that the virus dynamics followed the unstable eigenvectors until the viral load reached the respective
peak values. At the peak virus values, the virus dynamics branched off from the directions specified by the eigenvectors.
The temporal course of the unstable eigenvalues was determined as well. For all patients, it was found that the eigenvalues
switched from positive to negative values just when the virus load reached peak values. These findings suggest that the
fixed, instability-related eigenvalues and eigenvectors determine initial stages of SARS-CoV-2 infections during which virus
load increases. In contrast, the time-dependent eigenvalues show a sign-switching phenomenon that indicates when the virus
dynamics switches from the growth stage (increasing virus load) to the decay stage (decreasing virus load). The virus dynamics
model was a standard three-variable virus dynamics model frequently used in the literature.

Keywords COVID-19 · SARS-CoV-2 · Eigenvalue analysis

1 Introduction

The first patients with coronavirus disease 2019 (COVID-
19) were reported from Wuhan city, China, in December
2019 [55].Within one year, the disease spread over the whole
globe and by January 2021 there were worldwide 93,000,000
confirmed COVID-19 cases and 2,000,000 COVID-19 asso-
ciated deaths [56]. About half a year later, by July 2021, the
death toll doubled and was at 4,000,000 people [57]. By the
time of writing this paper, the pandemic is still unfolding.

Understanding the principles of nonlinear physics that
determine how COVID-19 spreads in populations and how
the virus spreads and replicates in the bodies of patients is
a high-priority task that is far from being completed. In this
study, the nonlinear physics perspective is taken that diseases
emerge from instabilities as suggested by Mackey and Glass
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[17,39]. Such instabilities traditionally are investigated by
means of eigenvalue analysis that comes with fixed eigen-
values and eigenvectors [17,32,35]. Eigenvalue analysis that
takes the time course of eigenvalues into account has also
been turned out to be a fruitful tool in economy to investi-
gate industrial processes [31,38,46,49].

In the wake of the COVID-19 pandemic, various model-
ing approaches have been developed and applied to obtain
insights into the nature and the possible time course of the
pandemic [7]. The modeling methods and objectives are
diverse. For example, various modeling studies have focused
on modeling the impacts of intervention measures. Other
studies have been concerned with the social and economic
impacts of the pandemic [7]. One of the manymodeling gaps
in the field of COVID-19 research is the gap in understanding
the nature of the virus dynamics within individual humans
[7]. In order to close this gap and achieve such an under-
standing, the viral load dynamics of COVID-19 patients has
been studied in previous works with the help of a standard,
three-variable TIV model [24,37,52]. Higher-dimensional
models beyond the three-variable TIV model have also
been used, for example, to study SARS-CoV-2 infected
cells in the eclipse phase [30,37,52] and the relevance of
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malfunctioning, non-infectious SARS-CoV-2 particles for
the disease progression of COVID-19 [11,43]. In particu-
lar, the aforementioned, standard TIV model was used to
transfer a key finding from the epidemiology of COVID-
19 to the virology of SARS-CoV-2 infections. Accordingly,
previous work has suggested that COVID-19 spreads out
in populations along unstable eigenvectors [20–23,25]. A
first attempt to show a similar result on the level of indi-
vidual COVID-19 patients was made in Ref. [24]. However,
Ref. [24] was based on a challenging three-dimensional vec-
tor analysis approach. Moreover, the study missed to take
advantage of a time-resolved eigenvalue analysis as used
in economic theory [31,38,46,49]. The current study shows
that a simplified, two-dimensional analysis is sufficient to
demonstrate that the viral infections of COVID-19 patients
are instability-induced phenomena,whose dynamics is deter-
mined by the eigenvalues and eigenvectors of the instabilities
that give rise to COVID-19. Furthermore, the current study
shows that the time-resolved eigenvalue analysis suggests
that the switching of the sign of the leading eigenvalue indi-
cates a transition from the stage in which virus load increases
in patients to the stage in which the viral load decreases in
patients. In fact, on the population level it has been shown
that such sign-switching phenomena indicate that COVID-
19 epidemics enter subsiding stages, in which the number of
daily new COVID-19 infections decrease from day to day
[20,22,23,25].

In summary, the key contributions of this work are as
follows:

– In the current study, an analytical method is developed to
identify the dynamics of coronavirus diseases 2019 in a
suitably defined two-dimensional space during the initial
stage of the disease. In this context, the novel aspect is to
consider COVID-19 from the perspective of dynamical
diseases and, accordingly, to focus on the unstable eigen-
vector that based on theoretical considerations should
determine the initial disease stage. A simplified method-
ology is developed that works on the level of individual
patients and holds the promise to produce robust results
irrespective of patient-specific differences (Sects. 2.1
and 2.2).

– The current work transfers the method of time-resolved
eigenvalue analysis from the field of economics to the
field of virology. In doing so, a novelmathematical frame-
work is established that allows to observe and study the
sign-switching phenomenon on the level of COVID-19
patients (Sect. 2.3). So far, this phenomenon has only
be observed on the population level in the context of
COVID-19 waves.

– The proposed methods are applied to real data of a
sample of eight COVID-19 patients. The study shows
that despite individual differences between patients the

proposed methods yield the theoretically predicted
results.Accordingly, it is found that for all patients the ini-
tial stage COVID-19 dynamics followed patient-specific
unstable eigenvectors and for all patients the disease
progressions exhibited the sign-switching phenomenon
(Sect. 3).

2 Model-based fixed and time-resolved
eigenvalue analysis

2.1 Basics

The following standard three-variable virus dynamics model
will be used [34,45,47]:

d

dt
T = −βV T ,

d

dt
I = βV T − k1 I ,

d

dt
V = pI − k2V .

(1)

Here, T , I , and V denote non-infected target cells, infected
target cells, and the free virus concentration, respectively.
The model parameters are [34,45] the infection rate β, the
production rate p of viruses by infected cells, the death rate
k1 of infected cells, and the virus clearance rate k2. For sake
of brevity, T and I will be simply referred to as target cells
and infected cells. Let us identify the variables T , I , and V
in the context of SARS-CoV-2 infections. Studies that have
examined the SARS coronavirus outbreak in 2002–2004
have argued that the SARS coronavirus attacks epithelial
cells in the lungs [8,33]. Given that SARS coronavirus 2 is
related to the earlier (2002–2004) SARScoronavirus, various
authors have assumed that SARS-CoV-2 invades respiratory
epithelial cells, in general [41,50], and, in particular, in the
lungs [44,48,59,61]. In fact, some case studies on COVID-19
patients have produced evidence that supports this hypothe-
sis [9,40,58]. Consequently, it is preliminarily assumed that
the cells T of Eq. (1) corresponds to epithelial cells in the
lungs. The virus load V reflects SARS-CoV-2 load measured
in the sputum of COVID-19 patients [5,53].

2.2 Fixed eigenvalue analysis using a simplified,
two-variable approach

Let (Tst , 0, 0) denote the virus-free fixed point, where Tst >

0 is the target cell concentration of healthy adults. Lineariz-
ing Eq. (1) at (Tst , 0, 0), we obtain the 3 × 3 linearization
matrix

U =
⎛
⎝
0 0 −βTst
0 −k1 βTst
0 p −k2

⎞
⎠ . (2)
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From U it follows that the fixed point (Tst , 0, 0) exhibits a
zero eigenvalue λ1 = 0 and two eigenvalues λ2,3 that in gen-
eral are finite. The latter eigenvalues can be computed from
the dynamics in the I–V subspace. The linearized dynamics
in this I–V subspace reads

d

dt
I = βV Tst − k1 I ,

d

dt
V = pI − k2V (3)

and describes a closed dynamical system. In summary,
the original three-variable model exhibits a neutrally sta-
ble direction which is given by the T axis. That is, Tst can
assume any positive value. Regardless of Tst the eigenvalue
λ1 equals zero. In contrast, the dynamics in the I–V sub-
space can exhibit a stable or unstable fixed point I = V = 0.
Consequently, the subspace dynamics defined by I and V
determines the overall stability of the fixed point (Tst , 0, 0)
of the three-variablemodel. For this reason, a simplified, two-
variable approach is motivated that focuses on that subspace
dynamics.

Let us introduce the state vector X = (I , V ) with fixed
point Xst = (0, 0). Then, Eq. (3) can be cast into the form

d

dt
X = L X , L =

(−k1 βTst
p −k2

)
(4)

such that L is the linearizationmatrix. FromEq. (4) the eigen-
values λ2,3 can be obtained and read

λ2,3 = −k1 + k2
2

±
√

(k1 + k2)2

4
+ pTstβ − k1k2 (5)

with λ2,3 ∈ lR and the plus (minus) sign holds for λ2
(λ3). From Eq. (5) it follows that λ3 < 0 holds in any
case. Equation (5) allows to distinguish between the cases
λ2 > 0, λ2 = 0, and λ2 < 0 that hold for pTstβ > k1k2,
pTstβ = k1k2, and pTstβ < k1k2. Consequently, the fixed
point (Tst , 0, 0) is unstable for pTstβ > k1k2 and neutrally
stable (in view of λ1 = 0) for pTstβ < k1k2.

Let v j = (v j,I , v j,V ) denote the eigenvector j of L
with j = 2, 3. The eigenvector description of the viral load
dynamics in the two-dimensional I–V subspace can be writ-
ten like [17,35,49]

X(t) =
∑
j=2,3

A j (t)v j , v j = 1

Z j

(
βTst

λ j + k1

)
, (6)

where Z j are normalization constants and A j denote time-
dependent amplitudes. In the initial stage, when the virus
multiplies in the human lung, we have λ2 > 0 versus λ3 < 0
and, consequently, v2 is the unstable eigenvector, whereas
v3 is the stable eigenvector. Moreover, the infection dynam-
ics follows primarily the direction given by v2. Within the

modeling framework given by Eq. (1), v2 is the order param-
eter [17,35] and characterizes togetherwith the exponentially
increasing amplitude

A2(t) = A2(0) exp{λ2(t − t0)} (7)

the SARS-CoV-2 infection in the human lung. In particular,
after a transient period in which A3 decays exponentially to
zero, we have

�X = v2�A2 (8)

with �X = X(t + �t) − X(t) and �A2 = A2(t + �t) −
A2(t). For more general discussions of the order parameter
amplitude A2 and Eq. (8) see Refs. [17,35].

2.3 Time-resolved eigenvalue analysis

The eigenvalue λ2 of the unstable direction at the instability
fixed point (Tst , 0, 0) is given by Eq. (5) and (by definition
of the instability) positive: λ2 > 0. In general, any state
(T , 0, 0) with T ≤ Tst is a fixed point of Eq. (1) (whereas
any state (T , I , V )with I > 0 or V > 0 is not a fixed point of
Eq. (1)). Consequently, when during the course of the disease
the number of target cells decays and is given at a particular
time point t by T (t), then the state (T (t), 0, 0) is the spe-
cial fixed point that is consistent with the number of target
cells T (t) at the time t under consideration. We will refer to
(T (t), 0, 0) as a sliding fixed point. A time-resolved eigen-
value analysis can be obtained by taking into account that the
target cells T decay over time and considering the stability
of the sliding fixed point (T (t), 0, 0). The stability changes
when the number of target cells T is sufficiently low such that
pTβ < k1k2 (see Sect. 2.2). When the fixed point becomes
stable, the infection subsides in the sense that the virus load
V begins to decay. Therefore, a time-resolved eigenvalue λ2
can capture that important switch from an unstable to a sta-
ble virus-free fixed point. Accordingly, in order to conduct
a time-resolved eigenvalue analysis, in Eq. (5) for λ2 the
parameter Tst is replaced by T (t) such that

λ2(t) = −k1 + k2
2

+
√

(k1 + k2)2

4
+ pT (t)β − k1k2 . (9)

The model solution (T (t), I (t), V (t)) connects two fixed
points defined by (T (0), I (0), V (0)) = (Tst , 0, 0), on the
one hand, and (T (∞), I (∞), V (∞)) = (T (∞), 0, 0) with
pT (∞)β < k1k2, on the other hand. While the first fixed
point is unstable, the second fixed point is stable. They
reflect the pre-infection and post-infection fixed points of
the patients under consideration.

123



284 International Journal of Data Science and Analytics (2023) 15:281–290

2.4 Application to patient data

The fixed and time-resolved eigenvalue analysis was applied
to data from eight COVID-19 patients described in Refs. [5,
53]. Following the notation of Ref. [53], the patients are
referred to as patients 1, 2, 3, 4, 7, 8, 10 and 14. The patients
developed symptoms during the period of January and Febru-
ary 2020.During that time theywere located inGermany. The
disease was considered to be mild for all patients. SARS-
CoV-2 viral load was measured from the sputum for all
patients for periods of about 25 days [5,53]. On the basis of
the (lower respiratory tract) sputum data, the model parame-
ters β, p, k1, and k2 of Eq. (1) were estimated and reported in
Ref. [52].More precisely, in Ref. [52] several virus dynamics
models were considered including the TIV model described
by Eq. (1). Moreover, in Ref. [52] viral load data from the
upper and lower respiratory tracts were analyzed. In the cur-
rent study, the estimatesβ, p, k1, and k2 presented inRef. [52]
for the TIV model (1) applied to the lower respiratory tract
data were considered. Using those estimates, the fixed eigen-
value analysis was conducted for every patient by computing
the fixed eigenvalue λ2 from Eq. (5) and the fixed unsta-
ble eigenvector v2 from Eq. (6). Subsequently, the infection
dynamics computed fromEq. (1) was plotted in the I–V sub-
plane and compared with v2 from Eq. (6). The time-resolved
eigenvalue analysis was conducted for every patient by com-
puting λ2(t) from Eq. (9) using Eq. (1) to determine T (t).
The time-course of λ2 was compared to the time-course of
the viral load given in terms of V (t).

3 Results and discussion

Figure 1 shows the results of the eigenvalue analysis for
patient 1. Panel A shows the measured viral load over time
(gray circles) and the model fit (solid line) obtained by com-
puting V (t) from Eq. (1) numerically. Time is given by days
after onset of symptoms [53]. The data (gray circles) reveal
that the viral load of patient 1 reached a peak at about 5
and 6 days after symptoms onset. Subsequently, the viral
load decayed in a more or less monotonically fashion over
a 20 days period. From the data it follows that the initial,
increasing stage was relatively short as compared to the final,
decaying state. The model solution reflects this property and
exhibits a relatively quickly increasing viral load dynamics
and a relatively slowly decreasing dynamics. Panel B shows
the functions V (t) and I (t) as computed from the model
(1) as a phase curve (solid thin line) in the I–V space. The
circle indicates the initial state. The order parameter v2 is
plotted as well (dashed thick line). As can be seen in panel
B, the virus dynamics closely followed the order parame-
ter while the viral load was increasing. After the viral load
reached its peaks the dynamics branched off in a different

Fig. 1 Eigenvalue analysis of the viral load dynamics of patient 1. Panel
A: Observed viral load over time (gray circles) andmodel fit V (t) (solid
line) computed fromEq. (1). PanelB: Phase space trajectoryV (t)versus
I (t) (solid thin lines) computed from model (1) and order parameter
v2 (thick dashed lines) obtained from the eigenvalue analysis based on
Eq. (6). The order parameter is magnified in length for sake of visibility.
PanelC: Time-course of the eigenvalueλ2 (solid line) as computed from
Eq. (9). The viral load trajectory V (t) shown in panel A is depicted in
panel C as well (dotted line). For visual inspection purposes, it was
rescaled such that its peak corresponds to the maximum value of λ2

direction. Panel C shows the time-dependent eigenvalue λ2
(solid line) as computed from Eq. (9). The virus load curve
V (t) as depicted in panel A (solid black line) is shown in
panel C as well in as a rescaled function (dotted line). The
eigenvalue λ2 dropped from a positive to a negative value
at around day 5. Subsequent to this switch, the viral load
reached its peak andbegan to decay.Consequently, for patient
1 there was a first, initial period during which the eigenvalue
was positive and the virus-free fixed point unstable. During
this period, viral load increased and the number of target
cells decayed. There was a switching point at around 5 days
when the number of target cells were sufficiently low and
the eigenvalue λ2 turned from a positive to a negative value.
There was a second, final period during which the eigenvalue
λ2 was negative and the virus-free fixed point stable. During
this stage the viral load decayed.

Figure 2 presents the same analysis for patient 2. Again,
the virus dynamics was characterized by a short, initial stage
during which viral load increased and a relatively long, final
stage during which viral load decreased (panel A). The phase
portrait (panel B) reveals that during the initial stage the
dynamics followed the order parameter v2 and subsequently
branched off. The two stages can be explained using the time-
resolved eigenvalue analysis. Accordingly, during the initial
stage the eigenvalue λ2 was positive, while in the second,
decaying stage the eigenvalue was negative (panel C). The
switch of the eigenvalue was caused by the decrease in the
number of target cells, see Eq. (9).
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Fig. 2 As in Fig. 1 but for patient 2

Figure 3 shows the viral load trajectories for the remaining
six patients labeled 3, 4, 7, 8, 10 and 14 [53]. The mea-
sured data (gray circles) [53] and computed model solutions
V (t) (solid lines) are presented. Panels A to F correspond
to patients 3, 4, 7, 8, 10, and 14 as indicated. All patients
showed the same characteristic temporal pattern composed
of a relatively short increase and a slow decay of viral load.

Figures 4 and 5 present the eigenvalue analyses for the
aforementioned remaining six patients in a shortened form.
Figure 4 presents the analyses for patients 3, 4, and 7. Panels
A, C, E and B, D, F show the results of the fixed eigenvalue
analysis and time-resolved eigenvalue analysis, respectively.

Likewise, Fig. 5 presents the analyses for patients 8, 10, and
14. Again, panels A, C, E and B, D, F show the results of
the fixed eigenvalue analysis and time-resolved eigenvalue
analysis, respectively.

As can be seen in panels A, C, E of Figs. 4 and 5, for all
remaining patients the virus dynamics (solid thin line) in the
initial stage of increasing viral load followed the respective
SARS-CoV-2 order parameters v2 (dashed thick lines). After
reaching the respective peak loads, the trajectories branched
off from their order parameters. Consequently, the results
of those patients are consistent with those of patients 1 and
2. As can be seen in panels B, D, F of Figs. 4 and 5, the
time-resolved eigenvalue analysis shows that for all but two
patients the switch of the leading eigenvalue from a positive
to a negative value took place after at least 1 day after symp-
toms onset. Accordingly, the initial stage of increasing viral
loadwas at least 1 day long. The two exceptionswere patients
4 and 8. The respective eigenvalues switched at about 0.10
days (i.e., about two-and-a-half hours) and 0.15 days (i.e.,
about three-and-a-half hours). In order to make these very
early switching dynamics visible, panel D of Fig. 4 (patient
4) and panel B of Fig. 5 (patient 8) only show 1 day on the
horizontal axis. For all patients (i.e., including patients 4 and
8) the initial stages of increasing viral load and the final stages
of decreasing viral load were characterized by a positive and
negative eigenvalue λ2, respectively. This is tantamount to
say that these two stages were characterized by unstable and
stable virus-free fixed points, respectively.

Fig. 3 Viral load dynamics observed (gray circles) and computed (solid black lines) for the six patients 3, 4, 5, 8, 10, and 14
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Fig. 4 Panels A, C, E: Phase trajectories computed from Eq. (1) for
patients 3, 4, and 7, respectively. Order parameters v2 (thick dashed
lines) computed from Eq. (6). PanelsB,D, F: Graphs λ2(t) (solid lines)

obtained from Eq. (9). For comparison purposes, the corresponding
viral load trajectories V (t) are shown as well (dotted lines) as functions
rescaled to the maximum values of λ2

Fig. 5 As in Fig. 4 but for patients 8, 10, and 14

4 General discussion

Eigenvalue analysis is an indispensable tool for studying
instabilities in physics and other disciplines. For example,
instabilities in fluid and gas dynamical systems and optical
systems leading to convection rolls and laser light, respec-
tively, can be understood by determining the conditions under

which relevant eigenvalues become positive (or exhibit pos-
itive real parts) [10,19,35]. Stripe and dot patterns emerging
on animal skins [42], brain activity patterns [6,18,26,27],
and Turing patterns in chemical and biological systems
[1,12,15,16,28,29] can be explained with the help of eigen-
value analysis that determines the circumstances underwhich
positive eigenvalues or eigenvalues with positive real parts
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occur. Infectious diseases emerging in populations are long
known as phenomena that are due to instabilities featuring
positive eigenvalues [14]. For the COVID-19 outbreak in
Wuhan city, China, and for first-wave COVID-19 epidemics
in European countries in 2020, in Pakistan, Thailand, and
USA this has been shown explicitly in a series of recent stud-
ies [20–23,25].

However, while eigenvalues may be considered as con-
stants in various settings, in general, they may vary over time
or as a result of a change in the state of the system under con-
sideration. This kind of time-dependency and elasticity has
been studied for various industrial processes [31,38,46,49].
Likewise, it has been argued that COVID-19 waves are the
product of such changing eigenvalues. More precisely, it has
been argued that intervention measures during the year 2020
such as mask-wearing policies, physical distancing require-
ments, border closures, and the lockdown of businesses
have affected eigenvalues and resulted in a switching phe-
nomenon that turned positive eigenvalues into negative ones
[20–23,25]. Instabilities on the level of populations lead-
ing to COVID-19 outbreaks turned into stable fixed points
under which the number of daily new COVID-19 infections
decreased from day to day. In fact, the notion of eigenvalues
that depend on states or time has been formalized in the field
of human performance and perception as grand state dynam-
ics [17]. A plenitude of phenomena have been explained in
this context such as: scene decomposition, lonely speaker
dynamics, Freud’s slip of the tongue phenomenon, child play,
retrieval-induced forgetting, priming, overcoming of func-
tional fixedness, oscillatory brain activity induced by visual
forces with certain symmetry features, learning, negative
hysteretic transitions in humanperformance,motion-induced
blindness, rituals of obsessive-compulsive-disorder patients,
social talking, and life trajectories [17]. The current study
adds to these examples of systems exhibiting time-varying
eigenvalues two more systems: the virus dynamics in human
individuals, in general, and the SARS-CoV-2 dynamics in
COVID-19 patients, in particular. While there are peculiari-
ties of viral infections that need to be studied in detail, it is
also important to see the fundamental underlying principles
of nonlinear physics that determine not also SARS-CoV-2
infections but instability-induced phenomena in general. The
current study makes a step into this direction and provides
a general framework to study SARS-CoV-2 infections in the
context of such generally applicable principles.

In order to demonstrate the applicability and robustness
of the proposed eigenvector and eigenvalue analysis meth-
ods, the current study looked at a sample of eight COVID-19
patients. COVID-19 data from patients has been published
in various studies (see, e.g. Ref. [51] for a review). Vari-
ability across patients as shown when comparing patients
1, 2, 3, 7, 10, and 14 versus patients 4 and 8 (see Figs.
1, 2 and 4) has been observed in other studies as well

(e.g., see Ref. [36]). Despite the variability across patients,
SARS-CoV-2 infections seem to exhibit a generic pattern
consistent across patients [51]: after the onset of symptoms,
viral load increases quickly (i.e., within a few days) towards
a peak value. Subsequently, viral load decays slowly (i.e.,
within ten days or more) until virus measurements fall below
the detection threshold. Data as shown in Figs. 1, 2 and 3
are consistent with this general temporal pattern. In other
words, the sample of eight viral load trajectories can be con-
sidered as a representative data sample that exhibits, on the
one hand, a common pattern and, on the other hand, varia-
tions of that pattern. Despite these variations, the proposed
methods produced for all patients the theoretically predicted
results. Accordingly, it was found that for all patients the ini-
tial stage COVID-19 dynamics followed the patient-specific
unstable eigenvectors (seeFigs. 1B, 2B, 4A,C,E, and5A,C,E)
and for all patients the disease progressions exhibited the
sign-switching phenomenon (see Figs. 1C, 2C, 4B, D, F, and
5B, D, F). Having said that, future studies may be devoted to
apply the methods illustrated in Figs. 1, 2, 4, and 5 to larger
samples. In particular, the question raised in Ref. [7] about
the nature of the difference between mild and severe infec-
tions may be addressed by studying such larger samples.

The model-based analysis presented in the current study
involved a standard three-variable virus dynamics model
used in the literature [34,45,47,52]. In this context, it
should be mentioned that there are various generalizations
of the three-variable model leading to models in higher-
dimensional spaces [41,45,47,52]. Generalized TIV models
involving more than three variables have been used to
describe the viral load dynamics of COVID-19 patients. The
motivation to use such generalized models typically is to
address specific aspects of the progression of COVID-19. For
example, as pointed out in the introduction, the relevance of
infected cells in the eclipse phase [52] and malfunctioning,
non-infectious virus particles [43] has been addressed in the
context of COVID-19. Importantly, the primary goal of stud-
ies using generalized TIVmodels typically is to address such
specific aspects of virus dynamics. In other words, the pri-
mary motivation to use models beyond the TIV model is not
to achieve better fits between models and data [2,3]. Conse-
quently, although some details in the time course of the viral
load are not addressed by the three-variable model (1), the
model can address very well the general temporal pattern of
SARS-CoV-2 infections. In view of the plenitude of mod-
els that could be used to address SARS-CoV-2 infections,
the results presented in this study should be regarded as a
step in the direction of understanding SARS-CoV-2 infection
instabilities by means of fixed and time-resolved eigenvalue
analysis approaches. The eigenvalue analysis presented in
this study may be used in future studies as a tool to address
aspects of the virus dynamics in COVID-19 patients that go
beyond those aspects captured by the TIV model (1).
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Since the beginning of the pandemic, several variants of
the original SARS coronavirus 2 have occurred. In partic-
ular, variants such as Alpha, Delta, and Omicron exhibit a
mutation on the spike protein of the virus. Accordingly, at
a particular location (which is labeled as 614) the Adenine
nucleotide is replaced by Guanine [4]. It has been suggested
that due to this so-called D614G mutation, variants such as
Alpha, Delta, and Omicron can spread out faster in popula-
tions [4]. On the level of individuals, the D614G mutation
seems to increase the infectivity rate [4,60], which corre-
sponds to the parameter β in the TIV model (1). At the same
time, when comparing the Delta and Omicron variants, pre-
liminary results suggest that the latter variant is associated
with less severe diseases progressions [54]. Let us briefly
indicate how such issues could be addressed in the context
of the eigenvalue analysis discussed in Sect. 2.3. From Eq.
(9) it follows that the eigenvalue λ2 becomes zero at a critical
target cell concentration Tcrit = k1k2/(pβ). Consequently,
inmutations with increased infectivity parameters β, the crit-
ical value is lower which implies that there is larger damage
in the affected sites before the disease enters the decline
stage. Figure 6 illustrates this issue. All model parameters
are taken from patient 1 except for β. The parameter β is
varied from the estimated value to a value that is two times
as high. Accordingly, βrel = 100% reflects the estimated
value (as used to produce Fig. 1), while βrel = 200% in Fig.
6 reflects an infectivity rate that is twice as high as this esti-
mated value of patient 1. In Fig. 6, the critical value of target
cells at which the disease enters the decline stage is expressed
as Tcrit,rel in percentage of the pre-infection level Tst . For
the estimated value β of patient 1 (i.e., βrel = 100%), the
disease decline begins when T reaches about 2.4% of Tst .
When β is increased, this percentage value decays as shown
in Fig. 6. In doing so, Fig. 6 illustrates that the severity of the
disease increases when the infectivity rate due to mutations
increases. In fact, in the context of the Alpha variant, it has
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Fig. 6 Impact of a SARS-CoV-2 mutation that exhibits an increased
infectivity rate β on the critical target cell concentration Tcrit . The
graph was computed from Tcrit = k1k2/(pβ) with parameter values
taken from patient 1. Tcrit is shown on the vertical axis as Tcrit,rel as
percentage value of the pre-infection level Tst
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Fig. 7 Comparing mutations that vary with respect to the clearance
parameter k2 on the basis of Tcrit,rel . Mutations X and Y indicate
mutations that exhibit the lowest and highest values of k2, respec-
tively, considered in the comparison. The graph was computed from
Tcrit = k1k2/(pβ)with parameter values taken from patient 1. See text
for details

been suggested that the disease severity of the Alpha variant
is increased as compared to the original SARS coronavirus
2 [13].

Figure 7 demonstrates a mutation-related mechanism
leading to a lower chance of the occurrence of severe dis-
ease cases. As reviewed above, preliminary data suggest
that the Omicron mutation may induce primarily mild cases
of COVID-19 as compared to the Delta mutation [54].
This would be consistent with assuming that the clearance
parameter k2 is larger for the Omicron variant. In order to
demonstrate the effect of a mutation-related increased k2
value, the parameters of patient 1 were used again. k2 was
varied from the estimated value of patient 1 to a value 5 times
larger than the estimated one.Accordingly, k2,rel ranged from
100% to 500%. The relative critical target cell concentration
as defined above, was computed as a function of k2,rel .

Figure 7 shows that the relative critical value Tcrit,rel
is a linearly increasing function of k2,rel , which also can
be deduced from the aforementioned equation Tcrit =
k1k2/(pβ). High levels of Tcrit,rel imply that the disease
causes less damage in the human body before it enters
the decline stage. Consequently, Fig. 7 illustrates how a
mutation-related increase of k2 may result in a less severe
progression of COVID-19. Having said that, more detailed
discussions based on patient data are needed to obtain a clear
picture about the virus dynamics of variants of the SARS
coronavirus 2. In this context, Figs. 6 and 7 illustrate that the
framework discussed in the current study may be applied.

5 Conclusion

Although eigenvalues analysis is a frequently used tool in
various disciplines, its full scale application to examine viral
load data of COVID-19 patients has not yet been discussed
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in the existing COVID-19 research literature. This paper
proposes to take advantage of the concepts of unstable eigen-
vectors, on the one hand, and time-dependent eigenvalues,
on the other hand. Disease-related unstable eigenvectors and
time-dependent eigenvalues can be identified in COVID-19
patients using a model-based data analysis approach. That
is, in order to conduct the proposed approach a combina-
tion of modeling and data analysis is required. The paper
demonstrates that it is the unstable eigenvector that deter-
mines the initial stage of the disease in a patient and it is the
sign-switching of the time-dependent associated eigenvalue
that indicates the beginning of the decline of the disease in
the patient. In short, the conclusion can be drawn that eigen-
value analysis in its comprehensive way as it is presented
in the current study helps to understand both the initial and
the final stages of the disease. As a promising result, the
analysis of data from a sample of eight patients suggests
that differences in disease progression between patients are
picked up by the aforementioned time-resolvedmeasure, that
is, the time-dependent eigenvalue. Therefore, the suggested
approach may open a new avenue for personalized medicine,
in particular, in the field of COVID-19.
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