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Abstract

This paper describes an ensemble cluster analysis of bivariate profiles of HIV biomarkers, viral load and CD4 cell counts,
which jointly measure disease progression. Data are from a prevalent cohort of HIV positive participants in a clinical trial
of vitamin supplementation in Botswana. These individuals were HIV positive upon enrollment, but with unknown times of
infection. To categorize groups of participants based on their patterns of progression of HIV infection using both biomarkers,
we combine univariate shape-based cluster results for multiple biomarkers through the use of ensemble clustering methods.
We first describe univariate clustering for each of the individual biomarker profiles, and make use of shape-respecting distances
for clustering the longitudinal profile data. In our data, profiles are subject to either missing or irregular measurements as well
as unobserved initiation times of the process of interest. Shape-respecting distances that can handle such data issues, preserve
time-ordering, and identify similar profile shapes are useful in identifying patterns of disease progression from longitudinal
biomarker data. However, their performance with regard to clustering differs by severity of the data issues mentioned above. We
provide an empirical investigation of shape-respecting distances (Fréchet and dynamic time warping (DTW)) on benchmark
shape data, and use DTW in cluster analysis of biomarker profile observations. These reveal a primary group of ‘typical
progressors,” as well as a smaller group that shows relatively rapid progression. We then refine the analysis using ensemble
clustering for both markers to obtain a single classification. The information from joint evaluation of the two biomarkers
combined with ensemble clustering reveals subgroups of patients not identifiable through univariate analyses; noteworthy
subgroups are those that appear to represent recently and chronically infected subsets.

Keywords Ensemble clustering - Shape-respecting distances - Dynamic time warping - HIV biomarkers - HIV disease
progression

1 Introduction about disease progression, but combining information from
multiple marker profiles from a patient population is chal-
Many diseases have characteristic molecular and cellular pro- lenging. The goal of this paper is to use cluster methods to

cesses that define patients’ movement through their disease  evaluate patient groups in terms of their joint biomarker pro-
course; biomarkers that characterize these processes are often  file behavior. Cluster analysis, a widely used unsupervised
used to establish prognosis and to guide treatment. Individual =~ machine learning tool, investigates whether a collection of
trajectories of biomarker profiles over time are informative  objects can be grouped into cohesive subsets, as grouping
structure can shed light on the processes that underpin group
. membership. We focus on cluster methods for trajectory or
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shape-respecting distances. Shape-respecting distances are
important in clustering disease progression trajectories, as
they capture overall patterns of behavior while providing the
flexibility needed to handle irregular times of measurement,
variable numbers of profile observations, and retain time
order of observations. We then use ensemble cluster methods
to combine the information derived from univariate cluster-
ing to reveal joint behavior of multiple profile types. The goal
is to combine across multiple trajectory profiles to evaluate
patterns of disease progression that are not detectable from
univariate clustering. We first use the shape-respecting dis-
tances in generating individual input dendrograms for each
biomarker under study, and then aggregate the input dendro-
grams of each biomarker to a single output clustering that
synthesizes the information of the individual biomarker-level
clustering. Our application makes use of data from a cohort
of Human Immunodeficiency Virus (HIV)-infected patients
with unknown time of infection, who were recruited at differ-
ent disease stages and times from initial infection. Our goal
is to identify patients whose disease progression follows a
similar course (although perhaps at different speeds) via our
ensemble clustering approach.

The HIV biomarkers we model, CD4 T-lymphocyte count
(CD4) and viral load (VL), are commonly used for HIV
monitoring, and are often used in tandem to ascertain dis-
ease progression, estimate time of treatment initiation, and
evaluate treatment efficacy [1,2]. CD4 T-cells belong to a
class targeted by HIV and provide information on disease
course. Our methods address heterogeneity in disease pro-
gression that allows individuals to be grouped into subsets
based on marker trajectories [3]. Categories of HIV progres-
sion that have been reported include fast-progressors, durable
non-progressors and typical progressors. There has been con-
siderable research effort to distinguish between groups of fast
and slow progression to better inform treatment decisions
[4,5]. Our goal is to characterize heterogeneity in HIV disease
progression and to identify distinct patient subgroups. Such
investigations are complicated by lack of available models
that can accommodate highly variable trajectories and lack
of knowledge regarding infection times. Profile clustering
techniques for identifying trajectory clusters mostly depend
on regularly spaced data, as are typically observed in time
series [6,7]. Such data are not generally available for patients
in HIV studies, due to participant drop-out, missed measure-
ments and irregularly spaced measurement times, but the
degree of departure from the regularly spaced ideal varies
across studies. Here, we investigate methods that allow us to
cluster biomarker trajectory data into subgroups using two
related shape-respecting distances, Fréchet and dynamic time
warping (DTW), each of which accommodates missing mea-
surements and irregular spacing, and importantly, preserves
the time ordering of the data. Use of a distance that incorpo-
rates profile shapes (which depend on observation ordering),
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while allowing for flexibility in number and spacing of obser-
vations, enables assessment of similarity of profiles without
the need for exact time referencing.

Dealing with sparseness in marker measurement data and
its impact on investigation of viral load effects on transmis-
sion risk is also an important challenge in HIV, SARS CoV-2
and other infections. There can be major departures from
typical progression for different reasons such as exposure to
other pathogens and/or host genetic background, in addition
to disease stage. Understanding factors that induce different
progression patterns is a key question in HIV research, as
such patterns impact choices of treatment strategies [4,5].
Standard approaches for analyzing trajectory data, such as
random effects models, permit a regression approach that can
shed light on determinants of trajectory behavior, but gen-
erally require restrictive assumptions regarding smoothness
and regularity of trajectories, including strong distributional
assumptions on error structure. Thus, direct application of
mixed effects models to trajectory profile data can be dif-
ficult when latent subgroups are present. We investigate a
clustering approach based on between-trajectory distances
to delineate trajectory subgroups in the set of profiles with-
out the need for strong parametric assumptions.

2 Related work: trajectory clustering

Many clustering methods rely on defining distances as a way
of quantifying the level of similarity between the objects to
be clustered (in our case, longitudinal and trajectory data).
Partitional clustering such as k-means for trajectory data uses
distances between profiles and iterative cluster centers, such
as has recently been demonstrated by Genolini, who imple-
mented an algorithm in R [8,9]. In hierarchical clustering
methods, all pairwise distances between objects are com-
puted, and agglomerative or divisive methods act on the
distance matrix. The most widely used methods for com-
puting inter-profile distance are based on Minkowski-type
distances for objects in a normed vector space—in particular
Euclidean and Manhattan distances. These distances require
that all profiles be of the same length to be computed, and
are invariant to order permutations [10,11]. Ordering of val-
ues should be a key component of the inter-profile distances,
as ordering gives each profile its characteristic ‘shape.” We
consider elastic distance measures Fréchet [12] and dynamic
time warping (DTW) [13] for the reasons described above.
We focus on the related Fréchet and DTW distances for
profile clustering, as recent comparisons of performance of
elastic distance measures such as DTW in time series show
very favorable performance over alternatives [14]. These
distances have been used for comparisons of time series,
longitudinal data, and in functional data analysis [13], [15—
17], in applications such as curve comparisons in household
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energy consumption [18], GPS track data [19], and EEG sig-
nals in neuroscience [20].

Fréchet distance and DTW both rely on acceleration/
deceleration transforms of the time axis to identify similar
trajectory shapes with similar patterns over time that differ in
relative timing. We first describe Fréchet distance to establish
notation and describe ordering, and then present DTW as a
related distance. For continuous curves f and g in a metric
space equipped with a distance d (possibly each defined over
different intervals), the continuous Fréchet distance between
f and g is given by:

ScontF (f. 8) = (ixn/g max, d(f(a(r)), g(B(1))), ey

for «, B arbitrary continuous nondecreasing functions from
[0, 1] to the respective intervals of f, g.

Discrete Fréchet distance is defined for polygonal curves,
where each curve is represented with a sequence of con-
nected line segments, and only uses distances between
the nodes of the curves in its construction. It relies on
defining a coupling L between the curves P and Q with
nodes at (uy,...,up) and (v, ..., vy), as the sequence,
(Uays Vby)s May, Vby)s - -, (Ug,,, Up, ) of distinct pairs from
each node set subject to the following index constraints:

al:l,am:p blzl»bm:q
aiv1 =ajora; +1 bjy1 =bjorb; +1

These index constraints preserve ordering of the measure-
ments along the curve. The notion of a coupling has a
parallel in the definition of DTW as well. Defining the length
|IL|| associated with the coupling L as the longest distance
between points in the coupling gives the definition of the
discrete Fréchet distance as:

8discr (P, Q) = min{||L]| for L
a coupling of P and Q}. (2)

for all possible couplings subject to the above constraints.
This distance defines a discrete metric on the set of polygonal
curves that provides an upper bound to the continuous Fréchet
distance, and is efficiently computable in O(pg) runtime via a
dynamic programming algorithm [21-23]. Fréchet distance
is considered a shape-based distance, based on its reliance
on a maximum which emphasizes geometric features of the
trajectories being compared [24].

Related to discrete Fréchet distance is dynamic time warp-
ing (DTW), which determines an optimal mapping between
two time series (not necessarily of equal number of time
points) by ‘warping’ the two series vectors onto a set of points
such that the summed distance between them is minimized

[13,25,26]. This allows for local elastic stretching and com-
pression of the time sequences so that similar shapes that
occur with difference in timing or phase can be detected
and aligned. The DTW algorithm defines a warping path
between two polygonal curves P and Q that aligns the ele-
ments of each, subject to boundary and continuity constraints
that are similar to those described above for Fréchet. The
DTW method then selects the warping path that minimizes
the cumulative distance (typically using Euclidean distance
as the local similarity metric) over the path between P and
Q. Thus,

dprw(P. Q) = min [; d(wm)} ,

where W is a warping path (wq, ..., w,), each w,, is an
(i, j)k element in the alignment of the elements of P with
the elements of Q, d(w,,) is a distance between the curves
at vertices i and j, and the minimum is taken over all pos-
sible paths W. The warping function W for DTW aligns the
time indices of P and Q such that time deformations result
in the curves being brought as close together as possible,
under a monotonicity constraint that retains the ordering
of the points. Thus, the DTW distance is very similar to
discrete Fréchet, with warping curve analogous to the cou-
pling described above, but the former locates a minimum
sum between aligned curve vertices, rather than the mini-
mum maximum distance (‘least of the longest,” across all
couplings) between a single pair of vertices.

2.1 Simulation study to compare performance of
shape-respecting distances

To evaluate the performance of shape-respecting distances
in clustering trajectory data of varying shapes subject to dif-
ferent levels of missingness, we carried out an empirical
investigation of Fréchet and DTW distances for clustering
a benchmark dataset of simulated time series profiles. We
note a recent related analysis of trajectory similarity mea-
sures that does not consider missing data [11]. We used the
cylinder—bell-funnel (CBF) benchmark data—a set of sim-
ulated profiles of different shapes widely used to examine
performance of classification and clustering algorithms [27—
29]. The data consist of vectors of 128 equispaced simulated
noisy measurements from three profile shapes, pre-split into
a training set (n=30) and a test set (n=900); example pro-
files illustrating the shapes are given in Supplemental File 1.
In supervised learning classification applications of the CBF
data, the training set is used to train a classifier. In the context
of clustering, there is no supervised learning or requirement
for separate test/train sets. We used only the training set of
profiles in our simulation to examine the degree of shape clus-
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tering, and to assess the impact of simulated missingness on
performance under the Fréchet and DTW distances. Multiple
implementations of both similarity measures are available,
each of which can have different performance and run times.
We selected implementations that were most equivalent in
terms of weighting and handling of the time axis, to facili-
tate comparison. We used the Fréchet metric as implemented
in the R package kml (v 2.4.1) [8], and the DTW distance as
implemented in R package drw (v 1.20-1) [25].

We simulated missingness in the CBF benchmark data
under an assumption that data are missing completely at
random (MCAR) for 2 preselected levels of missingness
(removal of 25 and 50 percent of data). We used two forms of
the CBF training set, the ‘full’ data, wherein each profile had
the full 128 data points prior to imposed missingness, and a
‘sparse’ version of the CBF training set, wherein each fourth
data point was used. Each sparse profile had 32 equispaced
points prior to imposing missingness. We chose a sparse set
to reflect the wide variability in the numbers of longitudi-
nal observations seen in practical applications, including our
own application area. We generated profile missingness by
removing the appropriate number of data matrix positions at
random and without replacement from the matrix of mea-
surement values. This missingness pattern results in some
profiles with few or no missing observations and others with
considerably more. A plot of one instance of the simulated
missing data for the sparse CBF profile set is provided in the
supplementary material [see Supplemental File 2].

2.1.1 Performance evaluation on benchmark CBF data

Performance evaluation of the two distances in clustering
labeled benchmark data relied on external cluster valida-
tion criteria that provide information on how well the known
CBF shape group labels are captured. We selected Adjusted
Rand Index, the Fowlkes—Mallows Index, and purity measure
to evaluate the agreement between the partitions generated
under each distance measure and the benchmark CBF group-
ings. For these evaluations, the partitions generated under
the two distance metrics for a given simulated dataset (i.e.,
a set of CBF profiles with a given level of randomly gen-
erated missingness) is compared to the partition arising
from the known labels. The objects being clustered are the
n=30 profiles, labeled with their profile shape. The Rand
Index [30] uses the fraction of counts of correctly classi-
fied pairs of elements relative to total number of possible
pairs in the clusters, and serves a basis for the adjusted
Rand Index [31], a corrected-for-randomness extension that
accounts for random appearances of pairs under a general-
ized hypergeometric distribution model for the randomness.
Fowlkes—Mallows Index [32] is the geometric mean of preci-
sion and recall from information retrieval, with higher values
indicating greater recovery of the benchmark labeling by
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the clustering procedure. The purity measure for clustering
relies on a measure of intra-cluster group similarity for a
given partition. It gives a measure of the extent to which
each of the cluster groups contains objects of a single class
[33]. Values near 0 imply poor clustering performance, while
a purity measure of 1 indicates a perfect performance. We
compute these indices for each of the simulated datasets for
both the Fréchet and DTW distance-based clusterings, and
report summary information across the simulated datasets
in Table 1. An example of results from one cluster simula-
tion for each level of imposed missingness for the CBF data
appears in Figure 1. These results imply that relative to DTW,
there tends to be lower variability in the Fréchet indices—and
hence reduced diminishment of performance—as more data
points are removed. Nevertheless, the overall performance
for capturing known cluster labels strongly favors DTW at
all levels of imposed missingness. We note the poor perfor-
mance of standard Euclidean distance relative to DTW for
comparison in the no-missingness case where it is able to be
computed, due to its inability to accommodate misaligned
but similarly shaped profiles. (Although interestingly, it out-
performs Fréchet in the full dataset, likely due to the use of
more of the information in the data, even though misaligned.)
While DTW outperforms Fréchet in our benchmark dataset,
relevant to our application of varied-length biomarker tra-
jectories, theoretical guarantees of performance that would
favor a given metric are generally lacking, thus requiring rel-
evant empirical comparisons for selecting between metrics
or methods [34].

There is an extensive literature on analyzing and com-
paring distance measures applied to trajectories, time series,
speech patterns and other data in the form of profiles
(see [11,35-37]). The primary difference between these
two distance measures is the number of quantities used to
construct the profile-wise difference measure. The accelera-
tion/deceleration transformations inherent in the Fréchet dis-
tance, as well as the warping path used in DTW computation,
would be expected to make these shape-respecting metrics
robust to effects of missing data. We observe that DTW
outperforms Fréchet in terms of recovering known shape
labels, but the effect diminishes as missingness increases.
This happens because Fréchet relies on a single distance
between a specific pair of vertices; random missingness that
does not directly impact that distance does not change the
value. DTW relies on multiple distances via a sum, so the
summed distance is altered as missingness increases. For all
three performance measures, the value gap favoring DTW
over Fréchet shrinks with increasing amounts of missing
data. The alignment feature (the warping path for DTW, or
the coupling that drives the acceleration/deceleration of the
Fréchet distance) is key to preservation of observation order-
ing. Fréchet uses only a small portion of the information from
the alignment—the single maximum distance for each possi-
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Fig. 1 Representative clustering of benchmark CBF data under miss-
ingness. Clustering of single sparse set of CBF benchmark data under
different distance and missingness levels, to illustrate performance of
DTW and Fréchet distances in capturing the known shape labels. Branch
colors highlight the cluster results, leaf labels and colors show true group

ble coupling of curve vertices—and then minimizes that set
of maxima. The DTW warping curve uses an optimization
that employs information from multiple vertices, and thereby
makes use of much more shape information, resulting in bet-
ter cluster performance even as missingness increases.

NN~ ANANTT~OANANN T =AANNOOMOMNMNM

identity. The single sparse set with no imposed missingness is repre-
sented in the top level figures. A single simulated sparse dataset with
25% and 50% missing observations are represented in the second and
third levels of figures, respectively

3 Ensemble clustering for multiview
longitudinal data

We next address how to use ensemble clustering methods
to combine the information from multiple biomarkers. Most
work in consensus or ensemble clustering (both terms are
used in the literature) has focused on ensembling to improve
the performance of individual clusterings. A primary moti-
vation for consensus methods is to enhance the quality or
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robustness of the consensus result over that of the individual
base clusterings, with most base clusterings arising from mul-
tiple runs of the clustering algorithm (for instance, several
runs of k-means with different starting centroid positions,
or different values of k). Also, most of it has focused on
partitional clustering such as arise in k-mean-type cluster-
ing methods (see [38,39]), with much less attention paid
to ensembling of hierarchical cluster results. Recent work
addressing consensus of hierarchies includes [40,41] and
[42]. Use of ensemble methods for multiview clustering,
where a single dataset provides multiple measurement sets
(‘views’) from different measurement modalities, appears
less frequently as an application. Ensemble methods in the
multiview case proceed with the different goal of finding a
single unified clustering that best synthesizes the information
content in each of the multiple views. In this framework, each
view is a base clustering, and the goal of ensemble methods is
to summarize the multiple views into a single clustering. We
focus on agglomerative hierarchical clustering to generate the
base clusters, and the ensembling combines the information
contained in the base dendrograms.

Unlike ensemble clustering for partitions, which acts on
the sets of cluster labels in each base clustering, ensembling
of hierarchical clusters can use the information contained in
the full dendrograms. Hence, it is not necessary to ‘cut’ the
dendrogram and generate class labels, but only to specify
the set of input dendrograms. Since a hierarchy is a rooted,
node-indexed nested tree, the information in the dendrogram
includes the nesting pattern and the heights at which different
branches merge during clustering; the ensembling process we
discuss operates on this information content to define dis-
tances between the dendrograms themselves. In combining
multiple hierarchies, we desire methods that use ultrametrics
for the ensemble process, to ensure unique reconstruction of
the terminal consensus result. We provide here a brief discus-
sion of metric and ultrametric spaces to motivate our work
using shape-respecting distances and ensemble methods. A
metric space (X, §) is a set X of points coupled with a distance
8, where the distance has the following properties:

Non-negativity: Vx;, xj in X, 8(x;, x;) > 0
Symmetry : 8(x;, x;) = 8(xj, x;)
Separation: §(x;, xj) =0 &< x; = x;
Triangle inequality: ¥x;, xj, xi in X,

Sl e

3(xi, xp) < 8(xi, xj) + 8(x;, xx)

In an ultrametric space, the distance requires the more
restrictive ultrametric inequality, as a stronger version of the
triangle inequality:

8(xi, xk) < max(8(x;, xj), 6(x;, xx)), Vi, j, k.
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We note that we can weaken the third property above to
the following, resulting in a pseudo-metric space: 3’ : x; =
xj = 6(x;,x;) =0.

The use of ultrametric distance for the consensus mecha-
nism operating on individual dendrograms is key to providing
a unique reconstruction of the ensemble dendrogram. For
each hierarchical base clustering, merge heights and internal
node structure reflect the strength of shape similarity between
pairwise comparators (leaf nodes, which are biomarker pro-
files in our application).

To combine the individual dendrograms requires charac-
terizing their dissimilarities, and these dissimilarities (termed
dendrogram descriptors or distances) are distances derived
from the dendrogram features themselves. Each hierarchi-
cal clustering of N inputs can be associated with an N x N
matrix that portrays the relative leaf node positions in the
dendrogram. Examples of dendrogram descriptors include
cophenetic distance in which the lowest merge distance for
two leaves is used as node dissimilarity, or cluster member-
ship divergence, in which dissimilarity is taken as the smallest
cluster size in the dendrogram that contains two specified leaf
nodes [40]. These dissimilarities form the basis of aggrega-
tion. We state the following:

Proposition: There exists a bijection between an agglom-
erative hierarchy formed on set X using a given agglomerative
procedure C, and an ultrametric space, that is, given a totally
indexed hierarchy H on the set X, we can define an ultra-
metric distance § satisfying the properties above (including
the ultrametric inequality); furthermore, there exists an ultra-
metric space (X, §) with distance § such that H can be exactly
recovered. See [43,44] and references therein for more thor-
ough discussion and proofs.

The above proposition ensures that we can uniquely
generate an ensemble clustering from agglomerative input
dendrograms by employing aggregation methods that result
in an ultrametric distance for generating the consensus.
Aggregation of dendrogram descriptor matrices occurs by
locating an ultrametric that is ‘closest’ to the m input ultra-
metric descriptor matrices, via minimizing a squared distance
(typically Euclidean) to the collection of the m dissimilarities
inherent in the input dendrograms. This step usually pro-
ceeds via heuristics, although explicit solutions to the least
squares problem are available in some special cases (see [45]
for details). We chose the SUMT (Sequential Unconstrained
Minimization Technique) approach of de Soete [46] for car-
rying out this minimization, as implemented in the CLUE
(CLUster Ensembles) package [45,47] in the R statistical
software environment [48]. Thus, the input hierarchies are
rendered ultrametric via converting them to descriptor matri-
ces (in our case, via cophenetic distance), and a consensus
ultrametric is determined via locating the least squares min-
imization of the descriptor matrices to a final ultrametric.
These dendrogram descriptors form a sort of intermedi-



International Journal of Data Science and Analytics (2022) 14:305-318

311

ate toward the final ultrametric construction, which itself is
derived via an optimization. Finally, based on the proposition,
this final ultrametric can then be used to uniquely recover the
consensus dendrogram result.

DTW is not a metric distance, since it fails the triangle
inequality [49]. (Although it is worth noting that in actual
practice, failures of the triangle inequality are extremely
rare, see [50].) Hence, a space of points (in our case, tra-
jectories) accompanied by DTW as a distance does not form
a metric (or thus ultrametric) space. Rather, DTW acts as
a measure of dissimilarity between two curves (satisfying
other properties of a metric, but lacking triangle inequality).
Nonetheless, we can still form a hierarchical clustering using
DTW as (nonmetric) distance. Below, we derive a set of den-
drograms, one each for our univariate biomarker profile sets.
These hierarchies can be mapped (based on the proposition
above) to an ultrametric space. In the multiview setting of
this work, the hierarchical agglomerative algorithm operates
on the same set of observations (patients in our example),
but uses multiple (non-metric) dissimilarity matrices (one
for each biomarker view). The main idea in our approach is
to construct the ultrametric used for the consensus result from
the dendrograms for the biomarker data. By constructing
the ensemble from the dendrograms—not from the origi-
nal matrices of DTW distances for each biomarker—we can
derive a unique ensemble. Thus, we can form an ultramet-
ric consensus matrix D constructed from hierarchies derived
from nonmetric distances that are aggregated using dendro-
gram descriptors [40]. The final outcome is a consensus that
reflects the hierarchies of the original base clusterings for
each biomarker. These input clusterings use shape-based dis-
tances for the trajectories.

4 Application and results

We apply the methods for ensemble shape-based cluster-
ing to a set of longitudinal HIV biomarker profiles. Profile
HIV biomarker data for our study of HIV progression is
derived from a randomized, double-blind placebo-controlled
clinical trial conducted in Botswana to investigate whether
micronutrient therapy delayed disease progression in a preva-
lent cohort of treatment-naive HIV positive individuals [51].
In that study, supplementation was found to have no effect
on viral load, although was well-tolerated in the study popu-
lation. Study participants were enrolled between December
2004 and July 2009, with eligibility criterion of CD4 cell
count >350 cells/uL at enrollment. Study nominal time
period was 24 months, with scheduled biomarker assess-
ment every 6 months (scheduled measurements at months 0
(baseline assessment), 6, 12, 18, and 24). Patient actual study
times ranged from O to 25 months recorded in whole month
increments for this analysis, and deviations from the set visit

schedules were common. We restricted attention to individu-
als who had 4 or more visits over the time period, resulting in
n=646 individuals available for the clustering analyses from
the original cohort (n=875). The mean (median) number of
visits per patient in the original cohort was 4.2 (5), with a
range from 1 to 7; for the analyzed subset, mean (median)
number of visits was 4.8 (5).

We use shape-respecting distances to examine HIV
biomarker profiles for which times of infection that would
‘anchor’ observations in time are unknown. Our analyses
examine the relative behavior of biomarker profiles in a way
that preserves measurement ordering and emphasizes profile
shapes. This choice of analysis is motivated by the notion that
individuals will experience similar patterns of disease pro-
gression, possibly at differing levels of intensity and timing,
which are best captured by grouping participants with simi-
lar trajectory shapes even if they differ in timing of disease
course.

4.1 Univariate profile clustering for HIV biomarker
data

Pairwise DTW distances between each pair of profiles within
each biomarker set were computed in the R statistical soft-
ware environment [48], using the DTW package (v 1.20-1,
[25]). The resulting distance matrices were clustered using
complete linkage hierarchical clustering using the hclust
function available in base R. The standard logjo transfor-
mation was used prior to distance calculations and cluster
analysis for the VL values. Results for the CD4 and VL
biomarkers appear in Figs. 2 and 3, respectively. From these
analyses, three primary CD4 clusters are observed. The
largest cluster includes profiles from 376 of the 646 par-
ticipants; these profiles are observed to have slow, steady
declines with relatively little variability and CD4 cell counts
consistently below 500 (see Fig. 4).

Results for the VL biomarker are less straightforward.
Figure 5 shows VL profiles over time broken out by clus-
ter groups, and highlights several important results. The
VL measurements are highly variable and subject to both
upper and lower quantitation limits (400 and 750,000 counts,
respectively). There were 228, 231, and 187 patients, for the
low, medium, and high VL profile group clusters, respec-
tively. The first two of these groups showed clear increasing
levels of viremia, although both had a pronounced dip in
viremia near the end of the study period (Fig. 5).

Group overlap between CD4 and VL cluster groups is
shown in Table 2. A basic x? test examining the counts of
patients falling into different patterns of CD4 and VL pro-
file shapes shows a highly significant association between
the profile types (x2 = 53.4 on 4 df, p <<< 0.001). Cluster
validity was examined using multiple criteria (Dunn index,
Silhouette index) that provide information on cluster stability
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Fig.2 Univariate clustering
results for the Dikotlana CD4

CD4 profiles clustering under DTW distance

profile measurements under the
DTW distance measure,
showing a three-group
clustering. Cluster groups are
shown with the lowest CD4
profile group in the lightest
shade, and the highest CD4
profile group in the darkest
shade. Plots of patient CD4
profiles in each of the clusters
are shown in Fig. 4
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Fig.3 Univariate clustering
results for the Dikotlana logjg
VL profile measurements under
the DTW distance measure,
showing a three-group
clustering. Cluster groups are
shown with the lowest logjg VL
profile group in the lightest
shade, and the highest logjg VL
profile group in the darkest
shade. Plots of patient logjg VL
profiles in each of the clusters
are shown in Fig. 5
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inunlabeled data [52]. Results are given in Table 3, generated
using the fpc package in R [53]. Silhouette index registers
within-cluster cohesion relative to between-cluster separa-
tion as a measure of cluster validity. As expected, this metric
shows higher value for the CD4 than the VL clustering; the
higher value reflects the lower noise level in CD4 counts. By
contrast, the Dunn index values show similar magnitudes for
both CD4 and VL profiles. This reflects the reliance of the
Dunn index on a maximum (as opposed to average) within-
cluster compactness measure, and implies that CD4 and VL

@ Springer

VL profiles clustering under DTW distance

are likely to have had similar maximum values for this mea-
sure.

Inspection of univariate clustering for both biomarkers
reveals patterns that might be expected from the biology of
HIV progression; we examined these patterns using loess
smooths of the profile collections. It is important to note that
the loess smooths on the grouped profiles were done after
the cluster procedures, and carry out smoothing on the origi-
nal timescale, whereas the DTW-based clustering employed
warping of timescales for each profile in the distance calcu-
lations. We include the loess ex post facto for the purpose
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Fig.4 Patient CD4 profiles by cluster group, corresponding to the clus-
ters shown in Fig. 2. Each individual longitudinal profile is shown in
a single color. When possible each individual profile is shown using a
unique color; larger clusters require reuse of the same color for multi-

of highlighting trends and variability levels on the raw data
scale. Among the CD4 cluster groups, the low CD4 cluster
indicates the slow but steady decline in CD4 levels over the
2 year study period, whereas for the medium CD4 cluster
group, profiles are more variable, are consistently at a higher
CD4 level, and show a somewhat reduced decline over the
study period. The third CD4 group, consisting of only 25
of the 646 profiles, had comparatively high CD4 levels, and
showed strong within-individual profile variability. The high
CD4 counts and irregular profiles imply that this was a small
set of recently infected individuals who had not yet under-
gone pronounced CD4 decline. These patients in the high
CD4 cluster are largely a subset of the individuals in the low-
est VL group; notably this group is also a VL subcluster with
VL profiles maintained near or below viral detection limits,
as expected from the fact that CD4 cells are the virus targets.
These considerations and the strong association between pro-
file groups led us to investigate combining the two biomarker
clustering results to arrive at a single partition of patients
into progression subtypes based on information from both
biomarker profiles.

10
timepoint
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ple individuals. A loess smooth (thick black line, computed on original
time scale for each panel) is added to highlight the overall trend within
each cluster. Times are in months

4.2 Ensemble clustering in HIV multi-marker data

We used ensemble clustering as a means of aggregating
the hierarchical univariate clusterings presented in Sect.
4.1 to examine how the co-behavior of the markers jointly
inform on disease progression. Frequently used approaches
for examining bivariate marker measurements include mod-
eling one marker as a function of the other, or joint modeling
of the biomarkers. The latter requires assumptions about the
trajectory models that are not likely to be met in our data. Our
analytical goal is to examine how the bivariate trajectory pat-
terns help identify groups at different stages of infection or
that experience different patterns of progression.

Ensemble or consensus cluster methods combine profile
contributions at the level of the partition or hierarchy, thereby
providing information on progression types at the level of the
cluster groups. Joint clustering may not produce the same
clusters as does individual level clustering. Our goal is to
find the ‘best’ clustering that summarizes the information in
multiple markers into a single consensus result. This is chal-
lenging, as the univariate base cluster results of the CD4 and
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Fig.5 Patientlogjo VL profiles by cluster group, corresponding to the
clusters shown in Fig. 3. Each individual longitudinal profile is shown
in a single color. When possible each individual profile is shown using
aunique color; larger clusters require reuse of the same color for multi-

Table 2 Cross-tabulation of counts of patients in logjg VL cluster
groups (rows) and CD4 cluster groups (columns). Groupings of low,
medium, and high correspond to the plots of patient profiles in Figs. 4
and 5

CD4 L CD4 M CD4 H
VLL 95 114 19
VLM 144 82 5
VLH 137 49 1

Table 3 Internal cluster validity measures for the univariate cluster
results, for each biomarker

Avg Silhouette Dunn Index
CD4 0.449 0.024
VL 0.344 0.032

VL biomarkers operate on different scales, and with different
amounts of variability in their profiles. The base clustering
inputs for ensembling were the DTW-based CD4 and VL
cluster results. For the consensus methods, we rescaled the

@ Springer

'
10

' '
15 20

timepoint

ple individuals. A loess smooth (thick black line, computed on original
time scale for each panel) is added to highlight the overall trend within
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DTW distances obtained for the log;o VL data, using a multi-
plicative scaling factor of 300. The rescaled distances do not
impact the original base clustering, but render the VL results
onto a similar scale and distribution of distances as CD4 pro-
files; this facilitates a nearly equivalent weighting of the two
base clustering inputs. Consensus cluster results are shown
in Fig. 6, colored with respect to a four-group clustering.
We used the R implementation CLUE (v 0.3-57 [45,47]) to
carry out the computations. Information on the repositioning
of patients into cluster groups, from comparing the univari-
ate results for each biomarker with their grouping under the
consensus result, are given in Tables 4 and 5. We note that
there is a biological rationale for the final consensus results
that supports the number (4) of clusters. In general, identi-
fying the number of clusters remains a very active research
question. Adragni et al. propose a method based on principle
fitted components and sequential testing [54]; Kingrani et al.
review multiple methods and propose an approach based on
diversity measure [55].

An interesting result that emerges in the bivariate analy-
sis using ensemble cluster methods is that the small group
(n=25) of patients identified in the univariate CD4 analysis as
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Fig.6 Dendrogram of ensemble
cluster results for the HIV
patient data, from combining the
univariate cluster results of the
logip VL and CD4 trajectories,
showing a four-group clustering.
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Consensus Cluster of CD4 and scaled VL Hierarchies

Colored bars below the
dendrogram show how the
univariate cluster groups appear
relative to the final consensus
result. Univariate clusters are
represented in the same color
schemes as Figs. 2 and 3
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Table 4 Cross-tabulation of univariate CD4 cluster groups with the
ensemble clustering result

Ens 1 Ens 2 Ens 3 Ens 4
CD4 L 281 95 0 0
CD4 M 131 114 0
CD4 H 0 0 19 6

Table 5 Cross-tabulation of univariate VL cluster groups with the
ensemble clustering result

Ens 1 Ens 2 Ens 3 Ens 4
VLL 0 209 19
VLM 226 0 0 5
VL H 186 0 0

having high CD4 readings are, in the bivariate analysis, more
separated from the remaining patient profiles; evidence for
this is provided by the large merge heights for that group rela-
tive to the other clusters. Thus, the ensemble results retain the
high-CD#4 cluster; but the incorporation of VL profile infor-
mation yields a strong separation of that CD4 group into two
distinct subgroups based on VL behavior—one with rela-
tively low VL counts over time (n=19), and a small group
(n=6) with higher VL profiles. This latter group has charac-
teristics consistent with its being a recently infected subset.

The prominent split of the ‘high CD4 profile cluster’ under-
scores the ability of the ensemble cluster method to identify
prognostic groups using multiple sources of information.
The rearrangement of the larger groups also provides
insight into relationships of interest. Figure 6 provides the
results for both univariate base clusterings in colored bars
beneath the consensus dendrogram. The ensemble results
for the clusters of each marker treated individually show
evidence of subgroupings that are defined by the clusters
of the other biomarker. For example, in the ensemble clus-
ter results for CD4 count shown in the dendrogram in Fig.
6, the leftmost cluster shown (shown in dark purple) con-
sists of almost all of the participants who display lower and
increasing VL values; furthermore, that VL behavior is the
only pattern found in that ensemble cluster. That cluster itself
shows fairly strong subclustering based solely on CD4; it is
divided approximately evenly between participants with a
low CD4 level and those with an intermediate CD4 level;
the merge height provides strong evidence for this subclus-
tering. The phenomenon described above for the biomarkers
suggests clusters and subclusters with consistent patterns of
joint evolution of CD4 and VL; interpreting these patterns
can shed light on the biology driving HIV disease progres-
sion. The ensemble results provide further evidence of the
association between lower CD4 levels and higher VL lev-
els. In addition, the higher VL groups (univariate VL cluster
groups 1 and 3 from Fig. 3) are associated strongly with the
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consensus group 1 (predominated by low CD4 levels), save
for the few profiles that are distinct within the high CD4
subcluster (consensus group 4). These analyses strengthen
the evidence of the association between patterns of the time
courses of CD4 counts and of VL and thereby may provide
insight regarding the dynamic nature of these markers of HIV
progression.

5 Summary

The behavior of biomarkers over time is the primary infor-
mation available for monitoring disease progression and
response to intervention in a patient population, and requires
profile clustering—finding groups with similar prognoses
in unlabeled data. Above, we demonstrated that shape-
respecting distance measures are useful in meeting this goal.
We categorize prognoses of HIV infection into different
groups using biomarker trajectory data from a cohort of peo-
ple at different stages of HIV infection, using our proposed
method combining machine learning using shape-respecting
distances with ensemble clustering. We showed that it is
possible to distinguish between groups of study subjects
based on their bivariate longitudinal profiles and to make
inference on their likely disease stage, without knowledge
of the infection time. Analyses of such data were com-
plicated because of their internal (rather than chronologic)
time referencing, sparsity, irregular time measurements, and
variable follow up as well as detection limits for VL. We
analyzed distance measures that retain measurement order-
ing and provide information on global shape of the profiles,
but allow flexibility of time axis to accommodate the fact
that times of infection for cohort members were unknown.
We combined information from both markers using ensem-
ble learning methods, which accommodate the non-metric
distances used in profile clustering by operating directly
on the cluster dendrograms via ultrametric measures that
combine across individual biomarker cluster results for infor-
mation synthesis. Our results support the notion that within
the cohort of people in Botswana with prevalent HIV infec-
tion, was a small set of recently infected individuals. These
results demonstrate the usefulness of machine learning tools
applied to longitudinal profile data to obtain insights about
progression of HIV infection. The methods provide a unique
modeling tool for leveraging multiple marker profiles, and
could prove an important tool in analyzing longitudinal data
in many infectious disease settings where times of infection
are often unknown.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s41060-022-00323-
2.
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