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Abstract Text-to-speech (TTS) systems are evolving and

making way into numerous commercial systems, such as

smartphones and assistive technologies. Notwithstanding,

their user perceived quality-of-experience (QoE) is still

low compared to natural speech, with distortions arising

across numerous perceptual dimensions, such as voice

pleasantness, comprehension, and appropriateness of into-

nation, to name a few. Unfortunately, the effects of such

perceptual dimensions on overall perceived QoE is still

unknown, particularly across listeners of different genders,

thus making it difficult for TTS developers to further

improve system quality. To overcome this limitation, this

study makes use of exploratory factor analysis (EFA),

confirmatory factor analysis (CFA), and model invariance

tests to shed light on factors responsible for QoE percep-

tion across natural and synthesized speech, as well as male

and female listeners. Experimental EFA/CFA results on a

publicly available database of commercial TTS systems

showed the emergence of two key perceptual dimensions

responsible for TTS QoE, namely ‘listening pleasure’ and

‘prosody’. Model invariance tests validated the reliability

of the model across male and female listeners, as well as

across natural and synthetic voices.

Keywords Confirmatory factor analysis � Exploratory
factor analysis � QoE � TTS � Model invariance

Introduction

Modern day text-to-speech (TTS) systems have shown

tremendous progress since the bandpass-based Voder

developed by Dudley in 1939. The quality of modern TTS

systems has reached a level that allows leveraging syn-

thetic speech in everyday applications, such as audiobooks,

smartphones, computers, assistive technologies and global

positioning systems, to name a few (Hinterleitner et al.

2012). TTS systems have also gained great popularity in

the domain of personal digital assistants (PDAs), such as

Apple’s Siri, Google Now from Google, and Cortana from

Microsoft. The success of these emerging TTS applications

and systems, however, requires systems to output synthe-

sized speech of high quality, thus delivering an optimal

quality-of-experience (QoE) to the user (Hinterleitner et al.

2014).

Back in the late 1970’s, parametric TTS systems, such

as the formant synthesizer, became popular as they were

the first systems that could produce intelligible synthetic

speech (Klatt 1980). The generated speech from such

systems, however, sounded artificial and robotic (Hinter-

leitner et al. 2014). Corpus-based synthesizers were later

introduced and made use of concatenated diphone units;

such systems, however, suffered from sonic glitches that

occurred at the conjunction of two units (Hinterleitner

et al. 2014). Unit-selection based TTS systems, in turn,

appeared in the mid-90’s (e.g., Black and Taylor 1994) and

relied on the selection of units from a large database of pre-

recorded speech while minimizing a cost function. While

such systems sound very natural, poor clarity and intelli-

gibility of short segments has been reported. The latest

developments in speech synthesis are the hidden Markov

model (HHM) based systems (Tokuda et al. 2002) which

are trained on excitation and spectral parameters of human
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speech. The naturalness of HMM-synthesizers has been

shown to be subpar compared to unit-selection synthesiz-

ers. Notwithstanding, they do not suffer from the prosodic

glitches seen with concatenation-based systems (Hinter-

leitner et al. 2014).

Speech impairments generated by existing TTS systems

degrade the perceived quality along different perceptual

dimensions or constructs, thus highlighting the multidi-

mensional nature of synthetic speech quality (Hinterleitner

et al. 2012). Previous research using subjective listening

tests have tried to analyze these underlying perceptual

dimensions. In Kraft and Portele (1995), five different TTS

systems were analyzed using exploratory factor analysis

(EFA), thus revealing two main perceptual dimensions (or

factors) related to TTS quality. The first factor measured

the prosodic and long-term attributes, whereas, the second

factor represented segmental attributes. These findings,

however, did not include unit-selection or HMM based

synthesizers. In Mayo et al. (2005), in turn, a multidi-

mensional scaling (MDS) analysis revealed three percep-

tual dimensions for unit-selection based TTS quality,

namely, prosody, appropriateness, and number of selected

units. More recently, EFA was performed using speech

stimuli from a wide variety of TTS systems, consisting of

both male and female voices (Hinterleitner et al. 2011a).

The listeners scored their perceived quality across several

indicators, including naturalness of accentuation, pleas-

antness, bumpiness, noisiness, intelligibility, and rhyth-

micity, amongst others. EFA analysis reduced these

indicators into three relevant perceptual dimensions,

namely, naturalness, disturbances and temporal distortions

(Hinterleitner et al. 2011a). A similar study with audio-

books revealed two major perceptual dimensions: listening

pleasure and prosody (Hinterleitner et al. 2011b). Lastly,

MDS analysis showed three major perceptual dimensions,

namely naturalness, temporal distortions, and calmness

with these dimensions shown to be correlated with voice

pleasantness and intelligibility, rhythm and fluency, and

speed, respectively (Hinterleitner et al. 2012).

As can be seen, MDS and EFA have been widely used to

extract (latent) perceptual dimensions involved in the

evaluation of perceived TTS quality, thus allowing for

psychometric models to be developed linking latent factors

to perceived quality indicators. The above-mentioned

models, however, have two major limitations. First, the

goodness-of-fit (GOF) of the developed psychometric

models was not measured, thus casting doubt on their

generability. Second, invariance of the model across dif-

ferent groups, such as listener gender, was not explored.

Listener gender has been shown in the past to be a potential

influential factor in TTS assessment (Mullennix et al.

2003), thus further work is needed. Here, we overcome

these limitations by leveraging the use of confirmatory

factor analysis (CFA) in addition to EFA. CFA extracts the

goodness-of-fit of the obtained models, thus measures the

reliability and validity of the developed psychometric

model (Viswanathan and Viswanathan 2005). Moreover,

CFA is also used to establish model equivalence (or

invariance) across listener gender. As an additional step,

we also performed model equivalence between natural and

synthesized speech generated from current state-of-the-art

commercial personal digital assistants (PDAs). To the best

of authors’ knowledge, such comprehensive psychometric

analysis of natural and synthesized speech quality has not

been reported previously.

The remainder of this paper is organized as follows:

Sect. 2 describes the experimental design used for data

collection. Section 3, in turn, describes the EFA, CFA and

model invariance analyses. Sections 4 and 5 show the

experimental results and discussion, respectively. Lastly,

conclusions are drawn in Sect. 6.

Experimental setup

This section details the participants, speech stimuli, rating

dimensions, and experimental protocol used for data col-

lection. Data was collected over two sessions. Data from

the first session (pilot) was used for EFA and from the

second (main) for CFA and model invariance testing/vali-

dation. Data from the second session has been made pub-

licly available (Gupta et al. 2015).

Participants

A total of 28 participants were recruited for the study, six

of which participated in session one (pilot) and 21 in ses-

sion two (main). All participants were fluent in English.

For session one, two were female and the participant

average age was 31.16 (±8.18). For session two, (eight

females), the average age was 23.8 (±4.35). None of the

participants reported having any hearing or neuro-physio-

logical disorders. The study protocol was approved by the

INRS Research Ethics Office and participants consented to

participate in the studies. Participants were compensated

monetarily for their time.

Speech stimuli

Speech stimuli used are listed in Table 1, along with

number of male/female voice recordings and sentence

duration. Stimuli consisted of four natural voices and seven

synthesized voices obtained from commercially available

systems namely, Microsoft, Apple, Mary TTS Unit selec-

tion and HMM, vozMe, Google and Samsung. Tested

systems cover a range of different concatenative, unit
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selection and HMM-based systems. A non-identifying code

is provided for the four natural voices and seven TTS

systems in Table 1. Speech samples were generated from

two sentence groups (A and B), each comprising of four

sentences. The content of sentence groups A and B differed

from each other slightly. Also, the sentences in group B

were slightly shorter as compared to the sentences in group

A. Thus, the total number of stimuli used in this study were

44 (natural voices: 4 ? synthesized voices: 7 = 11 voices 9

4 sets of sentences = 44 stimuli). The speech stimuli also

consisted of both male and female voiced sets of sentences

for five of the seven synthesized voices. The speech stimuli

were presented to listeners via headphones at a sampling

rate of 16 KHz and a bitrate of 256 kbps.

Subjective rating dimensions

In our studies, we presented listeners with 12 subjective

rating scales to gauge their perception of quality and

quality-of-experience (QoE). To this end, typical quality-

related ratings were used, such as those in Hinterleitner

et al. (2011b), as well as users affective state ratings,

which are useful for QoE measurement (Brunnström

et al. 2013). All the items were scored on a continuous

scale. The 12 ratings used are listed below and more

details are listed in Table 2, including the abbreviations

of each dimension used throughout the remainder of this

paper. It should be noted that the affective dimensions of

valence, arousal and dominance were measured using the

self assessment manikins (SAM) (Morris 1995). SAM is

a 9-point non-verbal pictorial assessment technique for

affect measurement. While measuring valence, the first

and last pictures represent negative and positive pleas-

antness, respectively. For arousal the first and last pic-

tures represent unexcited and excited, respectively.

Finally for dominance they represent not in control and

in control nature of affect.

1. Overall impression This scale evaluated the overall

quality of the system considering all the aspects.

2. Voice pleasantness This measured the degree of

voice pleasantness.

3. Speaking rate This measure reflected the listener’s

reaction to the speed of delivery in a real situation.

4. Acceptance This scale measured whether the voice

could be accepted as a Personal Digital Assistant or

not.

5. Intonation This scale gauged whether the produced

pitch curve fits to the sentence type.

6. Naturalness This scale measured the level of natu-

ralness/unnaturalness of the voice.

7. Listening effort This captured the effort required to

listen to a particular voice while listening to it for a

longer duration of time.

8. Comprehension problems This scale measured the

comprehension problems that might have arisen due

to badly synthesized speech.

9. Emotion This item captured the variations of voice

which reflected the atmosphere of the scene being

described.

10. Valence This item captured the attractiveness (pos-

itiveness) or averseness (negativeness), of the voice,

as experienced by the listener.

11. Arousal This item measured the level of mental

alertness/excitation of the listener after listening to

the voice.

12. Dominance This item measured the feeling of

control over the situation after listening to the voice.

Experimental protocol

The experimental procedure was carried out in accordance

with ITU-T P.85 recommendations (ITU-T 2016), with no

secondary task. Participants were comfortably seated in

front of the computer screen inside a sound proof room.

Table 1 Description of the

stimuli used for the listening

tests

Type System Sentence group Male sets Female sets Duration range (s)

Natural 1 A 0 4 17–19

2 A 0 4 18–23

3 A 0 4 17–19

4 B 0 4 13–14

Synthesized 5 A 0 4 19–24

6 A 0 4 17–22

7 A 2 2 17–20

8 A 2 2 18–25

9 A 2 2 17–22

10 A 2 2 17–21

11 A 2 2 13–17
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Insert earphones were placed comfortably inside the par-

ticipants’ ears to deliver the speech stimuli at their indi-

vidual preferred volume levels. The experiment was then

carried out in two phases: a familiarity phase and an

experimental phase. In the familiarity phase, participants

were presented with a sample speech file followed by the

series of rating questions, thus illustrating the experiment

procedure and giving them the opportunity to report any

problem and/or concerns. In the experimental phase, par-

ticipants were presented with a randomized speech stimuli,

one sentence set (approximately 20 s long) at a time.

Following each stimulus, participants were presented with

a randomized series of rating questions on the screen

wherein the participants scored the stimuli on the rating

scales described in Table 2.

Factor analysis

Factor analysis is a multivariate statistical technique which

was developed to test hypotheses regarding the corre-

spondence between scores on observed variables (surface

attributes), or indicators, and the hypothetical constructs

(internal attributes), or latent factors, presumed to affect

such scores (Kline 2013). The foundation of factor analysis

is the assumption that the internal attributes exist. The

internal attributes are the hypothetical constructs that can

be used for understanding and accounting for the observed

phenomenon. The internal attributes are more fundamental

than surface attributes and can not be measured directly;

however, their effects are reflected from the measures of

surface attributes. The basic principle of factor analysis is

that the internal attributes influence the surface attributes in

a systematic manner, thus, measurements obtained from

indicators are, at least in part, the result of the linear

influence of the underlying latent factors (Tucker and

MacCallum 2016).

Factor analysis has three major applications. First, it can

be applied for the reduction of the number of indicators

into a smaller set. Second, it can be used to establish the

underlying dimensions between the indicators and the

latent factors, thus generating or refining the theory.

Finally, factor analysis provides construct validity evidence

of the self-reporting scales (Thompson 2004; Tabachnick

and Fidell 2001; Taherdoost et al. 2014). There are two

discrete categories of factor analysis techniques: explora-

tory factor analysis (EFA) and confirmatory factor analysis

(CFA). The EFA estimates unrestricted measurement

models whereas, CFA analyses restricted measurement

models (Kline 2013). Thus, for CFA the indicator-factor

correspondence needs to be specified, whereas, for EFA

there are no specific expectations regarding number or

nature of underlying factors. The EFA and CFA techniques

are further described in the subsections below.

Exploratory factor analysis

Exploratory factor analysis allows researchers to explore

the main dimensions to generate a theory, or model from a

relatively large set of indicators (Thompson 2004; Pett

et al. 2003; Taherdoost et al. 2014). The EFA is particu-

larly suitable for scale development and applied when the

theoretical basis for specifying the numbers and patterns of

common latent factors is unavailable (Taherdoost et al.

2014). The ultimate goal of EFA is to determine the

number of latent factors that are required to explain the

correlations between the indicators, thus, establishing the

theory. The EFA is based on the common factor model that

postulates that each indicator in a set of indicators is a

linear function of one or more common factors and a

Table 2 Subjective dimensions used in the listening test along with their description and abbreviations used herein

Dimensions Abbreviation Recommendation Description

Overall impression MOS ITUT-T P.85 (ITU-T 2016) 1-Bad,... 5-Excellent

Voice pleasantness VP ITUT-T P.85 (ITU-T 2016) 1-Very unpleasant,... 5-Very Pleasant

Speaking rate SR ITUT-T P.85 (ITU-T 2016) 1-Slow,... 5-Fast

Acceptance Acc ITUT-T P.85 (ITU-T 2016) 1-Strongly don’t accept,... 5-Strongly accept

Intonation Int Hinterleitner et al. (2011b) 1-Melody did not fit sentence type,... 5-Melody fitted the sentence type

Naturalness Nat Hinterleitner et al. (2012) 1-Unnatural,... 5-Natural

Listening effort LE ITUT-T P.85 (ITU-T 2016) 1-Very exhausting,... 5-Very Easy

Comprehension

problems

CP ITUT-T P.85 (ITU-T 2016) 1-Never,... 5-All the time

Emotions Emo Hinterleitner et al. (2011b) 1-No expression of emotions,... 5-Authentic expression of emotions

Valence Val New 1-Negative,... 9-Positive

Arousal Ar New 1-Unexcited,... 9-Excited

Dominance Dom New 1-Not in control,... 9-In control
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unique factor (Thurstone 1947). The common factors are

the unobservable latent factors that influence more than one

indicator in a set of indicators and are presumed to account

for the correlations among the indicators. The unique fac-

tors are the latent variables that are assumed to influence

only one indicator from a set of indicators and do not

account for the correlations among the indicators. The

objective of common factor model is to understand the

structure of correlations among the indicators by estimating

the relationship patterns between indicators and latent

factors indexed by so-called factor loadings (Fabrigar et al.

1999). The goals of EFA for the current study were two-

fold: (1) probe the validity of the factor structure obtained

from Hinterleitner et al. (2011b), and (2) explore the

measured affective ‘‘loadings,’’ i.e. valence, arousal and

dominance, on the obtained factors.

The EFA approach is sequential and linear, and involves

many options, therefore, development of a protocol for

analysis is imperative. There are several methodological

issues associated with the EFA procedure, one of them

being the indicator selection process. The indicator selec-

tion is an absolutely critical step as it determines the

quality of the factor analysis (Fabrigar et al. 1999).

Therefore, for the current study the indicator selection

process involved selection of indicators based on P.85

recommendations (ITU-T 2016) and previous research

(Hinterleitner et al. 2011a, b), that has helped in identify-

ing important hypothetical constructs or latent factors

associated with synthesized speech QoE.

A second methodological issue relates to the sufficiency

of available data for EFA. The first consideration towards

establishing the sufficiency of data is sample size. Various

recommendations and opinions exist regarding the opti-

mum sample size for EFA. For example Comrey and Lee

(2013) suggested that a sample size of 50 is very poor, 100

is poor, 200 is fair, 300 is good, 500 is very good and 1000

is excellent. Moreover, MacCallum et al. (1999) illustrated

that with commonalities greater than 0.6 and with each

latent factor defined by several indicators (Henson and

Roberts 2006), sample size can be relatively smaller. Other

studies, in turn, have suggested that the nature of the data is

what should determine the adequacy of the sample size

(Fabrigar et al. 1999; MacCallum et al. 1999). Another

recommendation towards establishing sample size ade-

quacy is based on sample to variable ratio, denoted as N:p

where N refers to the sample size and p refers to number of

indicators. The rules of thumb for N:p values have ranged

from 3:1 to 20:1 in the literature (e.g., see Costello and

Osborne 2005).

An additional consideration towards establishing data

sufficiency is the factorability of the correlation matrix. A

factorable matrix consists of several sizeable correlations,

therefore, the correlation matrix must be inspected for

correlations above 0.30 for factor analysis to be meaningful

(Tabachnick and Fidell 2001). Finally, the so-called Kai-

ser–Meyer–Olkin (KMO) measure (Kaiser 1970) and

Bartlett’s test of sphericity Bartlett (1950) have been pro-

posed as measures of accurate sampling adequacy (Ta-

herdoost et al. 2014). The KMO measure is indicative of

the proportion of variance among the items that is com-

mon, thus suggesting an underlying latent factor. The KMO

measure varies between 0 and 1, and values above 0.5 are

typically considered to be adequate for EFA (Kim and

Mueller 1978). The Bartlett’s test of sphericity, on the

other hand, tests the hypothesis that the correlation matrix

is an identity matrix, suggesting that all variables are

uncorrelated (Hair et al. 2009). If significance values are

found lower than an alpha level of 0.05, the null hypothesis

is rejected, thus suggesting that the correlation matrix is the

identity matrix and that items are unrelated. In the current

EFA study, the sample size (N) was 264, as 6 subjects

scored 44 speech stimuli, and the number of indicators

(p) used were 11 thus, leading to a N:p ratio of 24:1. The

KMO measure and Bartlett’s test of sphericity are also used

herein to establish sample adequacy.

A third methodological issue in performing EFA relates

to the factor extraction method. There exists several factor

extraction methods, such as principal component analysis

(PCA), principle axis factoring (PAF), and maximum

likelihood (ML) (Costello and Osborne 2005; Hair et al.

2009). The PCA based method computes factors without

any regard to the underlying latent factors, whereas the

PAF based method is used for the determination of the

underlying latent factors related to the indicators (Taher-

doost et al. 2014; Fabrigar et al. 1999). The maximum

likelihood based method, in turn, is more suitable when the

data is normally distributed and allows the computation of

various goodness-of-fit measures for the model (Fabrigar

et al. 1999). The PCA and PAF based methods are the most

commonly used methods for EFA (Taherdoost et al. 2014).

In the present study, PAF based factor extraction was used

as it does not require the data to be normally distributed

and is less likely to produce improper results compared to

ML based methods (Fabrigar et al. 1999).

A fourth methodological issue involves choosing the

factor retention method. The number of factors to be

retained is an important consideration as under- or over-

extraction of factors can result in substantial errors, thus

affecting the efficiency and meaning of EFA (Taherdoost

et al. 2014). There are various criteria for factor retention,

such as Kaiser’s criterion and Scree test. Kaiser’s criterion

recommends to retain all the latent factors that have

eigenvalues greater than one, as this is the average size of

eigenvalues in the full decomposition (Kaiser 1960). The

Scree test, in turn, recommends to explore the graphical

representation of the eigenvalues for discontinuities, as the
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number of data points above the discontinuity represents

the major factors (Hair et al. 2009). In this study, the

number of factors to retain were determined using a com-

bination of both Kaiser’s criterion and the Scree test.

Another EFA related methodological issue involves the

selection of the rotation method. The rotation of factors

helps to produce simplified and interpretable results by

maximizing high factor loadings and minimizing low fac-

tor loadings. There are two categories of rotation tech-

niques namely, orthogonal and oblique rotation.

Orthogonal rotation produces factors that are uncorrelated

to each other, whereas oblique rotation results in factors

that correlate to each other, thus leading to the production

of correlated construct structures (Costello and Osborne

2005). There exists various methods for orthogonal and

oblique rotation, such as varimax, quartimax and equamax

for orthogonal rotation and quartimin and promax for

oblique rotation (Mulaik 2009). In the current study, we

used the promax oblique rotation method for EFA as it

produces simplified factor structures while minimizing the

cross-loadings (Hinterleitner et al. 2011b). The promax

rotation begins with varimax rotation followed by raising

the pattern coefficients to a higher power j (Kappa), that

forces near-zero coefficients to approach zero faster (Mu-

laik 2009). The j value usually ranges between 1 and 4,

and for the current study we used a j value of 4, as in

(Hinterleitner et al. 2011b).

Lastly, the final issue relates to the interpretation of the

produced factor structure and naming the construct based

on the factor loadings. This final step reflects the theo-

retical and conceptual intent and allows for better model

interpretation (Hair et al. 2009). In order to meaningfully

interpret a factor, at least 2 to 3 indicators must load onto

it. The theoretical and conceptual interpretation of the

factors computed in our study was motivated by previous

research reported in Hinterleitner et al. (2011a, b, 2012),

as these were very closely related to the objectives of our

study. The interpretation of the factors involves exploring

the indicator-factor relationships by investigating the

factor loadings. In Hair et al. (2009), authors define a

practically significant cut-off threshold of 0.5 for a factor

loading to be significant and the indicators that loads at

0.5 or higher on two or more factors are considered cross-

loaders. Therefore, in this study a threshold of 0.5 was

used for factor loadings to interpret indicator-factor rela-

tionships. Moreover, towards establishing a more reliable

factor structure, EFA was also performed on random

subsamples of data extending from N = 165 to N = 264

with increments of 2. This exploratory analysis allowed

us to vary the sample to variable ratios from 15:1 to 24:1,

thus further validating the data sufficiency hypothesis.

The key steps involved in performing EFA are sum-

marised in Fig. 1.

Confirmatory factor analysis

The EFA forms the conceptual and theoretical foundation

for the factor models describing ‘indicator-latent factor’

relationships. The confirmatory factor analysis (CFA), in

turn, explicitly and directly tests the ‘fit’ of the factor

model developed using EFA (Thompson 2004). The CFA

requires researchers to have specific expectations regarding

the number of factors, indicator-latent factor relationships,

and the correlation between the latent factors, thus an

established theory is needed for CFA. The CFA allows for

Fig. 1 The key steps involved in exploratory factor analysis
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the direct testing of theory and quantifying the degree of

model fit.

Formulation

The CFA model can be expressed as follows (Anderson

and Gerbing 1988; Vandenberg and Lance 2000):

x ¼ sþ Knþ d; ð1Þ

where x is a vector of ‘n’ indicators, s is a vector of ‘n’

intercepts, n is a vector of ‘i’ latent factors such that i\n,

K is a n� i matrix of factor loadings that relate indicators

to the latent factors, and d is a vector of ‘n’ variables that

represent random errors in measurement and measurement

specificity of the indicators. In most CFA applications, the

intercepts are assumed to be zero and are not estimated

(Vandenberg and Lance 2000). The model also assumes

that the EðndÞ ¼ 0 and that the variance-covariance matrix

for x, denoted as R, is given by:

R ¼ KUK0 þH; ð2Þ

where U is the i� i matrix of n and H is the diagonal n� n

covariance matrix of d.

Methodology

CFA mainly concerns with modelling the latent factors

that account for commonality among the set of indica-

tors. The commonality between measures of a construct

can be depicted using path diagrams (Hoyle 2000). In

path diagrams, the measured variables or indicators are

represented using rectangles and the unmeasured vari-

ables by ellipses. As such, latent factors are represented

using large ellipses and unobserved measurement errors

that affect indicators as smaller ellipses. The causality

relationships are indicated using a single headed arrow,

whereas double-headed curved arrows are used to rep-

resent variances. Two different models exist—principal

factor (reflective) and composite latent variable (forma-

tive)—to describe the causality relationships between

latent factors, indicators and errors of measurement

(Jarvis et al. 2003). The reflective model expects the

latent factors to cause changes in the indicators, whereas

in the formative model the indicators are expected to

affect changes in the latent factors (Jarvis et al. 2003).

The decision rules or guiding principles to choose the

appropriate model are listed in Jarvis et al. (2003).

Based on such rules, the reflective model is shown to be

better suited for the current study. Therefore, the indi-

cators were expected to be caused by two unmeasured

influences: (1) a causal relationship they share with other

indicators (i.e., the latent factor), and (2) a causal

influence unique to each indicator that is quantified using

the errors of measurement (Hoyle 2000).

There are a variety of statistical packages available for

implementing CFA, such as MPlus (Byrne 2013a), AMOS

(Byrne 2013b), and lavaan (Rosseel 2012). For the current

study, we have implemented CFA using the lavaan (Latent

Variable Analysis) package for R. The lavaan package

allows the specification of the CFA model (as implemented

in the path diagram) through the model syntax. The model

syntax is a description of the model that needs to be esti-

mated. The lavaan package allows estimates of various

goodness-of-fit measures for the developed model, as

detailed next.

Goodness-of-fit metrics

The factor model is considered acceptable if the covariance

structure implied by the model matches the covariance

structure of the sampled data (Cheung and Rensvold 2002).

The acceptability of the model is reflected in its goodness-

of-fit (GOF) index. The most common GOF index is the

‘v2’ metric that measures the GOF derived from the fitting

function that measures the relationship between the

observed and the implied covariance matrices. The ‘v2’
metric tests the null hypothesis of ‘v2’ being equal to 0,

which indicates the best possible fit (Cheung and Rensvold

2002). The ‘v2’ test, however, is greatly affected by sample

size (Cheung and Rensvold 2002). Therefore, other GOF

indices have been proposed previously, such as the com-

parative fit index (CFI), normed fit index (NFI), non-

normed fit index (NNFI), incremental fit index (IFI), rela-

tive non-centrality index (RNI), goodness-of-fit index

(GFI), and standardized root mean square residual (SRMR)

(Jackson et al. 2009; Cheung and Rensvold 2002). The

CFI, NFI, NNFI, IFI and RNI indices compare the per-

formance of the model with a baseline (or null) model that

assumes zero correlation between all the indicators. The

GFI, on the other hand, does not compare the model to a

baseline model and is computed based on the amount of

variance explained by the model. Finally, the SRMR index

is estimated by computing the mean absolute value of the

covariance of residuals. Typically, values C0.90 are con-

sidered adequate for the CFI, NFI, NNFI, IFI, RNI and GFI

indices (Bagozzi and Yi 1988; Bentler and Bonett 1980),

whereas a value of SRMR B0.08 (Vandenberg and Lance

2000) reflects the adequate fit of a model. Here, a combi-

nation of these indices is used for model validation.

Measurement and structural invariance

The CFA forms a part of larger family of structural equa-

tion modelling (SEM) methods. The SEM methods are a
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broad class of statistical models that consist of two parts:

the measurement model and the structural model (Jackson

et al. 2009; Beaujean 2014). The measurement model

reflects the relationship between the latent factors and the

indicators, whereas the structural model relates the rela-

tionship of latent factors to each other (Jarvis et al. 2003).

Towards establishing the reliability and validity of the

measurement and structural model, it is important to

establish the between-group invariance (or equivalence) of

the models (Vandenberg and Lance 2000). The measure-

ment and structural invariance of the model help verify: (1)

the conceptual equivalence of the latent factors across

groups, and (2) the equivalence of associations between

indicators and factors and between factors across groups.

The invariance of models is demonstrated by testing a

number of hypotheses regarding measurement and struc-

tural invariance (Vandenberg and Lance 2000).

The first hypothesis tests for the equivalence of the

pattern of zero and non-zero coefficients in the matrix of

factor loadings (K in Eq. 1) (Oort 2005). The hypothesis is

tested by estimating the same model for each group

simultaneously while allowing estimated parameters to

differ. The hypothesis tests for the equivalence of the

models through a v2 test. Therefore, a p value B0.05 rejects

the hypothesis of both the models being equivalent; how-

ever, a p value greater than 0.05 leads to configural

invariance (Beaujean 2014).

The second hypothesis tests for the equivalence of the

unstandardized factor loadings across groups Sass (2011)

by constraining loadings to be equal between groups and is

referred to as metric or weak invariance. An additional test

evaluates the equivalence of unstandardized intercepts or

thresholds across groups by constraining intercepts to be

equal between groups, and is called scalar or strong

invariance. An alternate test evaluates the equivalence of

residuals across groups by constraining error variances to

be equal between groups and is known as uniqueness or

strict invariance (Beaujean 2014). Combined, the configu-

ral, metric, scalar and strict invariances evaluate the mea-

surement invariance of the model as these steps are mainly

concerned with the indicator-latent variable relationships

(Beaujean 2014). Structural invariance testing, on the other

hand, evaluates the properties of latent variables, thus

involves constraining variances, covariances and means of

the latent factors in a stepwise manner.

If the level of invariance for all variables is untenable, a

follow-up analysis is needed to determine which indicators

are contributing to model misfit. This follow-up analysis

involves invariance testing while leaving the non-invariant

indicators in the model and not constraining them to be

invariant across the groups. The resulting invariance model

is said to have partial invariance, that warrants invariance

for most of the parameter estimates with the exception of a

few parameters within an invariance model (Beaujean

2014). The non-invariant indicators are identified using

their modification indices. The modification index esti-

mates the amount of overall decrease in the v2 value if the
previously constrained parameter was freely estimated

(Kline 2013). The modification index is interpreted as the

v2 statistic with a single degree of freedom (Kline 2013).

Measurement and structural invariance of the model can

be interpreted using the response shift theory (Oort 2005;

Sass 2011; de Beurs et al. 2015). The response shift is

defined as: ‘‘a change in the meaning of one’s self-evalu-

ation of a target construct as a result of (a) a change in the

respondent’s internal standards of measurement (i.e., scale

recalibration); (b) a change in the respondent’s values (i.e.,

the importance of component domains constituting the

target construct through reprioritization) or (c) a redefini-

tion of the target construct (i.e., reconceptualization)’’

(Schwartz and Sprangers 1999). The concepts represented

by the factors are reflected in the patterns of zero and non-

zero factor loadings in the K matrix (Oort 2005). There-

fore, according to response shift theory a configural non-

invariance that leads unequal factor loading patterns across

groups, occurs due to reconceptualization. The reconcep-

tualization reflects a change in the meaning of the indica-

tors and, thus, leading to change in the conceptual

representation of the latent factors (Barclay and Tate

2014). Furthermore, the metric non-invariance occurs due

to reprioritization that involves an indicator becoming

more or less indicative of a concept (Oort 2005). The

graphical representation of the reprioritization is shown in

Fig. 2 indicating underestimation of the indicator values

for a group with lower loading values, regardless of the

value of latent construct/factor (Wicherts and Dolan 2010).

For example, let us assume that one of the latent factors for

the present study is listening pleasure and the indicator that

shows reprioritization across natural and synthesised voices

is acceptance with knat [ ktts, in this case it can be said that

the acceptance natural voices will be higher as compared to

synthesised voices irrespective of the listening pleasure

they offer. The scalar and strict non-invariance, in turn,

represent uniform and non-uniform recalibration (Oort

2005). The recalibration process indicates a change in the

internal standards of the participants and if the change

affects all response options in the same direction and to the

same extent then it leads to uniform recalibration (Oort

2005). The graphical representation of the uniform recali-

bration is shown in Fig. 3 indicating underestimation of the

indicator values for a group with lower intercept values,

regardless of the value of latent construct/factor (Wicherts

and Dolan 2010). Moreover, a non-invariant factor vari-

ance model suggests true changes in the variances of the
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factor, whereas a non-invariant factor covariance model

indicates higher level reconceptualization or reprioritiza-

tion (Oort 2005). Finally, a non-invariant factor means the

model reflects true changes in the factor means across

groups (Oort 2005). The key steps involved in performing

CFA followed by measurement and structural invariance

tests are summarised in Fig. 4.

Results

Exploratory factor analysis

The data was first tested for internal consistency relia-

bility using Cronbach’s alpha (a) and a value of a ¼
0:89� 0:03 was obtained, thus establishing the reliability

of the ratings used in the study. Following that, Kaiser–

Meyer–Olkin (KMO) measure of sampling adequacy

along with Bartlett’s test of sphericity were computed to

assess the adequacy correlation matrix for factor

analysis. The measured KMO for the data was 0.94 thus

supporting factor analysis. The Bartlett’s test of

sphericity resulted in significance levels below 0.05, thus

confirming significant relationships between ratings.

These measures established the adequacy of the data for

exploratory factor analysis. As a next step, the number

of factors necessary for EFA was obtained. Both Kai-

ser’s criterion and the Scree test recommended that two

factors be retained (factor 1: eigenvalue = 7.251; factor

2: eigenvalue = 1.05).

Next, EFA was performed using principal axis factoring

along with promax rotation to reduce cross loadings of

Fig. 2 Graphical representation of reprioritization

Fig. 3 Graphical representation of recalibration

Fig. 4 The key steps involved in confirmatory factor analysis and

invariance tests
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items. This resulted in two factors, where the ratings voice

pleasantness, acceptance, listening effort, comprehension

problems and valence loaded on most significantly to

Factor 1. Ratings intonation, emotion, and arousal, in turn,

loaded on to Factor 2, as shown in Table 3. To obtain

meaningful factors, factor loadings below 0.5 were not

considered. Therefore, dominance and speaking rate did

not load significantly on any of the factors. Furthermore,

naturalness dimension was not utilised for further analysis

as it showed high cross-loadings between the two latent

constructs. Also, as visible from Table 3, the sub-sampling

factor analysis, employed to validate the reliability of the

factor structure and data sufficiency, produced similar

factor structure and mean loadings along with very low

standard deviations over the obtained factor loadings.

Moreover, the cumulative variance explained by the two

factors was 57%.

Confirmatory factor analysis

Towards verifying the factor structure obtained from EFA,

a confirmatory factor analysis or CFA was performed. The

model fit parameters obtained from CFA, as reported in

Table 4, validate the model as the fit parameters GFI, NFI,

NNFI, CFI, RNI and IFI were observed to be greater than

0.90 and SRMR was found to be less than 0.08. Following

the CFA, measurement invariance (MI) and structural

invariance (SI) for the model were examined for different

groups in the data. First, invariance tests were performed

between samples from groups of female and male partici-

pants, followed by samples from groups of natural and

synthesized speech stimuli.

MI and SI testing for female and male groups

The results from MI and SI tests between male and female

listeners are reported in Table 5. The configural invariance

model (model 1) proved to have a good fit judging by its

CFI value of 0.979 and SRMR of 0.03. The metric

invariance model (model 2) also resulted in CFI value of

0.980 and SRMR value of 0.033. Moreover, the Dv2 value
between configural and metric invariance model was 3.26

with p value of 0.836 which reflects insignificant difference

between the two models. Thus, it is evident that the

developed model was metric invariant between female and

male raters. Similarly, the Dv2 value between metric

invariance and scalar invariance (model 3) models was

9.85 with p value of 0.131, indicating scalar invariance of

the model. Finally, comparing the scalar invariance model

and the strict invariance model (model 4) the Dv2 value

was found to be equal to 8.66 with p value of 0.372, thus

indicating no significant difference between the models and

establishing the strict invariance of the proposed model.

Moreover, the SI tests involved developing models with

constrained latent variables’ variances (model 5), covari-

ances (model 6) and means (model 7) sequentially. The

developed models were compared against the preceding

model to test for structural invariance. It is important to

note that comparisons between models 4 and 5 and

between models 5 and 6 resulted in v2 tests showing non-

invariance; however, as the DCFI values were lower than

0.01, models 5 and 6 were invariant. From the insignificant

differences between the model, as reported in Table 5, it is

evident that the developed models proved existence of

structural invariance of the model between male and

female listeners.

However, it should be noted that the there was imbal-

ance in the number of female and male voices and listeners.

Therefore, we implemented the measurement and structural

invariance tests with gender balanced listeners (8 female

and 8 randomly selected males) and synthesised voice only.

The results further indicated measurement and structural

invariance between male and female listeners.

MI testing for TTS and natural speech stimuli groups

The results from MI and SI tests between natural and

synthesized voices are reported in Table 6. The configural

Table 3 Factor loadings obtained for each item using EFA

Rating General EFA Subsampling EFA

Factor Loadings Mean Std. Dev.

1 2 1 2 1 2

VP 0.85 0.14 0.847 0.140 0.008 0.009

Acc 0.80 0.15 0.798 0.153 0.007 0.008

LE 0.91 0.03 0.899 0.043 0.010 0.012

CP 20.73 0.13 20.723 0.116 0.012 0.013

Val 0.84 0.09 0.840 0.092 0.008 0.009

Int 0.17 0.74 0.170 0.742 0.012 0.012

Emo -0.12 1.02 -0.109 1.013 0.011 0.012

Ar 0.27 0.52 0.274 0.513 0.012 0.011

Nat 0.45 0.52 0.449 0.520 0.006 0.006

SR -0.20 -0.10 -0.198 -0.102 0.012 0.013

Dom 0.34 0.33 0.335 0.335 0.012 0.013

Bold indicates values greater than 0.5 are significant ([0.5)

Table 4 Goodness-of-fit metrics obtained using CFA

v2 df GFI NFI NNFI SRMR CFI RNI IFI

152.10 19 0.984 0.980 0.979 0.032 0.981 0.981 0.981
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invariance model (model 1) resulted in a well fitted model

as its CFI value and SRMR values were 0.961 and 0.048,

respectively. The metric invariance model (model 2) was

then developed by constraining the factor loadings across

the two groups. The configural invariance and metric

invariance models were then compared using the v2 test,

which resulted in Dv2 value of 65.53 with p value less than

0.01 and DCFI greater than 0.01. Thus, suggesting metric

non-invariance for the developed model across natural and

TTS generated speech stimuli. The source of non-invari-

ance was extracted by exploring the modification indices.

The subjective dimensions of ‘Comprehension Problems’

(CP) and ‘Arousal’ (Ar) resulted in significantly high

modification indices. Thus, allowing CP and Ar to vary in

an unconstrained manner, a partial metric invariance model

(model 2a) was developed. The comparison between partial

metric invariance model and configural invariance model

resulted in Dv2 value of 30.54 with p value less than 0.037,

suggesting partial metric non-invariance. However, the

DCFI value between the two models was 0.006, which is

less than 0.01, thus indicating partial metric invariance

according to the recommendations in Cheung and

Rensvold (2002), which suggests using �DCFI ¼ 0:01

value as a better reflection of model invariance compared

to v2 test. The unconstrained loading values for CP and Ar

indicators, for partially metric invariant model, are reported

in Table 7.

Next, a scalar invariance model (model 3) was devel-

oped by constraining the model intercepts and it was

compared with the partial metric invariant model devel-

oped above. The resulting Dv2 value was 41.72 with p

value less than 0.01 and DCFI greater than 0.01, which

suggests a significant difference between the two models

resulting in scalar non-invariance. The exploration of

modification indices suggested ‘Acceptance’ as the source

of scalar non-invariance. Thus, in the following model Acc

intercepts were unconstrained and a partial scalar invariant

model (model 3a) was developed. For validating the model,

a v2 test between partial metric invariant and partial scalar

invariant models resulted in DCFI value less than 0.01

thus, suggesting partial scalar invariance of the model. The

unconstrained intercept values for Acc indicators, for par-

tially scalar invariant model, are reported in Table 7.

Moreover, a strict invariance model (model 4) was

implemented by constraining the model residuals across

the two groups. The comparison between the partial scalar

Table 5 Measurement and structural invariance testing for groups of female and male raters

Invariance Model v2 df CFI GFI NFI NNFI SRMR RNI IFI Model

comparison
Dv2 D

df

p

value

DCFI

Measurement 1 184.80 38 0.979 0.987 0.974 0.970 0.030 0.979 0.979 – – – – –

2 187.57 44 0.980 0.987 0.974 0.974 0.033 0.980 0.980 1 vs. 2 2.77 6 0.836 0.001

3 197.43 50 0.979 0.987 0.973 0.977 0.033 0.979 0.979 2 vs. 3 9.85 6 0.131 0.001

4 206.09 58 0.979 0.986 0.971 0.980 0.033 0.979 0.979 3 vs. 4 8.66 8 0.372 0

Structural 5 199.41 59 0.980 0.987 0.972 0.981 0.039 0.980 0.980 4 vs. 5 6.68 1 \0:01 0.001

6 206.12 60 0.980 0.986 0.971 0.981 0.037 0.980 0.980 5 vs. 6 6.71 1 \0:01 0

7 208.95 62 0.979 0.986 0.971 0.981 0.039 0.979 0.979 6 vs. 7 2.82 2 0.243 0.001

Table 6 Measurement and structural invariance testing for groups of natural and synthesized speech samples

Invariance Model v2 df CFI GFI NFI NNFI SRMR RNI IFI Model

Comparison
Dv2 D

df

p

value

DCFI

Measurement 1 218.56 38 0.961 0.987 0.953 0.942 0.048 0.961 0.961 – – – – –

2 284.09 44 0.948 0.983 0.939 0.934 0.076 0.948 0.948 1 vs. 2 650.53 6 \0.01 0.013

2a 249.10 42 0.955 0.985 0.947 0.940 0.058 0.955 0.955 1 vs. 2a 300.54 4 \0.01 0.006

3 290.82 48 0.944 0.983 0.938 0.939 0.068 0.944 0.944 2a vs. 3 410.72 6 \0.01 0.011

3a 270.58 47 0.952 0.984 0.942 0.942 0.065 0.952 0.952 2a vs. 3a 210.48 5 \0.01 0.003

4 397.58 55 0.926 0.978 0.915 0.924 0.085 0.926 0.926 3a vs. 4 127 8 \0.01 0.026

4a 318.33 54 0.943 0.981 0.932 0.941 0.068 0.943 0.943 3a vs. 4a 470.75 7 \0.01 0.009

Structural 5 318.95 56 0.943 0.981 0.932 0.943 0.071 0.943 0.943 4a vs. 5 0.62 2 0.73 0

6 319.57 57 0.943 0.981 0.932 0.944 0.070 0.943 0.943 5 vs. 6 0.62 1 0.43 0

7 941.14 59 0.809 0.942 0.799 0.819 0.597 0.809 0.809 6 vs. 7 6210.57 2 \0.01 0.134
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invariant model and strict invariant model resulted in Dv2

value was 127 with p value less than 0.01 thus, suggesting

strict non-invariance of the model. The source of non-in-

variance was ‘Comprehension Problems’ due to high

modification index. The partial strict invariant model

(model 4a) was then implemented by allowing CP residuals

to vary freely across groups. The comparison between

partial strong invariant and partial strict invariant models

resulted in Dv2 value of 47.75 with p value less than 0.01

thus, suggesting partial non-invariance. However, the

DCFI value between the two models was 0.009, which is

less than 0.01 thus, suggesting partial strict invariance

according to the recommendations in (Cheung and

Rensvold 2002).

The SI tests were then performed by developing models

with constrained latent factor variances, covariances and

means, and comparing them with preceding models. The

models with constrained latent factor variances (model 5)

and covariance (model 6) showed invariance as the dif-

ferences between the developed models and the preceding

models were insignificant. However, the model with con-

strained factor means (model 7) was evidently significantly

different compared to previous model that reflects non-

invariance.

Discussion

Exploratory factor analysis

EFA was performed using all the subjective dimensions

except overall impression, as it comprises information from

other dimensions (Hinterleitner et al. 2011b). The EFA

resulted in extraction of two factors, with factor 1 with

loadings from voice pleasantness, acceptance, listening

effort, comprehension problems and valence, and factor 2

with loadings from intonation, emotion, and arousal. Thus,

it is evident that the items which load on factor 1 cover the

listening pleasure and intelligibility of the systems,

whereas items which load on to factor 2 reflect the signal

prosody and rhythm. Moreover, the sub-sampling EFA

validated the obtained factor structure as it resulted in

similar factor loadings with low variations (given by

standard deviation) for each indicator. This indicates

towards the existence of two perceptual dimensions

namely, ‘listening pleasure’ and ‘prosody’ for the mea-

surement of QoE for synthesised speech developed for

personal digital assistants. Furthermore, the findings are in

corroboration with exploratory factor analysis performed

for audiobooks, as reported in Hinterleitner et al. (2011b),

with the exception that in the current study the ‘compre-

hension problems’ scale negatively loaded on factor 1,

rather than cross-loading on both the factors as reported in

Hinterleitner et al. (2011b). This suggests inverse rela-

tionship between comprehension problems and ‘listening

pleasure and intelligibility’ for personal digital assistant

systems.

Previous research using EFA and multidimensional

scaling for extracting the perceptual dimensions of syn-

thetic speech QoE has found three major dimensions

namely, naturalness of voice, prosodic quality and, fluency

and intelligibility (Norrenbrock 2015). However, for

majority of the tests reported in Norrenbrock (2015), nat-

uralness cross-loaded on the first two dimensions, which is

consistent with the findings from our study. This renders

the task of attributing naturalness to a particular perceptual

dimension difficult. Therefore, for model simplification the

naturalness scale was not considered in further analysis.

Furthermore, the valence and arousal scales loaded on

two different factors, factor 1 and 2, respectively. The

valence and arousal scales form the two orthogonal

dimensions of the emotional/affective experience corre-

sponding to positiveness/pleasantness and alertness (Tseng

2014), respectively. Thus, the loading of valence item on

factor 1 further establishes relationship of factor 1 to per-

ceptual dimension of ‘listening pleasure’. Also, the loading

of arousal scale on factor 2 relates stimulus evoked alert-

ness to prosody in speech, which is also corroborated by

previous findings reported in Syrdal and Kim (2008). These

findings indicate that changes in underlying perceptual

constructs of QoE, due to changes in system quality, alters

users’ affective states. Therefore, it is evident that affective

scales corresponding to valence and arousal dimensions are

important for estimating underlying perceptual dimensions

of users’ experience with personal digital assistants.

However, another model for users’ affect utilizes an

additional dimension of the so-called dominance for

describing users’ control over a situation (Bradley and

Lang 1994). The dominance scale did not load significantly

on to any of the two extracted factors. Similarly, the

speaking rate scale did not show any significant loadings

Table 7 Unconstrained

parameter values for partial

metric and scalar invariant

models.

Invariance Model Parameter Indicators Natural Synthesized

Metric Loadings (k) CP -0.36 -0.76

Ar 0.55 0.39

Scalar Intercepts (s) Acc 0.72 0.65
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on either of the two factors. The insignificant factor load-

ings for dominance and speaking rate can be attributed to

their low F-statistic values obtained using ANOVA, as

reported in Gupta et al. (2015), thus suggesting low inter-

class variation compared to intra-class variation for these

scales. Therefore, both dominance and speaking rate scales

were rejected from further analysis.

The EFA established the factor model for confirmatory

factor analysis, as shown in the path diagram depicted by

Fig. 5. The path diagram suggests indicates that the pre-

sented model is reflective, i.e., the latent factors (such as,

listening pleasures and prosody) cause changes in the

indicators (such as, voice pleasantness and intonation). The

factor model consists of two correlated latent factors as

these were estimated using a promax rotation that results in

oblique (non-orthogonal) factors. The first and second

factors can be measured using five and four continuous

factor indicators, respectively. The loadings from factor

indicators and previous research (Hinterleitner et al.

2011b) suggest the first and second factor represent lis-

tening pleasure and prosody, respectively.

Confirmatory factor analysis

The factor model for evaluating the perceptual dimensions

of the synthesized speech QoE was confirmed using the

confirmatory factor analysis as all the model fit parameters

satisfied the goodness-of-fit criteria. This suggests that the

used items serve as good indicators of the underlying

perceptual dimensions. However, measurement invariance

of the developed model needs to be established for it be

useful while applying it to various groups, such as male and

female listeners or natural and synthesized speech. There-

fore, the measurement and structural invariance of the

model were tested following CFA.

One of the limitations of this study is that it leverages

data formed from multiple responses from each individual

listener, while each response being treated as an indepen-

dent observation, which has been criticized in Viswanathan

and Viswanathan (2005). However, given the time and

monetary costs of conducting auditory listening tests it is

difficult to obtain data from more subjects. Moreover, there

have been previous EFA studies (Hinterleitner et al.

2011a, b), along with the EFA studies reported in Viswa-

nathan and Viswanathan (2005), which treated multiple

responses from individual listeners as independent obser-

vations, and concluded with similar factor structures. Fur-

thermore, it is important for the listening tests to include a

wide spectrum of TTS systems to extract more generaliz-

able results (Hinterleitner et al. 2012). Hence, in this study

we utilized speech stimuli from four different natural voi-

ces and seven different PDA systems, based on different

TTS systems.

Measurement and structural invariance for male vs. female

listeners

The model was found to be measurement and structurally

invariant between male and female listeners. The MI

established that the indicators measured similar latent

factors/constructs across groups whereas, the SI tests val-

idated the reliability of the obtained latent factors/con-

structs. This indicates that the developed model can be

used consistently across raters to gauge listening pleasure

and prosodic information of natural or synthetic speech.

However, it should be noted that this study did not incor-

porate any natural male voices and therefore, further work

should evaluate the effects of natural male voices talents on

latent constructs.

Measurement invariance for natural vs. synthesized speech

stimuli

The model was also tested for measurement invariance

between the groups of natural and synthesized speech

stimuli. The model showed weak non-invariance, which

can be attributed to the ‘comprehension problems’ and

‘acceptance’ items. Allowing the CP and Ar items to vary

freely led to partial weak invariance in the model. For the

partially weak invariant model the factor loading of CP was

higher for synthesized speech in comparison to natural

speech, thus indicating reprioritization of CP for synthe-

sized speech. The reprioritization of CP suggests that CP is

more indicative of listening pleasure of synthesized speechFig. 5 The factor model for confirmatory factor analysis
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(Oort 2005). This is further elaborated in Fig. 6 and

Table 7, where the change in listening pleasure for a

stimulus leads to higher change in CP for synthesized

speech compared to natural speech stimulus. Furthermore,

the factor loading of Ar was higher for natural speech in

comparison to synthesized speech, thus indicating repri-

oritization of Ar for natural speech. This indicates that Ar

scale is more relevant for natural speech than synthesized

speech while evaluating prosody Oort (2005). It is further

evident from Fig. 7 and Table 7, where a change in pro-

sody leads to higher change in Ar of natural speech com-

pared to synthesized speech.

Next, the model was tested for strong invariance that

suggested partial strong invariance. The origin of strong

non-invariance was found to be the ‘acceptance’ items,

thus suggesting recalibration (Oort 2005) of this item

between natural and synthesized speech stimuli. The

intercept for natural speech was higher compared to syn-

thesized speech for ‘acceptance’ scale as evident from

Fig. 8 and Table 7. This indicates that the acceptance of

natural speech is higher than synthesized speech regardless

of change in ‘prosody’, thus suggesting a listener bias

while scoring the speech naturalness. Moreover, this indi-

cates that to achieve the acceptance level of natural speech

changing the listening pleasure of synthesized speech is

insufficient.

Furthermore, a partial strict invariance was observed for

the model. The source of strict non-invariance was found to

be ‘comprehension problems’, thus suggesting non-uni-

form recalibration (Oort 2005) of ’comprehension prob-

lems’ between natural and synthesized speech. The non-

uniform recalibration indicates that the response shifts for

individual subjects were in different directions leading to

changes that appear in the variances of the residual factors

(Oort 2005). The measurement invariance tests indicated that the indicators used in the experiment measured similar

latent factors between synthesized and natural speech

samples, thus validating the reliability of the indicators.

Finally, the structural invariance tests indicated that the

models with constrained latent factor variances and

covariances were invariant. However, the model with

constrained factor means showed non-invariance thus,

reflecting true changes in the factor means. The true change

reflects change in listeners’ level of the target latent factors

between the two groups (Oort 2005). Therefore, evidently

natural and synthetic voices would score differently on

listening pleasure and prosody constructs.

Conclusion

The present study involved an auditory listening test where

the listeners were asked to score their perceived QoE of

natural and synthesized voices on various indicators, such

Fig. 6 Graphical representation of reprioritization in comprehension

problems indicator across natural and synthesized speech, based on

Table 7

Fig. 7 Graphical representation of reprioritization in arousal indica-

tor across natural and synthesized speech, based on Table 7

Fig. 8 Graphical representation of recalibration in acceptance

indicator across natural and synthesized speech, based on Table 7
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as voice pleasantness, listening effort and appropriateness

of intonation. Following that, exploratory and confirmatory

factor analyses were conducted to extract perceptual

dimensions or latent factors of the quality space. The two

extracted factors were ‘listening pleasure’ and ‘prosody,’

thus corroborating previous findings based on audiobooks.

Next, a model was developed incorporating relationships

between the indicators and the perceptual dimensions. The

developed model was tested for invariance or equivalence

across groups of male and female listeners, as well as

natural and synthetic voices. The invariance tests estab-

lished the conceptual equivalence of the obtained percep-

tual dimensions across the different groups. Therefore, in

future studies involving the evaluation of natural voice

talents for the development of TTS systems for PDAs or

synthesised voices for PDAs, the nine indicators listed in

the study can be used to measure their listening pleasure

and prosody information. However, a model to measure the

QoE from the latent factors needs to be developed in the

future work.
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Hinterleitner F, Neitzel G, Möller S, Norrenbrock C (2011b) An

evaluation protocol for the subjective assessment of text-to-

speech in audiobook reading tasks. In: Proceedings of the

Blizzard challenge workshop, International Speech Communi-

cation Association (ISCA), Florence, Italy

Hinterleitner F, Norrenbrock C, Moller S, Heute U (2012) What

makes this voice sound so bad? A multidimensional analysis of

state-of-the-art text-to-speech systems. In: Spoken Language

Technology Workshop (SLT). IEEE, pp 240–245. doi:10.1109/

SLT.2012.6424229

Hinterleitner F, Norrenbrock C, Moller S, Heute U (2014) Text-to-

speech synthesis. In: Quality of experience, pp 179–193. doi:10.

1007/978-3-319-02681-7_13

Hoyle RH (2000) Confirmatory factor analysis. In: Tinsely HEA,

Brown SD (eds) Handbook of applied multivariate statistics and

mathematical modeling. Academic press, New york, pp 465–497

ITU-T, P. 85 (2016) A Method for Subjective Performance Assess-

ment of the Quality of Speech Voice Output Devices, Interna-

tional Telecommunication Union, CH-Genf

Jackson DL, Gillaspy JA Jr, Purc-Stephenson R (2009) Reporting

practices in confirmatory factor analysis: an overview and some

recommendations. Psychol Methods 14(1):6

Jarvis CB, MacKenzie SB, Podsakoff PM (2003) A critical review of

construct indicators and measurement model misspecification in

marketing and consumer research. J Consum Res 30(2):199–218

Kaiser HF (1960) The application of electronic computers to factor

analysis. Educ Psychol Meas 20(1):141–151

Kaiser HF (1970) A second generation little jiffy. Psychometrika

35(4):401–415

Kim J-O, Mueller CW (1978) Factor analysis: statistical methods and

practical issues, vol 14, Sage

Klatt DH (1980) Software for a cascade/parallel formant synthesizer.

J Acoust Soc Am 67(3):971–995

Kline RB (2013) Exploratory and confirmatory factor analysis. In:

Petscher Y, Schatschneider C (eds) Applied quantitative analysis

in the social sciences, pp 171–207

Qual User Exp (2017) 2:2 Page 15 of 16 2

123

http://dx.doi.org/10.1109/WASPAA.2015.7336888
http://dx.doi.org/10.1109/WASPAA.2015.7336888
http://dx.doi.org/10.1109/SLT.2012.6424229
http://dx.doi.org/10.1109/SLT.2012.6424229
http://dx.doi.org/10.1007/978-3-319-02681-7_13
http://dx.doi.org/10.1007/978-3-319-02681-7_13


Kraft V, Portele T (1995) Quality evaluation of 5 german speech

synthesis systems. Acta Acust 3(4):351–365

MacCallum RC, Widaman KF, Zhang S, Hong S (1999) Sample size

in factor analysis. Psychol Methods 4(1):84–89

Mayo C, Clark RA, King S (2005) Multidimensional scaling of

listener responses to synthetic speech. In: Proceedings of the 6th

Annual Conference of the International Speech Communication

Association (Interspeech), pp 1725–1728

Morris J (1995) Observations: SAM: the self assessment manikin, an

effecient cross-cultural measurement of emotional response.

J Advert Res 35(6):63–68

Mulaik SA (2009) Foundations of factor analysis, 2nd edn. CRC

Press, Boca Raton

Mullennix JW, Stern SE, Wilson SJ, Dyson C-L (2003) Social

perception of male and female computer synthesized speech.

Comput Hum Behav 19(4):407–424

Norrenbrock C et al (2015) Quality prediction of synthesized speech

based on perceptual quality dimensions. Speech Commun

66:17–35

Oort FJ (2005) Using structural equation modeling to detect response

shifts and true change. Qual Life Res 14(3):587–598

Pett MA, Lackey NR, Sullivan JJ (2003) Making sense of factor

analysis: the use of factor analysis for instrument development in

health care research, Sage

Rosseel Y (2012) lavaan: an R package for structural equation

modeling. J Stat Softw 48(2):1–36

Sass D (2011) Testing measurement invariance and comparing latent

factor means within a confirmatory factor analysis framework.

J Psychoeduc Assess 29(4):347–363

Schwartz CE, Sprangers MA (1999) Methodological approaches for

assessing response shift in longitudinal health-related quality-of-

life research. Soc Sci Med 48(11):1531–1548

Syrdal AK, Kim Y-J (2008) Dialog speech acts and prosody:

considerations for TTS. In: Proceedings of Speech Prosody.

pp 661–665

Tabachnick BG, Fidell LS (2014) Using multivariate statistics. Allyn

and Bacon, Boston

Taherdoost H, Sahibuddin S, Jalaliyoon N (2014) Exploratory factor

analysis; concepts and theory. In: Advances in Applied and Pure

Mathematics, pp 15–17

Thompson B (2004) Exploratory and confirmatory factor analysis:

Understanding concepts and applications. American Psycholog-

ical Association

Thurstone LL (1947) Multiple factor analysis: A Development and

Expansion of the Vectors of Mind. University of Chicago Press,

Chicago, p 535

Tokuda K, Zen H, Black AW (2002) An HMM-based speech

synthesis system applied to English. In: Proceedings of IEEE

Workshop on Speech Synthesis. IEEE, pp 227–230. doi:10.1109/

WSS.2002.1224415

Tseng A, Bansal R, Liu J, Gerber AJ, Goh S, Posner J, Colibazzi T,

Algermissen M, Chiang I-C, Russell JA et al (2014) Using the

circumplex model of affect to study valence and arousal ratings

of emotional faces by children and adults with autism spectrum

disorders. J Autism Dev Disord 44(6):1332–1346

Tucker LR, MacCallum RC (2016) Exploratory factor analysis,

Unpublished manuscript, Ohio State University, Columbus

Vandenberg RJ, Lance CE (2000) A review and synthesis of the

measurement invariance literature: suggestions, practices, and

recommendations for organizational research. Organ Res Meth-

ods 3(1):4–70

Viswanathan M, Viswanathan M (2005) Measuring speech quality for

text-to-speech systems: development and assessment of a

modified mean opinion score (MOS) scale. Comput Speech

Lang 19(1):55–83

Wicherts JM, Dolan CV (2010) Measurement invariance in confir-

matory factor analysis: an illustration using IQ test performance

of minorities. Educ Meas Issues Pract 29(3):39–47

2 Page 16 of 16 Qual User Exp (2017) 2:2

123

http://dx.doi.org/10.1109/WSS.2002.1224415
http://dx.doi.org/10.1109/WSS.2002.1224415

	Latent factor analysis for synthesized speech quality-of-experience assessment
	Abstract
	Introduction
	Experimental setup
	Participants
	Speech stimuli
	Subjective rating dimensions
	Experimental protocol

	Factor analysis
	Exploratory factor analysis
	Confirmatory factor analysis
	Formulation
	Methodology
	Goodness-of-fit metrics

	Measurement and structural invariance

	Results
	Exploratory factor analysis
	Confirmatory factor analysis
	MI and SI testing for female and male groups
	MI testing for TTS and natural speech stimuli groups


	Discussion
	Exploratory factor analysis
	Confirmatory factor analysis
	Measurement and structural invariance for male vs. female listeners
	Measurement invariance for natural vs. synthesized speech stimuli


	Conclusion
	Acknowledgements
	References




