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Abstract
Despite the growing availability of data, simulation technologies, and predictive analytics, it is not yet clear whether and 
under which conditions users will trust Decision Support Systems (DSS). DSS are designed to support users in making more 
informed decisions in specialized tasks through more accurate predictions and recommendations. This mixed-methods user 
study contributes to the research on trust calibration by analyzing the potential effects of integrated reliability indication 
in DSS user interfaces for process management in first-time usage situations characterized by uncertainty. Ten experts 
specialized in digital tools for construction were asked to test and assess two versions of a DSS in a renovation project 
scenario. We found that while users stated that they need full access to all information to make their own decisions, reliability 
indication in DSS tends to make users more willing to make preliminary decisions, with users adapting their confidence and 
reliance to the indicated reliability. Reliability indication in DSS also increases subjective usefulness and system reliability. 
Based on these findings, it is recommended that for the design of reliability indication practitioners consider displaying a 
combination of reliability information at several granularity levels in DSS user interfaces, including visualizations, such as 
a traffic light system, and to also provide explanations for the reliability information. Further research directions towards 
achieving trustworthy decision support in complex environments are proposed.

Keywords  Decision support systems · Trust calibration · Reliability indication · User interfaces · Predictive process 
management

Introduction

Decision support systems (DSS) aim to provide users with 
tools to enhance their decision making process for semi-
structured or unstructured problems [7, 86, 97]. Such 
systems provide reasoning capabilities based on data and Peter Fröhlich and Manfred Tscheligi have contributed equally to 
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communicate these through a user interface. DSS (also 
called “decision aids”) have in the last 40 years been used 
in disciplines such as medicine, manufacturing (e.g., produc-
tion scheduling and process optimization), environmental 
management, GIS planning and farming management [49, 
61]. With the growing capacities of big data and advanced 
data processing approaches, such systems have increasingly 
reached beyond pure descriptive analytics (“what did hap-
pen?”) and offer predictions (“what will happen”) and even 
prescriptive advice (“what should I do?) [58].

DSS are being introduced in an increasing variety of 
application sectors and the complexity of supported tasks 
is rising. Process management in the construction industry 
represents one of the most challenging DSS application 
areas, as the involved tasks are characterized by high 
complexity [9] and thus would require sophisticated 
technological aids to support decisions [1, 45]. This process 
of digitization is fuelled by building information modelling 
(BIM), a mostly descriptive form of DSS that enables the 
fine-grained and dynamic digital representation of physical 
and functional characteristics of a facility [42]. These forms 
of decision support systems are also increasingly introduced 
in the process management of construction projects. Using 
decision aids by BIM has been suggested to be beneficial 
for reducing critical mistakes and omissions, and to 
improve communication between stakeholders involved in 
construction projects [89].

Despite the increasing capacities of DSS, the level of 
adoption by users and relevant stakeholders in everyday 
work practices has found to be still limited [3, 18, 34, 41, 
52, 59]. Also in the construction industry, concerns have so 
far hindered wide uptake of digitized decision support [36], 
namely the necessity for all stakeholders to use consistent 
tools and formats, the learning curve to get accustomed to 
novel technologies, as well as the large data size required 
for BIM [83].

One of the most decisive factors for the acceptance 
and uptake of predictive DSS in general is the trust in the 
decisions and underlying knowledge base [97]. Trust is 
defined as a relation between two or more agents, where 
one or more agents (trustors) depend on the performance 
of another agent’s (trustee) goals in a situational context 
characterized by uncertainty and vulnerability [56]. 
Overtrust in a system can happen when the perceived 
capability is higher than the actual capability, whereas 
undertrust implies that the perceived capabilities are lower 
than the actual capabilities. Users can underestimate the 
likelihood that a system will make serious mistakes at all, 
but they can as well underestimate the consequences if a 
system fails. Trust in a system is calibrated well when neither 
over- nor undertrust occur. In construction and renovation 
projects, practitioners traditionally have limited trust in the 
underlying data [9, 64]. A major factor for the limited trust 

is the uncertainty and complexity of construction projects, 
which can be defined as “the chance of the occurrence of 
some event where probability distribution is genuinely 
not known” [111]. Factors for uncertainty in construction 
projects may be ascribed to a lack of uniformity due to 
constantly changing resources, the effects of climate and 
weather, and the lack of experienced workforce.

Intended contribution and research 
questions

The intended contribution of this paper is to demonstrate 
the effects of reliability indication on prediction strategies, 
decision confidence, trust, and acceptance in complex 
process management under unfamiliar and uncertain 
conditions. Furthermore, insights shall be derived with 
regard to the information requirements for reliability 
indication, both regarding information type and presentation 
granularity in the user interface. The mixed methods 
approach pursued for this purpose contributes with the 
systematic investigation of the effects of reliability indication 
in concrete usage situations (through an experimental 
setup capturing both quantitative and qualitative data), the 
measurement of technology acceptance and trust (using an 
inventory adapted for the specific purpose of the study) and 
the comparative evaluation of novel integrated concepts for 
reliability indication (through experience prototyping and 
reliability modeling). The paper aims to provide an empirical 
research contribution (cf. [109]) to the field of Human-
Computer Interaction (HCI). The research is contextualized 
in process management for building renovation, and it seeks 
to generate conclusions for similar tasks and environments 
characterized by complexity and uncertainty. The specific 
research questions (RQ) are as follows:

•	 RQ1: Does the indication of reliability in Predictive 
decision support systems have effects on users’ 

(a)	 prediction strategies, and
(b)	 confidence in these predictions

in the context of renovation process management (and if yes, 
how can the effects be described)?

•	 RQ2: Does the indication of reliability have effects on 
trust and acceptance of Predictive DSS in the context of 
renovation process management (and if yes, how can the 
effects be described)?

•	 RQ3: Which and how much information should 
reliability indicators provide when integrated in 
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predictive decision support systems for renovation 
process management, such that their users are optimally 
supported in calibrating their trust?

The remaining paper is structured in six parts. First, the 
literature about trust and acceptance theories, approaches 
and empirical evaluations is presented. Then, in Sect. 
"Methodology" the overall study design, the participant 
characteristics, and the procedure of the experimental 
study is described. In Sect. "Results", the findings from 
the different phases of the study are presented, followed 
by their discussion in relation to previous research in Sect. 
"Discussion". The concluding Sect. "Conclusions" proposes 
implications of the study in various respects, critically 
reviews the limitations of the chosen approach, and suggests 
further research activities towards effective and satisfactory 
trust calibration in predictive DSS.

Background and related work

Predictive DSS involve different forms of intelligent process-
ing and automated reasoning [85]. While their current level 
of automation varies, the role of their operators is increas-
ingly transcending from active usage towards more “passive” 
supervisory control (compare characteristics of automation 
experience in [33]. Building on Janssen et al. (2020), [33] 
classify decision support systems as an automated system, 
similar to the classical notion of expert systems, involving 
knowledge acquisition components, and typically operat-
ing in well-defined application areas. Acceptance and trust 
are key requirements when considering human-automation 
interaction and we therefore explain in the following sec-
tions, important aspects of technology acceptance as well 
as trust, reliance and trust calibration.

Technology acceptance

It has widely been acknowledged that user acceptance is a 
major determinant for adoption of information technology 
(IT) in general, and different models have been proposed to 
explain the determinants for acceptance and intention to use 
[98]. User acceptance can be defined as ”the demonstrable 
willingness within a user group to employ information 
technology for the tasks it is designed to support” [24]. Many 
theories for describing and explaining innovation diffusion 
have been proposed (e.g., [88] with an organizational scope, 
which does not account for the individual perspective of 
information systems [13, 97]. Due to its orientation towards 
individual experience, the Technology Acceptance Model 
(TAM), originally introduced by Davis [22, 23], has been 
regarded as the framework of choice when investigating 
acceptance in various application fields [2].

Other models have meanwhile extended the TAM 
model, one prominent example being the Unified Theory 
of Acceptance and Use of Technology (UTAUT; [101]). It 
adds performance and effort expectancy, social influence, 
facilitating conditions, and sociodemographic factors to the 
two factors perceived usefulness and perceived ease of use 
of the TAM model. There are other general models as well 
as a substantial number of technology- and/or sector-specific 
specialized models (see an overview in [2, 102]).

For the more specific system type of DSS, tailored 
technology acceptance models have been proposed, however 
not yet in the area of construction. Shibl et al. [97] present 
a technology acceptance model for DSS that is based on 
the above mentioned UTAUT model [101]. Besides specific 
usefulness and ease of use factors from the clinical sector, 
the authors stress the trust in the knowledge base of a DSS 
as an important determinant for the behavioral intention to 
use it. While the original TAM and its successor models do 
not feature trust as a first-level component, the investigation 
of intelligent, automated and safety critical systems stresses 
trust more strongly [57]. This is reflected by some of the 
adapted TAM versions that deal with automated and 
intelligent systems, also highlighting the role of trust as an 
important antecedent for user intention [32, 103].

A recent meta analysis demonstrates the wealth of factors 
that have found to be associated with technology acceptance, 
comprising 21 variables with 132 intercorrelations [25]. 
However, also limitations of technology acceptance 
modeling have been highlighted [16], most importantly 
the reliance on self-reported use data (instead of observing 
actual usage), the pure focus on a user’s intention (neglecting 
contextual factors) and the limited practical value of abstract 
factors and their correlations. It therefore appears important 
to apply mixed method study designs, by combining 
technology acceptance with observation-based methods and 
qualitative data gathering.

Trust and reliance

There have been many approaches towards the definition 
and measurement of trust [46, 63, 82, 112]. Trust is 
seen as a construct that is relevant both for relationships 
among humans and between humans and machines. A 
frequently used definition of trust stems from the model 
of organizational trust by Mayer, Davis and Schoorman 
[65], p. 712): “the willingness of a party to be vulnerable 
to the actions of another party based on the expectation that 
the other will perform a particular action important to the 
trustor, irrespective of the ability to monitor or control that 
other party.”

As the model by Mayer et al.  [65] is related to interper-
sonal trust, Lee and See [56] adapted it to better account for 
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human-automation interaction. Figure 1, based on Körber 
[51], shows the alignment between their respective models. 
The three dimensions of Lee and See [56]—performance, 
process, and purpose—correspond to the trustworthiness 
ability, integrity, and benevolence from Mayer et al. [65]. 
Körber [51] takes this further and operationalizes these con-
structs and derives a questionnaire for trust in automation. 
As shown in the figure, the sub-scales of this questionnaire 
comprise items on competence and reliability (correspond-
ing to the performance dimension by Lee and See [56], 
understandability and predictability for the process dimen-
sion, and intention of developers for purpose.

Strategies for trust calibration

Designing effective strategies for trust calibration requires 
knowing what information is needed to support trust 

calibration [26]. [70] identified nine factors that are most 
indicative for enabling the inspection of data reliability 
in concrete usage situations in the BIM-context, based on 
qualitative interviews with experts (see Table 1. Following 
a prioritization based on effectiveness and feasibility for user 
interface integration, [70] present design patterns for the 
three highest priority requirements: input type, timeliness 
of input and contractual penalty.

Different approaches for fostering trust calibration in user 
interfaces have been presented. Taking [95] as a starting 
point, these can be categorized in the communication of (1) 
uncertainty, (2) reliability, (3) awareness and intent, (4) alter-
natives, and (5) explanations. A direct way of indicating the 
trustworthiness of a system’s operation or recommendation 

Fig. 1   Model of trust in automation [51], which is based on the postulated dimensions by Lee and See [56, 65]

Table 1   Requirements for 
communicating data reliability 
in Predictive DSS for 
construction and renovation 
management, as derived by 
Mirnig et al. [70]

Information requirement Description

1 Input type Who or what provided an input, estimation or prediction? (method, 
the used system, the user role, level of expertise)

2 Timeliness of input Time period of data input: longer delays make data reliability less 
likely

3 Penalty applying In case of existence of such a penalty, a higher reliability is ascribed 
to it by project managers

4 Appropriateness of abstraction 
level

Follow the degree of abstraction: highlight upfront the level of detail 
of the model

5 Properties and restrictions Highlight the nature, properties and restrictions/uncertainties of the 
underlying model

6 Customization: Filtering It should be possible to filter system output (both with regard to data 
protection and to usability)

7 Customization: specification 
of input provider

It should be possible to define who provided an input and the related 
chosen approach

8 Explainable AI In the case that AI is involved in the data processing, provide an 
indication on which underlying data and models are used

9 Previous reliability checks The system should inform on whether the considered building model 
or respective estimations have undergone previous reliability 
checks
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is to provide a reliability display on the user interface. Often, 
this is realized by a percentage value or an icon (e.g., a “fill 
level indicator”). Such as cue often needs to be tailored to 
the application domain. In map visualizations, the reliability 
regarding location is typically shown as a circle surround-
ing the current position [113]. In the context of autonomous 
driving, the reliability of a system can be shown as an indi-
cator bar beside the main instruments on the car’s dashboard 
[19, 20, 43, 44, 53]. A different type of reliability display 
can be found in military battlefield visualization: Pie charts 
or color density are frequently being used to visualize reli-
ability of the friend/enemy detection in combat situations 
[76, 107].

Another important approach towards supporting trust 
calibration is to correctly communicate the underlying 
level of uncertainty. Communicating uncertainty has been 
addressed in research in general [11, 38], and is a common 
problem across many domains, such as e.g. weather 
forecasts (e.g., [47, 73] or data visualizations (e.g., [21], 
with learnings from these domains being used to inform 

trust calibration. Figs. 2 and 3 show example visualizations 
for communicating uncertainty in these two domains. 
Typically, probabilities are being used when communicating 
uncertainty. One challenge when applying this approach 
is that even well-educated adults have difficulties to solve 
simple probability questions [60]. To avoid these problems, 
qualitative information in labels (e.g. “low uncertainty”) 
have been proposed, but they also can be misleading [106]. 
In addition, whether uncertainty is formulated negatively or 
positively also has a considerable influence on the following 
decision-making process [67]. While no simple one-size-fits-
all recommendation can be deducted from previous work, 
and communication needs to be tailored towards the case 
at hand, there seems to be consensus that communicating 
uncertainty leads to better decisions.

Communicating awareness and intent has mainly been 
researched in two application domains so far: autonomous 
driving and human robot interaction. While some studies 
call for explicit interfaces to communicate awareness and 

Fig. 2   Examples for Communicating Reliability. Left: Location positioning reliability [113], center: driver assistance [53], right: reliability visu-
alizations of friend/enemy detection in combat situations [76]

Fig. 3   Examples for communicating uncertainty: Left: Different ways of showing probability distribution for uncertainty of bus departure times 
[48]; right: showing uncertainty in ensemble weather predictions [39]
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intent [12, 17, 62, 71] other studies suggest that for routine 
situations implicit communication (via movement of the 
vehicle or robot) might be sufficient [90].

In DSS, which are increasingly driven by artificial 
intelligence, transparency cues [108] as well as explanations 
of the underlying data and algorithms have been investigated 
as a means to establish trust by users [94]. In a systematic 
review of 217 studies, [79] found that the explanations in 
most of the studies are strongly related to the underlying 
reasoning process and thus have a strong engineering 
root. However, also interdisciplinary approaches have 
been presented that incorporate cognitive psychology and 
philosophy in order to reframe and reflect the motivations 
and reasons why explanations are to be used in intelligent 
systems [54]. Recently, there have been approaches to 
design for explainability of advanced machine learning to 
non-expert users [15, 27, 75]. So far, the learnings have 
not been transferred to specific application areas, such as 
construction.

Another important element for DSS usage is to 
communicate possible action alternatives with high 
probability to the human user. This allows the user to 
develop expectations regarding possible action outcomes, 
and to prepare for interventions and taking over control in 
case the anticipated actions are problematic. In prior work 
similar problems have been addressed, for example, from 
the perspective of comparative data visualizations [69] and 
also DSS [74, 105]. The results from the data visualization 
research domain appear especially well suited to assist in 
designing information systems for communicating action 
alternatives for trust calibration. van der Waa et al. [104] 
present a framework for making confidence explanations in 
DSS interpretable. They postulate that explanations need 
to (1) be accurate, (2) be able to explain an arbitrary single 
datapoint to the user, (3) use a transparent algorithm, and (4) 
provide confidence that are predictable for humans.

Effectiveness of trust calibration communication

While trust calibration cues in interactive computing systems 
are not widespread in current research or are reflected 
in market-ready systems, the body of research provides 
indicative communication strategies for trust calibration. A 
considerable number of studies suggest positive effects for 
reliability indicators, e.g., for a summarizing value showing 
the likelihood of the success of a system, or a respective 
system function [35]. Antifakos et al. [4] found that for 
a context-aware memory aid, with varying uncertainty 
conditions of context recognition, human performance in a 
memory task is increased when the uncertainty information 
is explicitly increased. The analysis of a video-based 

experiment of mobile device usage by Mayer et  al. [5] 
showed that people rely more on the system when reliability 
information is shown. McGuirl and Sarter [66] found that 
the display of updated confidence values made aircraft pilots 
recalibrate their decisions about in-flight icing encounters 
and led them to more accurate decisions, as compared 
to when using an overall reliability value. Okamura and 
Yamada [81] provide evidence that the adaptive presentation 
of trust calibration cues when undertrust or distrust is 
detected by the system may provide a more effective 
approach than a standard continuous trust calibration cue 
presentation. Chen et  al. [14] demonstrate effects trust 
calibration cues and confirm the central role of calibrated 
trust also for the application context of IT security.

Other studies draw a more differentiated picture of 
the effects of reliability cues. For example, [8] found that 
providing information about reliability increases awareness 
about the automated system, but it did not show significant 
effects on users’ trust. [31] did not find evidence for an 
improvement of sonar detection tasks through providing 
confidence cues. Rukzio et al. [91] evaluated an automated 
form filling form for mobile devices with reliability 
indicators and found that while users spent slightly more 
time, they committed more errors, as compared to a 
standard version without the reliability indicators. [54] show 
positive effects of explanations when they are combined 
with confidence indicators. Zhang et al. [114] show that 
presenting confidence scores can enable calibration of 
users’ trust in an AI-assisted decision-making model, which 
can assist human experts in applying their knowledge to 
improve final decision results. Interestingly, the analysis 
by Zhang et al.  [114] represents only one of few studies 
that consider the impact on domain experts rather than end-
users. For clinical decision support systems, [75] found 
that explanations did not always effectively support users 
in calibrating their trust, due to conflicts with usability and 
required efforts.

xplainability for trust calibration might conflict with 
usability: trust calibration requires extra efforts from users, 
such as reading and interacting with the explanation.

Displaying reliability or uncertainty in DSS has so far 
not yet been systematically regarded throughout application 
sectors. For the area of digital farming, for example, [40] 
state displaying uncertainty to be very promising but also 
that with only two studies in this area [30, 92] the empirical 
basis for this is still insufficient.

Summary

In the last 20 years, trust calibration of intelligent and 
automated systems has received an increasing interest, 
however so far without systematic application and 
integration in industry products. As of now, it remains 
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difficult to derive general implications for user interface 
design, or to tailor these to specific application domains. 
Given the narrow perspectives taken by previous studies on 
trust calibration, there is not yet a clear indication on the 
impact of reliability cues on the user interface of a DSS 
overall, or on its impact on the usefulness and intention to 
use in specific application contexts.

From a methodological perspective, most studies so 
far have not included domain experts as test subjects but 
have invited end-user representatives via crowdsourcing 
applications. Thus, currently no valid insights from 
the perspective of project managers is available, and 
contextualization of the results to construction projects is 
so far not possible.

Methodology

The methodology is grounded in the interdisciplinary 
research methods compendium of HCI (see an overview 
in [55] and follows an equal-status sequential multi-phase 
mixed-methods approach [99] with qualitative methods 
complementing quantitative results for each of the three 
research phases: (quan→qual)→(quan→qual)→(quan→qual). 
Within the available “scientific design space of HCI” [87], 
a method was tailored to investigate the research questions 
with a balanced goal of internal validity and external 

validity [50]. Internal validity was accounted for through an 
experimental design, and external validity was considered by 
the definition of a concrete and realistic usage scenario, by 
the participation of expert practitioners from the construction 
domain (see Sect. "Participant sample", "Technology 
acceptance"). Using functional web-based interactive 
prototypes instead of abstract concepts or paper prototypes 
facilitated richer statements by expert users [93]. In order 
to capture individual interaction behaviors, preferences and 
expectations, individual sessions were organized for each 
participating domain expert (n = 10) instead of a group 
investigation setting. Due to the COVID-19 pandemic, the 
user study was conducted online, using a teleconferencing 
tool that allowed for screen capture and handover of the 
moderator role to enable participants’ interaction with the 
web-based prototype. In compliance with European data 
protection regulations [28] and the ethics requirements of 
the university of the researchers, participants were informed 
about the study contents and their rights, and their signed 
consent forms have been securely stored.

Each of the three main phases of the mixed-methods 
study was designed to address one of the three research ques-
tions (see Fig. 4. In the prediction strategies task that address 
the effects of reliability indicators on users’ prediction strate-
gies (RQ1) participants performed cost prediction tasks with 
a dedicated DSS experimental prototype and reported their 
reasoning and experience using the “thinking aloud method” 

Fig. 4   Overview of study parts, the respective investigation type, the involved conditions (presence of reliability indicator, data reliability), the 
types of gathered data and the expected results for addressing specific research questions
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[77]. In order to understand effects on trust and acceptance 
(RQ2), an inquiry consisting of a comparative questionnaire 
and an accompanying interview was conducted to capture 
the overall reflections from DSS system usage in the predic-
tion strategies-phase (see Sect. "Strategies for trust calibra-
tion". The third and final part was an inquiry on the preferred 
properties of reliability indicators (RQ3).

Participant sample

In order to best account for the target users of predictive 
DSS in the construction industry, the sample was defined 
to be experts in digital construction management and build-
ing information modeling (BIM). Candidates matching 
this requirement were identified and contacted through 
announcements by the national specialist innovation plat-
form for BIM in construction and building management, 
the own professional network, as well as professional social 
networks. As Table 2 indicates, the sample comprised an 
average experience of 11 years working in the construction 
sector, ranging from long-standing managers who have con-
tinuously evaluated and appropriated the domain’s recent 
digitalization trend (longest experience of 27 years) to BIM 
experts entering the professional sector after their educa-
tional specialization (minimum of 2 years’ experience). 
Also, the form of involvement with BIM in ongoing pro-
jects was varied, ranging from 5% (for the corporate BIM 
strategist and overall coordinator) to 100% for BIM spe-
cialists (average: 50%). The mean age was 38.5 years, with 
a minimum of 29 years and a maximum of 56 years. The 
educational background comprised architects and construc-
tion engineers. The involvement in construction roles and 
phases ranged from knowledge transfer, strategy and risk 
management to project planning, expert accompaniment as 

BIM-expert to full project management. An equal gender 
distribution was a dedicated target during the participant 
recruitment process but the response rate of female partici-
pants was low. Nevertheless, the resulting distribution of 
nine male and one female participant is higher than the cur-
rent gender distribution in the European construction sector 
[78, 96].

Cost prediction tasks

As part of the cost prediction tasks participants first received 
an introduction into the renovation project scenario. The sce-
nario consisted of a 1-page description of a renovation pro-
ject for a 7-story building, which had not been renovated for 
30 year. The scenario contained further information about 
the context and road infrastructure as well as a description 
of which parts of the building required renovations and to 
which extent. The participants were then shown the research 
prototype. Figure 5 shows the experimental DSS dashboard 
prototype without reliability indicators. The prototype was 
built on a decision support environment for renovation pro-
ject managers [29], which maps the Plan-Do-Check-Act 
framework [37, 68, 110] to typical phases of a construc-
tion project. For each of the project phases, one specific 
dashboard was available, providing decision support through 
the comparative display of different cost scenarios: effective 
costs with the currently measured costs and three simulated 
scenarios differing in the extent of estimated costs (optimis-
tic, moderate and pessimistic). Colored margins and circles 
in Fig. 5 indicate the extent to which the set threshold has 
been reached. On the right side, the detailed key perfor-
mance indicators (KPIs) could be accessed through a “drill-
down menu”.

Table 2   Overview of Expert Participant Sample

Education Professional role Experience 
(Years)

Phases of involvement BIM experience (Years) 
current usage of BIM 
(%)

1 Architecture BIM Specialist 10 Initiation,planning, education 7 (100)
2 Architecture BIM Specialist 10 Research,education, standardization 8 (50)
3 Architecture BIM Specialist 5 Planningphase 15 (50)
4 Construction Engineering CorporateBIM Strategist 18 Strategy,project monitoring 8 (10)
5 Construction Engineering Project Manager 2 Construction execution 5 (100)
6 Construction Engineering Project Manager 27 Construction execution 3 (5)
7 Architecture BIM Manager 3 BIM-coordination and support of project 

management
3 (80)

8 Architecture, 
Construction 
Engineering

BIM Manager 13 BIM-coordination and support of project 
management

10 (50)

9 Construction Engineering Contractand Risk Manager 5 Offer,planning and contract phases 2 (15)
10 Construction Engineering BIM Manager 15 Offer,planning, contract execution phases 10 (100)
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The prototype version with reliability indication shown 
in Fig. 6 is an adaptation of the above prototype by Mirnig 
et al. [72]. Reliability was presented on different granular-
ity levels: a summary reliability score on the left (a) and a 

reliability score for each of the KPIs on the right (b). Fur-
thermore, explanations (c) were integrated as a dataset 
in a popup window (d). More details about the different 

Fig. 5   Screenshot of the experimental DSS dashboard prototype 
(without reliability indicators). Left side: overview of the effec-
tive costs and the simulated optimistic, moderate and pessimistic 

costs. Colored margins and circles indicate the extent to which the 
set threshold has been reached. Right side: the detailed KPIs can be 
accessed through a “drill-down menu”

Fig. 6   The experimental DSS dashboard prototype with reliability 
indicators. Left side: overview of the effective costs and the simulated 
optimistic, moderate and pessimistic costs. Colored margins and cir-
cles indicate the extent to which the set threshold has been reached. 
On the right side, a drill-down menu offers the detailed inspection of 

scenarios and KPIs. On the very right side, a reliability indicator is 
shown for each KPI. When moving the cursor over the indicator, an 
explanation window shows the underlying information on how the 
reliability estimation has been derived
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granularity levels and the content of the explanations is 
described in Sect. "Strategies for trust calibration".

In order to investigate the effect of reliability indication 
on decision strategies (RQ1), participants were asked 
to predict the costs of a renovation project phase and to 
provide a rating on the confidence in their decision. The cost 
prediction phase was organized as a 2 × 3 within-subjects 
experimental design, with the factors ‘confidence indicator’ 
(present vs absent) and ‘data reliability’ (high, medium, 
low). Each participant was confronted with each of the 
resulting six combinations of presence of reliability display 
and reliability level. The order of these six alternatives was 
varied systematically across participants.

In the high reliability condition, all KPIs in all 
scenarios had a high reliability. Vice versa, in the low 
reliability condition, all KPIs in all scenarios were 
modeled with a low reliability. The medium reliability 
condition contained varied reliability levels across the 
scenarios and across the underlying reliability factors (see 
Fig. 6 as an example, more details are provided in Sect. 
"Strategies for trust calibration". The medium scenario 
was also used as a way to discuss the subjects’ reactions 
and reasonings on the different forms of providing 
explanations. The interactions and experiences the 
participants made in this phase served as the basis for the 
two subsequent phases where participants reflected on 
trust and acceptance, as well as on their preference with 
regard to the future design of reliability indicators.

Inquiry on trust and acceptance

The effect of reliability indicators on trust and acceptance 
was first assessed quantitatively via two 5-point Likert-
scale items. These items were based on the “Trust in 
Automation” scale by Körber [51] and were adapted 
to the scope of predictive DSS (in some cases removal 
and in others rephrasing of scales to fit embodied and/or 
safety-critical systems) Furthermore, in order to assess 
acceptance, the three main aspects of the TAM were 
added to the questionnaire, namely ease of use, usefulness 
and intention to use. As outlined earlier for each phase 
we supplemented the quantitative data with qualitative 
explanations. Here participants were asked to justify and 
explain their ratings.

Inquiry on information type and granularity

In this final phase of the study, to address RQ3, participants 
were asked to share their preferences with regard to granular-
ity and type of information for reliability indication. For each 
of the three granularity levels per KPI, consisting of a sum-
mary score reliability indication and explanations (compare 
Fig. 6, participants were asked by the interviewer to provide 
a Likert-scale rating of whether or not they would agree to 
the statement that they would like to see the respective level 
of granularity in the user interface. They were also asked to 

Fig. 7   Example for the reliability explanation. The three different information types used in the prototype to model reliability- input, input 
recency, and penalty fee—are shown in form of a score and text-based explanation details are provided
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justify their statement. Figure 7 provides an example for the 
explanations that were made available for users when rolling 
with their cursor over a specific summary or KPI-related reli-
ability score.

In order to capture the preferences on the three chosen input 
types, participants were asked to provide for each of them a 
weighting in percent, where the sum should add up to 100% 
per participant. They were then asked an open question about 
which features, in addition to the input type, recency, and 
penalty, they would like to see included in the interface for 
judging data reliability.

Results

In this section the findings of the study are presented 
chronologically per research phase. First, participants 
approaches, views experiences and expectations in response 
to the cost prediction tasks are summarized (Sect. “Cost 
prediction strategies and confidence”. Then, in Sect. “Trust 
and acceptance”, the results of the inquiry on trust and 
acceptance are presented, before Sect. “Type of granularity 
and information” then describes the findings related to the 
compared information-type and the granularity of reliability 
indication in the interface.

Cost prediction strategies and confidence

Results indicate that displaying a reliability indicator seems 
to help users to provide a cost estimation: Table 3 provides 
an overview of participants’ strategies for estimating the 
renovation costs. In the conditions where data reliability 
indicators were shown (middle column), four participants 
consistently chose the moderate cost scenario, and four 

participants adapted the selection of the pessimistic, 
moderate and optimistic scenarios to the respective 
reliability level thus using the indicators for calibrating 
their reliance on the provided information in the DSS. The 
other two participants stated that they could not estimate the 
costs within the given setting. In the decision situations in 
which the DSS did not provide a reliability indicator (right 
column), four participants chose the moderate scenario and 
six could not provide a cost estimation (twice as many as 
when reliability displays are shown). Four participants opted 
for the moderate scenarios regardless of whether a reliability 
indicator was shown or not.

The main reasons for choosing the moderate scenario by 
the participants seemed to be that they were unsure because 
they felt they were missing underlying data, especially about 
the progress of the project, as well as contextual variables 
such as the current weather. Due to this uncertainty, they 
therefore made the “Solomonic decision of going for the 
middle” (P9). One reason from a practical perspective was 
that “costs beyond the moderate scenario would not be 
acceptable” (P1). They then stuck to their decision, because 
they felt that the cost structure was quite similar among the 
scenarios. The two participants who could not make a deci-
sion in either scenario (neither with nor without reliability 
indicators) stated that they were missing details about the 
underlying performance and progress, without which they 
could not match the costs. Three of the four participants who 
oriented their choice towards the reliability indicators, stated 
that they could not make a decision in the situations where 
no reliability indicator was shown.

Table 3   Participants’ strategies for predicting the renovation costs in 
prediction situations with reliability indicators versus situations with-
out reliability indicators

DSS without reliability 
indicator

DSS showing reliability 
indicator

1 Moderate scenario Moderate scenario
3 Could not make a prediction Scenario choice oriented to 

reliability indicators
4 Could not make a prediction Could not make a prediction
5 Moderate scenario Scenario choice oriented to 

reliability indicators
6 Moderate scenario Moderate scenario
7 Could not make a prediction Scenario choice oriented to 

reliability indicators
8 Could not make a prediction Moderate scenario
9 Moderate scenario Moderate scenario
10 Could not make a prediction Could not make a prediction

Fig. 8   Boxplot diagram (median, interquartile ranges, and outlier 
cases) for the participants’ confidence in their predictions in the six 
scenarios under investigation: low reliability, mixed reliability with 
and without reliability. 1 = very unconfident; 5 = very confident. For 
the low and high reliability scenarios, data from 10 participants was 
available; for the mixed reliability scenarios, data from 9 participants 
was available
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In general, as per Fig. 8, the reported perceived confi-
dence when supported by a reliability indication was 2 out 
of 5 (median) and 2.4 out of 5 (mean). This was higher than 
the one without a reliability indication (mean: 1.6; median = 
1). A Wilcoxon test comparing the conditions with and with-
out indicators (mean of the three conditions low, mixed and 
high reliability) resulted in an asymptotic statistical error 
probability value of p  =  0.068 (Z = −1.8). A Wilcoxon test 
comparing between the high reliability situations (the one 
with reliability indication versus the one without) resulted in 
a significant difference of p  =   0.039 (Z = − 2.1).

Apart from citing the unusual situation of being con-
fronted with predicting the costs of an unfamiliar construc-
tion project exclusively based on a dashboard, one important 
mentioned reason was that the participants were missing 
some important types of information. Especially the per-
formance-related data about the progress on the construc-
tion site, and to be able to match these with the costs, were 
indicated as missing by several participants. Furthermore, 
participants would have also appreciated a graphical rep-
resentation of a timeline and richer spatial data (as known 
from BIM systems) in order to get a more fine-grained 

understanding. On the other hand, the prediction scenar-
ios were seen as a valuable support for decision planning 
(Table 4).

As a next step the effect of reliability indicators on partic-
ipants tendency to calibrate their trust was investigated. We 
anticipated that in case of higher trust calibration, increased 
confidence is measured for the high reliability scenarios and 
lower confidence is measured for the low reliability scenar-
ios. The results (see Table 5 show that while reliability dif-
ferences did not statistically differ in the standard conditions 
withoutreliability indication (p > 0.3), in the conditions with 
reliability indication the differences between all three reli-
ability levels is p  =  0.09. We conclude that the presence 
of reliability indicators did enable higher confidence in the 
users’ own predictions as opposed to when no reliability 
indicators are shown.

Trust and acceptance

Table 6 summarizes the results of the trust and acceptance 
questionnaire. Propensity to trust refers specifically in 
this context to an attitude and accordingly was captured 
in our study only once and therefore has the same values 

Table 4   Frequencies of ratings for participants’ confidence in their 
predictions in the six scenarios under investigation: low reliability, 
mixed reliability with and without reliability. 1 = very unconfident; 5 

= very confident. For the low and high reliability scenarios, data from 
10 participants was available; for the mixed reliability scenarios, data 
from 9 participants was available

Without reliability indicators With reliability indicators

Low reliability Mixed reliability High reliability Low reliability Mixed reliability High reli-
ability

5—Very confident 0 0 0 1 1 1
4—. 1 0 0 0 1 1
3—. 1 1 2 2 1 4
2—. 3 3 3 4 3 2
1—Very unconfident  5 5 5 3 3 2

Table 5   Participants confidence 
in their predictions. Summaries 
of test conditions without 
reliability indication (middle 
column) versus conditions 
with reliability indicators 
(right column): median, mean, 
minimum and maximum (1 
= very unconfident; 5 = very 
confident), and comparisons 
between different reliability 
levels

Participants confidence in their predictions

Situations without reliability indicators (low, 
mixed,high reliability)

Situations with reliability 
indicators (low, mixed, high 
reliability)

Median 1 2
Mean 1.6 2.4
Minimum 1 1
Maximum 3 5
Difference low-mixed-

high (Friedman test)
Chi2 = 2.0 Chi2 = 4.8
p  =  0.37 p  =  0.09

Difference low-high 
(Wilcoxon test)

Z = −1.0 Z = −1.9
p  =  0.317 p  =  0.059
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for both system alternatives. When reviewing the system’s 
experienced reliability and competence, most participants 
stated that they could not easily estimate whether the system 
was reliable, as they have only experienced it for a short 
time and as they were missing some important information 
about the actual timeline, the source of the information, 
and project performance indicators. A general trend was 
that the alternative with reliability indication was scored as 
more reliable and capable than without indication. Some 
participants stated that it is difficult to make a prediction 
without an indication about the reliability (P2): “If there 
is no reliability indicator, it is difficult to measure the 
prediction (P2)”. As the difference between the two 
alternatives is significant on the 5% level, Z = −2.3, p  =  
.03, the effect of the reliability indicator in the context of this 
system can be regarded as robust.

In respect of the overall familiarity with predictive DSS 
for construction management, none of the participants 
knew of a similar dashboard oriented process management 
system as the one presented. In a wider sense participants 
mentioned cost simulation programs for offer generation 
(P1), excel-based data management (P8), generic manage-
ment dashboards (P9) or risk management systems in other 
areas apart from cost-related process management (P10) and 
general predictive analytics software (P5). Regarding the 
question on whether participants have already experienced 
reliability indicators in their work context, 7 of the 10 partic-
ipants stated that they did not yet encounter something simi-
lar. P1 reported of some information of whether a certain 
KPI quality assurance has been performed. P2 mentioned 

that he has seen much about a color code. The closest that 
participants could think of were the consultation of pricing 
indices provided by governments or associations (P3), or 
the evaluation of the performance description in the contract 
before the project is conducted (P4). A frequent comment 
already mentioned in Sect. “Cost prediction strategies and 
confidence” was that the richness and transparency of data 
in the background, such as provided through BIM or also 
other tools, such as Excel, would help to understand where 
the data comes from and how trustworthy it is.

Several participants mentioned that trust is built over a 
longer period of time and is also related to the manufacturer, 
provider and brand. Participants stated that if they had built 
trust from such previous experiences, they would also trust 
the system in this situation. For example, P1 stated that he 
would “not trust the system at once but would also not rule 
out the possibility of trusting it [in the future].” The maturity 
of the system also plays a role: “In principle I completely 
trust the system, if the system is market-ready and out of 
the beta-product state” (P6). Another important aspect is 
the general complexity of the construction sector, leading 
participants to limit their trust in a predictive DSS: “my lim-
ited trust is not primarily due to this tool—it is just that you 
have to live with so many surprises, which does not let you 
rely on just one system” (P9). Still, the missing information 
about project progress and performance reported above led 
to a loss in trust with several participants (especially P4 and 
P10).

Regarding the difference between the presence and 
absence of reliability indication, several participants stated 

Table 6   Summary of scores for the responses to the trust and accept-
ance scales adapted from the Trust in Automation questionnaire (TiA, 
[51]l) and the TAM framework [22]. 1 = do not agree at all; 5 = very 
much agree. For both types of DSS (with and without reliability indi-
cation), mean (M), median (MD), minimum (Min) and maximum 
(Max) values are presented. Understanding/predictability and propen-
sity to trust were composed of 2 and 3 subscales, respectively. For 

the comparison between these, in the right part of the table the mean 
and median differences ( Δ M; ΔMD) and the Z- and p-values for the 
Wilcoxon tests (two-tailed) are shown. Since the scale ‘propensity to 
trust’ refers to an initial attitude not related to the actual system under 
investigation, the values for both alternatives are identical, therefore a 
comparison is not applicable

Without reliability 
indication

With reliability indication Comparison

M MD Min Max M MD Min Max ΔM ΔMD Z p

TiA1 Reliability/competence 2.3 2 1 4 3.6 4 1 5 1.3 2 −2.3 .03*
TiA2 Understanding/predictability 1.9 2 1.5 3 3.1 3 1.5 4 1.2 1 1.8 .07
TiA3 Intention of developers 3.5 3 3 5 3.5 3 3 5 0.0 0 0.0 .29
TiA4 Familiarity 3.1 3 1 5 2.6 2 1 5 -0.5 1 1.1 .29
TiA5 Propensity to trust 3.4 3 1 5 3.4 3 1 5 n/a n/a n/a n/a
TiA6 Trust in predictive system 2.2 2 1 4 3.0 3 1 5 0.8 1 1.4 .17
TiA7 Trust in estimation of data quality 2.7 3 1 4 3.4 3 2 5 0.7 0 −1.6 .10
TiA8 Trust in correctness of recommendation 2.3 2 1 4 3.2 4 1 5 0.9 2 −1.6 .10
TiA9 Trust in good decision support 2.4 3 1 4 3.4 4 1 5 1.0 1 −1.8 .07
TAM1 Usefulness 2.7 2 1 5 3.8 4 1 5 1.1 2 −2.0 .04*
TAM2 Intention to Use 2.7 3 1 5 3.6 4 1 5 0.9 1 −1.4 .18
TAM3 Ease of Use 2.9 3 1 4 3.1 3 2 4 0.2 0 −1.0 .32
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that their trust was increased if they have trust cues—or put 
in another way: “if there is no indicator then I cannot trust it 
at all” (P2). For those persons who based estimation of reli-
ability exclusively on the “facts” and calculations (especially 
P4 and P10), the presence or absence of reliability indicators 
consequently did not make a difference. Overall, the score 
for trust in good decision support was higher in the presence 
of reliability indicators than in their absence.

Type of granularity and information

Figure 9 summarizes that all three levels of reliability indi-
cation granularity were highly attractive for most of the par-
ticipants, and Table 7 (left side) shows in more detail the 
scores provided by the participants. As can also be seen, 
the most convincing form of displaying reliability was the 
background information (MD = 5). This was consistent with 
the desire expressed by the participants to get deep insights 
in the data if they needed to.

The indication of reliability displays on the KPI level was 
seen as important (MD = 4.5) in order to be able to compare 
in detail the reliability. There were different views on the 
level of detail to be shown. While on the one hand there were 
doubts that not all details for the KPIs may be needed (P7), 
on the other hand even a higher granularity was asked for 
(P4). For the summary score, the median was still high (MD 
= 4), there was the strongest disagreement and the score 
was lower than one for the explanation, Z = −2.1, p  =  .04. 
Some participants said that it is important to get this first 
overview information: “this should be the result, the most 
important what should come out; while one should have the 
opportunity to dig deeper to get a reliable judgment, but at 
first there should be this summary!” However, there was also 
skepticism, as the complexity of the situation would often 
not allow for providing one single value for reliability, or 
as P4 put it: “this would be the world formula. There are so 
many criteria; for example, there are more than 50 contract 

Fig. 9   Boxplot diagram (MD, quartile range, outliers) summarizing 
participants’ agreement to the statement that they would like to see 
reliability indicators with the respective level of granularity in the 
interface: as a summary for the whole scenario, for each relevant KPI, 
and explanation of the underlying reliability factors. 1 =  would not at 
all agree; 5 =  would fully agree

Table 7   Overview of results per participant on the granularity of 
reliability indication (left side) and the weighting of the underlying 
data reliability factors (right side). Granularity of reliability indica-
tion: participants’ agreement to the statement that they would like to 
see reliability indicators with the respective level of granularity in the 
interface: as a summary for the whole scenario, for each relevant KPI, 

and explanation of the underlying reliability factors. 1 =  would not 
at all agree; 5 =  would fully agree. Data reliability factors: For the 
three factors input type, input recency and contract penalty, partici-
pants were asked to provide percentages adding up to 100% per par-
ticipant (P4 did not provide percentages)

Job description involvement phases Preference for granularity of 
reliability indication

Data reliability factor weighting (%)

Total per KPI Expla- nation Input type Input 
Recency

Contract 
Penalty

1 BIM Specialist initiation, planning, education 5 5 5 75 20 5
2 BIM Specialist research, education standardization 5 5 5 60 30 10
3 BIM Specialist planning phase 4 5 5 40 30 30
4 Corporate BIM Strategist strategy, project monitoring 1 3 4 nd. n.d. n.d.
5 Construction Manager/ Consultant strategy, project monitoring 4 5 5 50 25 25
6 Project Manager construction execution 5 3 5 30 50 20
7 Project Manager construction execution 5 4 5 70 25 5
8 BIM Manager BIM coordination, management support 4 4 5 70 10 20
9 Contract and Risk Manager offer, planning and contract 1 3 5 50 30 20
10 BIM Manager offer, planning, contract, execution 3 5 3 60 30 10

Median 4 4.5 5 60 30 20
Mean 3.7 4.2 4.7 56 28 16
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criteria.” A noteworthy requirement that was mentioned to 
be important for assuming validity of an overall reliability 
indicator was that the factors and their weighting can be 
customized by users for each project.

Factor weightings and additional factors

As introduced in the previous section the factors used 
for calculating the overall reliability were input type, 
input recency, and whether a penalty is applicable for the 
respective KPIs. Table 7 (right side) shows how participants 
weighted these three factors by themselves (P4 did not 
feel prepared to provide a score, due to the complexity 
and context-dependency of the matter). Eight of the nine 
participants regarded the input type to be most important, 
accounting for a median weight of 60% (M = 56%). The 
input delay was provided with the second-highest weighting 
by eight participants, receiving a median weight of 30% (M 
= 28%). The penalty was deemed by 6 participants to have 
the lowest weight, two participants provided it with the 
same weigh as input delay, one participant gave it a higher 
weight than the delay (MD = 20%, M = 16%). The distinct 
weightings are also illustrated in Fig. 10.

The input source was seen as a central element by the 
participants for assessing reliability. One important aspect 
mentioned by most of the participants was that one trusts 
the input more if it is provided automatically, through 
a machine. P2 mentions in this regard: “if it is plan data, 
this data should be transferred from some form of model 
basis. So, this model basis should be close to as-built, not 
as-planned.” Reliability explanations that indicated the role 
and professional experience of the person who entered were 
seen as important cues for decision for those persons who 
generally calibrated their decisions towards the reliability 
indicators (P2, P3, P5, P7).

However, there were also critical voices towards overgen-
eralizing roles or experience time: “sometimes the trainee is 
the construction supervisor. The personal experience is not 
necessarily so highly decisive” (P4). Also, parameters such 
as the number of years were deemed more important than 
the years of experience (P7). P10 mentioned that experi-
ence in percent is not a reliability cue for him. “If you look 
at today’s CVs it is difficult to tell what the person really 
knows.” Instead, the role in the project, however, was very 
important to him: “it makes a difference if it is an auditor or 
the service provider him- or herself”, and “whether the per-
son has access to all the data flowing back, that is, whether 
the person knows about the current performance status on 
site” (P10).

The complexity of the data also had an important role 
in deciding whether human or machine input types are 
preferred: “it depends on the simplicity of the data (e.g. 
intellectual), then it is up to the human being. In the case of 
redevelopment, the human input is more credible, because 
the complexity is higher, and the data situation is more 
unknown” (P5). P2 noted in this respect: “if have to decide 
between an AI algorithm and a 100% experienced engineer, 
I would rely on the human more than on the AI. This project 
is renovation, in this domain there are many factors that 
computers cannot measure. If it is just a normal apartment 
without any extra factors, I would believe a machine more”.

The amount of data also played an important role, and 
therefore participants welcomed situations where it was 
indicated how many construction projects the respective 
recommendation was building upon (P2, P7). While not 
seen as an absolute necessity, also artificial intelligence 
processing methods were deemed suitable by the majority 
of the participants. However, there would need to be a 
clearer indication as to where the data comes from -the most 
important distinction being whether it comes from own or 
external projects.

Regarding input recency, there was a frequent comment 
that the thresholds should be adjusted from counting the 
hours towards a longer time span, e.g. working days (e.g., 
green up to a 2 days delay, yellow for 3-4 days, and anything 
above this as red). The change rate of the data should be 
considered here as well: “if the data base does not change 
much, for example, if it never changed in the last few day, 
then the reliability should be higher.” (P9). Furthermore, 
in larger projects, customization of the time thresholds 
should be possible, which would also enable the project 
manager to reflect on reliability issues (P10). With respect 
to the reliability cue about whether a contractual penalty is 
associated with a certain KPI was least intuitive, but when 
it had been explained, this appeared worthwhile for many 
participants: “it does not harm to know which KPIs have an 
impact on penalties”.

Fig. 10   Boxplot diagram showing the weighting percentages 
(Median, quartile ranges and outliers) that were allocated to the three 
factors “input source”, “input recency” and “penalty applicable”
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Beyond input type, input recency and contractual 
penalty, further factors appeared to be important. One 
related comment was that an indication about previous 
quality checks and approvals would be worthwhile (P1): “it 
should be shown whether it is an authorized BIM-model 
with checked model data, e.g. by dedicated software like 
Solibri1”. In this regard, it would be important to acquire 
as much as possible real-time information coming from 
the system which does not have to be entered at all, but 
generate itself, e.g. the Current Time: if the framework 
would send such an information itself (IoT). If by means 
of digital information (3D measurement), certain things are 
automatically validated, quality management would already 
come out of another method (e.g., photogrammetric data), 
without a human being gives the input.

Finally, some of the responses were related more to 
risk management and decision-relevant information. For 
example, it was suggested that contextually relevant data, 
such as weather forecasts, should be available to help 
to dynamically optimize planning. Specifically on price 
management, it was recommended to use indices such as 
national construction cost index, which also factors in the 
location, inflation and time of year.

Discussion

The findings of this exploratory study provide first insights 
on whether and how trust calibration in predictive DSS can 
be supported in process management tasks generally, and 
in the complex application context of building renovation 
in particular. In this section we will discuss the effects of 
reliability indication that this study identified in the context 
of previous literature, starting with a focus on users’ 
prediction strategies and their confidence in the predictions 
(thus addressing RQ1), followed by a discussion on trust 
and acceptance related to the overall system usage (RQ2). 
Finally, the findings related to the compared information 
type and granularities are discussed and put into the overall 
research context (RQ3).

Effects of reliability indication on prediction 
strategies and prediction confidence (RQ1)

In the decision situation investigated in this study, where 
construction professionals estimate costs for a renovation 
project, reliability indication appears to increase the pre-
paredness to make a first statement on future cost devel-
opments. 80% of participants were willing to predict costs 
when they had reliability indicators at their disposal—as 

opposed to 40% of participants who were not provided with 
these reliability indicators. Especially users (half of the par-
ticipants in this study) tended to be more confident in their 
own decisions when reliability indicators were shown. The 
study results, and especially the fact that some participants 
refused to provide an estimation are of a novel quality and 
cannot be easily compared with prior research that typically 
features narrow task definitions and well-defined input 
options for users. The current study conditions included 
more uncertainty for the participants, as they had to provide 
a cost estimation without detailed knowledge on all relevant 
dimensions of the project, especially the progress in terms 
of performance.

The availability of reliability indicators appeared to 
motivate a subset of users to calibrate their trust, that is, to 
adapt their reliance on the system depending on its indicated 
trustworthiness. In the study, 40% of the participants 
adjusted their decisions in accordance to what the reliability 
indicators showed. The effect that people adjust their 
decisions based on the reliability was observed in other 
studies as well in other system and usage contexts (e.g., [4, 
5, 66, 114]. The strategy chosen by participants to strongly 
orient towards the different scenarios when predicting 
cost (pessimistic, moderate or optimistic simulation cost 
scenarios) and to select one of them, correspond and further 
extend [74] that presenting alternatives can be supportive 
in DSS (confer Sect. "Strategies for trust calibration". If 
such alternatives are provided, it appears that users do not 
have to calculate everything on their own. A further finding 
from the analysis of “users’ thinking aloud” comments 
is that if there are differentiated data reliability values 
attached to the different scenarios, users can better facilitate 
the decision-making process, as compared to a system 
where all reliability values are the same or if there is no 
data reliability value. Thus, at least for a low number of 
alternatives investigated in this study appears to outweigh 
risks of choice overload, which is consistent with the state of 
knowledge in recommender systems research [10].

Effects of reliability indication on overall trust 
and acceptance (RQ2)

As summarized in Sect. "Trust and acceptance", the 
findings suggest positive effects of reliability indication on 
several aspects of overall trust and acceptance, at least for 
situations of first-time usage with imperfect project progress 
information available. While this finding is the first of its 
kind for predictive process management DSS of systems, it 
also corroborates many studies with more narrowly defined 
tasks from other application fields that also attest clearly 
positive results of reliability indication (see a collection of 
related studies in Sect. "Effectiveness of trust calibration 
communication",  2.5). Both ratings and comments from 1  www.solibri.com.
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participants indicate that there are no significant concerns 
by prospective users against reliability indication. However, 
users who focus on details of project progress data, cost 
calculation and risk management, tend to pay less attention 
to reliability indicators.

The study also provides implications for the further 
operationalization of trust and acceptance measurement with 
regard to the comparative evaluation of reliability indicators 
in predictive DSS. Not all of the items adapted from the 
’Trust in Automation’ scale [51] could be transferred 
from the wider scope of automation systems towards the 
less dynamic and exposed nature of DSS usage. Thus, 
although a shorter questionnaire has its merits, further items 
may need to be developed, for example it is suggested to 
include a reliably measure as a dimension. The dimension 
most discriminating between the absence and presence 
of reliability indicators was ‘Reliability/Competence’, 
followed by ‘Understanding/Predictability’. The dimension 
‘Propensity to Trust’ appeared to be difficult to answer 
and naturally did not provide a means for comparison. The 
dimension most difficult to integrate in the study inventory 
was ‘Intention of Developers’, mainly because the system 
was still a research prototype presented by a member of the 
development team. Thus, in case of an experimental research 
study like the one conducted here, this scale may be omitted.

Familiarity as such was a highly important aspect to 
be investigated in the study, as this helped to define its 
(low) level of penetration in current systems and thus, in 
combination with the high demand by users, underlines an 
innovation need. However, the role of familiarity within 
the comparative measurement of effects reliability displays 
on trust, is quite ambivalent. ‘Familiarity’ was the only 
dimension where the system without reliability indicator 
received a higher score, as this feature was less well known. 
Thus, the little familiarity here rather expresses the novelty 
of reliability indicators and should be less regarded as a 
threat for limiting trust. In line with a critical note by Körber 
[51] on the application of his questionnaire, familiarity could 
be omitted in a future measurement instrument that measures 
the effect of reliability displays. Of the four different trust 
scales, the item ’Trust in good decision support’ was most 
salient in the usage context of predictive DSS in renovation 
process management. From the items included that mention 
overall trust, it appears that due to its salience this scale may 
actually be most suitable to measure the tasks performed in 
this study.

The results related to technology acceptance factors 
indicate that reliability indicators significantly increase 
the perceived usefulness of a process management system. 
This reflects well the above discussed results on the effects 
on prediction strategies and confidence: A predictive DSS 
is seen as more useful if it provides reliability indicators 
that support users in ’daring a prediction’ as this helps to 

adjust the prediction and confidence of the underlying data 
quality. However, reliability indicators do not increase the 
ease of use, as this characteristically is more influenced by 
user interface design. Reliability indication also does not 
appear to be a robust antecedent for the intention to use a 
predictive DSS.

Previous comparative studies on the added value 
or reliability indicators have not included these major 
technology acceptance factors in their analysis, thus this 
study provides a novel contribution in this regard. The 
absence of an effect on the intention to use highlights the 
complexity and multifaceted nature of acceptance and trust: 
Participants’ comments show that apart from reliability 
displays, many more aspects play into the formation of 
trust. Here, especially the performance in previous situations 
plays a decisive role. Since participants were exposed as part 
of this study to a new tool and fictitious usage scenarios, 
participants could not rely on these pre-assumptions. The 
long-term formation of trust and intention for future use is a 
well-known factor discussed in the literature (e.g., Lee and 
See, 2004).

Preferable type and granularity of reliability 
information (RQ3)

A novel finding of this study is that predictive DSS for 
process management should provide reliability indication 
on several levels, aspects and granularities of the user 
interface. This study demonstrated that it is, for example, 
not sufficient to attach a reliability indicator only to the 
predicted overall project costs. Potential concerns about 
cluttering the display with additional information [80] are 
not supported by the study findings: ease of use was not 
affected by the reliability indications and positive comments 
about reliability indicators by far outweighed the critical 
ones. Participants’ responses point towards other aspects 
that may be more decisive for a high ease of use, such as 
further visual features for data exploration and a consistent 
integration with the process management dashboard in a 
wider project monitoring software environment.

As for the precise reliability information to be included 
in the user interface, the strongest preference was found for 
reliability explanations which provide background informa-
tion on the factors contributing to overall reliability scores. 
While this identified preference is in line with the grow-
ing body of research arguing for providing explanations for 
decisions of DSS (including the ’explainable AI’ research 
stream, see [79], the approach in this study is novel, as it 
investigates different forms of communicating the factors 
underlying the derivation of a reliability estimation.

Furthermore, factors for data reliability determination 
were investigated in a systematic empirical study for the 
first time. Based on this research more specific requirement 
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for the design of reliability explanations were derived. 
More specifically, the relevance of the requirements for 
communicating data reliability gathered and prioritized 
by Mirnig et al. [70] was confirmed, i.e., user expertise-
based user roles, input recency, and contractual penalty. 
The soundness of representing data reliability requirements 
has been presented beyond the purely conceptual level, 
as their integrated presentation in the user interface has 
been demonstrated and evaluated in the user study. The 
study confirms that also several further information types 
suggested by Mirnig et  al. [70] as relevant factors for 
determining reliability are desirable by users to inspect data 
requirements. This especially concerns an indication on 
whether data quality checks had been performed beforehand, 
e.g., by dedicated BIM model checking tools or stage gate 
process approvals in the construction process.

The requirement in [70] to offer explanations for the 
underlying information processes was also confirmed, but 
this was not restricted to AI: on the one hand, this included 
the wish for even more details on the already presented 
reliability explanations (e.g., details about the relevance 
and role of the person providing the input or more cost 
calculation terminology from the construction domain). On 
the other hand, explanations for the overall project progress 
beyond pure reliability estimation are of high necessity. This 
is in line with the findings by van der Waa et al. [104], who 
also observed that experts want to have full access over the 
data to form their own judgment on the DSS’ advice.

Conclusions

This study closed a gap in current DSS literature by 
providing explicit reliability indication. The findings 
gathered in this study allow for a number of conclusions that 
provide on the one hand suggestions for future application-
oriented research and on the other hand forms a basis for an 
overall set of recommendations. The overarching implication 
from this study is that reliability indication may not be 
the most decisive factor for the overall intention to use a 
DSS system as such, but it clearly adds to its usefulness if 
properly integrated. In particular, this implication holds for 
situations in which professionals are first confronted with a 
project without complete overview of the detailed progress 
and conditions. In these situations, reliability indication 
may enable for higher preparedness to provide preliminary 
estimations and a better calibration to the underlying data 
quality.

The implications for corporations currently driving their 
digital transformation by introducing advanced decision 
aids and BIM technologies is that reliability should be 
implemented as a key information layer that should be 
attached closely to all forms of data and that should be 

readily accessible for a manager being introduced into 
a construction project. Systems with such a “reliability-
indication-by-design” approach are currently neither offered 
in the construction domain nor in most other application 
fields of process management systems. Introducing 
“reliability-indication-by-design” represent an innovation 
with a competitive advantage both for the construction 
companies applying them and for the software companies 
providing them.

More specifically, the presented work provides novel 
prescriptive insights into how to design reliability 
indication in process management systems. In line with 
the overall implication of persistently offering reliability 
indication in a DSS, especially if complementary rather 
than repetitive, relevant information should be provided 
at several different abstraction or granularity levels of the 
user interface. The exploration and inquiry of information 
granularity implies that exclusively providing one single 
reliability indicator at the top level (e.g., attached to the 
predicted overall project costs) may not support trust 
formation in most professionals. Besides the practitioners’ 
realism about the feasibility of finding the “world formula” 
for calculating an overall reliability score, pure reliance 
on summary scores on dashboards does not correspond to 
their usual working style of literally “drilling deep” into 
the data, in order to check for plausibility, potential risks, 
credibility of service providers, and other aspects.

Presenting several reliability indicators in the user 
interface at a lower abstraction level, in association 
with each relevant KPI, appears to be more helpful than 
one overall score. However, effectiveness appears to be 
dependent on the way how this KPI-related reliability 
indication is offered. Based on the findings, it especially 
appears important to determine the “relevant” KPIs for 
each project (or at least project type), in order to reduce 
repetitiveness and clutter in the interface and thereby 
support usage efficiency. Such purposeful relevance 
determination could go as far as only providing reliability 
indicators for those KPIs, for which an inspection matters 
most. For instance, in line with the “Pareto Principle” 
common in the construction industry [6], with an improved 
user interface users could be inspired to focus on the 
inspection of those 20% percent of KPIs that account for 
80% of a project’s costs.

A key finding of the study is that transparent explanation 
of a reliability score necessitates an explainable approach 
for the modeling of reliability. The approach used in this 
study—to derive and to prioritize a set of factors from 
interviews with targeted domain expert users that results 
in three factors: input type, input latency and contract 
penalty—appears to be promising. For the fundamentally 
differing input types the target users tend to be interested 
in seeing more detail than what has been provided in 
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this pilot model, for example, more context-specific 
explanations: the role, involvement and responsibilities 
of the person in the respective project are deemed to be 
more relevant than a summary score of experience in a 
certain subject matter.

Having stressed the relevance of reliability indication in 
an interface should not distract from the responsibility of 
project managers to check for additional risks, plausibility, 
trustworthiness of contractors and other aspects that are 
relevant for assuring the success of their projects. Thus, 
reliability indicators can only provide an added benefit if 
the DSS are integrated and also have strong capabilities 
for controlling project progress and quality. According to 
the views of the involved participants, especially a good 
resolution and fidelity with regard to the timeline and 
the spatial representation is important, with both being 
supported by advanced BIM systems. Participants also 
found that the reliability explanations investigated in the 
study can form a useful bridge towards exploration of 
further underlying data sources and thus support users to 
drill deep into the data.

Limitations

While the expert-oriented evaluation study and its mixed-
methods approach enabled to gain an in-depth understanding 
of effects and design requirements of reliability indicators 
in a rich contextual setting, it should be seen as a first 
preliminary step. The sample recruiting strategy of 
systematically addressing representatives of the most 
relevant actors within the national ecosystem supported 
the balancing of the sample, but it restricted the geographic 
spread. Even though all participants had experience with 
international projects and customers, they may have been 
biased by the technologies used in the Austrian construction 
domain and not accounting for the diversity of work cultures 
[100].

Given the good fit with the current target group profile, 
the sample size of 10 participants appears satisfactory for 
the qualitative analysis and a number of very robust effects 
could be identified, however, with a larger sample more sub-
tle quantitative effects could have been confirmed. Similarly, 
the evaluation focused only on a single view at a certain step 
within a larger project, resulting in information being miss-
ing that would have likely been available to the project man-
ager of a real project. Whether the missing pieces of infor-
mation had an impact on the overall confidence estimations 
of the participants we cannot say with the data available, 
although we did ensure to not carry forward uncertainties 
caused by the setup as uncertainties inherent to the process 
in the analysis.

The methodological paradigm of creating experience 
prototypes followed in this study is key to HCI research and 

user-centered research [84]. It provides the opportunity to 
investigate system concepts early and efficiently, without the 
need for full implementation. However, for each study, an 
inherent trade-off is to be performed between the prototype 
fidelity (i.e., the aspired level of external validity) and the 
feasibility (in terms of effort and capabilities) to reach this 
fidelity.

Future research

The research presented in this paper suggests that 
communicating reliability can provide added value for 
process management DSS in complex application domains 
such as renovation and construction. The study deliberately 
covered situations of first confrontation with a project, where 
a main source of information (costs) is available, but other 
important context is not provided (e.g. performance of the 
project). Future research should investigate usage situations 
that encompass longer usage times and that support final 
decisions based on more complete availability of context 
information, using, for example, an extended experience 
prototype that provides integrated simulated data about 
project performance, spatial and temporal simulations of 
a fictive project and more risk management procedures. 
A further extension of this approach would be to allow 
user customisation of reliability indication in the UI and 
to investigate the value thereof in order to derive sensible 
customisation options for the user.

Additional future perspectives include longitudinal 
investigations to ascertain formation and calibration of trust 
in the long term, cross-relations to performance, as well as 
potential changes in UI/output requirements after sustained 
use of a system with reliability indication. Furthermore, 
in order to develop a more general concept of reliability 
indication in intelligent systems, future studies need to look 
beyond the process management of renovation projects. A 
first step here is an extension into related “neighboring” 
application areas such as spatial planning of urban spaces or 
of nationwide infrastructure. In the end, the design of DSS 
is strongly context dependent, so valid abstractions on the 
general level will rely and depend on successful applications 
in a multitude of different domains.
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