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Abstract

This paper presents a walking pattern detection method for a smart rollator. The method detects 

the rollator user’s lower extremities from the depth data of an RGB-D camera. It then segments the 

3D point data of the lower extremities into the leg and foot data points, from which a skeletal 

system with 6 skeletal points and 4 rods is extracted and used to represent a walking gait. A gait 

feature, comprising the parameters of the gait shape and gait motion, is then constructed to 

describe a walking state. K-means clustering is employed to cluster all gait features obtained from 

a number of walking videos into 6 key gait features. Using these key gait features, a walking video 

sequence is modeled as a Markov chain. The stationary distribution of the Markov chain 

represents the walking pattern. Three Support Vector Machines (SVMs) are trained for walking 

pattern detection. Each SVM detects one of the three walking patterns. Experimental results 

demonstrate that the proposed method has a better performance in detecting walking patterns than 

seven existing methods.

1 Introduction

Walking therapy is a particular physical therapy (or physiotherapy) that assists a motor-

impaired patient to recover their walking ability. This treatment requires interaction and 

cooperation between a therapist and a patient. The patient is offered instructions to perform 

the physiotherapy exercises in a monitored manner that provides feedbacks to the therapists 

for evaluating the effectiveness of the exercises and adjusting the therapy parameters. 

However, due to the lengthy recovery process and the need of travel, one-to-one in-clinic 

treatment is prohibitively expensive. As a result, the patient is taught in clinic about the 

therapy exercises and performs the exercises at home. While it is cost-effective and save the 

patient time in travel, at-home physiotherapy does not provide the therapist with feedback in 

a timely fashion for evaluation and adjustment of the exercises. Often, a patient uses a 

rolling walker (aka rollator) [2, 6, 7, 8] as a walking aid and to support the therapy exercises 

during the recovery process. Our work is therefore to develop a computer vision method for 

automatic detection of walking patterns and devise a smart rollator system that is able to 

provide persistent monitor on the user’s walking patterns for at-home walking therapy. The 

system can be used to score a physiotherapy exercise by monitoring the change in the user’s 

walking patterns during the course of recovery.

We define a walking pattern as a sequence of walking postures and speeds. In the course of a 

walking therapy, a patient undergoes changes in both walking posture and speed. If the 
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prescribed exercises are effective, the patient’s walking gait will change from abnormal to 

normal and the speed from slow to normal. Otherwise, there will be no noticeable change in 

the walking pattern. In other words, detection of walking pattern change plays a critical role 

to the therapist in judging the effectiveness of the at-home walking therapy sessions. 

Walking pattern recognition by computer vision involves lower limb detection, gait feature 

(including gait shape and gait motion parameters) extraction, walking pattern representation 

(as a sequence of gait features), machine learning for pattern detection.

In the literature, force and moment sensors [6] have been used on a smart rollator to estimate 

the step count, pace and stride time of the rollator user. However, these sensors cannot 

measure the walking posture. In [7], a video camera is mounted on the front bar of a rollator 

to monitor the lower limb behavior of the user for balance control. The system measures the 

displacements and velocities of the feet and it requires the user to wear markers on the shoes 

for foot detection. Recently, RGB-D camera has been employed to measure a person’s 

walking postures and speeds [1, 2]. An RGB-D camera provides reliable depth data for 

lower limb detection. Gritti, et al. [1] propose a histogram based lower limb detection 

algorithm that extracts a person’s feet and legs from an RGB-D camera’s depth data and 

tracks the feet and legs over time. However, it does not measure the walking postures. Joly, 

et al. [2] propose a model-fitting method to detect bare legs and bare feet from the depth data 

of a Kinect sensor. The method models a bare leg as a cylinder and a bare foot as a plane and 

fit the parametric models to the Kinect data to detect the leg and foot. Although a skeleton 

representation of the lower limb can be created from the detected leg and foot, the work in 

[2] mainly focuses on determining foot orientation and ankle angle. However, the cylinder 

model fitting approach cannot be used in our case where the human legs are covered by the 

deformable pant. It is not possible to use any parametric model to describe the motion-

induced deformation of the pant. In this paper, we propose a new method to determine the 

leg skeleton by least square plane fitting. Based on the skeletons of the lower limbs, we 

introduce a new gait feature to describe the gait shape and the gait motion and use it for 

walking pattern recognition. The gait feature representation resembles the action feature, 

consisting of shape and motion parameters of a full skeletal system of human body, that has 

been used in [4] for human action recognition.

Existing methods [4, 5] for human action recognition may be applied to walking pattern 

recognition. In [4], an image-to-image difference of the action features between a test video 

and a class—a video representing a particular class of action—is computed and the sum of 

the differences for all image frames is used for action detection. The sum does not take into 

account the transitions between action states. The method in [5] allows comparison of one 

image frame against multiple image frames. However, transitions between action states are 

not considered. In [18], we propose method to recognize walking pattern for a smart rollator 

by analyzing the point cloud data stream of an RGB-D camera. This paper is an extended 

version of [18]. The proposed walking pattern detection method uses a Markov chain model 

to capture the characteristics of a gait feature sequence. A gait feature consists of the shape 

and motion parameters of the walking gait. The transition matrix of the Markov chain model 

records both the state and state transition information of a walking sequence. If a walking 

sequence has a fixed pattern, the transition matrix should converge and thus the stationary 

distribution represents the walking pattern. To automatically identify the walking pattern, we 
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used Support Vector Machine (SVM) [3] because it has been proved efficient in recognizing 

human actions with discriminative feature descriptors.

This paper is organized as follows. Section 2 briefly describes our RGB-D camera based 

smart rollator system. Section 3 introduces the data processing pipeline of the walking 

pattern recognition method. Section 4 presents the method for leg and foot extraction and the 

construction of gait feature. Section 5 first briefly describes three popular human activity 

detection methods and then introduces the Markov chain modeling of a gait feature sequence 

and the SVMs for walking pattern recognition. Section 6 presents the experimental results of 

the proposed method and the comparisons with seven existing methods. The paper is 

concluded in Section 7.

2 Smart Rollator Setup

As depicted in Fig. 1(a), an RGB-D camera (ASUS Xtion PRO LIVE) is installed on a 

rollator, facing towards the lower-extremity of the user with a tilt-down angle θ=−20°. This 

view angle ensures that the feet and the lower parts of the legs are inside the camera’s field 

of view when the user is walking. The RGB-D camera provides a color video and a depth 

video with 640×480 pixels at 30 fps. Given a depth image, the 3D point cloud of the user’ 

lower body can be obtained in real time. Fig. 1(b) shows the point cloud of the user’s legs 

and feet from a depth image frame. The camera coordinate system XcYcZc and the 

coordinate system XwYwZw that is used to analyze the lower extremity motion are depicted 

in Fig. 1(a). XwYwZw is obtained by rotating XcYcZc around Xc for 20°. Each point qi of the 

point cloud in XcYcZc is transformed into a point pi in XwYwZw by

(1)

For each data frame, the floor plane (shown as the purple rectangle in Fig. 1(b)) is extracted 

from the point cloud {pi} using a RANSAC plane segmentation method [10] and the points 

belonging to the plane are removed. The rest of the points are then used for foot and leg 

extraction as described in Section 4.2.

In this paper, a simulated walking therapy case is used for the development and validation of 

the proposed method. The rollator user imitates the walking patterns of a patient with knee 

injury during the course of recovery. Both normal walk and abnormal walk will be 

performed and video data (stream of RGB and depth data) will be captured by the RGB-D 

camera for training and testing the walking pattern recognition method. A Normal Walk 

(NW) is one with a sequence of normal walking gait at a regular speed. An abnormal walk is 

one with a sequence of normal/abnormal walking gaits at a much slower speed, sometimes 

near zero (i.e., halt). The abnormal walking gait is a lame walking gait. Abnormal walks 

include Slow Walk with Halt (SWH), Slow Lame Walk (SLW) in this paper.
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3 Data Processing Pipeline of the Smart Rollator System

As depicted in Fig. 2, the data processing pipeline of the smart rollator system consists of 

three main modules: Gait Feature Extraction (GFE), Markov Chain Modeling (MCM), and 

SVM-based Walking Pattern Recognition (SWPR). The GFE extracts the point cloud of the 

user’s lower-extremity from a frame of a walking video. After locating the data for the foot 

and leg, the GFE models the lower-extremity as a skeletal system consisting of skeletons and 

skeletal points. It then computes the position and motion parameters of the left and right 

skeletal systems’ skeletons and skeletal points. Using these parameters, the GFE constructs a 

gait feature for the frame. The MCM first clusters the gait features extracted from a number 

of walking videos into six classes, each of which is a key gait feature. It then describes each 

video frame by one of the six key gait features. This turns the walking video into a Markov 

chain whose stationary distribution represents a certain walking pattern. The SWPR maps 

the stationary distribution to a walking pattern by a trained SVM. The technical details of the 

three modules will be given in the following sections.

4 Gait Feature Extraction

In this paper, a gait feature contains parameters describing gait shape and gait motion. The 

gait shape parameters encode the current information of the user’s lower extremity posture 

while the gait motion parameters describe how one gait shape evolves into another. The gait 

shape parameters are the positions of skeletal points of each lower extremity and the gait 

motion parameters are the velocities of these skeletal points. Collectively, these parameters 

describe a walking state of the rollator user. The process of gait feature extraction is divided 

into four steps: lower limb detection, leg and foot segmentation, leg and foot skeletons 

extraction, and gait feature construction.

4.1 Lower Limb Detection

Considering the case of walking on a flat ground with the rollator, we use the RANSAC 

plane segmentation method [10] to extract the floor plane from the first frame of the 

camera’s point cloud data. The extracted floor plane is then used to initialize the rollator’s 

coordinate systems as mentioned in Section 2. Data points within the view volume clipped 

by the chassis of the rollator and the depth limit of the ASUS Xtion PRO LIVE (0.8m~3.5m) 

are identified, out of which we select the clusters within the first 70 cm above the floor plane 

as lower limb cluster P containing feet and legs.

4.2 Leg and Foot Segmentation

A 2-stage processing is employed to find the foot and leg segments from each lower limb 

cluster P. In the first stage, the minimum y coordinate ymin of the lower limb cluster’s data 

points is obtained and the coarse foot and leg segments,  and , are located based on the 

data points’ y-coordinates. Assuming the y-span between the toe and the ankle of a human’s 

feet is smaller than 0.2 meter, we locate points within [ymin, ymin+0.2m] as the foot segment 

 and the rest the leg segment . In the second stage, the normal vector of each point in 

 is first computed. Then, the normal vector based region growing segmentation algorithm 
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[11] is implemented to extract the accurate foot segment Pf from . The leg segment is 

determined by .

Fig. 3(b) depicts the segmentation result on a frame of depth data of the camera. The points 

of the leg segment are shown in green while the points of the foot segment are shown in red.

4.3 Leg and Foot Skeleton Extraction

Three skeletal points are computed and used to form the leg and foot skeletons. The first two 

skeletal points are the centroids of the leg and foot segments. And the third point—the ankle 

point—is determined as the point where the leg intersects the foot-plane. Similar to [2], a 

Least-Square Plane (LSP) to the data points of the foot segment Pf is first computed and its 

normal vector n̄ is used to describe the foot orientation. The LSP is called a foot-plane.

The skeleton of the leg can be extracted from the data points pj, for j = 1, ···, N, of the leg 

segment Pl, where N is the total number of data points of Pl. In an ideal case where the pant 

leg is pleat-free and the data points are noise-free, the orientation of the leg skeleton, 

denoted μ, is orthogonal with the surface normal of pj, denoted nj =(njx, njx, njx). If we treat 

nj as a data point, μ is the normal of the LSP to point set nj for j =1, ···, N. The least-square 

problem is equivalent to find the normal of the LSP to a point set qj =(kjnjx, kjnjy, kjnjz) for j 
= 1, ···, N, where kj is a randomly generated non-zero value for nj. By applying kj, we spread 

the data points in a larger area without changing each point’s vector direction. This 

treatment avoids the case where all data points locate in a narrow area, making the LSP 

sensitive to noise. For a real-world scenario, using all data points to compute μ minimizes 

the effects of the noise and pant-pleats. The LSP problem is solved by the singular value 

decomposition method. The centroid of Pl and μ are then used to describe the leg skeleton.

The ankle point is determined as the intersection of the leg skeleton and the foot-plane. A 

lower limb skeletal system, consisting of 2 skeletons and 3 skeletal points is then formed as 

shown in Fig. 3b.

4.4 Gait Feature Representation

The extraction of the two skeletal systems results in 6 skeletal points spi (i = 1, … 6). The 

skeletal points’ positions determine the gait shape. Using the 6 skeletal points’ centroid spc 

={xc, yc, zc} as the reference point, the skeletal points’ coordinates are re-computed by spi′= 

spi−spc, from which a bounding box [xmin, xmax, ymin, ymax, zmin, zmax] is created. Finally, a 

18-dimensional vector fs representing the gait shape is computed from  by:

(2)

The velocity of each skeletal point is computed from its positional change between two 

consecutive frames. We denote the velocities of a leg point, ankle point and foot point by vl, 

va and vf, respectively and use superscripts 1 and 2 to represent left and right, respectively. 
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Because the ankle point is indirectly computed from the point cloud (as the intersection 

between the leg skeleton and foot-plane), its position may incur a larger error than the other 

two skeletal points. This means that its velocity computed from two consecutive frames is 

not reliable. Fig. 4 shows the motion parameters computed from the image frames of a 12-

second walking video clip. Taking the velocity of the right ankle point  (Fig. 4a) for 

instance, we can observe that  goes beyond ±1 m/s at some frames. This should not occur 

because  (Fig. 4c) and  (Fig. 4b). The measurement error in 

 was caused by the error in extracting the ankle point. However, we found that the 

measurement of angle between the foot skeleton and the leg skeleton is more accurate, 

indicating the angular velocity ωp (Fig. 4d) may be used as a more reliable motion 

parameter. Therefore, we use the velocities of the foot and the leg centroids, denoted by vf 

=(vfx, vfy, vfz) and vl = (vlx, vly, vlz), and the angular velocity ωp to form a 14-dimensional 

vector fm:

(3)

Figs. 4b–4d depict the gait’s motion parameters that are used to form vector fm. They were 

computed from a sequence of image frames of a 12-second walking video clip.

By concatenating (2) and (3), a 32-dimensional feature is constructed as [fs, fm]. In order to 

rule out correlation between the elements of the feature vector, the principal component 

analysis method [17] is employed to reduce the feature’s dimensionality from 32 to 18. The 

18 eigenvalues weight over 95%.

5 Walking Pattern Detection

A classification algorithm is needed to detect the user’s walking pattern from the extracted 

gait feature. In [14], a comparative study of four well-known classification techniques, 

namely Nearest Centroid Classifier (NCC), Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), and K-nearest Neighbors (KNN), are conducted by using a 

benchmark dataset—UCI OPPORTUNITY dataset [15] for human action recognition. 

Walking pattern detection methods based on these methods and three state-of-the-art 

methods, including Naive-Bayes-Nearest-Neighbor (NBNN) Classifier [4], key pose based 

Dynamic Time Warping (DTW) [5], and Bag-of-Video-Words (BoVW), will be 

implemented and compared with the proposed method in this paper. In this section, we first 

give a brief introduction on NBNN, DTW, and BoVW and then describe in details a new 

Markov chain based classification method for walking pattern detection. In Section 7, the 

proposed method’s performance will be compared with the other above-mentioned 

techniques.

5.1 Naive-Bayes-Nearest-Neighbor (NBNN)

The idea of using NBNN for human action detection [4] is to use a number of feature 

collections, C ={Cj}, to describe different types of human actions. Each collection of 

features, Cj, represents an action of jth type. These features are extracted from video clips 
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that have been labeled to be the jth type actions. Given a M-frame test video, features, pi for i 
=1, …, M, are first extracted and the classification result, denoted C*, of NBNN is given by:

(4)

where NNC<sub>j</sub>(pi) is the nearest neighbor of pi in Cj.

5.2 Dynamic Time Warping (DTW)

In [5], DTW is employed for human action detection. The method models human action as a 

sequence of key features and identify action through sequence matching by using DTW. In 

training phase, the training data (video clips) is first processed to extract gait features. Then 

key features are obtained from these gait features by using K-Means and each video is 

described by a sequence of key features. In action detection phase, a test video is processed 

and represent by a sequence of key features S. The distance between S and the kth key 

feature sequence Sk is denoted Dk(Sk, S) = Δk(Mk, N), where Mk and N are the sizes of Sk 

and S, respectively. Δk(Mk, N) is computed by using a dynamic programming rule as 

follows:

(5)

where dij is the distance between key features pi and pj. S is classified as one belonging to 

the class that contain S* with minimum D(S*, S).

5.3 Bag-of-Video-Words (BoVW) based SVM

In [12], BoVW technique is used for human action recognition. The method’s training phase 

consists of five steps. First, SIFT features [16] are extracted from all images of the training 

videos and the extended visual features, each of which includes the SIFT descriptor and the 

x and y coordinates of the key point, are formed. Second, the feature descriptors are 

clustered by using K-means algorithm and the resulted clusters’ centers, call visual words, 

form the word vocabulary. Third, each video’s feature descriptors are mapped to the 

vocabulary to create a word frequency histogram (the video’s signature) to represent the 

video. Fourth, the value of each bin of the histogram is normalized over all the videos. Fifth, 

a multi-class SVM is trained by using the normalized histograms. In the testing phase, the 

training histograms are re-normalized along with the histogram of the test video. The re-

normalization is performed in such as way that the resultant normalized test histogram is 

affected by all the histograms (training ones and test one). Afterward, the normalized test 

histogram is fed to the SVM for classification.

5.4 Markov Chain Modeling of Walking

The gait feature extraction process can produce a large number of gait features from a 

walking video. Similar to the idea of key feature, they are classified into a few representative 
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gait features, called Key Gait Features (KGFs), to simplify the representation. In this paper, 

we use K-means classification algorithm to partition the gait features (extracted from a 

number of walking videos) into a number of clusters. A KGF is then computed as the 

centroid of a cluster. After the KGFs are determined, each gait feature of a walking video is 

represented by one of the KGFs and the sequence of KGFs forms a Markov chain whose 

stationary distribution is used to detect the rollator user’s walking pattern.

5.4.1 Key Gait Feature—We employ K-means algorithm to partition the gait features into 

k clusters and the centroid of each cluster is computed as a KGF [3, 5]. The value of k is 

determined by the Bayesian Information Criterion (BIC) [9]. The BIC is a criterion for 

selecting a model out of a finite set of models. In our case, we choose k with the lowest BIC. 

In addition, if the number of gait features belonging to a cluster is smaller than a threshold τ 
= 50, this cluster is treated as an outlier and thus deleted. Using this scheme, we extract 6 

KGFs from a number of walking videos and use them to represent all possible gaits for a 

walking video.

5.4.2 Markov Chain Model—Each gait extracted from a walking video is now 

represented by a KGF if the norm of the difference between the gait feature and the KGF is 

below a threshold. By treating a KGF as a state, we denote the gait sequence of a walking 

video by a Markov chain S. The transition matrix P of the Markov chain is of 6×6 

dimensions. Each entry of the matrix pij represents the probability, with which state i evolves 

into state j. pij can be obtained from state sequence S by

(6)

where nij is the number of transitions from state i into state j while ni is the number of 

occurrences of state i in S. Therefore, P can be computed from S. It is noted that (6) 

guarantees  for i = 1, ···, 6, where N is the total number of states in S. The following 

is a Markov chain sample obtained from a portion of a walking video:

S describes how long a gait is held and what gait it transforms into. For this sequence, p34 

can be computed by p34 = n34/n3 = 3/11 = 0.273 and p46 = n46/(n4 − 1) = 2/(11 − 1) = 0.2. 

The other entries can be computed in a similar way to obtain the transition matrix P.

Assuming that a walking video has a fixed pattern, the transition matrix P of the Markov 

chain should converge with a sufficiently large number of video data frames. In this case, the 

stationary distribution π of the Markov chain holds the inherent property of the walking 

pattern. π, a row vector whose entries are nonnegative and sum to 1, is defined by:
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(7)

It can be seen that π is a left eigenvector of P with an eigenvalue of 1. Therefore, it can be 

computed from P. In this work, we use π to represent the walking pattern of a walking 

video.

5.5 SVM for Walking Pattern Recognition

As indicated earlier, there are three types of walking patterns to be detected. Therefore, a 

multi-class classifier is required for pattern recognition. In this paper, we use the one-vs-all 

strategy to train three Support Vector Machines (SVMs) to detect the walking patterns. One 

SVM will be trained to recognize a particular type of walking patterns by using the relevant 

training data (πi, yi); i =1 ···, N, where N is the number of walking videos used for training 

the SVM while yi is the SVM output for πi. yi is manually labeled. Taking the training of the 

3rd SVM (for SLW detection) as an example, feature vector πi is computed for the ith video. 

If the walking pattern of this video is SLW, yi = +1; Otherwise yi = −1. The kernel function 

of the SVM is Gaussian kernel whose sigma is 0.03 and regularization parameter is 0.01.

6 Experimental Results

6.1 Data collection

Nine human subjects participated in data collection. They were instructed to perform the 

three types of walks. For each walk, the image and depth data streams were recorded from 

the Xtion. The video for each walk is 12–17 seconds long, containing 360–500 data frames. 

5 video clips were recorded for the experiments performed by each human subject, resulting 

in 45 video clips, 9 for NW, 9 for SWH and 27 for SLW. Three SLW videos were recorded 

for each subject limping on his left leg, right leg, and both legs, respectively.

6.2 Performance evaluation and comparison

In our experiments, leave-one-out cross validation technique is employed for performance 

evaluation. The performance of the proposed Markov Stationary Distribution (MSD) based 

one-vs-all SVM method is compared with that of the NCC, LDA, QDA, KNN and NBNN 

classifiers [4] as well as the DTW method and BoVW based one-vs-all SVM [3] method. In 

spite of their simplicity, NCC, LDA, QDA and KNN have been reported in [14] to perform 

well on the UCI OPPORTUNITY dataset [15] for human action recognition. Therefore, they 

are implemented and compared with the proposed method in this paper. The average 

detection accuracy and the F-measure [15] of each method are used for performance 

evaluation. The F-measure takes into account the precision and recall for each class and can 

provide a better performance evaluation in terms of accuracy. The precision for the ith class 

is defined as  and recall as , where TPi, FPi and FNi are the true 

positive, false positive and false negative numbers for the class, respectively. Considering 

class imbalance, the F-measure is computed by using the classes’ sample proportion,
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(8)

where si is the number of samples of class i and S is the total number of samples.

The experimental results are tabulated in Tables 1–8. The three types of videos to be tested 

are indicated in bolded letters (with the number of video clips in the parenthesis). The 

classification result (NW, SWH and SLW) for each type of test videos is shown in the 

column. Taking the first column of Table 1 as an example, out of the 9 NW test videos, 4 

was detected as NW, 1 as SWH, and 4 as SLW. The average accuracy and the F-measure of 

each method (over all video clips) are computed and tabulated in Table 9. From the Table 9, 

it is clear that the proposed method outperforms the other methods in both average accuracy 

(0.87) and F-measure (0.87). In term of the simple performance index—average accuracy, 

the performances of the other 7 methods are ranked as BoVW based one-vs-all SVM, DTW, 

NBNN, KNN, QDA, LDA, and NCC. However, if the more accurate performance index—F-

measure—is used, they would be ranked as BoVW based one-vs-all SVM, DTW, KNN, 

LDA, QDA, NBNN, and NCC.

7 Conclusion

This paper presents an RGB-D camera based walking pattern detection method for a smart 

rollator system. The method extracts the user’s lower limbs from the camera’s depth data to 

obtain the gait information represented by a skeletal system with six skeletal points and four 

skeletons. By combining the parameters of the gait shape and gait motion, a gait feature is 

constructed to describe a walking state. K-means is employed to cluster all gait features 

extracted from a number of walking videos into six key gait features. Using the key gait 

features, a walking video sequence is modeled as a Markov chain, of which the stationary 

distribution represents the walking pattern. Three SVMs are trained and used to detect the 

three walking patterns. Experimental results validate that the proposed method outperforms 

seven existing methods in detecting walking patterns.

In term of future research, we will use video data collected from real patients’ to test the 

method and compare its performance with that of the other methods. Also, we will define 

more walking patterns and include them in the proposed method. For real world application, 

the real-time video stream from the RGB-D camera will be examined by the proposed 

method segment by segment, each of which contains a fix number of data frames. The user’s 

walking ability will be evaluated based on the accumulative recognition results on the video 

segments.
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Fig. 1. 
Smart rollator and its coordinate systems: (a) The rollator with the Xtion camera; (b) Floor 

plane and point cloud of the lower-extremity.
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Fig. 2. 
Data Processing Pipeline
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Fig. 3. 
Skeletal system extracted from the point cloud data of a normal walking gait.
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Fig. 4. 
Gait motion parameters computed from a 12-second walking video clip.
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Table 1

Detection result using NCC

NW(9) SWH(9) SLW(27)

NW 4 3 7

SWH 1 0 5

SLW 4 6 15
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Table 2

Detection result using KNN

NW(9) SWH(9) SLW(27)

NW 3 5 0

SWH 2 1 4

SLW 4 3 23
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Table 3

Detection result using LDA

NW(9) SWH(9) SLW(27)

NW 4 3 1

SWH 3 2 8

SLW 2 4 18
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Table 4

Detection result using QDA

NW(9) SWH(9) SLW(27)

NW 2 4 2

SWH 4 0 2

SLW 3 5 23

Int J Intell Robot Appl. Author manuscript; available in PMC 2018 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Ye Page 21

Table 5

Detection result using NBNN

NW(9) SWH(9) SLW(27)

NW 1 0 0

SWH 1 0 0

SLW 7 9 27
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Table 6

Detection result using DTW

NW(9) SWH(9) SLW(27)

NW 2 4 2

SWH 4 2 1

SLW 3 3 24
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Table 7

Detection result using BoW

NW(9) SWH(9) SLW(27)

NW 5 1 0

SWH 4 8 2

SLW 0 0 25

Int J Intell Robot Appl. Author manuscript; available in PMC 2018 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Ye Page 24

Table 8

Detection result using MSD

NW(9) SWH(9) SLW(27)

NW 7 2 2

SWH 2 7 0

SLW 0 0 25
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