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Abstract

Currently a telerehabilitation system includes a therapist and a patient where the therapist interacts 

with the patient, typically via a verbal and visual communication, for assessment and supervision 

of rehabilitation interventions. This mechanism often fails to provide physical assistance, which is 

a modus operandi during physical therapy or occupational therapy. Incorporating an actuation 

modality such as functional electrical stimulation (FES) or a robot at the patient’s end that can be 

controlled by a therapist remotely, to provide therapy or to assess and measure rehabilitation 

outcomes can significantly transform current telerehabilitation technology. In this paper, a 

position-synchronization controller is derived for FES-based telerehabilitation to provide physical 

assistance that can be controlled remotely. The newly derived controller synchronizes an FES-

driven human limb with a remote physical therapist’s robotic manipulator despite constant 

bilateral communication delays. The control design overcomes a major stability analysis 

challenge: the unknown and unstructured nonlinearities in the FES-driven musculoskeletal 

dynamics. To address this challenge, the nonlinear muscle model was estimated through two 

neural networks functions that approximated unstructured nonlinearities and an adaptive control 

law for structured nonlinearities with online update laws. A Lyapunov-based stability analysis was 

used to prove the globally uniformly ultimately bounded tracking performance. The performance 

of the state synchronization controller was validated through experiments on an able-bodied 

subject. Specifically, we demonstrated bilateral control of FES-elicited leg extension and a human 

operated robotic manipulator. The controller was shown to effectively synchronize the system 

despite unknown and different delays in the forward and backward channels.
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1 Introduction

Neurological impairments due to stroke are the leading causes of disability in the United 

States. Over 795,000 individuals are affected by stroke each year [1]. Loss of limb function 

hinders activities of daily living (ADL), significantly limits long-term independence [2], and 

increases dependency on the United States (US) healthcare system; thus, burdening the US 

economy. The maximum recovery of limb function occurs at around 6 months after a stroke 

and begins to decline as soon as 1 year post stroke [3]. To facilitate ADL, the goal of therapy 

is to strengthen and stretch muscles and to retrain the central nervous system to voluntarily 

activate the limb muscles. Rehabilitation involves numerous hours of repetitive physical 

exercises that are provided by trained therapists. However, due to reasons such as limited 

number of community rehabilitation service providers, repetitious nature of the therapy, and 

increasing labor cost, survivors’ ability to maintain and improve the gains in limb function 6 

months after the stroke becomes limited. In addition, the inconvenience associated with 

getting to the clinic after discharge is often the main barrier to obtain rehabilitation services. 

Therefore, it is critical to determine the most effective and efficient way to deliver 

rehabilitation services after stroke. Aforementioned issues and a likely significant rise in the 

number of patients in the future have led to the emergence of alternative means to impart 

physical therapy. For example, functional electrical stimulation (FES), therapy robots, and 

in-home rehabilitation services called telerehabilitation have been proposed to provide 

therapeutic exercises.

Telerehabilitation is the application of rehabilitation services where a patient and a therapist 

interact via a telecommunication medium. Currently, telerehabilitation is used for patient 

assessment, consultation, supervision, and management [4,5]. Telerehabilitation has been 

found to be just as feasible as standard in-clinic therapy and is even preferred by the 

participating therapists and patients [6]. A survey of telemedicine applications which 

include: physical therapy, occupational therapy, speech and language pathology assessments, 

etc. was discussed in [7]. A number of video-conferencing-based physical therapy and 

occupational therapy cases including patients with multiple sclerosis, knee osteoarthritis, 

bronchopulmonary dysplasia, stroke, and Parkinson disease were reported. In all of the cases 

significant improvements and benefits to patients who lived far or preferred in-home service 

delivery were reported. In [8] the results from a clinical study on upper extremity 

telerehabilitation was presented. Thirteen participants with spinal cord injury were used to 

compare two FES-based telerehabilitation treatment methods: 1) conventional exercise 

therapy and 2) ReJoyce exercise therapy with a telesupervisor. The therapist supervised the 

subjects through a two-way verbal and video communication. The internet-based ReJoyce 

system was shown to induce statistically and clinically significant hand strength 

improvements compared to conventional therapy. In [9], the study examined the efficacy of 

an FES program administered via the Ness H200 Hand rehabilitation system (Bioness Inc., 

Valencia, CA). The study involved only video and verbal communication between a therapist 

and one patient with stroke. The participant’s ability to perform ADL increased after the 

internet therapy and the affected upper-extremity impairment also decreased after the 

therapy was over. A web-based telerehabilitation system for upper extremity rehabilitation 

that used a force feedback joystick and Java therapy software was demonstrated in [10]. The 
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exercise data was collected from a subject with chronic stroke. It was demonstrated that the 

system can organize a therapy program, engage a user, and track improvements due to 

therapy. In a similar but preceding study, the RM-II hand Master glove was used for force 

feedback in a virtual reality based telerehabilitation system [11]. In [12] a closed-loop 

telerehabilitation system for restoring hand function and recording emotional state of a user 

was tested. FES was used to assist hand opening and closing. The feedback to FES was 

provided by a Microsoft Kinect sensor. At the same time facial expressions of persons with 

stroke were recorded and analyzed for emotional response of the subjects during FES. The 

Kinect sensor was shown to successfully control opening and closing of hand but facial 

expression recognition was found to be unreliable.

These telerehabilitation platforms lack a medium to provide external physical assistance. 

Incorporating an actuation modality such as FES or a robot at the patient’s end, which 

mimics a therapist in a remote clinic, may be necessary for therapeutic purposes until the 

patient’s recovery is maximized. Although a robot guided rehabilitation intervention is a 

feasible option, it might be more therapeutically beneficial to include functional electrical 

stimulation (FES). FES is a treatment where a skeletal muscle can be activated by passing 

low-level electric currents across the motor neurons. This treatment can be administered by 

applying transcutaneous electrodes over the surface of the skin. The reason why FES is 

helpful is because it can strengthen muscle, prevent muscle atrophy, and increase bone 

density. Moreover, FES has neuroplastic effects as it helps to retrain active motor units and 

rebuild the weak connections between the brain and the motor neurons [13, 14]. The current 

rehabilitation systems that simply stretch muscles or move limbs through a range of motion 

provide only part of the needed therapy and hence, may not be as beneficial as FES. 

Therefore, due to its physiological advantages, FES is an added benefit during 

telerehabilitation of persons with partial or complete loss of limb function [15].

In a review on telerehabilitation, Carignan and Krebs [16] pointed out that the closed-loop 

control of bilateral robotic telerehabilitation is challenging due to limited bandwidth, data 

losses, and transmission delays in a communication network. These effects degrade the 

quality of physical interaction and may destabilize a remote session. Designing a controller 

that compensates for bilateral delays during a telerehabilitation system that uses FES is 

further complicated by uncertain and highly nonlinear musculoskeletal dynamics. Due to the 

uncertain nonlinear muscle behavior during FES, recently many nonlinear techniques 

including neural network-based adaptive FES controllers have been proposed [17–24]. Some 

of these controllers have been designed using Lyapunov-based stability analysis and the 

controller stability is usually guaranteed despite uncertainties and nonlinearities. Control of 

bilateral control of teleoperated robots on the other hand has received tremendous attention 

(see [25–28] and references therein). However, very few researchers have looked at 

designing a bilateral telerehabilitation controller for FES and a robot along with stability 

guarantees. An FES-based system was used to synchronize a master human arm and a slave 

human arm in [29], where a simple PID controller was used to modulate the FES. However, 

no stability guarantees were provided in the presence of model uncertainties and time delays. 

In [30] an FES-based bilateral teleoperation controller with stability guarantees was 

developed. The controller synchronized the positions of a patient’s arm, which was activated 

by FES, and a master robot, which was controlled by a therapist. The proposed therapy 
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method contained the benefits of FES, while incorporating the conveniences of 

telerehabilitation. In [31], a delay compensation controller developed in [32] to counteract 

the electromechanical delay associated with FES and a communication delay, was 

experimentally tested on a human arm. However, that controller was not developed to 

account for the communication delay in the feedback to a master robot.

Motivated to address the aforementioned gaps, we propose a telerehabilitation setup that 

uses a leg extension machine to train the upper leg through FES. The FES is used to interact 

with the subject remotely. Potentially, this telerehabilitation set up can be used as a muscle 

building intervention and as subjects have improvements due to neuroplasticity or their 

muscle strength improves, the proposed neural network-based framework can potentially 

adapt the therapy. This paper is an extension of our previous work [30, 31]. In this paper, the 

controller is further refined to improve the effectiveness of the neural networks by modifying 

the error structure and most importantly, the controller was validated through experiments on 

an able-bodied subject. Further, we assume that the robot dynamics are uncertain, but 

linearly parameterizable and the musculoskeletal dynamics has structured and unstructured 

nonlinearities. Therefore, a feedforward adaptive controller was used for the robot dynamics 

and two single layer feedforward neural networks and an adaptive control law was used for 

the musculoskeletal system. The two single layer neural networks were used to model the 

unstructured nonlinear passive and active muscle dynamics and the adaptive control law was 

used for the structured nonlinearties. The state synchronization controller was able to 

achieve a globally uniformly ultimately bounded (GUUB) state synchronization in the 

presence of communication delays and environmental forces.

2 System Dynamics

As shown in Fig. 1, the telerehabilitation system consists of a robotic manipulator controlled 

by a human operator and an FES driven musculoskeletal system. The dynamics of the n-link 

robotic manipulator are given by

(1)

where qr, q̇r, q̈r ∈ ℝn denote the angular position, velocity, and acceleration about each joint, 

respectively. In (1), Mr ∈ ℝn × n denotes the positive definite inertia matrix, Cr ∈ ℝn × n 

denotes the Centripetal/Coriolis matrix, Gr ∈ ℝn denotes the gravitational torques, and τr(t) 
∈ ℝn denotes the motor torque acting on each joint. In (1), Fh(t) ∈ ℝn denotes the torque 

created by the human operator applying a force on the robot. In order to develop the 

controller, this torque is assumed to be applied by the human operator and is modeled as a 

PD controller which can be expressed as

(2)

where Kp, Kd ∈ ℝ+ are the unknown proportional and derivative control gains and ed is the 

user driven error and is defined as the difference between the desired robot position based on 
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the operators intent and the actual robot position, ed = qd − qr. The desired trajectory, qd ∈ 
ℝn, is the motion planned for the robot and subject and is fully controlled by the human 

operator. To facilitate the control development the unknown gains Kp and Kd can be defined 

as Kp = αdλd and Kd = αd, where αd, λd ∈ ℝ+ are unknown constants and are assumed to 

be upper bounded by ᾱd, λ̄
d ∈ ℝ+, which allows Fh to be expressed as

(3)

where q̄d, q̄r ∈ ℝn are defined as q̄r = q̇r + λdqr and q̄d = q̇d + λdqd. The desired position and 

velocity are bounded i.e., qd, q̇d ∈ ℒ∞: Because qd is a designed trajectory, it can be shown 

that αd ‖q̄d‖ ≤ ξ where ξ ∈ ℝ+ is a constant.

Remark 1

The desired trajectory, qd, is the motion planned by the human operator for the robotic 

manipulator and the FES system. Therefore, a therapist can customize the trajectories based 

on prior knowledge of the patient’s range of motion and observations made during therapy 

sessions.

The FES driven musculoskeletal system dynamics are represented as:

(4)

(5)

where qs, q̇s, q̈s ∈ ℝn denote the angular position, velocity, and acceleration about each joint, 

respectively. In (4), J ∈ ℝn × n denotes the unknown inertia of a limb fixed in a test 

apparatus, Cs ∈ ℝn × n denotes the Centripetal/Coriolis matrix, Me ∈ ℝn denotes the moment 

generated by the passive elastic properties of the muscles, Mυ ∈ ℝn denotes the moment 

generated by the passive viscous properties of the muscles, Mg ∈ ℝn denotes the 

gravitational torque acting on the limb, and d(t) ∈ ℝn denotes any disturbances that may 

arise in the system. For detailed definitions of Me, Mυ, and Mg, see [33]. The input to the 

FES system, Γs(t) ∈ ℝn, is the torque produced using FES, and Fe(t) ∈ ℝn is the interaction 

force between the musculoskeletal system and environment. In (5), Fm ∈ ℝn denotes the 

constant maximum isometric force generated by the muscle, ζ ∈ ℝn denotes a positive 

moment arm that changes with respect to the joint angle, and η ∈ ℝn × n denotes an 

unknown nonlinear function of the muscle force-length and force-velocity relationships.

The normalized voltage to induce muscle contractions is denoted as u ∈ ℝn and is modeled 

by a piecewise linear function, also known as the recruitment curve [34], as
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(6)

where υmin ∈ ℝn is the minimum voltage required to produce a tensioning in the muscle and 

υmax ∈ ℝn is the minimum voltage at which there is no considerable increase in force or 

movement observed or the maximum voltage level the subject is comfortable with. In (6), 

the applied stimulation voltage is denoted as υ ∈ ℝn. For the sake of simplifying the control 

structure and derivations, the muscle activation dynamics are neglected in this model. In this 

paper we explore the scenario where the environmental interaction force in (4), Fe, is 

modeled as a passive force proportional to the position and velocity and is defined as

(7)

where αs, λ ∈ ℝ+ are unknown constants and αs is bounded by ᾱs ∈ ℝ+.

3 Control Development

The control objective is to design a set of controllers that can achieve state synchronization 

between the robotic manipulator and musculoskeletal system over a network in the presence 

of telecommunication delays. In realistic networked control systems, time delays in the 

forward and backward path are typically different since data packets may go through 

different network paths [35]. Therefore, the position errors are defined as [27]

where tsr, trs ∈ ℝ+ are unknown delays in the communication network on the robotic 

manipulator’s end and musculoskeletal system’s end, respectively. To facilitate the stability 

analysis the following auxiliary errors are defined as

where λr, λs ∈ ℝ+ are control gains. The robotic manipulator will be controlled using an 

adaptive control algorithm to estimate the unknown parameters of the robot. The 

musculoskeletal system will be controlled using an adaptive and nonlinear neural network 

based control algorithm in order to estimate the nonlinear and uncertain muscle dynamics.
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Notations/Assumptions

To simplify the control development, the following notations and assumptions are used:

▷ The function of time notation is dropped (e.g., e(t) → e) and any delayed term is 

denoted by a subscript (e.g., e(t − td) → etd).

▷ The Forbenius norm of a matrix is denoted as ‖‖F.

▷ The function, Ω(qs, q̇s) ∈ ℝn × n, is introduced and is defined as Ω = FmζTη, 

where Fm, ζ, and η were introduced in (5). Further, it is assumed that ‖Ω‖F ≥ Ω̄ ∈ 
ℝ+ in order to justify bounding the second neural network. This assumption is 

justified because of the physical properties of the muscles. The muscle tension 

will only drop to zero when the muscle is at full length and is considerably 

reduced but not zero when fully shortened [36]. The range of motion of the limb 

will ensure that the muscle is never fully lengthened, therefore the force-length 

relationship never drops to zero. The force-velocity relationship is bounded by a 

non-zero number since it only equals zero when the muscle shortening velocity 

is near its maximum which is outside the range of the velocities imposed in this 

control problem. Note that the first time derivative of Ω is not assumed nor 

required to be bounded, unlike our earlier papers [17, 33].

▷ It is assumed that the structured nonlinearities of the robot and musculoskeletal 

dynamics are linearly parameterizable, (e.g., Yθ = Mq̇ + Cq̇ − G), where θ ∈ 
ℝp is the vector that contains the p-unknown parameters and Y ∈ ℝn × p is the 

regression matrix.

▷ The disturbance term in the musculoskeletal dynamics, d(t), is bounded by a 

constant such that ‖d‖ ≤ d̄ where d̄ ∈ ℝ+ is a constant.

3.1 Closed Loop Robotic System

The closed loop error system for the robotic manipulator is developed by multiplying the 

time derivative of rr by Mr resulting in

After substituting in the robot dynamics from (1) and adding and subtracting Crrr, the result 

becomes

(8)

where the linearly parameterizable terms in the dynamics are grouped into Yrθr as

The control input for the robotic manipulator is defined as
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(9)

where Yrθr̂ is an estimate of the linearly parameterizable robot dynamics, Yrθr, and τ̄r(t) is 

the coordinated torque for the robot, which is defined as

(10)

where kr ∈ ℝ+ is a control gain. Although the communication delay is unknown, substituting 

(9) into (8) results in

(11)

where θ̃r = θr − θ̂r is defined as the parameter estimation error. The update law used to 

modify the parameter estimation vector is defined as

(12)

where Γ1 ∈ ℝp × p denotes a positive definite gain matrix.

3.2 Closed Loop Musculoskeletal System

The closed loop system for the musculoskeletal dynamics is developed by multiplying the 

time derivative of rs by J, using (4), and adding the term Csrs to both sides of the equation 

resulting in

(13)

The unknown nonlinear terms in (13) are lumped into the auxiliary function f(qs, q̇s) and the 

linearly parameterized term Ysθs, defined as

(14)

(15)

Expression (13) can be written as

(16)
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The control law is designed as

(17)

where Ysθ̂s is an estimate of the linearly parameterizable terms in Ysθs and Ψ is defined as

(18)

To avoid a singularity when Ω̂ is equal to zero, the spectral radius of Ω̂, ϱ(Ω̂) ∈ ℝ+, and a 

control gain, β ∈ ℝ+, are added to Ψ [37]. The additional feedback based input, ū ∈ ℝn, is 

defined as

(19)

where ks ∈ ℝ+ is a control gain.

In (17) and (18), f̂ ∈ ℝn and Ω̂ ∈ ℝn × n denote an approximation of the auxiliary function, f, 
and the muscle dynamics function, Ω, which are represented by two single layered neural 

networks (NN) as

(20)

(21)

The input to the NN’s is the augmented input vector y ∈ ℝ2n+1 defined as y = [1 qs q̇s]. The 

ideal weight matrices for the two neural networks are denoted as W ∈ ℝNf × n and R ∈ 
ℝNΩ × n. The input layer is comprised of 2n + 1 neurons, Nf and NΩ are the number of 

neurons in the hidden layer for the NN’s, and n is the number of neurons in the output layer. 

The activation function for the first NN that maps the input layer to the hidden layer is 

denoted as σ : ℝ2n+1 → ℝNf. The activation function for the second NN that maps the input 

layer to the output layer is denoted as ϕ : ℝ2n+1 → ℝNΩ × n. The unknown functional 

reconstruction errors for the two NN’s are denoted as ε1 ∈ ℝn and ε2 ∈ ℝn × n and are 

bounded, i.e., ‖ε1‖ ≤ ε̄1 and ‖ε2‖ ≤ ε2̄ where ε̄1, ε̄2 ∈ ℝ+, respectively. The estimates of the 

ideal NN’s that approximate f and Ω are denoted as

(22)
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(23)

where Ŵ ∈ ℝNf × n and R̂ ∈ ℝNΩ × n are the estimates of the ideal weights. Adding and 

subtracting Ψυ to (16) and using (17) results in

where the functional estimation errors are defined as f̃ = f − f̂ and Ω̃ = Ω − Ψ and θ̃s = θs − 

θ̂s, is the parameter estimation error. After using some of the neural network properties [38] 

the functional estimation errors, Ω̃ and f̃, can be expressed as

where the network disturbance for the NN’s are ε1 and βε = ε2 − (ϱ (Ω̂) + β) In × n and βε is 

bounded by  (i.e., ). The weight estimation errors are defined as W̃ = W 
− Ŵ and R̃ = R − R̂. Based on the subsequent stability analysis, the update laws, to modify 

the weights for each layer, are defined as

(24)

where Γ2 ∈ ℝg × g, Γ3 ∈ ℝNf × Nf, and Γ4 ∈ ℝNΩ × NΩ are positive definite gain matrices 

where g ∈ ℝ+ is the number of unknown parameters in θs. The update laws use the 

projection algorithm, proj, to ensure that the weights are bounded [39], therefore NN’s are 

bounded as ‖f̂‖ ≤ ϒ1 and ‖Ψ−1‖F ≤ ϒ2 where ϒ1, ϒ2 ∈ ℝ+ are known constants. The final 

closed loop system for the FES system is

(25)
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4 Stability Analysis

Theorem 1

Consider the nonlinear FES-based bilateral telerehabilitation system described in (1)–(7). In 
the presence of unknown constant communication delays all the signals in the system are 
globally uniformly ultimately bounded (GUUB) using the control inputs defined in (9) and 
(17), and the update laws defined in (12) and (24) provided the following gain conditions 
hold true:

where υ1 and υ2 ∈ ℝ+ are subsequently defined arbitrary constants.

Proof—A positive definite Lyapunov candidate V (x, t) ∈ ℝ is defined as

(26)

Since the projection algorithm [39] is being used to bound θ̂r, θ̂s, Ŵ, and R̂ to within a 

certain range, the Lyapunov candidate can be upper and lower bounded as

(27)

where λmin, λmax, ψ ∈ ℝ+ are known constants and x ∈ ℝ4n is defined as

(28)

After using (11) and (25) the time derivative of V (x, t) can be written as

(29)

Regrouping the neural network terms in (29) into the tr{} function results in
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(30)

By using the update laws (24) and (12), canceling out the similar terms, and using the skew 

symmetry property  and , (30) can be written as

Using (10), (19) we obtain

Using (2), (7), and (17) the previous equation can be rearranged to

(31)

By using the following inequalities

(31) can be upper bounded as
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(32)

After using nonlinear damping [40], (32) can be further upper bounded as

(33)

where υ1, υ2 ∈ ℝ+ are constants and

(33) can be further bounded to yield

(34)

where . Adding and subtracting  to (34) and using (27), the 

following expression is obtained

(35)

where . (35) can be integrated to obtain:

(36)

From (36) it is evident that V (x, t) decays exponentially to a bound B which can be 

minimized using the control gains. Since V ∈ ℒ∞ the states rr, rs, er, es ∈ ℒ∞. Further 

analysis can be done to show that the ‖x‖ decays to the ball of radius . By Theorem 

4.18 in [40], it can be concluded that the origin of x is GUUB.
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5 Experiments

Experiments were conducted on an able-bodied subject (male, age: 21 years) after obtaining 

approval from the University of Pittsburgh Institutional Review Board. The experiments 

staged a telerehabilitation session where a therapist’s robot interacted with the participant’s 

upper leg through FES. The proposed controller was used to synchronize position of the 

robotic manipulator and the subject’s upper leg despite unknown communication delays. We 

tested three scenarios: 1) the participant’s intentional movements are mimicked by the robot; 

i.e., the robot acts as a slave and tracks a delayed leg angle trajectory, 2) a human operator 

uses the robot to manipulate the participant’s leg via FES; i.e., the leg acts as a slave and 

tracks a delayed robot angle trajectory, and 3) an interactive experiment where the 

participant’s intentional movements can be halted by the human operator.

5.1 Testbed

The experiments were performed on a testbed that consisted of a modified leg extension 

machine (LEM) and a Phantom Omni robot (Geomagic Inc, USA) was used as a 

manipulator for a human operator. The LEM was modified with an incremental optical 

encoder (Hengxiang, CN) with a resolution of 1024 pulses per revolution to measure the 

knee joint angle. Resistance bands were added to the LEM to create the passive environment 

torque, Fe in (7). The Phantom Omni robot has 3 motorized degrees of freedom, but only 

one link was used to manipulate the leg and its other two links were kept fixed. A RehaStim 

8-channel stimulator (Hasomed Inc., DE) was used for stimulating the quadriceps muscle. A 

current modulated biphasic stimulation scheme was used at a frequency of 35 Hz with a 

400µs pulse width. A pair of transcutaneous electrodes (AxelGaard Manufacturing Co., 

USA) were placed on the quadriceps muscle: one near the knee joint and another distal to 

the first electrode. A QPIDe (Quanser Inc, Ontario Canada) DAQ board was used to 

interface with the sensors and run the controller in real-time at 1 kHz. The control 

algorithms were coded in Simulink (MathWorks Inc, USA) and implemented using the 

Quarc real-time software (Quanser Inc, Ontario Canada) running on a Windows machine 

(Intel Xeon 3.10 GHz processor). The controller for the robotic manipulator and FES system 

were both implemented in a single program and an artificial transmission delay of 50ms was 

coded between the robot and FES (forward channel) and a 80ms delay was coded between 

FES and the robot (backward channel). These network delays were chosen to simulate a 

higher quality internet connection on the therapist’s end and lower quality connection on the 

patient’s end.

5.2 Offline Training of Neural Network

The proposed controller uses the NNs to approximate the functions in (20) and (21). The 

controller then adapts the weights online using a single step learning basis, i.e., the weights 

are adapted each time step based on the current errors. While the controller in (17) does not 

require offline training of the NNs, running the controller with a cold start/random initial 

weights for the NN may not be practical. Therefore, the NNs were pre-trained offline to find 

a reasonable starting point for the NN weights which also use online adaptive laws in (24) 

during the experiments. Because the NNs are being used to approximate functions that are 

not measurable, training through batch processing based on subject recorded data is not 
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possible. Therefore, a musculoskeletal model with able-bodied subject parameters, taken 

from [41], was used to generate the terms that would be approximated by the NNs. Then a 

back propagation algorithm [38] was used to train the NNs offline. The functions in (20) and 

(21) are dependent on the limb position and velocity; therefore, a set of data was generated 

from 8 sinusoidal movements with different time periods. This ensured that the NN were 

being trained for a variety of possible limb positions and velocities. This tuning process not 

only finds the initial starting point for the weights, Ŵ and R̂, but also the rate and bias 

parameters of the activation functions, σ and ϕ.

5.3 Experimental Protocol and Results

As described before, three sets of experiments were conducted on an able-bodied subject. In 

the first set of experiments, the test subject takes the role of the master by voluntarily 

extending his leg, the controller then forces the robotic manipulator to track his leg 

movements. In this setup the test subject was instructed to move his leg in three different 

ways: step, ramp, and sinusoidal. The delayed subject’s knee angle and the robot link angle 

and the input to the robot and FES for the three trials are plotted in Fig. 3.

In the second set of experiments the driving force of the system was the human operator who 

manipulated the robot, which acted as a master and the subject’s leg, which acted as a slave, 

tracked the robot’s delayed trajectory. The human operator attempted to reproduce the same 

three movement types:, as in the first set of experiments, step, ramp, and sinusoidal. The 

delayed robot link angle and subject’s knee angle and the input to the robot and FES for the 

three trials are plotted in Fig. 3. From the plots, it can be observed that there was a steady 

state error. This is to be expected because there is no integral control, and the NN are pre-

trained based on a model with parameters that may not match the test subject. Evidence of 

the haptic feedback that the human operator is receiving can be seen in the middle plot, 

where the motor input is negative. This means that the controller essentially realized that the 

subject was not able to reach the desired position set by the human operator and produced 

negative torques on the robotic manipulator which the human operator would perceive as 

resistance.

In the final set of experiments, the use of FES as a haptic feedback was tested. In this 

experiment, the test subject was instructed to voluntarily move his leg similar to the ramp 

trial in the first set of experiments. The human operator would then observe the 

synchronized movements produced by the robotic manipulator. During the downward slope 

(e.g., leg is flexing), the human operator restricted the robot from moving past a certain 

position. The restricted robot’s movement is mimicked by the subject’s leg even though the 

subject is trying to flex his knee voluntarily. This robot and leg coordination can be 

explained as follows. The controller notices that the robotic manipulator is impeded from 

moving further, and thus increases the amount of electrical stimulation that results in the 

quadriceps contraction, which restricts the test subject from further moving downwards. The 

results from this experiment can be seen in Fig. 5. The instances when the human operator 

impedes the motion of the robot are indicated with an arrow in the top plots of Fig. 5. From 

the motor input plots, it can be observed where the human operator interferes, the input 

becomes negative which means the robot was trying to move in a direction that was against 
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the human operator’s intended direction. Also, the test subject indicated that he felt that the 

FES stimulation was more effectively resisting his knee from flexing when the human 

operator blocked the robot movement.

6 Discussion

The aim of this paper was to present a bilateral control scheme for an FES-based 

telerehabilitation system and validate it through experiments. With such as system, therapy 

sessions could be done from the leisure of the patient’s own home to maintain muscle 

strength and help strengthen the neurological connection between the brain and motor 

neurons as a therapist physically oversees and interacts with them. The strength of this 

scheme is the incorporation of FES during telerehabilitation. Therapy sessions for patients 

with conditions like stroke involve not only increasing their joint’s range of motion and 

muscle stretching exercises but also the need to strengthen weakened muscles. Systems that 

simply stretch or move a joint through a range of motion are providing only part of the 

needed therapy. Therefore, due to its physiological advantages, FES is an added benefit 

during telerehabilitation of persons with partial or complete loss of limb function [15]. 

Moreover, FES has neuroplastic effects as it helps to retrain active motor units and rebuild 

the weak connections between the brain and the motor neurons [13, 14].

The developed bilateral control scheme overcomes some of the challenges posed due to the 

use of FES in real-time control. The proposed nonlinear control scheme is proven to be 

stable despite uncertain and highly nonlinear musculoskeletal dynamics as well as unknown 

constant communication delays. However, it is important to note that the size of the 

communication delay has an effect on the gain tuning which affects the level of performance 

achieved. Another benefit of this controller is that the NN would adapt to the changes in the 

muscle model as patient’s musculoskeletal dynamics change due to increases in muscle 

strength or any neuroplastic effects. The use of a second neural network in the controller 

helps avoid the requirement of the acceleration in the controller or the assumption of 

bounding the time derivative of the Ω function. The online adaptation of the NN is also 

beneficial due to evidence that has shown that after a person has an upper motor neuron 

injury the force-length/force-velocity relationship change due to spasticity [42,43]. The 

adaptiveness of the proposed scheme can potentially deal with changes in the dynamics due 

to spasticity. However, the controller’s ability to adapt in these scenarios remains to be 

tested.

During rehabilitation sessions, patients usually differ in terms of the range of motion through 

which their limb can be moved. For example, a knee contracture in one patient can severely 

limit the range of motion. Therefore, one of the strengths of the proposed system is that a 

therapist has control over a patient’s joint angle trajectories. This is extremely beneficial 

because therapy sessions can be customized to each patient and it can prevent injuries. In 

addition, the haptic feedback feature of the controller, which was highlighted in the third set 

of experiments, would provide evidence of observations to the therapist that he/she would 

use to alter the trajectories.
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7 Conclusion

In this paper, we presented a controller that achieves position synchronization for an FES-

based bilateral telerehabilitation system with mismatching unknown communication delays 

in the forward and backward channels. The proposed controller uses artificial neural 

networks, which were pre-trained offline, to compensate for the unstructured nonlinear 

musculoskeletal dynamics and adaptive based controllers for the structured nonlinear 

dynamics in the musculoskeletal and robotic systems. The Lyapunov stability analysis for 

the proposed controller was used to prove GUUB tracking performance. The controller was 

validated experimentally on an able-bodied male subject that shows its feasibility in a 

telerehabilitation set-up. Future experiments will be performed on subjects with stroke to 

show its clinical relevance.
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Fig. 1. 
The control scheme uses an adaptive and PD control for the robotic manipulator, and a 

combination of neural networks, adaptive, and PD control for the musculoskeletal system. 

The communication network introduces a delay in any signal that passes through it which 

can be different passing from the robot side to the subject side and vice-versa.
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Fig. 2. 
The testbed used for the preliminary experiments consists of a leg extension machine 

modified with a optical encoder and resistance bands for the test subject. A Phantom Omni 

is used as a robotic manipulator for which the human operator to interact with. The 

communication network and delays are implemented virtually in the software.
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Fig. 3. 
The control performance in the case where the test subject is driving the system for the three 

trials. The top plots show the position of the delayed subject’s knee angle and the robot’s 

link angle, i.e., qr and qsτr. The input to the motor and FES system during these trials are 

shown in the middle and bottom plots, respectively.
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Fig. 4. 
The control performance in the case where the human operator is driving the system for the 

three trials. The top plots show the position of the subject knee angle and delayed robot link 

angle, i.e., qs and qrτs. The input to the motor and FES system during these trials are in the 

middle and bottom plots, respectively.
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Fig. 5. 
The control performance in the case where the test subject is driving the system but the 

human operator impedes the movement of the robotic manipulator resulting in FES-based 

haptics feedback. The top plots show the subjects knee angle and delayed robot link angle 

and an arrow indicates when the human operator impedes the robot. The input to the motor 

and FES system during these trials are in the middle and bottom plots, respectively.
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