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Abstract
The aerodynamic model of flexible wing aircraft is highly nonlinear with continuously time-varying dynamics under kin-
ematic constraints. The nonlinearities stem from the aerodynamic forces and continuous deformations in the flexible wing. 
In spite of the various experimental attempts and theoretical setups that were made to model these dynamics, an accurate 
formulation was not achieved. The control paradigms of the aircraft are concerned with the electro-mechanical coupling 
between the pilot and the wing. It is challenging to design a flight controller for such aircraft while complying with these 
constraints. In this paper, innovative machine learning technique is employed to design a robust online model-free control 
scheme for flexible wing aircraft. The controller maintains internal asymptotic stability for the aircraft in real-time using 
selected set of measurements or states in uncertain dynamical environment. It intelligently incorporates the varying dynamics, 
geometric parameters, and physical constraints of the aircraft into optimal control strategies. The adaptive learning structure 
employs a policy iteration approach, taking advantage of Bellman optimality principles, to converge to an optimal control 
solution for the problem. Artificial neural networks are adopted to implement the adaptive learning algorithm in real-time 
without prior knowledge of the aerodynamic model of the aircraft. The control scheme is generalized and shown to function 
effectively for different pilot/wing control mechanisms. It also demonstrated its ability to overcome the undesired stability 
problems caused by coupling the pilot’s dynamics with the flexible wing’s frame of motion.

Keywords Flexible wing aircraft · Optimal control · Reinforcement learning · Policy iteration · Adaptive critics

1 Introduction

A hang glider functions as a two-body system operating 
under kinematic constraints. The pilot system maneuvers 
the aircraft by sliding its center of gravity relative to that 
of the wing. The continuous movement of center of grav-
ity throughout the flight makes modeling the dynamics of 
such aircraft quite challenging. The aerodynamic modeling 

of this flexible wing aircraft has been under investigation for 
more than three decades, where little research investigated 
the stability and control for the hang gliders. This together 
with the increasing potential of using flexible wing aircraft 
as unmanned aerial vehicle (UAV), thanks to its numer-
ous advantages over fixed-wing UAVs, urged us to develop 
robust control schemes for this type of systems. An adap-
tive learning scheme that uses innovative machine learning 
technique is developed to control the flight of the aircraft in 
real-time. The controller has the ability to learn online the 
uncertainties in the vehicle’s aerodynamic model. Moreover, 
it improves the time-response characteristics of the system. 
Two control approaches are considered. The first makes 
use of the attitude angles as the control signals. The second 
approach bases its actions on the force applied on the control 
bar as the control signals.

An aerodynamic model of a hang glider is typically 
characterized by highly nonlinear terms due to the con-
tinuous variations in the flight trim conditions. For exam-
ple, it is well known that the wing undergoes continuous 
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deformations throughout the flight. The aerodynamic mod-
eling, control, stability, and safety of hang gliders were 
investigated by several researchers at Cranfield university 
in the United Kingdom in collaboration with the British 
Hang Gliding Association (BHGA) (Kilkenny 1986, 1984; 
Cook and Kilkenny 1986). Small-perturbation longitudinal 
and lateral directional dynamical models are developed and 
used to estimate the hang gliders’ dynamics (Kroo 1983). It 
is shown that the wing’s flexibility and the apparent mass 
together contribute to the aerodynamic effects of the hang 
glider (Kroo 1983). A small perturbation aerodynamic 
model based on a rigid wing is proposed in de Matteis (1990, 
1991), where the aerodynamic derivatives are incorporated 
into the velocity in a separate step. However, the model does 
not consider the internal forces between the pilot and the 
wing. The wing camber and twist variations are analyzed in 
order to understand the nonlinear aerodynamics of the wing 
in Powton (1995). A mobile test rig is developed to meas-
ure the aerodynamic properties of the hang glider’s wings 
(Kilkenny 1983). Full scale wind tunnel tests of hang gliders 
are performed in Kilkenny (1984). Nonlinear equations of 
motion for hang gliders are derived in Cook and Spottis-
woode (2005), where a semi-empirical model that considers 
the camber and twist dependencies of the flexible wing aero-
dynamics is considered. This model refers the aerodynamic 
forces and moments to the combined center of gravity of the 
pilot/wing sub-systems. A comprehensive decoupled direc-
tional modeling is introduced in Spottiswoode (2001) and 
Cook (2013). Small-perturbation equations of motion for 
the hang glider are developed in Ochi (2015). In this study, 
the pilot actions on the control bar and the forces at the hang 
point are considered as external forces for the separate pilot 
and wing systems. Then, the hang point forces are elimi-
nated to form the suggested aerodynamic model.

The control mechanism of the hang glider depends on the 
coupled motions of the pilot/wing systems, which create the 
desired pitch/roll maneuvers. The control of the hang glider 
is shown to be directly dependent on the relative positions 
of the pilot/wing centers of gravity, which originate from 
the pilot steering movements (Cook and Spottiswoode 2005; 
Ochi 2017; Abouheaf and Gueaieb 2018). It is demonstrated 
that at a high angle of attack, lowering the center of gravity 
increases the pilot moment ratio, and hence increases the 
static pitch stability (Kroo 1983). The principles of static 
stability of fixed wing aircraft are applied to understand the 
control properties and observable stability of such systems 
in Blake (1991), Cook (1994) and Rollins (2000). A study 
about the relationship between the nonlinearities in the flex-
ible wing aerodynamic models (namely the wing camber and 
twist variations) and the pitching moment is introduced in 
Powton (1995). The flexible wing’s lateral directional sta-
bility margins are found to be larger than those of the fixed 
wing aircraft (Cook and Spottiswoode 2005).

The optimal control problems are formulated using the 
dynamic programming framework (Howard 1960; Webros 
1992; Abouheaf and Mahmoud 2016; Abouheaf and 
Gueaieb 2018), where they are solved using the Approxi-
mate Dynamic Problem (ADP) approaches to avoid the curse 
of dimensionality in the state and action spaces (Webros 
1992; Bertsekas and Tsitsiklis 1995). These approaches are 
classified into four main types based on the solving value 
function and policy structures (Sutton and Barto 1998; 
Abouheaf and Lewis 2013; Abouheaf et al. 2014). Con-
siderable classes of optimal control problems for dynamic 
systems use machine learning frameworks (Abouheaf et al. 
2017; Abouheaf and Gueaieb 2017). They bring together 
optimal control theory, adaptive critics, and Reinforcement 
Learning (RL) to design solution platforms for the control 
problems (Bertsekas and Tsitsiklis 1995; Webros 1990; Sut-
ton and Barto 1998; Abouheaf et al. 2017). The adaptive 
learning approaches decide on the optimal control strate-
gies and the solving value functions through assessing their 
interactions in a dynamic environment in order to minimize 
an objective cost function (Bertsekas and Tsitsiklis 1995; 
Sutton and Barto 1998). The control problems are solved in 
real-time using RL algorithms that are based on policy or 
value iteration methods, where actor-critic neural networks 
are employed to implement these two-step solution mecha-
nisms (Sutton and Barto 1998).

The main contribution of this work is the development 
of an adaptive model-free learning mechanism to control 
the decoupled motions of a flexible wing aircraft. To this 
end, an online policy iteration-based reinforcement learning 
approach is designed. The proposed controller is shown to be 
robust to the uncertainties in the system’s coupled dynam-
ics. Also, it is demonstrated to improve the closed-loop time 
response characteristics of aircraft, and to asymptotically 
stabilize the system’s unstable modes stemming from refer-
ring the pilot’s rotational dynamics to the wing’s frame of 
motion.

The paper is structured as follows: Sect.  2 briefly 
describes the different decoupled aerodynamic models con-
sidered in this study. Section 3 presents the optimal control 
problem and the associated Bellman optimality conditions 
relevant to the system in hand. Section 4 proposes a policy 
iteration algorithm along with its convergence proof. Sec-
tion 5 discusses the neural network implementation of the 
adaptive online learning scheme. Section 6 highlights the 
simulation outcomes of the proposed control architecture 
using different control methodologies. The merits of the 
online adaptive learning approach and its adaptability to 
real-world applications are introduced in Sect. 7. Finally, 
the paper is concluded with some remarks in Sect. 8.
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2  Flexible wing aircraft dynamical models

The scope of the work is to design a robust controller with 
online model-free characteristics for flexible wing aircraft. 
In this section, two modeling attempts for a flexible wing 
system are used in order to discuss and test the characteris-
tics of the adaptive learning controller. The notations of the 
aerodynamic systems are listed in addition to the assump-
tions used in previous modeling processes.

The hang glider operates as a two-body system with a 
kinematic constraint, where the pilot steers the control bar 
in order to achieve the desired flight maneuvers. The aircraft 
motion depends on the position of the pilot’s center of grav-
ity relative to that of the wing. This makes the modeling 
process of the continuously moving center of gravities a 
complex problem. Consequently, it is challenging to build 
model-based robust controller for this type of aircraft.

Figures 1 and 2 show the side and top views of the longi-
tudinal and lateral motion frames of a flexible wing aircraft. 
The pilot and wing frames are denoted by (Op,Xp, Yp, Zp) 
and (Ow,Xw, Yw, Zw) , respectively. The pitch, roll, and yaw 
attitude angles of the wing are denoted by �w,�w, and �w , 
respectively. Their rate of change with respect to time (i.e., 

rotational velocities) are symbolized by qw, pw, and rw , 
respectively. The wing’s transnational velocities (forward, 
normal, and lateral) are denoted by uw , ww, and vw , respec-
tively. The pilot’s attitude angles with respect to the wing’s 
frame of motion are expressed as �pw , �pw and �pw . The 
pilot’s rotational velocities relative to the wing’s frame of 
motion are denoted by qpw , ppw and rpw . Herein, two models 
are considered for the flexible wing aircraft. In the following, 
we provide a brief description of each model.

2.1  Position control model (Model 1)

Nonlinear equations of motion were derived in (Cook and 
Spottiswoode 2005) based on a semi-experimental study of 
the wing motion in its own frame. Linearized small-pertur-
bation equations are then extracted. That study formulates 
the pilot’s reaction control moment using a spring-damper 
model. Nonetheless, it overlooks the interaction forces 
between the pilot and the wing systems. More details about 
the modeling strategy and its assumptions can be found in 
Cook and Spottiswoode (2005).

In this open-loop model (Model 1), the aircraft motion is 
decoupled into longitudinal and lateral planes. Hence, two 
input control signals are adopted. The longitudinal motion 
is controlled through pitching the control bar by an angle � 
(about the pitch axis), while the lateral motion is controlled 
through rolling the control bar by an angle � (about the roll 
axis), as shown in Figs. 1 and 2. These angles create the 
required shift in the relative locations of the pilot and wing 
centers of gravity to obtain the desired maneuvers.

As such, the nonlinear state space equations of the hang 
glider are expressed as follows:

where the longitudinal and lateral states are given by

The matrices D1 ∈ ℝ
4×4 , H1 ∈ ℝ

4×1 , K1 ∈ ℝ
4×1 , D2 ∈ ℝ

5×5 , 
H2 ∈ ℝ

5×1 , and K2 ∈ ℝ
5×1 , reflect the nonlinearity in the 

aerodynamic models of the longitudinal and lateral motions. 
The longitudinal and lateral control input signals are denoted 
by uLon = � and uLat = � , respectively.

2.2  Force control model (Model 2)

Ochi in Ochi (2017) extended Model (1) to take into con-
sideration the dynamic coupling between the pilot and the 
control bar. The resultant nine degree-of-freedom (9-DOF) 
open-loop model relates the wing’s rotational and transna-
tional motion, and the pilot’s motion relative to the wing. 
The equations of motions for the pilot and the wing are 

(1)
ẋLon = D−1

1
(H1 + K1 u

Lon), ẋLat = D−1
2
(H2 + K2 u

Lat),

xLon =
[
uw ww qw �w

]T
, xLat =

[
vw pw rw �w �w

]T
.

Strap
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Zw
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Fig. 1  Longitudinal geometry
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developed separately. The internal forces at the hang point 
and the control bar are treated as external forces for the two-
body system. The forces applied on the control bar are taken 
as the system’s control inputs, while the internal forces at 
the hang point are substituted for in the wing’s frame and 
eliminated. For more details about this modeling method and 
its limitations, the reader is referred to Ochi (2017).

Let IpR = [IpxR IpyR IpzR]
T  and IpL = [IpxL IpyL IpzL]

T 
be the internal forces acting on the right and left pilot’s 
grasping points on the control bar, respectively, defined 
in the pilot’s frame. The aggregate force is given by 
Ipc =

1

2
(IpR + IpL) = [Ipcx Ipcy Ipcz]

T . The differential force is 
defined as Ipd =

1

2
(IpR − IpL) = [Ipdx 0 Ipdz]

T . The required 
shift in the pilot’s center of gravity in order to perform a 
certain maneuver can be defined by the force components 
Ipc and Ipd , which are considered as the input control signals 
for this control model (Model 2). These forces are illustrated 
in Fig. 2.

In this context, the nonlinear dynamical equation of the 
hang glider can be expressed as

where the matrices D ∈ ℝ
15×15,H ∈ ℝ

15×1, and K ∈ ℝ
15×5 

describe the nonlinearity in the aerodynamic model. The 
matrix D is proven to be nonsingular (Ochi 2017). The col-
lective and differential force components u acting on the 
control bar and the states x are given such that

Unlike in Ochi (2017), this work does not assume Ipcz and 
Ipdz to be zero, since such an assumption may not hold in 
some practical scenarios. In other words, herein, the z-com-
ponents of all the force inputs are accounted for. Further-
more, we are also decoupling the dynamics into longitudinal 
and lateral sub-systems,

Breaking the motion into longitudinal and lateral planes will 
deem to be helpful later in the control stage. Note how the 
state and input vectors adopted in this model have larger 
dimensions than those in the first model, which reveals the 
relative complexity of these models.

3  Optimal control formulation

In this section, the solution of the optimal control problem 
is developed in terms of the Bellman optimality principles 
(Lewis et  al. 2012). First, Bellman equation associated 

(2)ẋ = D−1(H + K u),

u = [Ipcx Ipcy Ipcz Ipdx Ipdz]
T ,

x = [uw vw ww pw qw rw ppw qpw rpw �pw �pw �pw �w �w �w]
T .

xLon = [uw ww qw qpw �pw �w]
T , uLon = [Ipcx Ipcz]

T ,

xLat = [vw pw rw ppw rpw �pw �pw �w]
T , uLat = [Ipcy Ipdx Ipdz]

T .

with the trajectory of the dynamical system is defined and 
the optimal control policy is computed. Then, a modified 
form of Bellman equation is introduced to account for the 
dependency of the value function on the states and the con-
trol strategy.

Consider the following discrete-time state-space 
representation:

where the subscript k denotes the time index, X ∈ ℝ
n and 

u ∈ ℝ
m are vectors representing the states and the control 

signals, respectively, A and B are the approximations of the 
drift dynamics and control input matrices, and the vector ek 
represents the noise and uncertainties in the aerodynamic 
model.

The flexible wing aircraft do not have exact aerodynamic 
models, where the previous studies are based on approximate 
semi-experimental platforms (as illustrated by Model 1 and 
Model 2) (Cook and Spottiswoode 2005; Ochi 2017). Hence, 
the proposed adaptive learning approach uses the general 
dynamical form (3) in order to generate the online measure-
ments, where A and B are recorded for Model 1 and Model 2 
at a trim speed or steady state flight condition. Accordingly, 
the sizes of the longitudinal and lateral states and control 
signals for Model 1 are (n = 4 and 5) and (m = 1 and 1) 
respectively. In a similar fashion, the sizes for Model 2 take 
the values (n = 6 and 8) and (m = 2 and 3) respectively. It is 
worth to mention that, the simulation scenarios will involve 
considerable amount of dynamic variations around the nomi-
nal dynamical matrices A and B,  which should account for 
an envelope of the flexible wing’s aerodynamic variations 
to a great extent.

Let P =
∑∞

�=0
C(X

�
, u

�
) be a performance index to assess 

the quality of the taken actions, where C is a quadratic cost 
function given by C(X

�
, u

�
) =

1

2
(XT

�
SX

�
+ uT

�
Ru

�
) , such that 

S ∈ ℝ
n×n and R ∈ ℝ

m×m are symmetric time-invariant pos-
itive-semidefinite and positive-definite weighting matrices, 
respectively. Define F(Xk) to be a solving value function, 
such that

Then, Bellman equation for system (3) can be written as

This equation shows the dependence of the solving value 
function F(… ) on a selected set of measured states X. This 
temporal difference configuration results in a model-based 
optimal control strategy (Lewis et al. 2012). The following 
development explains how a model-free optimal control pol-
icy can be obtained by changing the argument of the solving 

(3)Xk+1 = AXk + Buk + ek,

(4)F(X
�
) =

∞∑
i=�

C(Xi, ui).

(5)F(X
�
) =

1

2

(
XT
�
SX

�
+ uT

�
Ru

�

)
+ F(X

�+1).
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value function F(… ) to be dependent on the control signals 
as well as the set of measured variables or states.

Definition 1 (System stabilizability) A system in the form 
of (3) can be stabilized on a set (of states) 𝛹 ⊆ ℝ

n , if there 
exists a policy u

�
∈ ℝ

m under which the system is asymptoti-
cally stable on � .

Since the flexible wing aircraft do not have any exact 
models, different state feedback mechanisms can be 
employed in order to obtain a set of admissible policies. 
These can guarantee reachability to certain feasible dynam-
ical situations given initial conditions selected from the 
dynamical environment. Additionally, admissible policies 
can be determined using state feedback mechanisms that 
employ considerable random changes around the trim or the 
nominal dynamical descriptions A and B (Lewis et al. 2012; 
Bellman 1957).

The optimal value function Fo(… ) (or the optimal 
performance measure Po ) can be computed by apply-
ing Bellman optimality conditions (constrained mini-
mum conditions) (Lewis et  al. 2012) to  (4), such that 
Fo(X

�
) = argminui

∑∞

i=�
C(Xi, ui) . The optimal policy deci-

sion making process can be regarded as a mapping ℝn
→ ℝ

m 
which maps the states X

�
 into an optimal strategy uo . Assume 

that system (3) is stabilizable on some set 𝛹 ⊆ ℝ
n . Then, the 

optimal control policy uo is given by

where �Fo(X
�
) = �Fo(X

�
)X

�
 . Despite its successful applica-

tions in various control problems (Sutton and Barto 1998; 
Howard 1960; Bertsekas and Tsitsiklis 1995), the value 
function F(… ) takes into account the states X only, without 
considering the control signal u. This is due to the way Bell-
man equation is expressed in (5). The dependency on the 
dynamical model could lead to quality-degradation of the 
strategy. In the following, a modified expression of Bellman 
equation is introduced. The new relation takes into consid-
eration the states as well as the control strategy.

Let us redefine the solving value function  (4) as 
F̃(X

�
, u

�
) =

∑∞

i=�
C(Xi, ui) . Based on this expression, Bell-

man equation can now be rearranged as

Applying Bellman optimality principles yields (Lewis et al. 
2012),

Tailoring the optimal policy accordingly, leads to the opti-
mal control uo,

(6)uo = −R−1 BT
�Fo(X

�
),

(7)F̃(X
�
, u

�
) =

1

2

(
XT
�
SX

�
+ uT

�
Ru

�

)
+ F̃(X

�+1, u�+1).

(8)

F̃o(X
�
, u

�
) = min

u
�

(
1

2

(
XT
�
SX

�
+ uT

�
Ru

�

)
+ F̃o(X

�+1, u�+1)
)
.

where �F̃o(X
�+1, u�+1) = 𝜕F̃o(X

�+1, u�+1)X�+1 . Substituting 
in (7) leads to the following Bellman optimality equation:

Solving the optimal control problem is now reduced to solv-
ing Bellman optimality equation (10) using the optimal pol-
icy (9). However, the accuracy of this policy depends on a 
priori knowledge of the input matrix B. One of the objectives 
of this work is to adopt a control strategy that is as robust as 
possible to modeling uncertainties. In the next section, an 
online model-free policy iteration approach is proposed to 
control systems defined by (3) starting with rough estimates 
of the system dynamics. In other words, the matrices A and 
B, do not have to be close to their nominal values.

4  Model‑free policy iteration algorithm

A policy iteration approach is adopted here in order to main-
tain faster convergence compared to that achieved using the 
value iteration schemes. Yet, the proposed technique is free 
of matrix-inverse based computations. Instead, an actor-
critic neural network approach is followed in order to imple-
ment the online solution.

4.1  Policy iteration solution

Consider a solving value function Q(X
�
, u

�
) defined such 

that

where ZT
�
= [XT

�
uT
�
] and M is a square Routh–Hurwitz posi-

tive-definite matrix of proper dimension with the following 
block structure:

Approximating the value function F̃(X
�
, u

�
) by Q(X

�
, u

�
) , 

such that

and solving (11) for the optimal policy uo yields

Since M is positive-definite, Muu is invertible, which guar-
antees the existence of the optimal control policy, as defined 

(9)uo = −R−1 BT
�F̃o(X

�+1, u�+1),

(10)
F̃o(X

�
, uo

�
) =

1

2

(
XT
�
SX

�
+ uoT

�
Ruo

�

)
+ F̃o(X

�+1, u
o
�+1

), F̃o(�, �) = 0.

(11)Q(X
�
, u

�
) =

1

2
ZT
�
MZ

�
,

M =

[
MXX MXu

MuX Muu

]
.

(12)F̃(X
�
, u

�
) =

∞∑
i=�

C(Xi, ui) ≃ Q(X
�
, u

�
),

(13)uo = argmin
u
�

Q(X
�
, u

�
) = −M−1

uu
MuX X�

.
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in (13). It follows from (12) that Bellman equation can be 
rewritten as

(14)Q(X
�
, u

�
) =

1

2
(XT

�
SX

�
+ uT

�
Ru

�
) + Q(X

�+1, u�+1).

The way to do that and the reason why the algorithm updates 
this matrix every (n + m)(n + m + 1)∕2 iterations will be jus-
tified later in the adaptive critics implementation (Sect. 5).

The duality between optimal polices  (9) and  (13), and 
their associated optimal value functions F̃o(X

�
, uo

�
) and 

Qo(X
�
, uo

�
) , represents the corner stone of the model-free 

adaptive learning controller. Algorithm 1 describes the pro-
cedure to iteratively compute the optimal control policy uo , 
defined in (13), as a solution of Bellman optimality equation

The value function Q is evaluated at each time index � . 
Its corresponding matrix M is updated at each new policy 
r = 0, 1, 2,… . Hence, Qr denotes the value function evalu-
ated using policy r.

where Mr =

[
Mr

XX
Mr

Xu

Mr
uX

Mr
uu

]
 is a matrix M corresponding to 

policy r. The control law stemming from policy r at time 
index � is denoted by

In an abuse of notation, ur
�
 is referred to as u

�
 in some cases, 

but it should be implicitly understood that it produced from 
some policy r.

The matrix Mr is updated in line 10 of Algorithm 1 by 
solving (18) for Mr.

(15)Qo(X
�
, uo

�
) =

1

2
(XT

�
SX

�
+ uo

�
Ruo

�
) + Qo(X

�+1, u
o
�+1

).

(16)Qr(X
�
, u

�
) =

1

2
ZT
�
MrZ

�
,

(17)ur
�
= −(Mr

uu
)−1 Mr

uX
X
�
.

(18)

Qr(X
�
, u

�
) − Qr(X

�+1, u�+1) =
1

2
(ZT

�
MrZ

�
− ZT

�+1
MrZ

�+1)

=
1

2

(
XT
�
SX

�
+ uT

�
Ru

�

)
.

Algorithm 1: Model-Free Online Policy Iteration Algorithm
Data: X0, u0, S,R, and a termination threshold ε
Result: optimal policy uo ≡ argminu� Q(X�, u�)

1 r ← 0 /* policy index */
2 � ← 0 /* time index */
3 stop ← false /* stopping condition */

4 Initialize M0 to a Routh-Hurwitz positive-definite matrix of proper dimensions
5 while stop is false do
6 Acquire X�+1
7 Compute the policy u�+1 using (17)
8 if (�+ 1) is a multiple of (n+m)(n+m+ 1)/2 then /* new policy */
9 r ← r + 1

10 Solve for Mr using (18) and the past (n+m)(n+m+ 1)/2 iterations
11 if

∥∥Mr −Mr−1
∥∥ < ε then

12 stop ← true

13 � ← �+ 1

It is important to notice that Algorithm 1 does not depend 
on the system’s model. It starts with an admissible policy 
and leads the value function and the control policy to 
converge to their optimal respective values given by (13) 
and (15). Acquiring X

�+1 in line 6 can be read directly from 
sensor measurements in the real-world application, or by 
applying the system model [such as (1) or (2)] in simulation.

4.2  Convergence analysis

We now formally assess the convergence properties of 
Algorithm 1.

Definition 2 (Admissible policy) A policy with control law u
�
 

is said to be admissible, if it stabilizes the system [such as (3)] 
and its corresponding value function Q(X

�
, u

�
) is finite ∀�.

The following theorem shows that policy (13) leads to a 
sequence of monotonically converging value functions and 
stabilizing policies.

Theorem 1 If Algorithm 1 is applied to control system (3) 
with value function (14) and policy update law (13), starting 
with an initial admissible policy, then

1. The generated sequence of policies ur
�
 is stabilizing and 

admissible, ∀r ≥ 0.
2. The generated value functions are monotonically nonin-

creasing: Q0 ≥ Q1 ≥ ⋯ ≥ Qo(X
𝓁
, uo

𝓁
).
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Proof From (14)

Qr can be regarded as a Lyapunov function given a policy 
ur
�
 , ∀r . Then

w h e r e  �C(ur
�
, ur+1

�
) =

∑∞

i=�

1

2

�
u
r

i
− u

r+1
i

�T
R
�
u
r

i
− u

r+1
i

�
+u

(r+1)T

i
R
(
u
r

i
− u

r+1
i

)
.

This proves that  �C(ur
�
, ur

�+1
) ≥ 0 ,  ∀r  .  Then, 

Qr(X
�
, ur

�
) ≥ Qr(X

�
, ur+1

�
) , ∀r . Therefore, ur+1

�
 is a stabilizing 

policy and hence admissible, ∀r . This concludes that, start-
ing with an initial admissible policy, all subsequent policies 
are stabilizing and admissible.

Now, let us prove that the generated value functions are 
monotonically nonincreasing. Inequality (19) yields, ∀r,

Therefore,

Summing both sides of inequality (20),

Consequently,

Using the stability property proven above, we conclude that

Therefore, by induction, we get

where ⋯ denotes the updated decreasing pattern of the value 
functions Qr,∀r.

This proves that Algorithm 1 generates a sequence of poli-
cies ur with monotonically non-increasing value functions 

(19)Qr(X
�+1, u

r
�+1

) − Qr(X
�
, ur

�
) ≤ 0, ∀r.

Qr(X
�
, ur

�
) − Qr(X

�
, ur+1

�
) = �C(ur

�
, ur+1

�
),∀r

Qr(X
�+1, u

r+1
�+1

) − Qr(X
�
, ur+1

�
) ≤ −C(X

�
, ur+1

�
) ≤ 0

Qr+1(X
�+1, u

r+1
�+1

) − Qr+1(X
�
, ur+1

�
) + C(X

�
, ur+1

�
) = 0.

(20)
0 ≤ Qr(X

�+1, u
r+1
�+1

) − Qr(X
�
, ur+1

�
)

≤ Qr+1(X
�+1, u

r+1
�+1

) − Qr+1(X
�
, ur+1

�
).

0 ≤

∞∑
�=L

(
Qr(X

�+1, u
r+1
�+1

) − Qr(X
�
, ur+1

�
)
)

≤

∞∑
�=L

(
Qr+1(X

�+1, u
r+1
�+1

) − Qr+1(X
�
, ur+1

�
)
)
.

0 ≤ Qr(X∞, u
r+1
∞

) − Qr(XL, u
r+1
L

) ≤ Qr+1(X∞, u
r+1
∞

) − Qr+1(XL, u
r+1
L

).

Qr(XL, u
r+1
L

) ≥ Qr+1(XL, u
r+1
L

) ≥ 0.

(21)Q0
≥ Q1

≥ Q2
≥ ⋯ ≥ Qr

≥ Qr+1
≥ ⋯ ≥ 0.

Qr , which are lower- and upper-bounded by 0 and Q0 , respec-
tively. Therefore, the sequence of values functions (21) con-
verges to its lower bound and optimal value Qo.

The optimal value function Qo represents the solution for 
Bellman optimality equation (15).   ◻

5  Adaptive critics implementation

The problem with Algorithm 1 is that there is no viable 
method to calculate the value function Qr(X

�
, u

�
) [from (16) 

or (18)]. As a result, it is not possible to compute the matrix 
Mr , which in turn implies that the optimal control policy 
u
�+1 in line 7 cannot be calculated. As a remedy of this prob-

lem, the value function and the optimal policy are approxi-
mated using actor-critic neural network structures.

The policy approximation neural network (the actor) esti-
mates the optimal policy, while the usefulness of this policy 
is assessed by the critic neural network by approximating its 
value function (Sutton and Barto 1998). The coupled actor-
critic networks are tuned concurrently in a process that is 
repeated until the weights of each network converge.

The estimate Q̂(X
�
, û

�
) of the value function can be 

expressed as

where Wc ∈ ℝ
(n+m)×(n+m) is a symmetric positive definite 

matrix and ẐT
�
= [XT

�
ûT
�
] . Expression (22) of Q̂(X

�
, û

�
) can 

be reformulated as a linear relationship which is conveni-
ently implementable through a simple single-layer neural 
network, such that

where ⊗ denotes Kronecker product, W̃c = vec(Wc) , and 
Z̃
�
= Ẑ

�
⊗ Ẑ

�
 . The operator vec(⋅) forms a vector by stack-

ing the columns of its matrix argument. In this case, since Wc 
is symmetric, the critic network weight vector W̃c = vec(Wc) 
is formed by stacking only the lower or upper triangular 
matrix. This is why it is a vector of (n + m)(n + m + 1)∕2 
elements. The term Z̃

�
= Ẑ

�
⊗ Ẑ

�
 is a quadratic polynomial 

vector containing all possible paiwise products of the com-
ponents of Ẑ

�
 . In other words, if Ẑi is the ith component of 

Ẑ
�
 , for i = 1, 2,… , (n + m)(n + m + 1)∕2 , then

In order to derive the critic weight update law, we define 
Q̃

�,�+1 = Q̂(X
�
, û

�
) − Q̂(X

�+1, û�+1) . Hence,

Q0
≥ Q1

≥ Q2
≥ ⋯ ≥ Qo(X

𝓁
, uo

𝓁
) ≥ ⋯ ≥ 0.

(22)Q̂(X
�
, û

�
) =

1

2
ẐT
�
Wc Ẑ� ,

(23)Q̂(X
�
, û

�
) = W̃T

c
Z̃
�
= (vec(Wc))

T (Ẑ
�
⊗ Ẑ

�
),

Z̃T
�
= [Ẑ2

1
, Ẑ1Ẑ2, Ẑ1Ẑ3,… , Ẑ2

2
, Ẑ2Ẑ3,…].

(24)Q̃
�,�+1 = W̃T

c

(
Z̃
�
− Z̃

�+1

)
.
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Ideally, the critic network maps its input (Z̃
�
− Z̃

�+1) to a 
desired value Q̂desired

�
= C(X

�
, û

�
) . In other words,

The critic weights are updated at the beginning of each pol-
icy after collecting (n + m)(n + m + 1)∕2 data samples in 
order to minimize the following squared error:

where r is a policy index, � r
m
 is a matrix of proper dimension 

whose jth column is (Z̃
�
− Z̃

�+1) and � r
v
 is a row vector whose 

jth component is Q̂desired
�

 , with � = r(n + m)(n + m + 1)∕2.
Applying a gradient-descent approach in order to mini-

mize (26) leads to the following weight update rule:

where 0 < �c < 1 is a critic learning rate.

(25)
W̃T

c

(
Z̃
�
− Z̃

�+1

)
= Q̂desired

�
= C(X

�
, û

�
) =

1

2

(
XT
�
SX

�
+ ûT

�
Rû

�

)
.

(26)Er
c
=
|||
|||W̃

T
c
𝛤 r
m
− 𝛤 r

v

|||
|||
2

,

(27)(W̃r+1
c

)T = (W̃r
c
)T − 𝓁c

(
(W̃r

c
)T ⋅ 𝛤 r

m
− 𝛤 r

v

)
⋅
(
𝛤 r
m

)T
,

The corresponding target policy approximation is given by

where the critic weight matrix is divided into the following 
block structure:

with square matrices WcXX ∈ ℝ
n×n and Wcûû ∈ ℝ

m×m.
Following a gradient descent approach, as with the critic 

weights, the update rule for the actor weights follows as

where 0 < �a < 1 is an actor learning rate.
Algorithm 2 represents an amended version of Algo-

rithm 1, where the actor-critic networks are employed to 
approximate the optimal policy and the value function. The 
approximation is accomplished in real-time without the need 
to model the system dynamics.

(29)ûdesired
�

= −W−1
cûû

WcûX X�
,

Wc =

[
WcXX WcXû

WcûX Wcûû

]
,

(30)(Wnew
a

)T = (Wold
a

)T − �a(û� − ûdesired
�

)XT
�
,

At every time instant � , the actor network maps the state 
vector X

�
 to an estimated optimal policy û

�
 through the fol-

lowing linear relationship:

where Wa ∈ Rn×m is a matrix containing the actor weights.
(28)û

�
= WT

a
X
�
,

Algorithm 2: Model-Free Online Policy Iteration Algorithm with Actor-
Critic Neural Network Implementation
Data: X0, u0, S,R, and a termination threshold ε
Result: optimal policy uo ≡ argminu� Q(X�, u�)

1 r ← 0 /* policy index */
2 � ← 0 /* time index */
3 stop ← false /* stopping condition */

4 Initialize the critic weight matrix W̃ r
c to a Routh-Hurwitz positive-definite matrix of

proper dimensions
5 Initialize the actor weights Wa

6 while stop is false do
7 Evaluate the policies û� and ûdesired

� using (28) and (29), respectively
8 Acquire X�+1
9 Compute the policy û�+1 using (28)

10 Evaluate Q̃�,�+1 using (24) and Q̂desired
� using (25)

11 if (�+ 1) is a multiple of (n+m)(n+m+ 1)/2 then /* new policy */
12 r ← r + 1
13 Update the critic weights (i.e., compute W̃ r+1

c ) using (27)
14 Update the actor weights using (30)
15 if

∥∥W r
c −W r−1

c

∥∥ < ε then
16 stop ← true

17 � ← �+ 1

6  Simulation results and discussion

Two case studies are considered in order to illustrate the 
performance of the proposed control scheme on each of 
the aircraft models. Case study 1 applies the control algo-
rithm on the nominal dynamics of the models, while Case 
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study 2 is a generalization of the control problem around a 
trim condition, where disturbances are induced to represent 
time-varying imperfections in the models. This scenario can 
cope with the varying aerodynamic envelope of the flexible 
wing aircraft. The disturbances are drawn at each instance 
(iteration step) from a normal Gaussian distribution with a 
variance of 15% around the aerodynamic nominal parameters 
of the trim model, such that

where �Ak and �Bk are the superimposed aerodynamic dis-
turbances; uO

k
 is the control signal stemming from solving 

the Riccati equation (this control signal is found by solving 
a standard Riccati equation using the dynamics A and B and 
the weighting matrices S and R) (Lewis et al. 2012); and uP

k
 

is the control signal provided by the proposed framework 
(i.e., Algorithm 2). These dynamics are applied along the 
longitudinal and lateral motion frame of each model.

The dynamics of both models used in the simulations are 
detailed in Appendices 1 and 2. Obviously, such dynamics 
are unknown to the controller and are only used to simulate 
the aircraft’s behavior in response to the actions generated 
by the controllers. For completeness, the aircraft’s specifica-
tions are given in Appendix 3.

The simulations adopted a sampling time of Ts = 0.01 s . 
The weighting matrices are set to S = 0.1IA and R = 0.1Iu , 
where IA and Iu are identity matrices with the same sizes 
as A and u, respectively. The learning rates are chosen as 
�a = �c = 0.01.

The graphical notations ‘o’ are used to describe the 
open-loop eigenvalues, while the marks ‘+’ denote the final 
closed-loop eigenvalues. The closed-loop eigenvalues evolv-
ing during the adaptive learning process are given the ‘*’ 
symbols.

6.1  Control of Model 1

In the sequel, the performance of the adaptive learning con-
trol algorithm is analyzed using the control configuration 
suggested by Model 1.

6.1.1  Longitudinal frame of motion

The simulation results of the longitudinal motion are 
reported in Figs. 3 and 4. The adaptation processes of the 
actor and critic weights are shown to converge as shown 
in Fig. 3. It is worth noticing (from Fig. 4b) that the open-
loop longitudinal system is naturally unstable. It has an 
unstable phugoid mode with eigenvalues 1.0008 ± 0.0116i , 
and a short period pitching mode with eigenvalues 

Xk+1 =
(
A + �Ak

)
Xk + BuO

k
+ �Bk u

P
k
,

0.9799 ± 0.0214i . The same figure shows the closed-loop 
eigenvalues evolution in the z-domain during the controller’s 
learning phase. As can be seen, the controller forced the 
phugoid mode to shift inside the stability region (unit cir-
cle) to guarantee the system’s asymptotic stability. Closing 
the control loop with the controller in hand in the first case 
study, originally resulted in a unstable closed-loop poles that 
are stretched out far from the unit circle. This explains why 
the control effort at the beginning of the simulation of that 
case is larger than that of the second case. This is manifested 
in the fluctuating behavior of the dynamics (Fig. 4a) and 
the actor weights (Fig. 3b) in the first half of the simulation 
of case study 1. The asymptotic behavior is further empha-
sized by the values of the applied control signals as shown 
in Fig. 4c.

6.1.2  Lateral frame of motion

Similarly, the simulation results of the lateral motion are 
depicted in Figs. 5 and 6. The employed adaptive learning 
mechanism exhibited converging and asymptotic stability 
features as can be revealed from the actor-critic tuning evo-
lution in Fig. 5 and the dynamical behavior of the lateral 
motion in Fig. 6a using the two simulation scenarios. The 
lateral open-loop system is marginally stable with poles at: 
1, 0.9972 ± 0.0088i (dutch roll mode), 0.9949 (spiral mode), 
and 0.7978 (roll mode). Note how despite the relatively fast 
time response of the roll mode, the dutch roll and spiral 
modes are characterized by slow transient characteristics. 
The evolution of the closed-loop eigenvalues (Fig. 6b), 
reveals how the controller dragged the sluggish modes fur-
ther into the stability region in order to make the system 
asymptotically stable. This is clearly illustrated in case 
study 2, the difference between the open- and closed-loop 
dutch roll and roll modes is significant.

6.2  Control of Model 2

In the following discussion, the control configuration sug-
gested by Model 2 is employed to validate the performance 
of the adaptive learning mechanism in the decoupled motion 
frames.

6.2.1  Longitudinal frame of motion

The mapping features of the pilot’s relative motion into the 
wing’s frame of motion, created a stable but sluggish system. 
This can be seen as a direct result of using the transforma-
tion matrices that mapped the force components Ipcx and Ipcz, 
which are acting on the control bar, into the wing’s system. 
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In this formulation, two additional longitudinal motion states 
qpw and �pw (compared to Model 1) are considered and the 
control signals are the two-force components. Herein, all 
the involved force control signals are utilized unlike (Ochi 
2017), where the z-component is not considered. The open-
loop poles of the longitudinal dynamics are: 0.9938, 0.9995, 
0.9995 ± 0.0043i (pitching mode), and 0.9999 ± 0.0008i 
(original phugoid mode). Although all open-loop poles are 
stable, they are associated with slow time responses.

The simulations of this model along the longitudinal 
plane are shown in Figs. 7 and 8. Figure 7 shows the con-
sistency in the convergence characteristics achieved using 
the adaptive learning process when the control configura-
tion is ultimately modified, where asymptotic stability is 

continuously observed as shown by Fig. 8. Applying the 
controller to case study 1 did not have much effect, in the 
sense that it led to closed-loop poles almost superpositioned 
with the open-loop ones. However, it had a clear effect on 
the second case study, where it shifted the dominant poles 
corresponding to the phugoid mode further inside in the 
unit circle, which improves this mode’s time response of 
the aircraft. It is worth noticing how the closed-loop poles 
corresponding to the phugoid mode found their way outside 
of the unit circle during the controller’s exploration process 
around time 300 s. Nevertheless, it rapidly stabilized the sys-
tem by applying sufficiently large control signals (Fig. 8c). 
The learning process converged shortly after that (Fig. 7).
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6.2.2  Lateral frame of motion

In this model four additional states related to the pilot’s 
relative motion in the wing’s frame of motion are con-
sidered ppw, rpw, �pw, and �pw (compared to the lateral 
motion Model 1). Herein, all the force control signals (i.e., 
Ipcy, Ipdx, and Ipdz ) are utilized unlike (Ochi 2017). The open-
loop eigenvalues of this system are: 0.9740 (roll mode), 
0.9997 ± 0.0054i (dutch roll), 0.9994 ± 0.0012i (relative 
roll), 1.0000 ± 0.0004i (relative yaw mode), and 1.0002 

(spiral mode). As can be seen, the spiral and relative yaw 
modes are unstable unlike the marginally stable properties 
of the lateral dynamics of Model 1. This makes the control 
process of this system more challenging compared to the 
other model.

The simulation plots of the lateral dynamics control are 
shown in Figs. 9 and 10. Once again, closing the loop with 
the proposed controller originally resulted in dutch-mode 
closed-loop poles that are way out of the unit circle in the 
first case study. This is shown in the sluggish lateral velocity 
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Fig. 6  Aircraft’s lateral control based on Model 1
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of the wing, for example, at the beginning of the simulation 
(Fig. 10a). It was required that controller applies a consider-
able amount of force on the control bar to regulate the air-
craft (Figure 10c). As a result, the actor neural network spent 
a longer time exploring the weight search space searching 
for optimal control actions to stabilize the system (Fig. 9b). 
It is also interesting to note how the closed-loop roll and spi-
ral modes are significantly improved in this case compared 
to their open-loop counterparts.

Overall, the proposed online adaptive learning approach 
exhibited the ability to control systems with continuously 
varying dynamics. It achieved asymptomatic stability and 
improved the time-response characteristics of the simulated 

models. The closed-loop eigenvalues are eventually guided 
towards the stability region. Despite the fundamental struc-
tural differences between both models, the adaptive learning 
approach was robust to these discrepancies.

7  Merits and adaptability to real‑world 
applications

This section highlights the main advantages of the proposed 
policy iteration approach along with the accompanying real-
world practical implications and it introduces future ideas 
towards multi-objective autonomous control schemes.
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Fig. 7  Learning weights corresponding to the aircraft’s longitudinal control based on Model 2
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The proposed scheme enjoys enormous flexibility which 
makes it easy to apply in many practical real-time control 
situations, where the dynamics of the underlying systems are 
unknown. It results in an affordable model-free policy iteration 
mechanism to solve control problems for nonlinear systems 
with unstructured dynamics in real-time without running into 
possible computational difficulties which involve singular-
ity risks or extensive computation efforts (Sutton and Barto 
1998; Abouheaf and Mahmoud 2017; Abouheaf and Gueaieb 
2017; Bertsekas and Tsitsiklis 1995; Howard 1960; Si et al. 
2004; Al-Tamimi et al. 2008; Weiss 1999; Vamvoudakis et al. 

2012; Vrabie et al. 2009). These are mainly observed in other 
classical policy iteration approaches that employ least square 
mathematical tools. A black box mechanism is followed, where 
a set of selected measured states and control signals is used in 
an online computational process in order to advise an optimal 
control strategy. This approach employs mathematical as well 
as computational training processes to solve the optimal con-
trol problem without the need to undergo huge and random 
training episodes. Furthermore, this technique, which is based 
on a temporal difference form (Bellman equation), provides an 
easier alternative compared to the policy iteration solutions 
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which employ Hamiltonian-based frameworks. The proposed 
mechanism requires an initial admissible policy and generates 
a sequence of stable and admissible polices as explained by 
Theorem 1. Unlike traditional policy iteration mechanisms, the 
proposed approach implies a straightforward online adaptive 
critics implementation with feedforward neural network frame-
work to solve the control problem in real-time. This approach 
is generalizable to multiple real-world applications using the 
suggested real-time solution framework.

This adaptive learning approach is convenient to be 
practically used in order to solve the optimal control prob-
lems for flexible wing aircraft which pose bigger entities 
without taking the risk of damaging their physical compo-
nents unlike the training processes that employ Q-learning 
approaches. Thus, it provides a way to enable reachability 
to a certain situation given a specific feasible initial condi-
tion. The procedure followed to apply the proposed adaptive 
learning approach on real-world applications employs Algo-
rithm 2 taking into consideration the practical implications 
of the sensory systems and actuation devices. The precau-
tions of the dynamic learning environment are specific to 
each robotic application. Meaning that, the sampling time 
at which the online measurements are recorded and used 
follows that of the sensory circuit setups of the underlying 
application. Moreover, the neural network learning parame-
ters are picked based on initial training trials for the selected 
variables of the robotic application. On another side, the 
weighting matrices of the cost function are picked to match 
the practical limits of the selected states and the actuation 
control signals.

The developed adaptive learning scheme can be incorpo-
rated into many future machine learning platforms. A policy 
iteration mechanism can be developed using Hamiltonian-
based temporal difference framework with straightforward 
neural network structures. Furthermore, the proposed 

online policy iteration approach can be integrated into a 
more sophisticated autonomous control scheme that serves 
multiple-operation objectives. This controller can be used 
to perform the navigation tasks and minimize the overall 
energy dissipation. Hence, it can provide an additional 
energy optimization feature which supports the operation 
of the conventional navigation mechanisms.

8  Conclusion

The aerodynamic modeling of the flexible wing aircraft is a 
challenging process. This urged for innovative approaches 
to tackle their stability and control mechanisms. An adap-
tive reinforcement learning scheme is developed to control 
the decoupled motions of a flexible wing aircraft in real-
time. This controller does not need the aerodynamic mod-
els of the aircraft. Yet, it exhibited robustness against the 
continuous variations in the two models tested in this work. 
The proposed adaptive learning controller runs in real-
time using means of adaptive critics. The convergence of 
the adaptive learning process is guaranteed asymptotically. 
The simulation results highlighted the effectiveness of the 
control approach, in stabilizing the phugoid mode of the 
longitudinal system and in modifying the bounded stability 
modes in the lateral system to be completely asymptotically 
stable. The developed robust controller is shown to perform 
effectively for different control configurations.

Appendix 1: State space matrices of Model 1

This position control model is derived at a trim speed of 
10.8ms−1 (Cook and Spottiswoode 2005).

ALon =

⎡⎢⎢⎢⎣

−0.1730 0.6538 0.1388 −9.7222

−1.4208 −2.2535 10.7370 1.3093

0.2685 −0.4402 −1.4113 0

0 0 1 0

⎤⎥⎥⎥⎦
,BLon =

⎡⎢⎢⎢⎣

0

0

7.46

0

⎤⎥⎥⎥⎦

ALat =

⎡⎢⎢⎢⎢⎢⎣

−0.2195 −0.1580 −10.798 9.722 −1.3098

−1.4670 −21.318 7.5163 0 0

0.2906 3.7362 −2.1119 0 0

0 1 0 0 0

0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎦

,BLat =

⎡⎢⎢⎢⎢⎢⎣

0

3.6136

−0.4311

0

0

⎤⎥⎥⎥⎥⎥⎦
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Appendix 2: State space matrices of Model 2

The dynamics of the second model are defined by Ochi 
(2017):

Appendix 3: Flexible wing aircraft 
parameters

Tables 1, 2 and 3, list the experimental data of the Hiway 
Demon Hang Glider (Cook and Spottiswoode 2005; Ochi 
2017). The notation ∗ describes the trim condition, Vc is the 

ALon =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.92236 2.8006 −10.188 −7.5967 ∗ 10−3 14.006 −9.2715

−0.66112 −1.7587 7.6085 −4.0687 ∗ 10−3 5.1213 −3.1743

0.18844 0.86754 −5.1420 −8.9318 ∗ 10−5 0.14777 0

0.55841 −2.2953 10.204 −1.4080 ∗ 10−2 −17.394 0

0 0 0 1 0 0

0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

BLon =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.045395 0.019802

−0.015056 0.0065679

−0.053977 0.023546

0.10987 −0.047928

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

ALat =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.72750 4.9509 −9.6760 4.9579 ∗ 10−4 0 −24.023 −8.0919 9.2715

−1.7156 −26.591 9.2368 −4.1874 ∗ 10−8 0 −0.0035684 −0.037915 0

0.089999 −0.10056 −0.49893 −2.4473 ∗ 10−6 0 0.11877 0.041214 0

0.98924 25.065 −8.5206 −1.1526 ∗ 10−2 0 −27.819 −9.3364 0

−0.67411 −9.0439 3.6429 2.2839 ∗ 10−6 0 0.19150 −0.071821 0

0 0 0 1 −0.36595 0 0 0

0 0 0 0 1.0649 0 0 0

0 1 0.34238 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BLat =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.077600 3.0442 ∗ 10−6 0.015364

0.017368 −1.0473 ∗ 10−3 −0.0029820

−0.00018834 2.2290 ∗ 10−3 −0.00093505

−0.10596 1.4671 ∗ 10−4 0.020917

0.065159 −2.9239 ∗ 10−2 −0.00014671

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 1  The Hang Glider (Hiway Demon) configuration data

Parameter Value Parameter Value

Pilot mass 80 kg Wing mass 31 kg
Wing area 16.26 m2 Wing span 10 m
Reference chord length 1.626 m Hang point position 0.04 m
Hang strap length 1.2 m Control frame position 0.06 m
Control frame height 1.65 m
Distance between the pilot’s hands on the control bar 0.3 m

Table 2  Moments of inertia

Parameter Value ( kg m2)

Moment of inertia of the wing about X
w
-axis 189.97

Moment of inertia of the wing about Y
w
-axis 56.486

Moment of inertia of the wing about Z
w
-axis 251.26

Moment of inertia of the pilot about X
p
-axis 1.6

Moment of inertia of the pilot about Y
p
-axis 22.4

Moment of inertia of the pilot about Z
p
-axis 22.4

Table 3  Trim condition

V
c

�∗
w

�∗
w

�∗
w

�∗
pw

J
XZw

�∗
p

10.8 ms
−1 26.8

◦
18.9

◦ −7.9◦ −20.1◦ 3.25 6.7
◦

air speed, �w is the angle of attack, �w is the flight path angle, 
�p is the angle of attack of the pilot, and JXZp is the product 
of inertia.
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Appendix 4: Online adaptive learning solution (sample code)
1 %%% Online Po l i cy I t e r a t i o n Algorithm %%%
2 a=4; % Def ine number o f s t a t e s
3 c=1; % Def ine number o f c on t r o l s i g n a l s
4 % Def ine the continuous−time s t a t e space matr i ce s
5 Ac=[−0.1730 0 .6538 0 .1388 −9.7222;
6 −1.4208 −2.2535 10 .737 1 . 3 093 ;
7 0 .2685 −0.4402 −1.4113 0 ;
8 0 0 1 0 ] ;
9 Bc= [ 0 ; 0 ; 7 . 4 6 ; 0 ] ; Cc=eye ( l ength (Ac) ) ;

10 % I n i t i a l i z e the s t a t e s
11 X=[8.0000 0 .7854 0 .7854 0 . 7 8 5 4 ] ’ ;
12 Xint=X; % Store that i n i t i a l va lue
13 % I n i t i a l i z e the weight ing matr i ce s
14 S=0.1∗ eye ( a ) ;R=0.1∗ eye ( c ) ;
15 % I n i t i a l i z e the l e a rn i ng parameters
16 l a =0.1 ; lb =0.1 ;
17 % I n i t i a l i z e the c r i t i c weights
18 Wc=blkd iag ( eye ( a , a ) , eye ( c , c ) ) ;
19 % I n i t i a l i z e the ac to r weights
20 Wa=−1∗rand (1 , 4 ) ;
21 % I n i t i a l i z e the c on t r o l s i g n a l ( assume to be admi s s i b l e )
22 U=Wa∗X;
23 % Obtain the d i s c r e t e−time dynamics
24 sys = s s (Ac , Bc , Cc , 0 ) ;
25 Ts=0.01; % Sampling time
26 sysd = c2d ( sys , Ts ) ; [A,B,C,Dd] = ssdata ( sysd ) ;
27 % Store the s t a t e s , c on t r o l inputs , c r i t i c and acto r weights
28 s t a t e s = [ ] ; cont inp = [ ] ; c r i t i c = [ ] ; a c to r = [ ] ;
29 % Threshold e r r o r ( te rminat ion e r r o r )
30 eps=10ˆ−12;
31 % I n i t i a l e r r o r
32 e r r =10;
33 m=1; n=1;% Counters
34 % The on l i n e t r a i n i n g proce s s
35 whi le ( e r r > eps )
36 % Store the s t a t e s , c on t r o l inputs , c r i t i c and acto r weights
37 s t a t e s =[ s t a t e s X ] ;
38 cont inp=[ cont inp U ] ;
39 c r i t i c =[ c r i t i c reshape (Wc, 25 , 1 ) ] ;
40 ac to r=[ ac to r reshape (Wa, 4 , 1 ) ] ;
41 % Calcu la te the cur rent co s t
42 O=0.5∗(X’∗S∗X+U’∗R∗U) ;
43 % Store the s t a t e s and the con t r o l s i g n a l s in one vec to r
44 Xt=[X;U ] ;
45 % Transform the c r i t i c weights matrix Wc and Vector Xt in to other

vec to r forms
46 k=0;
47 f o r i =1:( a+c )
48 f o r j=i : ( a+c )
49 k=k+1;
50 i f j==i
51 l =1;
52 e l s e
53 l =2;
54 end
55 Wcv(k )=l ∗Wc( i , j ) ;
56 XT(k )=Xt( i ) ∗Xt( j ) ;
57 end
58 end
59 % Calcu la te the dynamical behavior X {k+1}
60 X=A∗X+B∗U;
61 % Calcu la te the po l i c y u {k+1}= Wa ( prev ious po l i c y ) ∗ X {k+1}
62 Un=Wa∗X;
63 i f Un > pi /3 | Un < −pi /3
64 Un=s ign (Un) ∗ pi /3 ;
65 end
66 % Store the s t a t e s X {k+1} and the con t r o l s i g n a l s u {k+1} in one

vec to r
67 Xtt=[X;Un ] ;
68 % Set a counter
69 k=0;
70 % Transform the Vector Xtt in to other vec to r form as be f o r e
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71 f o r i =1:( a+c )
72 f o r j=i : ( a+c )
73 k=k+1;
74 XTT(k )=Xtt ( i ) ∗Xtt ( j ) ;
75 end
76 end
77 % Find the d i f f e r e n c e in ve c to r s XT and XTT
78 Xd=XT−XTT;
79 % Evaluate the c r i t i c weights and hence the ac to r weights a f t e r
80 % (n+m) ∗(n+m+1)/2 samples
81 i f mod(n , ( a+c ) ∗( a+c+1)/2)==0
82 % Previous Wc
83 PWc=Wc;
84 % Store the co s t f unc t i on s f o r the d i f f e r e n t samples
85 OO(m)=O;
86 % Store the d i f f e r e n c e s Xd f o r the d i f f e r e n t samples
87 Xdd ( : ,m)=Xd;
88 % Update the c r i t i c weights vec to r
89 Wcvv=Wcv−mc∗ ( (OO−Wcv∗Xdd) ∗Xdd) ;
90 % Transform the c r i t i c s weights vec to r Wcvv in to a square

matrix Wc
91 k=0;
92 f o r i =1:( a+c )
93 f o r j=i : ( a+c )
94 k=k+1;
95 i f j==i
96 l =1;
97 e l s e
98 l =0.5 ;
99 end

100 L=l ∗Wcvv(k ) ;
101 Wc( i , j )=L ;
102 Wc( j , i )=L ;
103 end
104 end
105 % Current Wc
106 CWc=Wc;
107 % Calcu la te the optimal c on t r o l p o l i c y
108 Uu=−1∗ inv (Wc( a+1:a+c , a+1:a+c ) ) ∗Wc(a+1:a+c , 1 : a ) ∗X;
109 % Update the ac to r weights vec to r
110 Wa=Wa−mc∗ ( (Wa∗X)−Uu+randn ) ∗X’ ;
111 U=Wa∗X;
112 i f U > pi /3 | U < −pi /3
113 U=s ign (U) ∗ pi /3 ;
114 end
115 m=1;
116 e r r=norm(CWc−PWc) ;
117 e l s e
118 OO(m)=O;
119 Xdd ( : ,m)=Xd;
120 m=m+1;
121 end
122 n=n+1;
123 end
124 n=n−1;
125 f i g u r e
126 p lo t ( ( 1 : n ) ∗Ts , s t a t e s ( 1 , : ) , ( 1 : n ) ∗Ts , s t a t e s ( 2 , : ) , ’ : ’ , ( 1 : n ) ∗Ts , s t a t e s

( 3 , : ) , ’−. ’ , ( 1 : n ) ∗Ts , s t a t e s ( 4 , : ) , ’−− ’ )
127 x l ab e l ( ’Time ( sec ) ’ )
128 y l ab e l ( ’ Long i tud ina l Dynamics ’ )
129 l egend ( ’ u \omega ’ , ’ \omega \omega ’ , ’ q \omega ’ , ’ \ the ta \omega ’ )
130 f i g u r e
131 p lo t ( ( 1 : n ) ∗Ts , c r i t i c )
132 x l ab e l ( ’Time ( sec ) ’ )
133 y l ab e l ( ’ C r i t i c Weights ’ )
134 f i g u r e
135 p lo t ( ( 1 : n ) ∗Ts , ac to r )
136 x l ab e l ( ’Time ( sec ) ’ )
137 y l ab e l ( ’ Actor Weights ’ )
138 f i g u r e
139 p lo t ( ( 1 : n ) ∗Ts , cont inp )
140 x l ab e l ( ’Time ( sec ) ’ )
141 y l ab e l ( ’ Long i tud ina l Control Angle \ de l t a ’ )
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