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Abstract
This paper mainly focuses on the volume calculation of materials in the warehouse where sand and gravel materials are stored 
and monitored whether materials are lacking in real-time. Specifically, we proposed the sandpile model and the point cloud 
projection obtained from the LiDAR sensors to calculate the material volume. We use distributed edge computing modules to 
build a centralized system and transmit data remotely through a high-power wireless network, which solves sensor placement 
and data transmission in a complex warehouse environment. Our centralized system can also reduce worker participation in 
a harsh factorial environment. Furthermore, the point cloud data of the warehouse is colored to visualize the actual facto-
rial environment. Our centralized system has been deployed in the real factorial environment and got a good performance.

Keywords  Edge computing · Point cloud projection · Volume estimation

1  Introduction

With the development of the internet, smart factories and 
smart warehouses (Liu et al. 2018; Lee et al. 2019; Scheer 
2012) have gradually emerged. Machines have gradually 
replaced some simple and repetitive tasks. What’s more, in 
some places with harsh production environments, unmanned 
people rapidly realize to reduce the human in such harsh 
environments.

In the harsh factory environment, most factories did not 
reserve some installing sensors, nor did they reserve the 

network cables needed for data transmission. The factory 
structure is pre-designed, and it is not easy to change the 
structure. The data transmission line will increase the cost 
very much and bring danger to the working environment, 
so we should find a way to monitor the warehouse without 
cable. The material volume calculation (Riccabona et al. 
1995; Fojtík 2014; Zhongyi et al. 2019) of intelligent ware-
house with distributed computing equipment proposed in 
this paper is used in the warehouse’s harsh environment.

Two important concepts are involved: distributed systems 
and edge computing. Firstly, distributed systems have a wide 
range of applications in smart factories. A general feature 
of manufacturing systems is the transmission and process-
ing of data between each other. Distributed systems provide 
coordination to allow global information to be available for 
further calculation and better decision making (Poonpakdee 
and Koiwanit 2018). The architectures of distributed systems 
we used are centralized systems, Fig. 1 presents the simu-
lated scenarios. A server aims to centralize all functions and 
information taken from clients by directly connecting to the 
clients. Clients share their resources by sending and receiv-
ing the information to a server (Minar 2002). Secondly, edge 
computing is a distributed computing paradigm that brings 
computation and data storage closer to the location where it 
is needed to improve response times and save costs (Ham-
ilton 2019). Edge computing is performed at the network 
edge near to the device or data source. Edge computing can 
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provide real-time data processing, data cleaning, and privacy 
protection (Shi et al. 2016). Pizoń and Lipski (2016) argued 
that edge computing enables dynamic monitoring and data 
process. Distributed computing is based on the rapid devel-
opment of the network, and edge computing is related to 
factories’ distributed automation. Edge computing combines 
decentralized processing with the centralized upload, which 
reduces data transmission time, data transmission errors, and 
data security while reducing bandwidth (Chen et al. 2017). 
The primary advantage of centralized systems is their sim-
plicity. Shu et al. (2016) provides a method for collecting 
data and processing data by cloud-integrated. The Cyber-
physical systems (CPSs) have three fundamental conflicting 
attributes: safety, security, and sustainability (Baheti and Gill 
2011). For edge computing, De Brito et al. (2016) supposed 
that deployment of programmable fog nodes is attributed to 
inter-node Peer-to-Peer (P2P) communication and services 
orchestration without centralized control. The manufacturing 
industry is exploring the use of cloud computing to enhance 
manufacturing plant operations’ efficiency, improve product 
quality, and so on (Georgakopoulos et al. 2016). However, 
the internet can be used in our environment, so the structure 
of distributed edge computing provided by others can not be 
used directly. We use a computer as a center and set up all 
edge computing modules to start automatically, and all of 
them are independent.

The distributed systems and edge computing are used in 
my system. There are severe dust and large-scale machinery 
operations in this kind of warehouse, but someone needs to 
monitor whether the materials in each warehouse are lack-
ing. If the lack of materials needs to be supplemented in 
time, otherwise it will affect production efficiency. The edge 
computing equipment used in this article connects each com-
puting module to a network through a wireless router (Ikram 
and Thornhill 2010; Paavola and Leiviska 2010) and moni-
tors the volume of materials in the warehouse in real-time. 

This article mainly contributes to the processing of distrib-
uted edge computing module data and the networking of 
distributed equipment. The module is mainly composed of 
a mini processor, Livox Horizon LiDAR, camera, and wire-
less router. After power on, each module will be connected 
to the network through the router, and the equipment can be 
started by remote login, and the central control room can 
also be obtained through high-power wireless access. The 
main contributions of this paper can be presented as follows: 

1.	 Distributed edge computing devices transmit data 
through wireless network networking.

2.	 Adding materials through real-time volume calculation 
and intelligent notification to reduce personnel working 
in harsh environments.

3.	 The sand pile model is used to predict the sand piles that 
cannot be scanned by LiDAR, reducing the redundancy 
caused by installing sensors at the bottom of the ware-
house.

2 � Method

The intelligent material warehouse has two essential com-
ponents: the edge computing end and the monitoring room. 
The edge computing is responsible for two parts, volume 
calculation and the third is point cloud colouring Fig. 15. 
Point cloud colouring makes the 3D point cloud with the 
information of the image can be displayed on the monitor-
ing room. There is much dust in the material area in the 
actual warehouse. The measurement accuracy will be greatly 
affected, such as the ZED stereo camera, which is a depth 
camera based on the principle of RGB binocular stereo 
vision (Bauer et al. 2019), can meet 20 m distance. But it 
is difficult to meet the requirements of distance and accu-
racy, so we choose LiDAR to obtain three-dimensional data. 
Traditional line LiDAR can not get dense point cloud data, 
and the actual scene viewing angle is only 90, so using 360 
lasers make a waste of a performance. The Livox Horizon 
LiDAR is a non-repetitive LiDAR with a field of view (FOV) 
81.7◦ (horizontal) × 25.1◦ (vertical). Two lasers are arranged 
on the left and right sides of the warehouse to achieve full-
range coverage. By accumulating multiple frames of LiDAR 
data, a denser point cloud data can be achieved. In order to 
splice the left and right point clouds, the transfer matrix 
from the left point cloud to the right point cloud needs to 
be calibrated. The left point cloud should be changed to the 
right point cloud frame by multiplying the transform matrix. 
After adding left and right point cloud, changing the adding 
point cloud to the map and then remove the plane and wall 
point by plane constrain. We want to transmit data to the 
monitoring room through wireless long distance for people, 
but it takes more bandwidth to transmit pictures. Hence, 

Fig. 1   Centralized systems. The systems have a base station and all 
sensors connect to it,base station can read data from every sensor,but 
sensors are independent
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we color the point cloud and transmit the point cloud to 
the monitoring room, saving wireless bandwidth. The point 
cloud colouring technology (PDAL Contributors 2018) is 
equivalent to using LiDAR data and two-dimensional image 
data to make a data fusion to generate an image similar to 
the RGB-D image. The monitoring room can see the RGB-D 
similar data information. Another one, the coloured point 
cloud can be used for 3D reconstruction (Newcombe et al. 
2011), in some places where RGB-D cameras are not con-
venient to use. The intelligent warehouse system can be bro-
ken down into several parts: hardware framework, volume 
calculation, LiDAR camera calibration and point cloud col-
ouring, which will be introduced one by one.

2.1 � The hardware system

The hardware system of the intelligent material warehouse 
includes a distributed edge computing module composed 
of the Jetson-nano development board, Livox Horizon 
LiDAR, Huawei WIFI3 AX3 wireless as Fig. 4a, b. Jet-
son-nano is a small processor, which comes with a small 
camera can be used to collect images, is responsible for 
LiDAR point cloud processing and image recognition. 
Huawei routers adopt wireless networking configuration 
information. The base station uses the auxiliary trans-
ceiver that can interact with the base station transceiver 
of the neighbouring cell base station to exchange network 
parameters with the neighbouring cell base station and 
configures their neighbouring cell lists based on this. 
Stations exchange and update of configuration informa-
tion, and self-adaptive networking. After power on, the 

processor and the program will automatically start, and 
automatically connect to the wireless network. The module 
hardware system connection diagram is shown in Fig. 2.

The installation of edge computing modules in the 
warehouse is distributed as Fig. 3. The traditional sensor 
arrangement requires the LiDAR to be connected to the 
processor through a network cable. However, in a ware-
house environment with a long distance, we need multiple 
LiDARs, so it is very inconvenient to connect the LiDAR 
to a network by pulling the network cable. The edge com-
puting module are suitable for installation in this environ-
ment. Each edge computing module performs independent 
calculations, and the processor performance requirements 
for edge computing do not need to be very high. Combine 
all modules in a local area network through a router, and 
send data through a high-power wireless (Farkas 2011) 
transmitting device Fig. 4, The entire system is based on 
the Robot Operating System (ROS). ROS is a distributed 
framework which nodes can be combined through a loose 
coupling. The nodes can run on different computing plat-
forms and communicate through topics. In the same ROS 
system, only a master is allowed, so set the host of the con-
trol room as the master node, and combine all other mod-
ules under the same local area network as the client. The 
volume of storage material warehouse is 20 × 10 × 4m3 , 
which is not easy to install edge computing modules, so 
choose to install the modules on the left and right col-
umns in front of the warehouse. We will use the algo-
rithm to predict the height of some materials that cannot 
be scanned to improve the accuracy of volume calculation.

Fig. 2   Module hardware con-
nection diagram
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2.2 � The point cloud correction

The point cloud correction has two parts, one is the point 
cloud correction of the left and right modules of the 

warehouse and splicing them into a complete point cloud. 
The other is the correction of the spliced point cloud to a pre-
built 3D map by LiDAR Odometry and Mapping (LOAM) 
(Zhang and Singh 2014). The LiDAR data of the modules 

Fig. 3   The module installed on 
the warehouse

Fig. 4   a The front view of mod-
ule. b The top view of module. 
c The side view of module. d 
The powerful wireless. The 
figure shows edge computing 
module hardware and powerful 
wireless for data transmission, 
The edge computing module is 
small and convenient to install 
in factory
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on the left and right sides are a set of intersecting data and 
cannot be directly spliced into a complete warehouse point 
cloud data. It needs to be calibrated to find the transform of 
the left and right point clouds, and then the two sets of data 
are stitched together. We choose the right side as the source 
cloud and the left side as the target cloud, find the transform 
from left to right, rotate the point cloud on the left to match 
the right. The 3D point cloud map of the warehouse is con-
structed in advance, and the data collected in real-time is at 
the origin of the coordinates by default. Transform needs to 
be calibrated to transform the collected 3D point cloud to the 
corresponding warehouse of the collected data. Because the 
warehouse has a certain similarity and the established three-
dimensional model and the data have a large transformation 
distance, it cannot be automatically calibrated by the algo-
rithm at one time, so there are two steps in the calibration. 
One is to manually adjust the point cloud data, adjusting 
to the approximate position of a specific warehouse. Sec-
ond, in order to obtain an accurate transform matrix, we 
consider using the normal-distributions transform (NDT) 
(Magnusson et al. 2009) algorithm to accurately match the 
point cloud data. Similar registration algorithms include the 
Iterative Closest Point (ICP) (Besl and McKay 1992), but 
the ICP iterative algorithm needs to provide a better initial 
value. Simultaneously, due to the algorithm’s defects, the 
final iterative result may fall into a local optimum. NDT is a 
method of compactly representing the surface of an object. 
The first step of NDT is to divide the point cloud into cells 
by k-means clustering (Duda and Hart 1973), calculate the 
PDF of each cell based on the points in the cell, and assume 
that this PDF is Gaussian distribution. This PDF can It is 
understood as the generative process (Magnusson et al. 
2009), in another word, of each cell surface point, which is 
the local model of the measurement points in this cell. For 
the N-dimensional � normal random process, the likelihood 
of having measured � is

where � and Σ denote the mean vector and covariance matrix 
of the reference scan surface points within the cell where � 
lies.

where �k=1,…,m are the positions of the reference scan points 
contained in the cell.

Using NDT registration, the goal is to find a pose of the 
current scan, which maximizes the likelihood of the current 
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scan in the reference frame. The optimized parameters are 
the rotation and translation of the pose estimate of the cur-
rent scan.Given a set of point of current X =

{
�1,… , �n

}
 , a 

pose � , which is a parameter vector to be optimised, and a 
transform function T(�, �) to transform point � in space by 
� . The score function for current parameter vector can be 
formulated as Eq. 3

which the optimal transform parameter vector � can be itera-
tively computed.

The 3D scene map of the warehouse is built in advance, 
and real time LiDAR data needs to be projected to the cor-
responding warehouse on the scene map. Each time the local 
point cloud is multiplied by the solved transform matrix to 
become a point cloud under the global map, expressed as:

where Xglobal represent the points be projected to 3D map 
of corresponding warehouse, �optimal is optimal transform 
parameter vector which is computed by NDT, and Xlocal is 
point cloud of adding left and right LiDAR calibrated data.

If the point cloud is transformed each frame and then 
filtered to calculate the volume, it will increase the time 
for each frame of data to be transformed. Therefore, when 
calculating the volume, we do not need to transform the 
data frame every time but make the map rotate to the point 
cloud’s coordinate once. We can transform the map to the 
point cloud coordinate just once when the program load the 
map so it is efficiency.

Mlocal represents the map in LiDAR coordinate system, 
Mglobal represents the original map in global coordinate 
system

Calculating the volume of the material needs to remove 
the spliced LiDAR data wall and ground, and what is left is 
the volume of the object to be calculated. Because we want 
to project the LiDAR data to an image, so we construct a 
filter to remove the wall, ground and outliers.

where ai , bi , ci , di , are plane parameters and y, z are length 
and height constraints.

Through these constraints, a filter is formed to remove 
the LiDAR wall, ground and outliers, and the remain-
ing point cloud data is the sand pile. However, due to the 
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impermeability of LiDAR, the back of the sand pile cannot 
be scanned by LiDAR, resulting in the missing part of the 
sand pile. If the volume of the sand pile is directly projected, 
there will be a large error. We project the sand pile data into 
the mat (it is a data type). Each pixel of the picture repre-
sents 0.1 m × 0.1 m. If the area corresponding to the pixel 
has a height, the average height of belonging is used as the 
pixel’s gray value. If a pixel value is not the corresponding 
height is that this height is blocked and temporarily filled 
with 0. In order to fill up the obscured height, in the study 
of the angle of repose of the sand pile (Al-Hashemi and Al-
Amoudi 2018), the model of the sand pile is shown in Fig. 5. 
Our actual sand pile can also be approximated like this.

The sand pile is approximately symmetrical with respect 
to the highest point. Traverse each column of the image, if 
there is a boundary between the height, that is, the non-zero 
area and the occluded area 0, then the pixel is the projection 
pixel of the highest point of the sand pile (xi, yi) , calculate 
the pixel distance d of the pixel position with the gray value 
of 0 relative to the highest point of the column, because 
the sand pile is approximately symmetric, subtract the pixel 
distance from the column where the highest point pixel is 
located d can get the symmetrical position (xi, yi−d) of the 
highest point of the occluded area about the sand pile, and 
use the gray value of (xi, yi−d) as the occluded gray value, 
That is, as the predicted value of the occluded height, all 
the pixels of the height 0 of the sand pile area are predicted, 
and an approximate projection of the entire sand pile can be 
obtained. Integrate the sand piles behind the grid, expressed 
by the formula:

si represents the area corresponding to each pixel, and the 
gray value of the hi pixel is the height of the sand pile. Add 
up all the pixel values and multiply it by the bottom area 
represented by each pixel to calculate the volume of the sand 
pile.

(7)V =

N∑
i=1

si ⋅ hi

2.3 � The point cloud fusion

In order to colour the point cloud of the LiDAR, it is neces-
sary to calibrate the extrinsic parameters between the LiDAR 
and the camera (Dhall et al. 2017; Wang et al. 2017). In this 
solution, the corners of the calibration board are used as the 
calibration target. Due to the non-repetitive scanning feature 
of the Livox LiDAR, the density of the point cloud larger, 
easier to find the accurate position of the corner point in the 
LiDAR point cloud (An et al. 2020). The basic principle of 
calibration is to calculate and obtain the conversion relation-
ship between the x, y, z coordinates of the same target in the 
LiDAR coordinate system and the x, y coordinates in the 
camera coordinate system. Because the corner points are 
obvious targets in the point cloud and photos, this can reduce 
the calibration error. The calibration steps include calibra-
tion of internal camera parameters, calibration preparation 
and data collection, and calibration of extrinsic parameters. 
There are many ways to calibrate the internal parameters of 
the camera (Heikkila and Silven 1997). We use MATLAB 
tools to calibrate the internal parameters of the camera. The 
calibration of the camera is a mature tool so this article will 
not introduce it in detail. Calibration preparation and data 
collection include: First, the preparation of the calibration 
scene, using the four corners of the calibration board as the 
target, choosing a relatively open environment, and ensur-
ing that the LiDAR is more than 3 m from the calibration 
board. Second, connect the LiDAR and camera to view the 
point cloud and record the data packets and photos of the 
point cloud. Calibration of three extrinsic parameters. In this 
section, we use a camera and a Livox LiDAR to realize the 
function of a RGB-D camera. The color of the point cloud 
is to calculate the corresponding camera pixel coordinates 
through the x, y, z of the point cloud and the obtained inter-
nal and extrinsic parameter matrix, and the RGB information 
of this pixel is obtained and then assigned to the point cloud 
for display so that the LiDAR point cloud can display the 
real color. We project the LiDAR point cloud to the image 
pixel by pre-known extrinsic calibration value, so as to 

Fig. 5   a The sand model. b The 
real sand pile. According to the 
model of the sand pile and the 
actual sand pile, the sand pile 
can be approximated to be sym-
metrical, and the shaded area 
can be predicted
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colourize the LiDAR point cloud. Then we use a sequence of 
colourized point clouds to recover a dense colourful map of 
an area. The advantages of this sensor set are longer detec-
tion range and better performance in an outdoor scenario. 
Data process pipeline as Fig. 6.

3 � Experiment

The experiment was performed offline by recording rosbag, 
which is a set of tools for recording from and playing back 
to ROS topic. We need to calibrate the extrinsic param-
eters of the two LiDARs and LiDAR point cloud data to 
the map. The calculated sand pile point cloud is extracted 
by the fitted plane and height constrain. The filtered point 

cloud is projected into the pixels, where each pixel repre-
sents a grid of 0.1m × 0.1m . After the camera and LiDAR 
are calibrated, we can use the extrinsic parameters to col-
our the point cloud. The coloured point cloud has image 
information and can achieve an effect similar to an RGB-D 
camera. In this section, the detailed calibration process and 
results, the prediction results and volume calculation of the 
occluded area, and the results of point cloud colouring will 
be introduced.

3.1 � Calibration of extrinsic parameters

The point cloud collected by two edge computing devices 
is Fig. 7a. The two LiDARs are based on their respective 
coordinates as the origin, which causes the data of the two 
LiDARs to cross and misaligned. It is impossible to cal-
culate accurate extrinsic parameters by directly using the 
registration algorithm. Because the two edge calculations 
are fixed on the warehouse and only need to calibrate the 
extrinsic parameters once, we manually adjust the point 
cloud on the right to align with the point cloud on the left 
to get the first extrinsic parameter of the rotation matrix T1 
Fig. 7b, c, and then use the NDT method to register to get 
the precise rotation matrix extrinsic parameters T2 Fig. 7d, Fig. 6   Data process pipeline of colouring point cloud

Fig. 7   a The raw LiDAR data 
from distribute edge computing 
module. b, c The point cloud 
manually adjusted to a rough 
position. d The registered point 
cloud. Rotating the left point 
cloud that cannot be registered 
at all to the right point cloud 
by manual, two point clouds 
in a roughly position that can 
be registered, and then register 
through the NDT algorithm 
to obtain a more accurate 
transform
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so the rotation matrix extrinsic parameters from the right to 
the left T = T2 × T1.

We used GO-ICP (Yang et  al. 2015) do experiments 
without giving the initial value, but LiDAR data can’t be 
matched to the target warehouse. We tried to manually adjust 
the LiDAR data and map data to a relatively close position 
but still could not achieve the desired effect. Figure 8 show 
the result.

In order to facilitate manual adjustment of the point 
cloud, the calibration is from the LiDAR point cloud data 
to the map rotation matrix extrinsic parameters Tmap

cloud
 . But 

in the actual material calculation, in order to reduce the 
amount of calculation and the operation of rotating the 
point cloud, we only need to rotate the map to the LiDAR 
point cloud coordinates just once when the program is ini-
tialized to load the map. The result of LiDAR point cloud 
and map calibration as Fig. 9. The operation of rotating 

Fig. 8   a is manually adjust the 
LiDAR data and map data. b 
is registered through GO-ICP. 
c is registered through NDT. 
Comparing the registration 
results, using NDT has a bet-
ter effect than GO-ICP in our 
environment

Fig. 9   a is the sub-map of the 
warehouse, which is the edge 
computing module installed. 
The white point cloud is added 
point and coloured point cloud 
is sub-map, both of them were 
adjusted manually. b is regis-
tered through NDT
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the map to the LiDAR coordinates is equivalent to mul-
tiplying the map by the inverse of the LiDAR to the map 
(T

map

cloud
)−1 , formulated as Mlocal = (T

map

cloud
)−1 ×Mglobal , The 

result be shown as Fig. 10.

3.2 � Point projection and prediction

The point cloud projection is to project the filtered point 
cloud into the pixels, and the grey value of each pixel repre-
sents the height of a materials. First, we need to determine 
the range of the point cloud on the x-axis and the y-axis, 
and then project the point cloud according to the grid size 
of 0.1m × 0.1m . It is possible that multiple points are pro-
jected into one pixel at the same time, so the average value 
of the height of the multiple points is used as the gray value 
of the pixel. In actual operation, two pictures of the same 
size are used. One picture M1 stores the total height of all 
point projections, and one picture M2 stores several point 
clouds projected by each pixel. After traversing all point 
clouds, M1∕M2 is the average height corresponding to the 
grey value of each pixel.

After projecting all point cloud, some pixels may have 
no point cloud projection in the scan are due to the grid 
resolution is not small enough. These pixels do not con-
form to the sand pile model and are not part of the image 
prediction. The image dilatation is used directly on the 
image to complete the blank points in the scanned area. 
The prediction of the point cloud area that cannot be 
scanned on the back of the sand pile is based on the model 
that the sand pile is symmetric about the highest point. 
When traversing the columns of the picture, the edge of 
each sand pile and the highest point of the sand pile is 

recorded to complete each sand pile. The pile is symmet-
ric concerning the highest point, so the unscanned area’s 
height can be predicted according to the sand pile model. 
The distance from the highest point to the area with a gray 
value of zero is not greater than the distance from the 
highest point of the sand pile to the edge of the sand pile. 
After all the columns are traversed, the prediction of the 
height of the unscanned sand pile is completed Fig. 11.

To evaluate the accuracy of the calculation and the 
accuracy of the sand pile model prediction, we did two 
sets of experiments. One group of experiments compares 
the actual volume changes of the materials and the changes 
obtained through volume calculations. The other group 
compares the prediction accuracy of the sand pile models 
and double times scannable areas. In the actual working 
environment, each material carried by the forklift is in a 
range. In our experiment, the actual value of each material 
is 2.6–2.8 m3 . For the accuracy of the calculation, we get 
the experimental results shown in Fig. 12. The average 
accuracy reach 0.85.

For evaluating the accuracy of the sand pile model, we 
piled up several small sand piles in the material warehouse 
and scanned them with LiDAR to calculate their volume. 
Sand pile model achieves high accuracy as Fig. 13.

Fig. 10   Top view of rotating warehouse map to edge computing mod-
ule’s LiDAR added point cloud

Fig. 11   a The point cloud be projected to a mat. b The prediction of 
the sand pile on mat. The red circle area is on the scannable side, so 
there are no points with gray values because the point cloud is not 
fully covered during projection. It is not within the range predicted by 
the sand pile model, and the point height of the scannable area can-
not be changed to zero, so the expansion algorithm complements the 
internal height in the image. The blue area is the area that needs to be 
predicted based on the model
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3.3 � LiDAR camera calibration and colouring point 
cloud

LiDAR camera calibration is preparation for colouring point 
cloud. This calibration can be divided into three steps: the 
first step is the calibration of the camera, the second step is 
the corner extraction of the LiDAR, and the third step is the 
calibration of the LiDAR and camera extrinsic parameters. The 
camera’s internal parameters can be easily calibrated for cam-
era calibration using the calibration board and MATLAB tools. 
The click point selection can be easily selected by clicking the 
point cloud displayed by the RVIZ (it is a 3-dimensional visu-
alization tool for ROS). Based on this point, the program will 
extract a plane from the region of interest (ROI) area within a 
certain range of the point cloud. The corner extraction program 
will extract corners in this ROI area. The calibration process 
can be show as Fig. 14. After preparing the camera’s inter-
nal parameters and the LiDAR’s corner points, the extrinsic 
parameters of LiDAR and camera can be calibrated by the 
algorithm (Wang et al. 2017). As Fig. 6 show, we input the 

camera image and LiDAR camera extrinsic parameters to re-
project 3D points to 2D image to colourize the point cloud 
(Fig. 15).

4 � Conclusion

The intelligent warehouse monitoring system based on 
edge computing has been initially completed, and the func-
tion has been achieved in the calculation of warehouse 
material volume. We reached the distributed systems 
and edge computing in unique factories and warehouses 
that cannot connect directly can form a network through 
a wireless router. Distributed edge computing can calcu-
late the volume of materials and colour the point cloud. 
From our experiments, the sandpile model has achieved 
higher calculation accuracy. It saves the wireless network’s 
bandwidth by transmitting coloured point clouds instead 
of transmitting pictures and realizes long-distance data 
transmission. In the future, the primary technology for 
more comprehensive applications is the network band-
width and the stability of distributed nodes. What is more, 
cloud technology is relatively mature, and in the future, 

Fig. 12   a The calculated volume change value and actual volume 
change value. b The accuracy of calculation. The material is filled in 
the warehouse. We remove a part of the material from the warehouse, 
calculate the changed volume, and calculate the volume calculation 
method’s accuracy

Fig. 13   a The volume calculated by different methods and the real 
value. b The accuracy of the predicted volume based on the sand pile 
model and the accuracy of twice the scanning volume
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Fig. 14   a The camera calibra-
tion. b The ROI area depend 
on the click point. c The corner 
extracted by the program. In the 
c figure, the pink points circled 
by the green circle are the 
corner points extracted by the 
program. Some corner points 
are not circled

Fig. 15   a The raw LiDAR data 
from distribute edge computing 
module. b The camera image 
for colouring. c The colourized 
point cloud. The point cloud 
and image can be captured and 
colourized in edge computing 
module. The coloured point 
cloud can be transmitted to the 
control room for display
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cloud technology can also be used for data transmission 
across regions and distances.
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