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Abstract
This article presents a probabilistic road map (PRM) and visual servo control (visual-servoing) based path planning strategy 
that allows a Motoman HP20D industrial robot to move from an initial positional to a random final position in the presence 
of fixed obstacles. The process begins with an application of the PRM algorithm to take the robot from an initial position to 
a point in space where it has a free line of sight to the target, to then apply visual servoing and end up, finally, at the desired 
position, where an image captured by a camera located at the robot’s end effector matches a reference image, located on the 
upper surface of a rectangular prismatic object. Algorithms and experiments were developed in simulation, specifically, 
the visual servo control that includes the dynamic model of the robot and the image sensor subject to realistic lighting were 
developed in robot operating system (ROS) environment.
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1  Introduction

Automatic robot movement is a complex task requiring 
an integration of different areas of engineering including 
computer vision, dynamic systems modeling, and robot 
control. Autonomous robotics is developed mainly using 
two approaches: path planning and visual servoing, both of 
which allow guiding a robot through a series of positions in 
the joint or task space, from an initial to a desired position.

The first approach is path planning, a field of research 
that seeks collision-free movement for a robot without 

considering dynamic model. The techniques addressed by 
path planning include soft computing-based algorithms 
(Beom and Cho 1995; Hu et al. 2004; Garcia et al. 2009); 
analytical path definition-based techniques such as poten-
tial fields (Koren et al. 1991; Borenstein and Koren 1991), 
where field lines are mathematically modeled to connect 
points in space and which suffer deformations as a result of 
objects present therein; and sample-based planning (SBP) 
path planning (Barraquand and Latombe 1991). This notion 
of sampling the configuration space gave way to the most 
used planning algorithms, namely probabilistic roadmap 
method (PRM), algorithms based on searching for paths 
using a roadmap (Kavraki et al. 1996); and rapidly-exploring 
random trees (RRT) (LaValle 1998).

The PRM algorithm is used to solve for multiple paths in 
an environment, whereas RRT is used for specific planning 
and, as such, is faster at resolving a single path. Both algo-
rithms are probabilistically complete. These base algorithms 
have been modified, so they work in unstructured, dynamic 
environments generating smooth and optimum paths. One 
example of these is the smoothly RRT (S-RRT) planner (Wei 
and Ren 2018).

Applications that use path planning include molecular 
modeling and interaction (Al-Bluwi et al. 2012; Gipson et al. 
2012), autonomous navigation (Yang et al. 2013), non-linear 
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dynamic systems control (Branicky et al. 2003), digital ani-
mation (Kuffner 2000), among others.

The second approach is robot control, which is where 
visual servoing can be found. This is a joint control tech-
nique that allows defining a robot’s movement based on 
information captured by a visual sensor in the robot’s work-
space. Three types of visual servoing exist depending on 
how this information is used: image based visual servoing 
(IBVS), position based visual servoing (PBVS) and hybrid 
visual servoing (HVS). IBVS control (Espiau et al. 1992; 
Malis 2004; Marey and Chaumette 2008), uses coordinates 
on an image plane corresponding to observation points S 
that vary over time and are used to calculate an error asso-
ciated to the reference, which is then used to calculate a 
compensation signal to guarantee its convergence to zero. 
PBVS control (Thuilot et al. 2002; Allen et al. 1993; Wilson 
et al. 1996), takes the object’s orientation and positioning as 
parameters that are compared to the reference to calculate 
its error, while the HVS control method (Malis et al. 1999), 
is based on an integration of the above methods to formu-
late the control law. Visual control can also be classified 
according to the camera position. If the camera is static in 
the robot’s workspace, it is called an eye-to-hand configu-
ration. If the camera is positioned on the robot, i.e., if the 
robot’s movement moves the camera, the configuration is 
called eye-in-hand.

Another consideration related to the visual controller 
architecture is the control loop structure. Two cases are con-
sidered here. In the first, the visual control law provides set 
points that are input into an “internal” controller to the robot, 
which controls the robot’s joints. This is known as dynamic 
look-and-move. In the second architecture, the visual con-
troller sends information directly to the joins. This is known 
as direct visual servo control.

These methodologies have been implemented in diverse 
areas, including medical applications (Azizian et al. 2014; 
Wei et al. 1997; Krupa et al. 2003), robotic positioning and 
manipulation tasks (Vahrenkamp 2008; Kragic 2003), object 
tracking (Chaumette et al. 1991; Allen et al. 1993), teleop-
eration tasks (Gridseth et al. 2015; Suetsugu et al. 2014), 
mobile robots (Fang et al. 2005), and industrial applications 
(Nelson et al. 1993; Nomura and Naito 2000; Zhou et al. 
2006).

Some work has used both approaches together to make 
robotic systems more flexible, autonomous, and robust 
(Chesi and Hung 2007; Kazemi et al. 2010; Deng et al. 
2005).

This article is structured as follows: Sect. 2 presents 
the base path planning and visual servoing methods and 
algorithms for industrial robots. It also explores the theory 
related to homographic decomposition, used to estimate a 
camera’s position depending on observed visual features, 
and the sensor that will be used for visually controlling the 

HP20D robot. Then, Sect. 3 shows the implementation of 
the algorithms and experiments to validate operation and 
performance. Finally, Sect. 4 contains a discussion of the 
results obtained and posits conclusions from the automatic 
path planning strategy for a manipulator robot.

2 � Methods

2.1 � Robot model environment

The proposed path planning strategy, in its obstacle avoid-
ance, requires the HP20D robot’s direct and inverse kin-
ematic models for implementation. In other words, given 
the joint position of a robot Q with six joints, we require 
establishing the position of its end effector P , defined 
by its coordinates base{x, y, z} and its spatial orientation 
base{�, �, �} , with respect to a base reference system {base} . 
These models, together with their mathematical deduction 
using the Denavit-Hartenberg approach can be found in 
Camacho et al. (2018).

On the other hand, the visual servoing phase is imple-
mented based on the direct and inverse Jacobian and rigid 
body motion theory. The robot’s physical description is a 
core element of this model, as its materials, inertias, and 
lengths intervene in the dynamic phenomena that inter-
act between links when the robot is in movement. This 
dynamic model is incorporated in the ROS Gazebo simu-
lator (Koenig and Howard 2004), as is the camera, which 
is used to capture images that are processed to feedback 
the velocities of the visual characteristics detected upon 
the target where we wish to take the robot’s end effector. 
Figure 1 contains a view of the robot, its working environ-
ment, and the image sensor.

Fig. 1   View of HP20D robot (B), its workspace (A–C), and the image 
sensor in ROS simulator (D)
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2.2 � PRM‑based path planning algorithm

The probabilistic roadmap path planning algorithm was 
initially presented in Kavraki et al. (1996). It includes two 
phases. The first of these includes construction of a non-
directional graph G = (V ,E) where the nodes V are paramet-
ric positions of a robot that are free of collision within the 
workspace, Qfree ; and the edges E are collision-free paths 
that are also in Qfree and are described using a local plan-
ner, Δ , which, in its simplest form, is a linear interpolator 
within a robot’s joint space. The second phase, or planner 
query phase, consists of connecting an initial node, qinit , and 
a final node, qgoal , to G , to seek the shortest possible colli-
sion free path. This query is performed by implementing an 
informed search algorithm as A∗ , although a viable path can-
not always be obtained for G , if the roadmap does not com-
pletely cover the free space Qfree . If this occurs, the graph G 
must be extended using new seed nodes placed using differ-
ent techniques, for example as a function of the number of 
connections of the nodes that exist in G.

A well-known variation of basic PRM is the so-called 
Lazy PRM, (Bohlin and Kavraki 2000), This version 
builds G including qinit , and qgoal , over the entire Q space, It 
searches for the shortest path between the nodes of interest, 
Tshortest , and then checks the nodes and edges included in 
that path to see if they are free from collisions. If it detects 
points in the solution path that interfere with obstacles, these 
nodes or edges are disconnected from G , and the process is 
repeated until a minimum collision free path Tfree is found, or 
until seed nodes need to be introduced as it can see in Fig. 2.

In our approach, The Lazy PRM algorithm introduces 
some improvements over the version described by Bohlin 
and Kavraki, specifically in “Check path for collision” and 
in the node enhancement block.

The standard procedure for checking collision at every 
interpolated point along every segment belonging to a feasible 
path is to discretize each edge in Tshortest at a step size fixed. 
In this work, we define a variable step size that decrements its 
magnitude gradually as iteration n runs according to a function 

fss(n) . The step size is saved for each segment in E and recov-
ered when the collision checker needs it, adjusting its value 
depending on the current iteration.

This procedure speeds up the algorithm and generates a 
feasible early path. Nevertheless, this path could be in collision 
because the test resolution might jump a small area of Qobs ; 
therefore, the feasible path under test is checked again but at a 
minimum step size before validating Tshortest as Tfree.

Furthermore, in the node enhancement block, the original 
version establishes that when a path from qini to qgoal is not 
feasible, the Roadmap adds several nodes. Some of them are 
distributed uniformly in Q and the others around cue points 
called seeds, saved during the process that checks feasible path 
edges for collisions; the first point, where a collision occurs 
along a feasible path segment, is marked as seed. In this work, 
we set additionally as seeds every vertex in Qobs . This assump-
tion is easy to meet because a 3D reconstruction of the robot’s 
workspace generates a description of each obstacle as a set of 
vertexes.

2.3 � Visual servoing

Visual control encompasses different areas, including robot 
modeling, control theory, and image processing. Implemen-
tation of this type of methodology can make robotic systems 
more flexible. This technique can be implemented using dif-
ferent types of cameras, whether monocular, stereo, and RGB-
D. The information captured by the camera is compared to a 
reference to generate an error signal used as an input by the 
controller.

The work presented is based on an image based IBVS con-
troller with an eye-in-hand configuration and a dynamic look-
and-move architecture given their simplicity and advantages. 
A monocular camera is positioned at the end effector from 
which sufficient information is obtained for the control law. 
Some basic foundations of visual control theory that will be 
useful for developing this work are provided below.

First, a relationship between the robot’s motion and changes 
in image features induced by an object observed in the cam-
era’s field of view is required when formulating the visual con-
trol law. Now, consider angular velocity cΩ(t) = [�x,�y,�z]

T 
and translational velocity cT(t) = [Tx, Ty, Tz]

T of the end effec-
tor transferred to a point cP = [x, y, z]T attached to an object 
described in the camera frame {c} , in the form shown in 1 
and 2.

(1)cṖ = cΩ × cP + cT

(2)
�
cṖ

�
=

⎡
⎢⎢⎣

ẋ

ẏ

ż

⎤
⎥⎥⎦
=
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z𝜔y −
vz

𝜆
𝜔z + Tx

uz

𝜆
− z𝜔x + Ty

z

𝜆
(v𝜔x − u𝜔y) + Tz

⎤⎥⎥⎦

Fig. 2   Lazy PRM diagram
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This point cP is projected on the image plane of the cam-
era � with coordinates of pixel s = [u, v]T , the relationship 
between the coordinates on image plane � and the coordi-
nates of point cP is expressed by the pinhole camera model 
as:

where � is the focal length of the camera.
Velocities on the image plane can be obtained if we derive 

(3). If we substitute (2) in these derivatives, we obtain the 
following expression.

The relationship between the movement of the features on 
the image plane and the speed of a point with respect to the 
camera is given in (4). The matrix that relates them is com-
monly known as a Jacobian or Interaction Matrix. To control 
a n DOF robot with n = 6 , where i represent the number of 
feature points detected, i ≥ 3 is required. This work used 
i=4, four pairs of visual features corresponding to the top 
face’s corners of a box where an image was painted and used 
as a template to guide the motion control of the robot. The 
package, our object of interest, is seen by the camera held by 
the robot in its end effector. The four visual reference points 
sri used for calculating the interaction matrix are estimated 
using a homography, a matrix that transforms visual features 
from the template image to the observation image. Dozens 
of SIFT feature matches built this matrix with an algorithm 
for parametric estimation that rejects wrong matches. Hence, 
the quality of the interaction matrix defined by its condition 
number improves directly with the quality of homography 
estimation, which grows concerning the number of feature 
matches detected, producing better visual parameters for 
building the interaction matrix.

Thus, the reference velocity for the internal control loop 
can be determined. To do this, we first solve for Vc , with 
which we obtain:

Because if n ≠ 2i , L−1
s

 does not exist, then, due to 2i > n , L−1
s

 
must be approximated by L+

s
= (LT

s
Ls)

−1LT
s
 solving a least 

square problem. To guarantee that 2i is greater than n, we 
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(5)Vc = L+
s
Ṡ

propose using the path planning and visual servoing tech-
niques in cooperation. The robot will meet a pose at the end 
of path planning, where the camera captures the object of 
interest. At this point, the sensor will retrieve enough image 
feature parameters to solve L+

s
.

Finally, the objective of the visual controller is to minimize 
an error e(t), which can be expressed as:

Substituting (6) in (5), we obtain:

To ensure an exponential decrease of the error to zero, we 
have.

where K is an adjustable gain matrix that allows deter-
mining the convergence velocity. Given that four points 
of interest were used, the interaction matrix has the form 
�� =

[
[Ls1]

T [Ls2]
T [Ls3 ]

T [Ls4]
T
]T . where [Lsx ] is a pair of 

rows x of the matrix ��.
Having defined the control law and the interaction matrix, it 

can be seen that this matrix depends on the coordinates of the 
points of interest on the image plane, the camera’s focal length, 
and z, which is a normal distance from the image plane to the 
feature position in ℝ3 . Depth z must be obtained for complete 
knowledge of the interaction matrix.

A homography decomposition method was used for this 
work, described in Malis and Vargas (2007). Analytical devel-
opment of this method returns four possible solutions, two of 
which can be discarded. Homography decomposition methods 
consist of obtaining perspective transformation components 
between two different views from the homography informa-
tion resulting from two captures in different positions, which 
can be described as:

To obtain these components {�, �, �} we first define a sym-
metric matrix S in terms of the homography transformation.

Then the following variables are introduced:

(6)e(t) = Sd − S(t)

(7)Vc = L+
s
ė

(8)Vc = KL+
s
e

� ⟹ {�, �, �}

(9)�r = ��⊤ − � =
(
� + ��⊤

)(
�⊤ + ��⊤

)
− �

(10)x =
�⊤�

���⊤���
=

�⊤�

‖�‖

(11)� =
����

⊤�
���� = ‖�‖�



606	 R. I. Maldonado‑Valencia et al.

1 3

These, (10) (11), are substituted in (9), by analogous terms 
and using an auxiliary variable � we obtain three second 
order equations that solve as:

where n varies from one to three, where:

With the introduction of the variable � defined in terms of 
� we have:

where � is an auxiliary variable that leads to a second order 
equation. The value of � can be found by solving this equa-
tion. n can be determined by analogy of this equation with 
the definition of the auxiliary variable y. Four solutions are 
arrived at from the possible solutions to the homography 
decomposition problem (Malis and Vargas 2007), which 
have the form:

where shij and M�hij
 are the components and minors of the 

symmetrical matrix respectively and � is sign(M�h13
) , 

e = a, b . By dividing (16) by its norm, we obtain �e , with a 
similar procedure, the solution for translation vector � and 
rotation vector � is obtained. The translation vector is 
obtained from 10 and 11 expressed in terms of the compo-
nents of the symmetrical matrix.

zn = �n ± �n
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√
s2
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− s11s22
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(17)�∗
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(s33) = t3
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− t4
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s13 + t1
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s33
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where

The rotation matrix can be obtained from the definition of 
the homography matrix (9) and (10).

3 � Results

3.1 � PRM

To test and improve the Lazy PRM algorithm before its 
implementation in the 6 Degree of Freedom (DOF) space 
corresponding to the HP20D robot, we first had to start with 
a simplified version of the environment in 2 DOF.

The 2D version seeks paths made up of collision free 
straight segments in a rectangular environment with the 
presence of convex obstacles. The 6D version extends the 
roadmap idea to three-dimensional space and is applied in 
a simulated environment to the movement of a Motoman 
HP20D type industrial robot to take its end effector from a 
start point to an target point in the presence of objects built 
based on cubes within its workspace.

3.1.1 � PRM 2D

Figure 3a shows a synthetic environment with static polyg-
onal obstacles, showing a start point qinit represented as 
a green node on the graph and an end point qgoal node in 
magenta. An initial graph generated randomly over the entire 
space can be observed that connects the start and end nodes. 
Links with the starting node can be seen in green, and links 
to the ending node are in magenta. All other links appear 
in red.

Figure 3 shows an iterative process that seeks a colli-
sion free path from the start point qinit to the end point qgoal 
in 2 DOF. The sequence of Fig.  3a, b shows the initial 
roadmap, a feasible collision path, and the updated map 
without the nodes and edges of the obtained path found 
in Cobs . Likewise, the sequence of Fig.  3b, c shows the 
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refined map after the first iteration, a second path found 
with interference, and its removal from the roadmap, 
together with the addition of nodes due to the impossibil-
ity of finding a third feasible path. Finally, in Fig.  3d a 
new viable, collision-free path is found.

To measure the performance of the Lazy PRM 2D plan-
ner, an experiment was performed where the algorithm 
was run 10 times per combination of maximum number 
of connections [5,  10,  15] and number of start nodes 
[30, 50, 100, 200, 500]. The process recorded the algo-
rithm’s overall processing time and the number of nodes 
generated for each solution path Fig.  4. Likewise, the 
number of calls to the collision detector due to the nodes 
and edges of the feasible paths generated was recorded 
Fig. 5. Finally, Fig.  6 shows the time used by each of the 
main stages of the Lazy PRM algorithm: roadmap genera-
tion, local planner, and collision check.

Fig. 3   2D PRM planning

Fig. 4   Performance for Lazy PRM 2D

Fig. 5   Collision performance for Lazy PRM 2D
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3.1.2 � PRM 3D

This section covers path planning for a Motoman HP20D 
6 DOF industrial robot using a Lazy PRM algorithm. The 
robot and its workspace are simplified using prismatic links 
and primitives, which allow efficiently checking collision 
between the links of the robot themselves and the links and 
the objects located within the workspace (Rodriguez-Gara-
vito et al. 2018). This object modeling is conservative and 
adjustable to a robot’s real form. Figure  7 contains a visual 
description of the workspace showing the robot’s starting 
position qinit and ending position qgoal.

Figure 8 shows the HP20D robot’s path planning process 
for moving from qinit to qgoal . Figure 8a shows a feasible 
path in collision and Fig. 8b contains a representation of its 
associated roadmap. Figure 8c then shows a feasible, col-
lision free path after eliminating the nodes and paths with 
collisions, planning new paths, and progressively refining 
the roadmap. The final path found is obtained using a linear 

interpolator in the joint space. In other words, the path 
shown in Fig. 8d is the movement the robot’s end effector 
actually follows, while Fig. 8c is an interpretation of a suc-
cession of points in the NXYZ space that makes up the path 
found.

Finally, just like in the 2D space, the performance of the 
Lazy PRM algorithm is applied to a manipulator robot in 
a six-dimensional joint or workspace, where collision-free 
paths are expected to be found. The proposed experiment 
consists of running the Lazy PRM planner 40 times for dif-
ferent numbers of initial nodes [200, 300, 400, 500, 700, 1
000, 3000] on the roadmap, and then measure the average 
overall processing time for the algorithm and the number of 
nodes in the solution paths, Fig. 9. The number of calls to 
the collision detector to evaluate nodes and segments in fea-
sible paths is also counted, Fig. 10. Finally, Fig. 11 records 
the processing time for each stage of the Lazy PRM 3D 
algorithm: local planner, collision detector, and manipula-
tion of the graph representing the roadmap.

3.2 � Visual control

To demonstrate the effectiveness of the visual control-
ler technique, the ROS simulated model of the HP20D 
manipulator was used together with a box-type object 
of interest and a monocular camera with an eye-in-hand 
configuration. Then a reference image is taken, which is 
used to determine the error required to calculate the con-
troller input. Since the control law requires an error, the 
position of a group of visual characteristics on the image 
plane at an instant ith in relation to the reference image is 
required. For this, the SIFT algorithm together with the 
RANSAC parametric estimator was used to determine a 
homography transformation matrix which enables relating 
visual characteristics between the reference image and the 
image captured at instant ith and thus finding these posi-
tions. The transformation matrix obtained can be used to 

Fig. 6   Time performance for Lazy PRM 2D

Fig. 7   Initial and final position 
of HP20D robot for path plan-
ning using Lazy PRM algorithm
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apply the homography decomposition method mentioned 
in Sect. 2.3 and calculate the spatial position of the visual 
characteristics of the object of interest.

Figure 12 shows the evolution of the robot’s position 
and the camera’s perspective in the experiment proposed 
at six instances of a visual control trajectory, Fig. 13, 
these images show a basic configuration with an object on 
a table, where Fig. 12a corresponds to the robot’s starting 
position and Fig. 12f corresponds to the ending position 
once the system is stable.

During the execution of this experiment, velocities and 
errors in joints tend to zero, as we can see in Figs. 14 
and 15.

4 � Conclusions

This work proposes a flexible strategy to provide a robot 
with the ability to move freely within workspace, avoiding 
obstacles by mixing motion techniques like Path Planning 
and visual servoing. Both algorithms cooperate to guar-
antee that the robot, working under an eye-in-hand con-
figuration, has the object of interest within field of view 
when starting its Visual Servoing phase. In this fashion, 
the visual features are available to calculate an accurate 
homography and interaction matrix with low uncertainty.

Fig. 8   3D PRM path planning
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Each motion technique was probed independently. The 
Lazy PRM implementation produces some findings from 
the 2 and 6 DOF experiments: first, Figs. 4 and 9 show an 
elbow effect, where we could establish a suitable number of 
initial nodes related to the algorithm processing time around 
100 for 2D planning and 500 for 3D planning. In addition, 
it is possible to verify that the maximum number of con-
nections allowed for each node does not directly correlate 
with the processing time. Second, the Lazy PRM planner 
reaches a solution in a minimum of 50 ms with a path size 
of 23 nodes working in a 2 DOF environment, while in a 6 
DOF environment it does so in 15 s with a path size of 5 
nodes; what is reasonable for a planning query online in an 
environment subject to uncertainty. Finally, to conclude the 
analysis of the global Lazy PRM planner, we can observe 
that, depending on the application environment, algorithm 

processing times change. In the 2 DOF case, if the number 
of nodes increases, the task that takes up the most run time 
is a local search for feasible paths. In contrast, in the 6 DOF, 
as the number of nodes on the connection graph increases, 
the costliest task is the collision detector. Its implementation 
needs to be efficient and based on a conservative simplifica-
tion of the environment.

Implementing a camera, manipulator, and environment in 
ROS provide a suitable framework for testing cooperatively 
both visual servoing and planning, making possible its future 
migration over to a real industrial framework.

In Fig. 12 we can see the sequence of images for evolving 
camera captured frames and manipulator position in a vis-
ual servoing trajectory, which shows smooth robot position 
changes. However, the graph shown in Fig. 13 describes the 
trajectory of the four feature positions taken as a reference 
where we can see an overshoot at the end of the motion. In 
principle, this seems to be related to the time used by the vis-
ual control algorithm to calculate the output, but this over-
pass does not seem to be significant. Considering that the 
vision algorithm required to determine homography requires 
the most time for a control inference, a more efficient vision 
algorithm is necessary to produce smoother position and 
velocity changes and a shorter stabilization time.

The proposed technique allows for solving the loss of 
field of view (FOV) issue since the planner can run such that 
the object of interest will once again be visible.

As future work, based on these motion techniques devel-
oped, visual servoing, and path planning for industrial 
robots, we propose transferring these algorithms to a real 
implementation based on an RBX1 robot integrated in ROS. 
In some previous works, we have developed a vision sensor 
for package-like objects; this will be the link to close the 
control loop and tackle several autonomous manipulation 

Fig. 9   Overall time and path length performance for Lazy PRM 3D

Fig. 10   Collision performance for Lazy PRM 3D

Fig. 11   Time process performance for Lazy PRM 3D
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Fig. 12   Visual controller sequence. The upper images correspond to matching features at each instant. The lower images correspond to eye-in-
hand configuration visual servo control

Fig. 13   Trajectory’s features in different instants a–f

Fig. 14   Joints velocity
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tasks on the road to cobotics applications in the context of 
goods warehousing in the logistics sector.

Funding  Open Access funding provided by Colombia Consortium.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Al-Bluwi, I., Siméon, T., Cortés, J.: Motion planning algorithms for 
molecular simulations: a survey. Comput. Sci. Rev. 6(4), 125–143 
(2012)

Allen, P.K., Timcenko, A., Yoshimi, B., Michelman, P.: Automated 
tracking and grasping of a moving object with a robotic hand-eye 
system. IEEE Trans. Robot. Autom. 9(2), 152–165 (1993)

Azizian, M., Khoshnam, M., Najmaei, N., Patel, R.V.: Visual servoing 
in medical robotics: a survey. Part i: endoscopic and direct vision 
imaging—techniques and applications. Int. J. Med. Robot. Com-
put. Assist. Surg. 10(3), 263–274 (2014)

Barraquand, J., Latombe, J.-C.: Robot motion planning: a distributed 
representation approach. Int. J. Robot. Res. 10(6), 628–649 (1991)

Beom, H.R., Cho, H.S.: A sensor-based navigation for a mobile robot 
using fuzzy logic and reinforcement learning. IEEE Trans. Syst. 
Man Cybern. 25(3), 464–477 (1995)

Bohlin, R., Kavraki, L.E.: Path planning using lazy prm. In: Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International 

Conference on Robotics and Automation. Symposia Proceedings 
(Cat. No. 00CH37065), vol. 1, pp. 521–528. IEEE (2000)

Borenstein, J., Koren, Y., et al.: The vector field histogram-fast obstacle 
avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 
278–288 (1991)

Branicky, M.S., Curtiss, M.M., Levine, J.A., Morgan, S.B.: Rrts for 
nonlinear, discrete, and hybrid planning and control. In: 42nd 
IEEE International Conference on Decision and Control (IEEE 
Cat. No. 03CH37475), vol. 1, pp. 657–663. IEEE (2003)

Camacho M, G.A., Rodriguez G, C.H., Álvarez-Martínez, D., et al: 
Modelling the kinematic properties of an industrial manipulator in 
packing applications. In: 14th International Conference on Control 
and Automation (ICCA), pp. 1028–1033. IEEE (2018)

Chaumette, F., Rives, P., Espiau, B.: Positioning of a robot with respect 
to an object, tracking it and estimating its velocity by visual servo-
ing. In: ICRA, pp. 2248–2253 (1991)

Chesi, G., Hung, Y.S.: Global path-planning for constrained and opti-
mal visual servoing. IEEE Trans. Robot. 23(5), 1050–1060 (2007)

Deng, L., Janabi-Sharifi, F., Wilson, W.J.: Hybrid motion control 
and planning strategies for visual servoing. IEEE Trans. Ind. 
Electron. 52(4), 1024–1040 (2005)

Espiau, B., Chaumette, F., Rives, P.: A new approach to visual ser-
voing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 
(1992)

Fang, Y., Dixon, W.E., Dawson, D.M., Chawda, P.: Homography-based 
visual servo regulation of mobile robots. IEEE Trans. Syst. Man 
Cybern. Part B (Cybern.) 35(5), 1041–1050 (2005)

Garcia, M.P., Montiel, O., Castillo, O., Sepulveda, R., Melin, P.: Path 
planning for autonomous mobile robot navigation with ant colony 
optimization and fuzzy cost function evaluation. Appl. Soft Com-
put. 9(3), 1102–1110 (2009)

Gipson, B., Hsu, D., Kavraki, L.E., Latombe, J.-C.: Computational 
models of protein kinematics and dynamics: beyond simulation. 
Annu. Rev. Anal. Chem. 5, 273–291 (2012)

Gridseth, M., Hertkorn, K., Jagersand, M.: On visual servoing to 
improve performance of robotic grasping. In: 2015 12th Confer-
ence on Computer and Robot Vision, pp. 245–252. IEEE (2015)

Hu, Y., Yang, S.X., Xu, L.-Z., Meng, M.-H.: A knowledge based 
genetic algorithm for path planning in unstructured mobile robot 
environments. In: 2004 IEEE International Conference on Robot-
ics and Biomimetics, pp. 767–772. IEEE (2004)

Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilis-
tic roadmaps for path planning in high-dimensional configuration 
spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

Kazemi, M., Gupta, K., Mehrandezh, M.: Path-planning for visual 
servoing: a review and issues. Vis. Serv. Adv. Numer. LNCIS 
401:189–207 (2010)

Koenig, N., Howard, A.: Design and use paradigms for gazebo, an 
open-source multi-robot simulator. In: 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) 
(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. IEEE (2004)

Koren, Y., Borenstein, J., et al.: Potential field methods and their inher-
ent limitations for mobile robot navigation. In: ICRA, vol. 2, pp. 
1398–1404 (1991)

Kragic, D.: Visual servoing for manipulation: Robustness and integra-
tion issues. Ph.D. thesis, Royal Institute of Technology (2003)

Krupa, A., Gangloff, J., Doignon, C., De Mathelin, M.F., Morel, G., 
Leroy, J., Soler, L., Marescaux, J.: Autonomous 3-d positioning of 
surgical instruments in robotized laparoscopic surgery using vis-
ual servoing. IEEE Trans. Robot. Autom. 19(5), 842–853 (2003)

Kuffner Jr, J.J.: Autonomous agents for real-time animation. Ph.D. the-
sis, Stanford University (2000)

LaValle, S.: Rapidly-exploring random trees: a new tool for path plan-
ning. The annual research report (1998)

Fig. 15   Feature error

http://creativecommons.org/licenses/by/4.0/


613Planning and visual‑servoing for robotic manipulators in ROS﻿	

1 3

Malis, E., Vargas, M.: Deeper understanding of the homography 
decomposition for vision-based control. Ph.D. thesis, INRIA 
(2007)

Malis, E.: Improving vision-based control using efficient second-order 
minimization techniques. In: IEEE International Conference on 
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, 
vol. 2, pp. 1843–1848. IEEE (2004)

Malis, E., Chaumette, F., Boudet, S.: 2 1/2 d visual servoing. IEEE 
Trans. Robot. Autom. 15(2), 238–250 (1999)

Marey, M., Chaumette, F.: Analysis of classical and new visual ser-
voing control laws. In: 2008 IEEE International Conference on 
Robotics and Automation, pp. 3244–3249 (2008). IEEE

Nelson, B., Papanikolopoulos, N., Khosla, P.: Visual servoing for 
robotic assembly. In: Visual Servoing: Real-Time Control of 
Robot Manipulators Based on Visual Sensory Feedback, pp. 
139–164. World Scientific (1993)

Nomura, H., Naito, T.: Integrated visual servoing system to grasp 
industrial parts moving on conveyer by controlling 6dof arm. In: 
Smc 2000 Conference Proceedings. 2000 IEEE International Con-
ference on Systems, Man and Cybernetics.’cybernetics Evolving 
to Systems, Humans, Organizations, and Their Complex Interac-
tions’ (Cat. No. 0), vol. 3, pp. 1768–1775. IEEE (2000)

Rodriguez-Garavito, C., Patiño-Forero, A.A., Camacho-Munoz, G.A.: 
Collision detector for industrial robot manipulators. In: The 13th 
International Conference on Soft Computing Models in Industrial 
and Environmental Applications, pp. 187–196. Springer (2018)

Suetsugu, T., Matsuda, Y., Sugi, T., Goto, S., Egashira, N.: A visual 
supporting system for teleoperation of robot arm using visual 
servo control. In: 2014 Proceedings of the SICE Annual Confer-
ence (SICE), pp. 1847–1852. IEEE (2014)

Thuilot, B., Martinet, P., Cordesses, L., Gallice, J.: Position based 
visual servoing: keeping the object in the field of vision. In: Pro-
ceedings 2002 IEEE International Conference on Robotics and 
Automation (Cat. No. 02CH37292), vol. 2, pp. 1624–1629. IEEE 
(2002)

Vahrenkamp, N., Wieland, S., Azad, P., Gonzalez, D., Asfour, T., 
Dillmann, R.: Visual servoing for humanoid grasping and manipu-
lation tasks. In: Humanoids 2008-8th IEEE-RAS International 
Conference on Humanoid Robots, pp. 406–412. IEEE (2008)

Wei, K., Ren, B.: A method on dynamic path planning for robotic 
manipulator autonomous obstacle avoidance based on an 
improved rrt algorithm. Sensors 18(2), 571 (2018)

Wei, G.-Q., Arbter, K., Hirzinger, G.: Real-time visual servoing for 
laparoscopic surgery. Controlling robot motion with color image 
segmentation. IEEE Eng. Med. Biol. Mag. 16(1), 40–45 (1997)

Wilson, W.J., Hulls, C.W., Bell, G.S.: Relative end-effector control 
using cartesian position based visual servoing. IEEE Trans. Robot. 
Autom. 12(5), 684–696 (1996)

Yang, K., Keat Gan, S., Sukkarieh, S.: A Gaussian process-based rrt 
planner for the exploration of an unknown and cluttered environ-
ment with a uav. Adv. Robot. 27(6), 431–443 (2013)

Zhou, L., Lin, T., Chen, S.-B.: Autonomous acquisition of seam coor-
dinates for arc welding robot based on visual servoing. J. Intell. 
Robot. Syst. 47(3), 239–255 (2006)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

R. I. Maldonado‑Valencia   received 
his B.E. degree in Automation 
Engineering from Universidad de 
La Salle in 2022. He has currently 
the role of software developer, 
using tools like java, spring, sql 
and server side tools. His research 
interests include control, soft 
computing, robotics and intelli-
gent systems.

C. H. Rodriguez‑Garavito   is an 
associate professor at La Salle - 
Bogotá University. Electronic 
Engineer of Distrital University 
F.J.C. (2003), Master of Engi-
neering - Industrial Automation, 
Nacional University of Colombia 
(2007), and Doctor of Electrical, 
Electronic and Automation Engi-
neering from the Carlos III Uni-
versity of Madrid (2017). In 
2018, He founded the research 
incubator group focused on 
Autonomous Robotics (SIRA) at 
La Salle University. His research 
activities include autonomous 

robotics, computer vision, and path planning for industrial robots.

C. A. Cruz‑Perez   was born in 
Bogotá-Colombia in the year 
2022. He obtained his degree in 
Automation Engineering at Uni-
versidad de la Salle in Bogotá, 
Colombia, and was a member of 
the research incubator group 
focused on Autonomous Robotics 
(SIRA). He currently works on 
implementing WMS. His research 
interests are control theory 
applied to industry.



614	 R. I. Maldonado‑Valencia et al.

1 3

J. S. Hernandez-Navas  was born 
in Bucaramanga-Colombia. He is 
an automation engineering stu-
dent at La Salle University in 
Bogota-Colombia. He is currently 
studying his 10th semester, 
belongs to the research incubator 
group focused on Autonomous 
Robotics (SIRA) at La Salle Uni-
versity, and works in the hydro-
carbon industry.

D. I. Zabala‑Benavides  was born 
in Bogotá-Colombia. He was a 
member of the research incubator 
group focused on Autonomous 
Robotics (SIRA). In 2021 he 
obtained his degree in Automa-
tion Engineering from Universi-
dad de La Salle Bogotá, Colom-
bia. He currently works as a Test 
Automation Engineer at Globant 
company.


	Planning and visual-servoing for robotic manipulators in ROS
	Abstract
	1 Introduction
	2 Methods
	2.1 Robot model environment
	2.2 PRM-based path planning algorithm
	2.3 Visual servoing

	3 Results
	3.1 PRM
	3.1.1 PRM 2D
	3.1.2 PRM 3D

	3.2 Visual control

	4 Conclusions
	References




