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Abstract
Exploring large-scale environments autonomously poses a significant challenge. As the size of environments increases, 
the computational cost becomes a hindrance to real-time operation. Additionally, while frontier-based exploration plan-
ning provides convenient access to environment frontiers, it suffers from slow global exploration speed. On the other hand, 
sampling-based methods can effectively explore individual regions but fail to cover the entire environment. To overcome 
these limitations, we present a hierarchical exploration approach that integrates frontier-based and sampling-based methods. 
It assesses the informational gain of sampling points by considering the quantity of frontiers in the vicinity, and effectively 
enhances exploration efficiency by utilizing a utility function that takes account of the direction of advancement for the 
purpose of selecting targets. To improve the search speed of global topological graph in large-scale environments, this paper 
introduces a method for constructing a sparse topological graph. It incrementally constructs a three-dimensional sparse topo-
logical graph by dynamically capturing the spatial structure of free space through uniform sampling. In various challenging 
simulated environments, the proposed approach demonstrates comparable exploration performance in comparison with the 
state-of-the-art approaches. Notably, in terms of computational efficiency, the single iteration time of our approach is less 
than one-tenth of that required by the recent advances in autonomous exploration.

Keywords Autonomous exploration · Topological graph · Frontier detection · Uniform sampling

1 Introduction

Autonomous exploration Juliá et al. (2012) has emerged as 
a prominent research topic in the field of robotics, finding 
extensive applications in areas such as 3D reconstruction Ma 
and Liu (2018), environmental monitoring, and search and 
rescue operations. The objective of autonomous exploration 
is to guide robots in expanding the mapped areas within 

unknown environments, as illustrated in Fig. 1. Recently, 
various exploration planning methods have been proposed 
to address the challenges of autonomous exploration. There 
are two mainstream approaches to addressing the problem 
of autonomous robot exploration: frontier-based Yamauchi 
(1998) methods and sampling-based  Lindemann and 
LaValle (2005) methods. The frontier-based approach 
is the conventional method for three-dimensional space 
exploration. It defines frontiers as the free areas adjacent 
to unknown regions and explores the entire space by 
repeatedly tracking the nearest frontiers. Building upon 
the frontier-based approach, subsequent research has made 
corresponding adjustments in terms of information gain and 
path length, as well as added additional constraints based 
on application scenarios, requirements, and platforms Selin 
et al. (2019); Meng et al. (2017); Batinovic et al. (2021); 
Schmid et al. (2021). For example, the work Dai et al. (2020) 
achieves implicit grouping of frontier voxels by leveraging 
a low-level octree map, circumventing the computationally 
intensive frontier clustering associated with traditional 
frontier-based exploration methods. Additionally, frontiers 
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are extracted from the field of view, and a selection process is 
employed to choose the most suitable frontier that minimizes 
velocity changes, thereby facilitating high-speed flight for 
unmanned aerial vehicles in Cieslewski et al. (2017).

Another approach to solving the problem of autonomous 
exploration is based on randomization Zhu et al. (2021); Sun 
et al. (2022); Zhong et al. (2021); Kulkarni et al. (2022). 
The NBVP(Next-Best-View Planning) Bircher et al. (2016) 
stands as one of the most renowned methods among ran-
domized sampling-based approaches. It leverages nodes 
on a Rapidly-exploring Random Tree (RRT) Kazemi et al. 
(2013) as viewpoints and employs a greedy strategy to select 
branches with the maximum collective reward from rele-
vant viewpoints. In Dang et al. (2019), the authors present a 
graph-based path planning method (GBPlanner) that utilizes 
the Rapidly-exploring Random Graph (RRG) Karaman and 
Frazzoli (2009) framework to facilitate optimal movement 
within local subspaces for underground navigation. The 
work Dharmadhikari et al. (2020) introduces a motion-based 
path planning method (MBPlanner). Diverging from GBP, 
this approach takes account of the robot’s motion state and 
guides the unmanned aerial vehicle towards positions with 
the highest gains after generating random samples. Due to 
excessive reliance on random sampling, sampling-based 
methods exhibit numerous suboptimal and unnecessary 
movements.

However, the performance of these methods in terms 
of exploration efficiency has been largely unsatisfactory. 
Some planners adopt greedy strategies Li et al. (2015) for 
motion planning, such as selecting viewpoints with the 
highest information gain or navigating to the nearest unex-
plored areas. While these strategies provide immediate 
decisions based on current situation, they neglect global 
optimality, resulting in overall low exploration efficiency. 

Additionally, most planners rely on frontier-based or sam-
pling-based methods, both of which require substantial 
computational resources. The substantial computational 
burden can impede the planners’ ability to operate at high 
frequencies, potentially resulting in robots coming to a 
halt and waiting for computation results, particularly in 
large-scale scenarios.

In response to the aforementioned limitations of 
existing exploration planners, this paper proposes a novel 
and comprehensive approach for autonomous exploration 
that effectively addresses those issues. To enhance the 
efficiency of autonomous exploration, this paper combines 
frontier-based and sampling-based methods by imposing 
constraints on the robot’s sampling region using a fixed-
size sliding window. By employing the quantity of frontiers 
as information gain for sampling viewpoints, robots is 
effectively guided towards exploring uncharted regions. 
It is important to note that frontier detection remains 
active throughout the entire robot exploration process. 
Furthermore, in order to improve the search speed of the 
global topological graph, this paper introduces a sparse 
graph construction method. We have evaluated the proposed 
approach across several environments and compared it with 
existing state-of-the-art methods. The experimental results 
demonstrate that ours approach outperforms the benchmark 
methods in terms of the total exploration time and the 
computation time.

The main contributions of this paper are summarised as 
follows. 

1. The frontier-based methods facilitates convenient access 
to environmental frontiers; however, it is associated 
with slower global exploration rates. On the other hand, 
sampling-based methods effectively explore individual 
regions, yet the drawback lies in the inability to com-
prehensively cover all sectors of the environment. To 
address these limitations, this paper presents a hierarchi-
cal exploration approach that combines sampling and 
frontier methods, effectively mitigating the shortcom-
ings present in both methods.

2. An utility function is devised to select suitable target 
points by considering both information gain and the 
robot’s forward direction, which can mitigate the issue 
of abrupt changes in the robot direction at branching 
intersections, thereby enhancing the overall efficiency 
of exploration.

3. This paper presents a spatially structured method to 
constructing a sparse topological map. This method 
dynamically captures the spatial structure of free 
space based on local sampled points and incrementally 
constructs a three-dimensional sparse topological 
graph. Consequently, it notably reduces the number of 
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Fig. 1  An illustration of autonomous exploration task. The robot 
needs to decide where to go next based on the current sensor 
information until it has explored the entire environment
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nodes and edges in global topological graphs, thereby 
enhancing the speed of global path generation.

2  Fast exploration with sparse topological 
graphs

The general framework proposed in this paper is illustrated 
in Fig. 2. Initially, the sensor data is fed into Octomap 
for map construction, with the frontier being updated as 
Octomap is updated. Next, the planner uniformly samples 
points at current position and assesses their potential gains 
based on the frontier points. Additionally, the sparse graph 
is expanded at current position. Finally, the node with the 
maximum gain is selected based on the reward function, 
and a collision-free path is generated.

2.1  Frontier detection

The frontier is defined as a spatial voxel that is adjacent 
to at least one unknown voxel. The objective is to guide 
robots towards these frontiers, iteratively reducing the map 
entropy in environments. In this paper, we employ Octo-
Map Hornung et al. (2013) as the chosen three-dimen-
sional grid framework due to its efficient data structures 
and algorithms, facilitating rapid and effective map con-
struction and updating. However, the process of detecting 
all frontiers in the map can be time-consuming and may 
adversely impact the real-time nature of robot exploration. 
To alleviate this computational burden, we adopt a simi-
lar approach to 3D-FBET Zhu et al. (2015), where voxels 
experiencing changes in their spatial state are added to a 
set when a new frame of point cloud data is input. Since 
frontiers tends to appear near the maximum field of view 
of the sensor, the detection efforts are concentrated on 

the voxels with spatial state changes in the vicinity of the 
sensor’s maximum field of view, effectively reducing the 
detection time.

2.2  Local exploration

The primary objective of local planning is to efficiently 
explore the sub-environments. In this paper, we employ a 
uniform sampling strategy Zhang et al. (2021) to generate 
viewpoints within a fixed-sized window, which are then 
used to construct an undirected topological graph denoted 
as G(V, E). Uniform sampling is preferred over random 
sampling to mitigate the introduction of significant 
randomness due to an uneven distribution of data points. 
Random sampling may result in certain areas being overly 
explored while others are neglected. To verify whether the 
sampled viewpoints are in free space or not, collision checks 
are performed using Octomap, which assesses the presence 
of obstacles along the edges connecting the viewpoints. 
Prior research has predominantly estimated node gains 
through visibility-based ray tracing propagation, which 
identifies unknown voxels in the proximity of nodes Selin 
et al. (2019). However, the study Schmid et al. (2020) has 
indicated that the time spent on ray tracing estimation for 
node gains accounts for 95% of the total planning time.

To alleviate the computational burden, this study adopts 
a method that utilizes the total number of visible frontiers in 
the vicinity of the nodes as a measure of information gain, 
instead of relying on the number of unknown voxels sur-
rounding the nodes, effectively guiding the robot towards 
frontier regions. An illustration for local exploration is 
shown in Fig. 3. To select the optimal exploration nodes 
considering the information gain and the motion cost, we 
employ the following function,

In Eq. 1, I(vi) represents the number of visible frontier points 
around viewpoint vi , and L(r, vi) represents the distance from 
the robot’s position r to viewpoint vi . This equation is formu-
lated to prevent the robot from greedily selecting nodes with 
the highest gain, which may result in overall low exploration 
efficiency. In Eq. 2, � represents the weighting coefficient 
between the exploration cost and the information gain. To 
prevent sudden changes in the robot’s exploration strategy, 
� is defined as the difference between the current orienta-
tion of robot yaw and the angle to the target node �i . The 
nodes with gains contrary to the robot’s forward direction 
are assigned a large motion cost, ensuring the robot main-
tains its forward direction,

(1)G(vi) = e−�L(r,vi)I(vi),

(2)� = |
yaw − �i

2�
|.Local exploration

Uniform sampling

Sparse topological
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Fig. 2  An overview of the proposed exploration framework. Octomap 
converts the data from the sensor into spatial voxels, and boundary 
detection is also done in this process. Based on Octomap, uniform 
sampling and sparse graph construction are performed in a robot-
centered location. Finally, the evaluation of candidate points and path 
planning are performed to guide the robot for autonomous exploration
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Finally, we can select the optimal node for a single planning 
iteration as in Eq. 3.

2.3  Incremental construction of sparse topological 
graphs

Inspired by Chen et al. (2022), we propose an incremental 
sparse graph construction method based on spatial geometric 
structures, as illustrated in Fig. 4. The method consists of 
three stages: the polygon construction stage, the vertex 
generation stage, and the topological graph connection stage.

Initially, the geometric structures of the robot’s surround-
ing environment are uniformly sampled to facilitate the gen-
eration of topological vertices at appropriate locations in the 
polygon construction stage. This procedure involves emitting 
rays, each with a fixed angular distribution, from the robot’s 
location to assess the spatial characteristics of intersected 
voxels within a defined range. When a voxel of an occupied 
status is encountered along a ray’s path, progression ceases, 
and the voxel’s position is logged, subsequently joining the 
set of occupied voxels. Sequentially adhering to the order of 
emitted rays, the vertices within the occupied set are con-
nected to incrementally form an occupied polygon, as illus-
trated by the orange lines in Fig. 4a.

The subsequent phase involves leveraging the occupied 
polygon to generate new vertices and expanding the existing 

(3)vi = argmax
vi

G(vi).

Fig. 3  An illustration of the proposed local exploration method. The 
red dashed line corresponds to the LiDAR’s maximum field of view. 
The blue rectangle represents a fixed-size sampling window centered 
on the robot. The orange and purple dots denote the sampling and 
frontier points, respectively. The orange points connected to the 
purple ones are candidate points (color figure online)
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Fig. 4  Illustration of incremental construction of sparse topological 
graphs. This process consists of three parts: the polygon construction 
stage, the vertex generation stage, and the topological graph 
connection stage. (a) The robot captures the geometric structure 
of the surrounding environment through uniform sampling for 
constructing occupied polygon (orange). (b) Based on the polygon, 
we use predefined rules to generate new vertices (blue) that indicate 

the midpoint of each unoccupied edge of the polygon, the robot’s 
current position, and the determined locations near the frontiers. 
These new vertices are connected to from branches (red) that extend 
to the frontiers. (c) The newly generated branches are added to the 
topological graph, and connections are established with all existing 
vertices (green) within the neighborhood of the new vertices  (color 
figure online)
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topological graph into unknown areas in the vertex genera-
tion stage. Based on real-time observations of frontiers dis-
cerned at the robot’s position, each edge’s midpoint within 
the polygon is integrated into the ray set. Then, the spa-
tial status of each point in the ray set is examined, and the 
occupied points are removed from this set. Similarly, ema-
nating from the robot’s position, rays are emitted towards 
each point within the ray set, scanning the spatial status of 
voxels along their trajectories until encountering a non-free 
status voxel. When the following three cases occur at the 
ray endpoint, it will be added as a vertex to the topological 
graph: firstly, when the status of the ray endpoint remains 
unknown; secondly, when the ray endpoint registers as occu-
pied with proximal frontiers detected, and lastly, when the 
ray endpoint is occupied, but lacks nearby vertices. Upon the 
occurrence of these conditions, the ray endpoint, the mid-
point of the polygon’s edge, and the robot’s current position 
are added as vertices to the topological graph, as illustrated 
in Fig. 4b. The advantage of this strategy is that the robot 
can effectively record the location of unexplored areas while 
facilitating a straightforward and rapid construction of the 
topological graph.

Finally, the newly generated vertices are incorporated 
into the topological graph. Similar to the connection edge 
strategy employed in the Rapidly-exploring Random Graphs 
(RRG), we establish connections between the newly gener-
ated vertex and all other vertices within a specified radius. 
This process is intended to form a more densely intercon-
nected graph structure so as to reduce the length of the 
robot’s traversal path. The resultant effect is illustrated in 
Fig. 4c. Through the employment of this method, the robot 
can construct a sparse topological graph for global naviga-
tion during continuous exploration.

2.4  Global exploration

The primary objective of the global planning is to guide the 
robot to sub-regions of the environment that still contain 
frontier points when none of the nodes in the local graph 
yield any benefits. During the activation of the global 

planning, the planner selects the next node to explore in the 
sparse global graph based on Eq. 1 and employs the Dijkstra 
algorithm to determine the shortest path from the current 
node to the target.

Given the sparsity of the topological graph, it is impera-
tive to optimize the nodes in the shortest path to the tar-
get node. We propose a path optimizer to trim unnecessary 
nodes from the sparse topological graph. The algorithmic 
process of the path optimizer is delineated in Algorithm 1.

Algorithm 1  Path optimization for sparse topological 
graphs.

1: Input: Original path P
2: Output: Optimized path Q
3: Add the start point (p0) to the optimized path Q
4: n ← SizeOf(P)
5: for i from 1 to n do
6: for j from i to n do
7: Flag ← Check collisions between pi and pj
8: if Flag == True then
9: pnew ← pj , k ← j

10: end if
11: end for
12: Add the new point pnew to Q, and update i ← k
13: end for

Assuming the original path P = (p0, p1, p2, ..., pn) , 
where p0 and pn represent the start and end points, and n 
denotes the total number of nodes in the original path. We 
sequentially check whether there is a collision along the line 
connecting pi and pj , where i starts with an initial value of 
0, and j ∈ (i, n) . In such a sequence, the last node, pk , which 
does not collide with pi , will be added to the optimized path 
Q , and i is set to k. The algorithm will continue to repeat the 
aforementioned process until i reaches n. Once the algorithm 
has executed, we sequentially connect all the nodes in the 
set Q , resulting in a optimized path shorter than the original 
one, as illustrated in Fig. 5a.

The path optimizer algorithm, despite effectively reducing 
the overall distance of the global path, might introduce sharp 
turns that fall outside the permissible kinematic constraints 
of the robot. To address this issue, we employ second-order 

The Original Path

The Optimized Path

Goal

(a)

The Original Path

The Optimized Path

Goal
The Smoothed Path
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Fig. 5  An illustration of the proposed global exploration method. 
The blue dashed lines represent the original paths obtained from the 
sparse topological graph using the Dijkstra algorithm. The green lines 

depict the paths pruned by the path optimizer algorithm, while the red 
lines represent the paths smoothed using second-order Bezier curves 
(color figure online)
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Bezier curves as a corrective measure to smooth out the 
sharp turns in the modified path,

where P0 , P1 , and P2 represent the three control points of 
the Bezier curve. All sharp corners in the global path under-
goes a smoothing process. In this paper, the position of P1 
is strategically placed at the sharp corner, while P0 and P2 
are positioned along the two edges connected to P1 . The 
distance of P0 and P2 from P1 varies with the angle formed 
by the two connected edges, as illustrated in Fig. 5b. Finally, 
we can obtain a smoother and shorter path compared to the 
original one.

3  Experiments and results

In order to validate the effectiveness of the proposed 
approach, we have conducted testing and comparisons across 
multiple simulated environments. The experimental robot 
was equipped with a Velodyne LiDAR and IMU, with its 
maximum linear velocity restricted to 1 m/s. For compara-
tive analysis, we employed two cutting-edge algorithms, 
GBP Dang et al. (2019) and FAEL Huang et al. (2023), as 
benchmark algorithms. Both GBP and FAEL were con-
figured with their default configurations. The evaluation 

(4)B(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2, t ∈ [0, 1],

metrics encompassed the count of nodes and edges within 
the global topological map, the exploration time, and the 
computation time per single iteration. All experiments were 
conducted in real-time on an Ubuntu 20 system powered by 
a 2.90 GHz i5-10400F CPU.

3.1  Experiment settings

We designed four benchmark scenarios encompassing 
environments of different sizes: an office environment 
(20 m×50 m), maze1 (30 m×70 m), maze2 (50 m×50 m), 
and an indoor environment (50 m×50 m). The environmental 
configurations are illustrated in Fig. 6. The office and maze1 
environments exhibit distinct structural characteristics. 
The office layout is carefully planned, featuring various 
zones interconnected by narrow corridors. On the contrary, 
maze1 presents an irregular structure with diverse-shaped 
obstacles. These environments are specifically chosen to 
evaluate the efficacy of the proposed global topological 
graph construction method in scenarios involving confined 
passages and irregular obstacles. Both maze2 andthe indoor 
environments represent large-scale settings. The indoor 
environment has a relatively straightforward structure, 
while maze2 incorporates multiple junctions, serving as test 
scenarios to assess the overall exploratory performance of 
different algorithms.

All experiments were conducted under the following 
conditions.

Fig. 6  The four environments 
used for benchmarking
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• The robot initiated from the same starting point with the 
same initial yaw angle.

• The sensor’s maximum detection range was set to 15 m.
• An initial action of moving forward 3 m was applied to 

ensure that the robot started within unoccupied voxels.
• Each experiment was considered complete when the 

robot ceased its movement within the environment.

In our approach, for local planning, we employed a sliding 
window size slightly smaller than the sensor’s maximum 
range, specifically set at 12 m×12 m. The effective range for 
information gain of frontiers was limited to 5 m. Regarding 
the construction of a sparse graph, the radius utilized for 
uniform sampling was equivalent to the sensor’s maximum 
detection range, that is, 15 m. Rays were emitted from the 
center of polygon edges with infinite length, yet terminated 
upon encountering voxels with unknown or occupied spatial 
states. Newly generated nodes were connected to the nodes 
existing within a 5 m radius in the topological graph. Lastly, 
the resolution of the Octomap was standardized at 0.5m.

3.2  Evaluation of the sparse topological graph 
construction

To evaluate the proposed sparse graph construction method, 
we first conducted experiments in two different spatial sce-
narios, the office and maze1 environments. The global graph 
construction method in GBP, named RRG Karaman and 
Frazzoli (2009), was chosen as the comparative baseline. 
The RRG was configured with the following parameters. It 
allowed for a maximum edge length of 5 m and a minimum 
edge length of 0.5m. The radius of the neighborhood within 
which new nodes were connected to existing nodes in the 
graph was set to 3 m.

We have recorded the quantity and spatial distribution 
of the nodes and edges generated by both methods during 
the experiments. The experimental outcomes are depicted in 
Fig. 7. It is evident that both the proposed method and the 
RRG method can successfully generate topological maps 
of the environments. However, the RRG method produces 

the nodes that nearly blanket the entire environment, while 
the proposed method effectively represents the skeleton 
of the environment with a minimal number of nodes. This 
substantial discrepancy in the number of the nodes and the 
edges can be attributed to the randomness of the sampling 
points and the edge connection strategy employed in RRG.

Moreover, we use Fig. 8 to demonstrate the quantities 
of the global graph nodes and the edges for both methods 
in different environments. We can see that, in the office 
environment, the RRG generated 203 nodes and 1038 edges, 
whereas the proposed method resulted in only 56 nodes and 
168 edges. In the maze1 environment, the RRG produced 
393 nodes and 2238 edges, while the proposed method 
yielded only 95 nodes and 338 edges. We can conclude that 
the proposed method generates less than 30% of the nodes 
and edges compared to the RRG method. This is attributed 
to the unique ray sampling and validation mechanism in 
our method, which ensures stable sampling of nodes at 
boundaries without introducing node redundancy.

The proposed method may inadvertently omit certain 
regions, such as the top-left corner of office and the 

Fig. 7  A comparison of the 
topological graphs in the office 
and maze1 environments. The 
images of the upper part are our 
proposed construction graphs, 
while the ones in the lower part 
are the graphs generated by the 
RRG 

(a) Office (b) Maze1

Fig. 8  A comparison of the number of elements in the global 
topological graph
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top-right corner of maze1. This occurrence arises because, 
when the sparse graph construction module is initiated, 
these aforementioned locations no longer exhibit frontiers, 
leading to the non-generation of nodes in frontier-absent 
areas. In the context of autonomous exploration, the 
objective is to thoroughly explore all regions. Areas 
lacking frontiers imply the absence of a necessity for 
exploration. Hence, the omission of frontier-free regions 
in the global graph does not adversely affect autonomous 
exploration. In summary, the proposed method effectively 
represents the environmental skeleton with a minimal 
number of nodes and edges, thereby enhancing the search 

speed of the global topological graph in large-scale 
environments.

(a) (b)

(c) (d)

Fig. 9  Comparison of the exploration performance in the maze2 
and indoor environments. a and b demonstrate the trajectory of 
each methods in the maze2 and indoor environments, respectively. 
The red line denotes our method, the blue line represents the GBP, 

and the green line indicates the FAEL. c and d are the comparison 
of the three methods with respect to the exploration volume and the 
exploration time (color figure online)

Table 1  Results of the travel distance in different environments

Environment GBP FAEL Ours

Maze2 420.794 m 398.16 m 385.18 m
Indoor 535.797 m 347.072 m 350.248 m
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3.3  Exploration performance

We further evaluated the exploration performance in both 
the indoor and maze2 environments. We have recorded the 
key metrics such as the exploration volume, the completion 
time, the trajectory and travel distance for each experiment, 
as depicted in Fig. 9. In addition, Table 1 details the distances 
covered by each methods within the completion time.

We can see that in both the maze 2 and indoor environ-
ments, the GBP exhibits the longest completion time and 
covers the greatest distance during exploration compared to 
the proposed method. This can be attributed to the imprac-
tical utility function configuration of the GBP. After com-
pleting exploration within a specific area, the GBP may 
engage in multiple back-and-forth movements within that 
region, as illustrated in the left part of Fig. 9b, significantly 
impeding the efficiency of robotic exploration. In the maze2 
environment, the proposed method takes 412 s and covers a 
distance of 385.18 ms, while the FAEL requires 472 s and 
covers 398.16 ms. In the indoor environment, our proposed 
method consumes 365 s and traverses 350.248 ms, whereas 
the FAEL needs 387 s and covers 347.072 ms. Thus, we can 
claim that the proposed method can achieve the exploration 
performance comparable to the state-of-the-art FAEL algo-
rithm and outperforms the GBP algorithm based on random 
sampling.

With respect to the local planning, this paper incorporates 
the current exploration direction into the utility function, 
ensuring that the robot continues its exploration in the same 
direction. This effectively mitigates the issue of decreased 
exploration efficiency resulting from abrupt changes in 
the robot’s direction. Furthermore, the behavior observed 
in Fig. 9a and b, where the robot can quickly enters and 
exits dead ends, illustrates the advantages of the proposed 

method in utilizing frontiers as information gains, which 
significantly enhances exploration efficiency.

While the paths generated by the proposed sparse graph 
construction method may not match the quality of dense 
graphs generated by the RRG and the FAEL, it is evident 
from the latter part of the global planning phase in Fig. 9c 
and d that our global planning approach still can guide the 
robot to another subregion with the frontiers in the shortest 
possible time. It demonstrates that our global planning 
method produces smoother high-quality paths with shorter 
travel distances.

3.4  Computation efficiency

In terms of computation time, the algorithm runtime of the 
GBP is around 150ms, while the our proposed method and 
the FAEL run in less than 50 ms. Thus, the experimental 
results only display our proposed method and FAEL, as 
shown in Fig. 10.

We can find that the iteration computation time of the 
FAEL gradually increases with the exploration time due 
to the increasing number of nodes and edges in the global 
graph, resulting in increased search costs. In contrast, the 
iteration time of our method remains around 2ms throughout 
the entire exploration time, only one-tenth of that of the 
FAEL. This is achieved because of the fixed-size sampling 
window and the sparse topological graph. As depicted in 

(a) Runtime in the maze2 environment. (b) Runtime in the indoor environment.

Fig. 10  The runtime evaluation in the maze2 and indoor environments

Table 2  Average computation times of the components of our 
proposed method

Environment Sampling Gain evaluation Find path

Maze2 1.594 ms 0.012 ms 0.273 ms
Indoor 1.500 ms 0.015 ms 0.388 ms
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Fig. 7, the sparse graph construction method proposed in this 
paper can generate a graph that covers the entire global map, 
similar to the RRG, while being sparser. Compared to the 
RRG or other global graphs, the search time is significantly 
reduced. Additionally, the evaluation computation times 
of each component of our proposed method are presented 
in Table 2. It is worth mentioning that the sampling time 
contains the construction time of the sparse graph. We 
can claim that the proposed method exhibits relatively 
low computation times in both the maze2 and indoor 
environments.

4  Conclusion

This paper proposes a hierarchical exploration approach that 
integrates the frontier and sampling methods. This approach 
comprises a local exploration stage, which swiftly expands 
the free space within the environment, and a global stage 
that guides the robot to different sub-regions. To enhance 
the search speed of the global topological graph, this paper 
introduces a method for constructing a sparse topological 
graph. During the exploration process, the planner incre-
mentally constructs a three-dimensional sparse topologi-
cal graph by dynamically capturing the spatial structure of 
free space through uniform sampling. In various challeng-
ing simulated environments, the proposed approach attains 
comparable exploration performance to the state-of-the-art 
methods while demonstrating significantly improved compu-
tational efficiency. In the future, we will continue to explore 
optimization methods for constructing sparse graphs, with 
the aim of ensuring that the regions with smaller openings 
will not be missed. For example, when constructing a sparse 
graph, frontier cluster points are used as nodes and added 
to the sparse topological graph that can be generated in any 
region with frontiers.
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