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Abstract

We study the problem of detecting zeros of continuous functions that
are known only up to an error bound, extending the theoretical work
of [26] with explicit algorithms and experiments with an implementation.1

Further, we show how to use the algorithm for approximating worst-case
optima in optimization problems in which the feasible domain is defined by
the zero set of a function f : X → R

n which is only known approximately.
The algorithm first identifies a subdomain A where the function f is

provably non-zero, a simplicial approximation f ′ : A → Sn−1 of f/|f |,
and then verifies non-extendability of f ′ to X to certify a zero. Deciding
extendability is based on computing the cohomological obstructions and
their persistence. We describe an explicit algorithm for the primary and
secondary obstruction, two stages of a sequence of algorithms with increas-
ing complexity. Using elements and techniques of persistent homology, we
quantify the persitence of these obstructions and hence of the robustness
of zero.

We provide experimental evidence that for random Gaussian fields,
the primary obstruction—a much less computationally demanding test
than the secondary obstruction—is typically sufficient for approximating
robustness of zero.

1 Introduction

Motivation. Detecting zeros of Rn-valued functions is equivalent to solving
systems of real equations, a fundamental problem of mathematics and theoret-
ical computer science. Our research is motivated by practical applications, in
which the data is often known only approximately. We address the case where
the input data is limited to the approximate values of a continuous function f

∗The research of Peter Franek received funding from Austrian Science Fund (FWF): M
1980 and from the Czech Science Foundation (GACR) grant number 15-14484S with institu-
tional support RVO:67985807. The research of Marek Krčál was supported by the Seventh
Framework Programme (291734).

1https://bitbucket.org/robsatteam/rob-sat
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with values in Rn, sampled over a finite point set. This uncertainty is han-
dled in a deterministic way: we aim at verifying that each continuous function
compatible with our partial knowledge of f has a zero.

Functions that are known only approximately appear in various contexts and
are handled in different ways. For example, rounding errors in floating-point
computations are systematically treated by methods of interval

f Zero of f

Figure 1: For scalar val-
ued function, existence of
a zero can be verified
via the intermediate value
theorem.

arithmetic and detection of zeros resistant to
bounded errors is a frequent problem in this field
[32, 22, 3, 35, 7]. Other instances of uncertain func-
tions come from measurements of physical quan-
tities, such as in medical imaging [12, 33, 21] or
robotics [43, 6]. We suppose that potential applica-
tions include robust detection of level sets f−1(a)
in medical image processing, analysing robot tra-
jectory based on data obtained from sensors [6, 7],
or computing the inner approximation of reachable
regions of a robotic arm [34]. The algorithm could
also be exploited for analysis of functions obtained
by regression (say, in machine learning), where the
function is chosen to fit some given set of sampled
values.

To verify that a function f , of which we only have a limited knowledge,
has a zero, is equivalent to showing that each potential candidate g for f has
a zero. If we only have access to sampled values of f and a Lipschitz con-
stant, then the set of all such admissible functions g is huge and can not be
finitely parametrized. However, methods of computational homotopy theory
can be applied: the closely related problem of verifying that each continuous
r-perturbation of a given function has a zero, can be reduced to the topologi-
cal extension problem for maps into a sphere [26]. The latter problem can be
addressed via means of obstruction theory, using an algorithmic construction of
Postnikov towers. Such construction has never been implemented and is in its
full generality probably out of reach, given the limitations of computer power.
Using a number of simplifications as well as some methods of persistent ho-
mology, we present a partial solution to the above problem accompanied by an
implementation, complexity analysis and several computational experiments.

Statement of the results. We present an algorithm for detecting zeros of
vector valued functions f : X → Rn on a compact space X and for approxi-
mating the robustness of zero, that is, a maximal real number r > 0 such that
every continuous g : X → Rn satisfying ‖g − f‖ ≤ r has a zero. By ‖f‖ we
denote the max-norm maxx∈X |f(x)| where | · | is a fixed `p norm in Rn. Non-
trivial cases happen if dimX ≥ n, as otherwise arbitrarily small perturbations
of f avoid zero. For computer representation we assume that the space X is
a simplicial complex. The map f : X → Rn is specified by its values on the
vertices which are assumed to be rational, and by a rational value α > 0 such
that |f(x)−f(y)| ≤ α for arbitrary points x and y of any simplex of X. We em-
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Figure 2: This illustrate a function f : X → R2 such that X = [−1, 1]2,
A = ∂X, and f : A → R2 \ {0} is homotopic to the identity map. Then the
non-extendability of f |A to X → R2 \ {0} implies the existence of a zero in
X \ A. We can bound the robustness of zero in X \ A by minv∈A |f(v)| from
below.

phasize that the precise knowledge of f is not needed. The algorithm computes
a number r1 ∈ R such that

• Every continuous g, ‖g − f‖ ≤ r1, has a zero.

A positive r1 > 0 is then a certificate of existence of zero of f : we will say that f
has an r1-robust zero. Otherwise the algorithm outputs a negative number and
gives no guarantee of the existence of zero. Under the dimensional constraints
dimX ≤ n+ 1 or n < 3, it also computes a number r2 > r1 such that

• Some continuous g, ‖g − f‖ ≤ r2, has no zero.

Under this dimensional constraint, the gap r2 − r1 provably converges to zero,
if the constant α (and hence our lack of knowledge of f) goes to zero.

The main step is to find a subdomain A ⊆ X where f is provable nonzero
and where our knowledge of f is sufficient to determine the homotopy class
of f |A as a map to Rn \ {0} ' Sn−1. Then non-extendability to X → Sn−1

is a certificate of zero. The primary obstruction measures non-extendability
to the n-skeleton of X and the secondary obstruction the non-extendability to
the (n + 1)-skeleton. The constraint dimX ≤ n + 1 could be generalized, if
we implemented oracles for computing higher obstructions, such as discussed
in [26, 19].

Our second result is based on computational experiments with random func-
tions. A natural informal question is

• How typical are functions for which higher obstructions are needed for
detecting a zero?

An example of a function with nontrivial secondary obstruction is any map f
from a 4-ball B4 to R3 such that f |∂B4 is homotopic to the Hopf map S3 → S2
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and hence cannot be extended to B4 → R3 \{0}. Such property can be verified,
if we are given a sample of function values and a Lipschitz constant. Moreover,
the homotopy class of f |∂B4 does not change, if we slightly perturb these sampled
function values.

Surprisingly, when performing experiments with random functions (mainly
random Gaussian fields), we observed that higher obstructions are typically not
needed. Whenever we detected a zero of a randomly generated uncertain func-
tion, it was via means of primary obstruction only. We performed experiments
with various random functions from a triangulated 4-cube or from a 4-torus
into R3 as well as from a 5-cube resp. 5-torus into R4. This observation—if
confirmed by theory or by more experiments in different settings—could jus-
tify the usage of only the primary obstruction in potential future engineering
applications.

State of the art. Algorithms for detecting zeros used in software packages are
based on iterative methods which are often applicable if f is given by formulas
and is differentiable. However, these algorithms usually give no guarantees of
correctness: the satisfiability of f(x) = 0 is undecidable for any class of real
functions f that contain polynomials and the sine function [51].

A number of methods has been proposed for testing the (non-)existence of
zeros of continuous functions, exploiting tools ranging from iterative methods
in numerical analysis to topology. The problem has been most studied in the
case dimX = n. If Bn is a unit ball in Rn, then verifying zeros of f : Bn → Rn

is equivalent to verifying a fixed point of f + id: here the Brouwer fixed point
theorem can be applied [45]. Other methods for zero verification were studied
in the field of interval arithmetic, such as Miranda’s test [4], Borsuk’s test [32]
and the degree test [29]. All of these tests have topological flavour and are
stable with respect to perturbations of the input function. It is shown in [30]
that the degree test can detect a zero of f : Bn → Rn whenever the zero of f
is robust (that is, each g close enough to f has a zero). The above mentioned
primary obstruction directly reduces to the degree test if dimX = n. While the
topological degree computation has been explicitly described in the literature
and also implemented [28], the problem is far more complicated if the domain
X has larger dimension than n. In [26] we showed that the existence of a robust
zero of piecewise linear functions X → Rn is undecidable if n ≥ 3 is a fixed odd
integer and X is a (2n− 2)-dimensional simplicial complex (X is considered to
be a part of the input).

Zero sets of functions with inherent uncertainty have been studied via means
of computational topology in the context of well groups [11]. In their general
settings, well groups associated to f : X → Y and a subspace Y ′ ⊆ Y describe
properties of the preimage f−1(Y ′) which persist if we perturb the input function
f . In the important case of Y = Rn and Y ′ = {0}, well groups describe zero sets
of functions: namely, the zeroth well groups measures robustness of existence of
zero and higher well groups reflect further topological properties of the zero sets.
In [25] we showed that the primary obstruction can be used to compute a certain
subgroup of the well group that in many cases coincides with the full well group
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(see [25, Thm. 1.4]). A general algorithm for well group computation cannot
be expected because the above mentioned undecidability result [26] directly
transfers to well groups when dimX ≥ 2n− 2 as well. Our implementation can
be thought of as an approximation of the zeroth well group that extends the
work of [20] where the special case dimX = n is solved.

An application of our algorithm is in worst-case analysis of optimization
problems where the feasible domain is defined by equations. The worst-case
approach in robust optimization has been widely studied, see [10, 9, 13, 14].
Usually, the uncertainty applies to a finite number of parameters which are
assumed to be taken from a known domain. In our approach, we rather work
with the space of all continuous functions that are compatible with our partial
knowledge of f .

Outline and organization of the paper. In the algorithm, we first create
a filtration {Ar ⊇ As}r≤s of subcomplexes that “approximate” the topological
spaces A(r) := {x ∈ X : |f(x)| ≥ r}. We compute a simplicial approximation
f ′ : Ar → Σ of f where Σ is a given triangulation of the (n − 1)-sphere. Then
we ask for the smallest r such that the restriction of f ′ to Ar can be extended
to all of X, and show that the robustness of zero of the original function is α-far
from r.

Such extendability is decidable if dimX ≤ 2n−3 [18], but the only procedere
for this we are aware of is based on the algorithm for computing stages of
Postnikov towers from [19] that depends on several other papers [40, 17, 50]
and is unlikely to be fully implemented in near future. Instead of that, we
implemented a persistent version of both the primary and secondary obstruction,
which test extendability to the n- and (n+1)-skeleton of X.2 First, we compute
the maximal r1 for which the cohomological obstructions to extending f ′|Ar1

to Ar1 ∪ X(n) (primary obstruction) does not vanish. Similarly, we compute
a maximal r2 ≥ r1 for which f ′|Ar2

is not extendable to Ar2 ∪ X(n+1) (non-
vanishing of the secondary obstruction): this requires us to parametrize all
extensions to the n-skeleton.

In Section 2 we show how to approximate the spaces A(r) by simplicial
complexes and the sphere-valued map f/|f | via a simplicial map. A high-level
description of our algorithm is in Sections 3 and 4, with a partial lower-level de-
scription in Appendix A and C. In Section 5 we show how to use the method for
approximating worst-case optima in optimization problems where the feasible
domain is defined by equations. In Section 6 we present some computational
experiments with random Gaussian fields. More details about testing and per-
formance are delegated to Appendix D. The last section contains theoretical
worst-case complexity bounds.

2The only exception is the case n = 3, dimX > 3 where the triviality of secondary
obstruction is undecidable in general. However, if X is assumed to be a triangulation of
the cube [0, 1]4, then our algorithm works with no essential changes. For many other fixed
4-dimensional spaces X the problem is decidable too.
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2 Discretizing the function f

In this section we show how to convert the “unknown” continuous function f
to its discrete simplicial approximation.

Definition 2.1. A continuous filtration of spaces is a family (Ar)r∈R such that
Ar ⊇ As whenever r ≤ s. A continuous filtration (Ar)r∈R is called step-like
whenever there exists a sequence of numbers −∞ =: r−1 < r0 ≤ r1 ≤ r2 ≤
. . . ≤ rk such that for any r, s ∈ (ri, ri+1], Ar = As holds for all i. Continuous
filtrations (Ar)r and (Br)r are called α-interleaved whenever Br+α ⊆ Ar and
Ar+α ⊆ Br for each r ∈ R.

Definition 2.2. Let f : X → Rn be a continuous map on a simplicial complex
X and let | · | be a norm on Rn.

1. By Ar we denote the subcomplex of X spanned by the vertices v of X
with |f(v)| ≥ r.

2. By A(r) we denote the subspace of X defined by A(r) = {x ∈ X : |f(x)| ≥
r}.

3. We say that f is simplexwise α-Lipschitz whenever |f(x)− f(y)| ≤ α for
each pair of points x, y ∈ ∆ of any simplex ∆ ∈ X.

The spaces Ar form a step-like filtration where a step occurs for each r equal
to |f(v)| for some vertex v of X.

Let ej = (0, . . . , 1, 0, . . . , 0), j = 1, . . . , n be the unit vectors in Rn in the
direction of the axes and let Σn−1 be the simplicial model of the (n− 1)-sphere
obtained from the boundary of a cross-polytope. More explicitely, the vertex
set of Σn−1 is {±ej | j = 1, . . . , n} and the triangulation consists of all simplices
spanned by vertex sets that do not contain any antipodal pair. A natural
sphere-valued approximation of f is then given by the map f ′ as follows.

Definition 2.3. Let f : X → Rn and V be a subset of the vertices of X. We
define the vertex approximation f ′ : V → {e1,−e1, . . . , en,−en} to be the map
that to a vertex v assigns sjej, where j is the index of the component of f(v)
with largest absolute value and sj is the sign of fj(v).3

Lemma 2.4. Let f : X → Rn be a simplexwise α-Lipschitz map for some con-
stant α > 0 and Ar, A(r) be the filtrations from Definition 2.2, defined with
respect to the `p-norm for some p ∈ [1,∞].

Then the following holds:

1. The continuous filtrations (Ar)r∈R and A(r)r∈R are α-interleaved.

2. If r > αn1/p/2, the vertex approximation f ′ : V (Ar) → V (Σn−1) defines
a simplicial map f ′ : Ar → Σn−1 (that is, it maps simplices to simplices).

3For example, if f(v) = [2,−3], then we choose f ′(v) = −e2. If there are more components
of f(v) with the same absolute value, we choose one by an arbitrarily chosen rule.
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3. If r > αn1/p, then f ′ : Ar → Σn−1 ⊆ Rn\{0} is homotopic to f |Ar : Ar →
Rn \ {0}.

The simplicial map f ′ : Ar → Σn−1 as above will be called the simplicial
approximation of f |Ar

. We note that the choice of the sphere model and the
discretization f ′ of f is independent of the rest of the algorithm given in the
following chapters and is not the only possible choice: however, we couldn’t find
one with approximative properties better than in Lemma 2.4.

Proof of part 1. If a point x ∈ |X| is not in Ar, we know that |f(v)| < r for some
vertex v of a simplex ∆ supporting x. The simplexwise α-Lipschitz property
then implies that |f(x)| < r+α, hence x /∈ A(r+α). This proves A(r+α) ⊆ Ar.

The other inclusion holds because once a point x of a simplex ∆ ∈ X is in
a given Ar, then for arbitrary vertex v of ∆ holds |f(v)| ≥ r and |f(x)−f(v)| ≤
α. Thus |f(x)| ≥ r − α, hence x ∈ A(r − α).

Proof of part 2. We want to prove that no adjacent vertices u and v are mapped
by f ′ to ei,−ei for some i. Without loss of generality we can assume that f ′(v) =
e1. Assuming |f(v)| ≥ r and the definition of f ′, the first component (with
largest absolute value) must satisfy f1(v) ≥ rn−1/p. Similarly if f ′(u) = −e1,
then f(u)1 ≤ −rn−1/p, but this would imply that α ≥ |f(u)− f(v)| ≥ 2rn−1/p,
contradicting the assumption r > αn1/p/2.

Proof of part 3. We show that the simplexwise straight-line homotopy between
f and f ′ has values in Rn \ {0}. Let ∆ ∈ X, v be a vertex of ∆, x ∈ ∆,
and assume that r > αn1/p. Again, assume WLOG that f ′(v) = e1. Then
f1(x) ≥ f1(v) − α ≥ rn−1/p − α > 0 and the straightline homotopy between
maps f, f ′ : Ar → Rn \ {0} has positive first coordinate, hence it avoids zero.

3 The algorithm using an oracle for persistence
of obstructions

In this section we describe a high-level description of our algorithm for approx-
imating robustness of zero. The specification is as follows:

Input:

• X, a simplicial complex,

• f : X(0) → Rn, function values at vertices,

• α > 0.4

Output:

4For computability purposes, we assume that f(v) and α are rational or computable.
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• a lower bound on the robustness of zero (possibly negative),

• an upper bound on the robustness of zero (possibly ∞).

The unknown function f is thus represented by function values in vertices
and a simplex-wise Lipschitz constant α. A negative lower bound or infinite
upper bound give no information at all: however, in case of dimX ≤ n + 1 or
n < 3, the lower and upper-bounds on robustness will be at most 2α-far from
each other. Even outside this dimension range, the computed lower bound on
robustness will be at most α-far from the robustness of zero of f |A∪X(n+1) .

Definition 3.1. Let X ⊇ Ar0 ⊇ Ar1 ⊇ . . . be a filtration of simplicial complexes,
ri ≤ rj for i ≤ j and f ′ : Ar0 → Sn−1. Then the persistence of primary
obstruction is the largest rj such that the restriction of f ′ to Arj can not be

extended to a (not necessarily simplicial) map Arj ∪X(n) → Sn−1 where X(n)

is the n-skeleton of X. The persistence of secondary obstruction is the largest
rk such that the restriction of f ′ to Ark can not be extended to Ark ∪X(n+1) →
Sn−1.

In what follows, assume that an oracle is given that, for a filtration of sim-
plicial complexes and a simplicial map f ′ : Ar0 → Σn−1, computes the per-
sistence of secondary obstrucion. We assume that we are given a continuous
map f : X → Rn by its values on the vertices of X, its simplexwise Lipschitz
constant α and a norm `p on Rn for p ∈ [1,∞]. The outline of the algorithm
follows.

A. (a) Label the set

{|f(v)| : v ∈ V (X) such that |f(v)| ≥ αn1/p}

by {r0, r1, . . . , rh} so that ri ≤ rj for i ≤ j.
(b) For any simplex ∆ ∈ X compute its filtration value r(∆) by

r(∆) := min
v vertex of ∆

|f(v)|. (1)

This yields a filtration Ar0 ⊇ . . . ⊇ Arh that together with the values
r0, . . . , rh determines the step-like continuous filtration (Ar)r∈R from
Definition 2.1.

(c) For vertices v of X with |f(v)| ≥ r0 compute the vertex approxima-
tion f ′(v) via Definition 2.3.

B. Use the oracle to compute the persistence of secondary obstruction rk
(Def. 3.1).

(a) If k > 0: output “robustness of zero is at least rk − α.”
Else: output “no guarantee of zero”
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(b) If dimX ≤ n + 1 or n < 3: output “robustness of zero is at most
rk + α”
Else: output “no guarantee of upper bound (robustness of zero is at
most ∞)”

The constraints in B(b) could be replaced by dimX ≤ n− 1 + k, if we used
an oracle for persistence of the first k obstructions. However, implementing such
an oracle is theoretically possible only if k < n−1. In fact, even the special case
dimX = 4 and n = 3 is beyond this bound and we cannot implement the oracle
for secondary obstruction for this dimension pair with no restrictions on X. In
the important special case when X is topologically a cube [0, 1]4 and n = 3,
the general algorithm works with no essential changes. More details about the
implementation of the oracle for this dimension pair are given in Appendix A,
p. 25.

Theorem 3.2. The above algorithm outputs correct statements.

Proof. In [26, Lemma 3.3] we showed that f has an r-robust zero iff f |A(r) is
not extendable to a nowhere zero function on X.

Correctness of B(a) Assume that k > 0 and let r := rk. Non-extendability
of f ′|Ar

to the (n+1)-skeleton X(n+1) implies non-extendability to all of X. By
Lemma 2.4, f ′|Ar is homotopic to f |Ar and hence non-extendability of the former
implies non-extendability of the latter. Further, the relation Ar ⊆ A(r − α)
implies non-extendability of f |A(r−α), which finally implies that f has an (r−α)-
robust zero on X.

Correctness of B(b) Let r > rk be arbitrary. The assumption, the restriction
of f ′ to Ar is extendable to A∪X(n+1). If dimX ≤ n+1, then this is equivalent
to the extendability to all of X. The cases n < 3 reflect low dimensional
phenomena: we will show that then the extendability to A∪X(n) already implies
the extendability to all of X. If n = 1, f ′ has values in the 0-sphere S0 ∈ {+,−}
and if it can be extended to the 1-skeleton, we can assign a sign + or − to each
connected component of X and naturally extend to X → {+,−}. If n = 2, then
f ′ has values in a circle, S1. Assume that it can be extended to A∪X(2) → S1.
Then any extension A∪X(j) → S1 of f ′, j ≥ 2, can be extended to A∪X(j+1),
because the restriction of g to the boundary of any (j+ 1)-simplex ∆j+1 defines
a map ∂∆j+1 → S1 from a j-sphere to the circle and such map is homotopic
to a constant (see, e.g. [37, Chapter 4.1]), hence ∂∆j+1 → S1 can always be
extended to all of ∆j+1.

Assume that dimX ≤ n + 1 or n < 3 and that r > rk. Then r > r0 and
f ′|Ar is well defined and homotopic to f |Ar by Lemma 2.4. This implies the
extendability of f |Ar

to all of X and the relation A(r + α) ⊆ Ar implies the
extendability of f |A(r+α). Thus the robustness is less than r+α for any r > rk,
yielding an upper bound rk + α on the robustness of zero.

To conclude this section, we remark that

• In case when f has no zero at all, we may easily approximate the robustness
of non-existence of zero by minv |f(v)| − α.
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• The infinite bound in B(b) can be improved to maxv |f(v)|+ α.

4 Persistence of obstructions

In this section we describe the algorithm for computing the persistence of pri-
mary obstruction and roughly outline the algorithm for secondary obstruction
(which is described in more detail in Appendix A).

Primary obstruction—extendability to X(n). Here we review some facts
from obstruction theory. A reference for the next proposition can be a textbook
such as [44, III, 1.2].

Proposition 4.1 (Primary obstruction). Let A ⊆ X be a pair of simplicial com-
plexes, f : A → Σn−1 be simplicial, z ∈ Cn−1(Σn−1;Z) be a cocycle generating
the cohomology, and y := f ](z) ∈ Zn−1(A;Z) its pullback.

Then f : A→ Σn−1 can be extended to a (not necessarily simplicial) map A∪
X(n) → Σn−1, iff y ∈ Zn−1(A;Z) can be extended to a cocycle x ∈ Zn−1(X;Z)
such that x|A = y.

Thus extendability of f is reduced to extendability of an A-cocycle y to
a global cocycle x defined on all of X. We will use the notation Ω(A) :=
{x ∈ Zn−1(X;Z) : x|A = y} of all cocycle extensions and want to test its non-
emptiness. Ω(A) corresponds to solutions of a linear equation over integers. To
see that, let ȳ ∈ Cn−1(X;Z) be an arbitrary cochain (not necessarily a cocycle)
such that ȳ|A = y. We have that

Ω(A) = {ȳ − c : c ∈ Cn−1(X,A;Z) such that δc = δȳ}. (2)

Subtracting c ∈ Cn−1(X,A;Z) does not change the values on A-simplices, so
any such ȳ − c is still an extension of y. The non-emptiness of Ω(A) is thus
equivalent to solvability of the linear equation δc = δȳ with the unknown c ∈
Cn−1(X,A;Z).

A natural set of generators of Cn−1(X,A;Z) is the set of all (n−1)-simplices
in X that are not in A with the identification between a simplex ∆ and its char-
acteristic cochain that assigns 1 to ∆ and 0 to all other simplices. Converting
δc = δȳ into an explicit matrix system of linear equations then amounts to
enumerating the (n− 1)- and n-simplices in X \A, computing the codifferential
matrix of δ using the definition of boundary and expressing the right-hand side
δȳ in the basis of the n-simplices.

Persistence of the primary obstruction—the algorithm. We recall that
in the persistent setting the input contains a filtration of simplicial complexes
X ⊇ Ar0 ⊇ Ar1 , . . . ,⊇ Arh and a simplicial map f ′ : Ar0 → Σn−1. We want
to compute the largest value j such that the restriction of f ′ to Arj cannot be

extended to Arj ∪X(n).
Let A := Ar0 and z, y be defined as above. The cochain extension ȳ of

(f ′)](z) is also an extension of (f ′|A′)](z) for each A′ ⊆ A. Thus we fix one
ȳ for all spaces Ar. Then the only thing that is changing in solving δc = δȳ,
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c ∈ Cn−1(X,Ar;Z) with increasing r, is the requirement that c should be zero
on Ar and is hence supported on X \ Ar. Note that X \ Ar becomes larger
with increasing r: we are allowed to include more columns into our matrix
representing δ.

Now we describe the algorithm on a lower level.

• First we choose the cocycle z ∈ Σn−1 that generates the (n−1) cohomology
and its pullback y := (f ′|A)](z) ∈ Zn−1(A;Z) for A = Ar0 .

• We fix an arbitrary extension ȳ ∈ Cn−1(X;Z) of y: the simplest option is
to choose ȳ(∆) = 0 for all (n− 1)-simplices ∆ ∈ X that are not in A.

• We compute the filtration values of all (n− 1) simplices in X by (1).

• We order the (n−1)-simplices of X by their filtration value, and choose an
arbitrary enumeration of the n-simplices. These choices will serve as bases
of the (n−1)- and n-cochains (we identify simplices and their characteristic
cochains).

• We construct the matrix M representing the codifferential with respect to
the bases chosen above. The columns of M are coboundaries of the (n−1)-
simplices ordered by increasing filtration values. Further, we convert the
right-hand side δȳ to an integer vector a using the chosen basis of n-
simplices.

Recall that we want to solve δc = δȳ for c that is a linear combination of
(n−1)-simplices with filtration values at most r, where r is as small as possible.
Such r is then the desired persistence of the primary obstruction: indeed, it is
the smallest r such that δȳ can be expressed as a coboundary δc where c has
filtration at most r, but cannot be expressed as δc so that c has filtration strictly
smaller than r.

This directly translates to the following problem, which is the last step of
the persistence-of-primary-obstruction algorithm.

Problem Earliest Solution
Input: A matrix M ∈ Zp×q and a column vector a ∈ Zp.
Output: A column vector x ∈ Zq such that Mx = a.
Objective: Minimize the index of the last nonzero entry of x, that is,
` ≥ 0 such that x` 6= 0 and x`+1 = x`+2 = . . . = xq = 0.

The persistence of the primary obstruction is then the filtration value of the
l-th column.

The EARLIEST SOLUTION problem could be solved by binary search on
the value ` while solving an ordinary linear system of equations in each iteration.
Our implementation uses a simple matrix reduction approach (resembling algo-
rithms for persistent homology) which avoids the binary search (see Appendix B
for details).
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Secondary obstruction—extendability to A ∪ X(n+1). Computing the
secondary obstruction and its persistence contains similar ingredients but is
more technical and we postpone a lower-level description to Appendix A. Here
we outline the main steps for the non-persistent version with a fixed A. We
assume that f ′ : A→ Σn−1 is extendable to A∪X(n) and that Ω(A) (described
by (2)) is nonempty.

We need to implement the “Steenrod square” operation on the level of
cochains. We chose to use the notation from the original paper of Steenrod [46]

^n−3: Cn−1(X;Z2)× Cn−1(X;Z2)→ Cn+1(X;Z2)

which induces (when an element is “multiplied” by itself) the standard operation

Sq2 : Hn−1(X;Z2)→ Hn+1(X;Z2)

on the level of cohomology for n > 3 (similarly for relative cohomology). The
algorithm for ^n−3 directly follows from formulas in [46, p. 292–293]. For the
following facts, we refer to [46] and [47]:

Proposition 4.2 (Secondary obstruction). Let A ⊆ X be a pair of simplicial
complexes, f ′ : A → Σn−1 be simplicial and assume that the ordering of ver-
tices of X and Σn−1 is chosen so that v � w ⇒ f ′(v) � f ′(w). For each
x ∈ Ω(A) let (x mod 2) be the image of x under the natural homomorphism
Cn−1(X;Z)→ Cn−1(X;Z2). Then

v(x) := (x mod 2) ^n−3 (x mod 2) (3)

vanishes on A, that is, it is an element of Zn+1(X,A;Z2).
Further, if n > 3, then f ′ can be extended to a map X(n+1) → Σn−1 iff v(x)

is a relative coboundary for some x ∈ Ω(A).

Thus extendability to X(n+1) is equivalent to satisfiability of the equation
δc = v(x), c ∈ Cn(X,A;Z2), for some x ∈ Ω(A). To decide this, we parameter-
ize Ω(A) by a fixed representative x and generators gj of Zn−1(X,A;Z): an arbi-
trary element of Ω(A) is then x−∑j ujgj for some uj ∈ Z. To reduce the number

of j’s, we only need to take generators of the cohomology group Hn−1(X,A;Z).
Exploiting the linearity of the operation v on the level of cohomology ([46, p.
504]), we have that v(x −∑j ujgj) is a coboundary iff v(x) −∑j ujv(gj) is a
coboundary. Thus our equation reduces to δc +

∑
j ujv(gj) = v(x). This is

a system of equations with right-hand side v(x) and unknowns c and uj , this
time over the Z2-coefficients.

We also remark that the last proposition is valid also in the case n = 3
once we replace Z2-coefficients by Z-coefficients and the ^3 operation by the
cup product. However, deciding whether there exists an x such that x ^ x is
a coboundary, is hard (and undecidable for general spaces X). We show at the
end of Appendix A that if X is a triangulation of the topological cube [0, 1]4

and n = 3, then triviality of the secondary obstruction can easily be tested as
well: this case is also included in our implementation.
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To compute the largest r such that the map f ′|Ar is not extendable to
Ar ∪X(n+1), we could use a binary search. As in the case of the primary ob-
struction, it can be avoided and we can compute the persistence of the secondary
obstruction using a single matrix reduction: this is explained in Appendix A.

5 Application for robust optimization

Reduction of robust optimization to the ROB-SAT problem. Our
algorithmic approach has a natural extension for optimization with uncertainty.
We pose the following optimization problem:

maximize o(x)
subject to g(x) = 0

x ∈ X
(4)

where X is a compact domain5 and g : X → Rn is uncertain. Let as assume, for
simplicity, that r > 0 is fixed and g is an unknown continuous r-perturbation
of a known given map f : X → Rn. A simple instance of the above problem is
visualized below:

f ≥ r

f ≤ −r

optimum is always here

gradient of o

Zero set of each r-perturbation of
f contains a cycle looping around
{x: f(x) ≤ −r}.

this point achieves the
worst-case optimal value

Both f and o : X → R can be specified in various ways but let us further assume
that they are simplexwise linear and that we know their values on vertices.

We remark that in a common approach the uncertainty is parametrized,
that is, in the problem above, the constraints would have the form gp(x) = 0
(or gp(x) ≤ 0), where p is an unknown vector-valued parameter (see [9]).

The common goal is to compute the optimal value in the worst case, i.e.,

inf
‖g−f‖≤r

max
x∈g−1(0)

o(x)

in our case. The worst-case optimal value is equal to the maximal number β ∈ R
such that f has an r-robust zero on o−1[β,∞). If o is simplexwise linear, then

5Such a domain implicitly imposes inequality constraints which can be seen as uncertain
ones as well if the chosen norm on Rn is `∞, see [26]. Also the function o could be considered
as uncertain without adding further complexity to the problem, but we prefer to have the
statement as simple as possible.
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o−1[β,∞) can be triangulated and the existence of an r-robust zero on o−1[β,∞)
can be algorithmically tested via computing higher-order obstructions, whenever
dimX ≤ 2n− 3 or n < 3 [26]. The exact worst-case optimal value can be found
by doing a binary search on the maximal value β and using the ROB-SAT
algorithm [26] in each step.

Efficient implementation. Also the efficiency–tuned algorithm presented in
this paper can be tweaked into the setting of optimization very easily and thus
the binary search avoided. We may assume that both f and o are only given
via function values in vertices and simplex-wise Lipschitz constants, and want
to approximate inf‖g−f‖≤r maxx∈g−1(0) o(x) for some r.6

The only difference occurs before each call of Earliest Solution sub-
routine where we sort the rows of the matrix M and the right-hand side a
(n-simplices in the case of primary obstruction) according to their o-filtration
value (minimum of o(v) over their vertices v). Also we cut off the columns of the
matrix with filtration value larger than r. After the column matrix reduction as
described in Appendix B, the desired approximation of the worst-case optimal
value is the o-filtration value corresponding to the row of the lowest nonzero
element on the right hand side a after the reduction.

We can immediately compute a lower bound7 on the uncertainty-optimality
curve OPT(r) := inf‖g−f‖≤r maxx∈g−1(0) o(x) as the o-filtration value of the
lowest nonzero entry of the right-hand side after the reduction by the column of
filtration value r. These values are just a side product of the matrix reduction
algorithm in Appendix B. The error in this approximation is bounded by the
simplexwise Lischitz constants for f and o.

6 Experimental results

Motivation. One motivation for implementing the algorithm was to experi-
mentally analyse the following question:

• How typical is a situation in which the zero cannot be detected by primary
obstruction and higher obstructions are needed?

To illustrate the flavour of this problem, consider a function f from an (n+1)-
ball Bn+1 toRn such that 0 is a regular value of f and the zero set is a circle. If r
is small, then the r-neighborhood of the zero set is homeomorphic to a solid torus
S1 ×Bn. An n-hyperplane intersecting the zero set transversally will typically
intersect this torus in a n-disc {∗} × Bn with a zero of f inside: this reflects
the non-extendability to the n-skeleton. However, with increasing r (and hence
increasing our freedom to perturb the function), the primary obstruction will die
once the r-neighborhood touches the boundary or becomes a full (n+1)-ball: in

6To avoid further simplicial subdivisions, we again need to assume that r > αn1/p, i.e.,
that the description of f is fine-grained enough for the retrieval of the homotopy class of f |Ar ).

7An upper bound is obtained when the dimension is at most n or n ≤ 2 for the primary
obstruction and at most n+ 1 for the secondary obstruction.
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the latter case, a nontrivial secondary obstruction is reflected by the homotopy
class of the map from the boundary of this (n+1)-ball to Sn−1. This homotopy
class is encoded in the gradient-induced framing of the original zero set of f :
if the framing is trivial (framed null-cobordant), then higher obstructions don’t
occur. If the framing is “twisted”, then they do.

Intuitively, we assumed that using Gaussian random fields, the gradient-
induced framing of the zero set should be quite random and we would observe
twisted as well as untwisted cases. Experiments, however, do not support this
so far, which we find surprising.

Description of the computation experiments. The lowest-dimensional
case where nontrivial secondary obstruction can occur is dimX = 4 and n = 3.
Using an experimental approach, we generated random continuous functions
from a regular 4-dimensional cubical grid into R3 taken from different probabil-
ity distributions. The space X was either a 4-cube or a 4-torus (S1)4 and the
underlying simplicial complex was the Freudenthal triangulation of the canon-
ical cubical subdivision of X [5, p. 154]. Instead of Ar from Definition 2.2, we
used a coarser filtration A�

r based on the cubical structure, see Appendix C for
details. We computed the vertex-approximation f ′ from Definition 2.2 and the
smallest r0 > 0 such that f ′ is simplicial on A�

r0 . Then we found the persis-
tence of the primary obstruction r1 ≥ r0 and the persistence of the secondary
obstruction r2 ≥ r1: the goal was to check whether instances with r2 > r1 occur
and how often.

First we experimented with Gaussian random fields. Such functions are con-
tinuous and infinitely differentiable [1, Sec. 2.2]. For each component fi of f and
each vertex x, the random variable fi(x) was normalized to the standard normal
distribution N(0, 1) and the covariance between fi(x) and fi(y) was taken to be
C(x, y) = C̃(|x−y|): we tried different functions C. First we generated random
functions such that the discrete Fourier transform of C(0, x) was proportional to
((1+|p|2)−l)p∈{0,...,g−1}4 for various constants l (compare [41, p. 12]). The value
l = 0 corresponds to white noise and l = ∞ to constant functions. While this
procedure naturally creates functions on a torus, for experiments on a cube we
generated a random function on the discrete torus {1, 2, . . . , 2g}4 and restricted
it to the coordinates {1, . . . , g}4 to avoid periodicity. The three components of
f were generated independently. To assure that the resulting function has zero
at all, we analyzed the function f(x)− f(x0) instead of f(x), where x0 was the
midpoint of the cube, resp. a fixed point in the torus.

In most cases, we detected a nontrivial primary obstruction, but not a single
instance with secondary obstruction r2 > r1. To give an illustration, the follow-
ing table shows some statistics of one of the experiments on a 4-cube: l is the
parameter of the distribution, g is the number of vertices in each dimension, r0

the smallest value for which f ′|A�
r0

is simplicial, r1 the average persistence of

the primary obstruction in cases when r1 > r0, and max. r1 the largest persis-
tence of primary obstruction. The averages are taken out of 1000 functions for
l ∈ {3, 3.5, 4, 4.5} and out of 10 000 for l = 5.0.
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l g r0 % of r1 > r0 average r1 if nontrivial max. r1

3.0 30 0.4 78% 0.56 0.95
3.5 30 0.21 91% 0.41 0.82
4.0 25 0.15 91% 0.32 0.66
4.5 25 0.1 91% 0.25 0.55
5.0 20 0.1 87% 0.21 0.63

When performing such experiments on the 4-torus, it sometimes happened
that the cup square of a computed extension x ∈ Ω(Ar1) was nontrivial in
H4(X,A�

r1), giving some “hope” of a nontrivial secondary obstruction: however,
in all cases, this could be removed after replacing x by another extension of the
pullback y = (f ′|A)∗(z) to the 2-skeleton (see Section 4).8

In other rounds of experiments, we generated functions from a 5-torus into
R4 or replaced the correlation function C(x, y) by the Gaussian function

exp

(
−|x− y|

2

2l2

)
for suitable l > 0, but the results were were similar to that from the distribution
above.

In another attempt to detect secondary obstruction in random fields we gen-
erated random homogenous quadratic polynomials on [−1, 1]4. The coefficients
akij in fk(x) =

∑
i,j a

k
i,jxixj were independent samples from a standard nor-

mal distribution.9 The zero set of homogenous quadratic functions is either the
origin alone or a cone intersecting the boundary ∂[−1, 1]4: only the first case
can yield a nontrivial H4(X,A�

r ) and a nontrivial secondary obstruction. We
generated around 70 thousand instances of random quadratic functions on a 104

grid: around 2.2% of them had only the origin as the zero set, but there was no
nontrivial secondary obstruction in a single instance.

Possible explanations. One observation related to the lack of secondary
obstruction is that the cohomology in dimension n+ 1 has typically lower per-
sistence than in dimension n and most generators have already died when the
primary obstruction (element of Hn) dies. A similar phenomenon occurs in per-
sistent homology of excursion sets of random scalar fields, where the persistence
barcodes in dimension 0 die before the barcodes in dimension 1, compare [2].
In the vast majority of our experiments on the 4-cube, the 4-dimensional co-
homology group H4(X,A�

r1) was trivial for r1 being the persistence of primary
obstruction. The lack of top dimensional cohomology in this case probably
reflects the fact that most components of the neighborhood of the zero set in-
tersect the boundary of the domain, although this argument does not apply for
the torus.

8In fact, nontriviality of the secondary obstruction on a 4-torus can only be reduced to
a system of quadratic Diophantine equations. While we cannot algorithmically check satis-
fiability of quadratic equations, in all cases where we had to deal with this problem, these
equations were almost trivial and solvable.

9This is motivated by the fact that the simplest examples of functions with nontrivial
secondary obstruction are quadratic and homogenous.
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Another remark possibly explaining the lack of secondary obstruction is the
following idea. If the codimension is one, such as in our experiments, then the
generic zero set is a union of circles. The presence of a non-trivial secondary
obstruction implies that the gradient-induced framing on the the zero set is not
framed null-cobordant in X\A (see [27, Thm C]). For any circle in the zero set of
f , either the circle is small, or it is large. Derivatives of random Gaussian fields
are themselves random Gaussian fields and hence, if the circle is small, then the
framing vectors are more likely to be close to constants and hence “untwisted”.
In the other extreme, if the circle is large, then the framing may be twisted, but
it is quite likely that any filler of the circle contains “large” values of f . But
then the primary obstruction r1 may be large enough to “outvoice” a potential
secondary obstruction r2 > r1: namely, X \ Ar1 may become so large that the
framing is already null-cobordant there.

Laying down the groundwork for a solid theory which would explain this
phenomenon is the subject of future research.

Experiments with formulas. Another motivation for implementing the al-
gorithm was to test the running time and memory limitations in practice. Our
testing benchmarks consisted of inputs in which the function values f(v) were
generated via formulas with known properties in a cubical grid. We ran many
testing examples, some of them being shown in Appendix D. To summarize the
results, the performance is much better than the worst-case complexity bound
derived in Section 7 and is approximately linear in the number of simplices of
the input. We were able to run benchmarks up to dimX = 8 for small grids,
such as 58: the largest coboundary matrix for which we computed a nontrivial
obstruction had 40 million columns.

In higher dimension, the main obstacle is the size of the input rather then
the complexity of our algorithm. It is an interesting open question whether
some different approach exists for approximating the robustness of zero in high-
dimensional spaces, provided that the input has a “small” format, such as an
explicit system of equations given by formulas.

7 Complexity

The input size (and hence computational complexity) depends heavily on the
encoding of the simplicial complex. For example, we may specify the set of
all simplices, or the set of all top-dimensional simplices.10 Therefore we study
parameterized complexity as a function of the following parameters. Let m be
the dimension of X and n ≤ m the dimension of the target space Rn. We define
N to be the maximum of the number of k-simplices for k ∈ {n − 1, n, n + 1}
and V the number of vertices. In addition to specifying X, the input contains
the function values in all vertices, that is, n× V numbers.

We present complexity bounds as a function of N,V,m and n.

10In other situations, the input specifying the simplicial complex could be even smaller.
One example is specifying the vertex set in Rm and assuming the Delaunay triangulation.
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Primary obstruction. We assume that the function values f(v) at the vertices
are all rational vectors and that we can compare their absolute values |f(v)|,
|f(w)| in unit time (these numbers may be roots of rational numbers for `p
norms). Then computing the vertex approximation f ′(v) for each vertex v
via (2.3) amounts to O(nV ) operations. Computing the filtration of all (n− 1)-
simplices via formula (1), as well as the pullback y and its codifferential are by
definition subroutines of complexity O(nN); ordering the (n − 1)-simplices by
filtration is done in O(N logN). The computation of the codifferential matrix
is again of order O(nN) if we store it in a sparse format, because each row of
the matrix corresponds to the boundary of an n-simplex and has only n + 1
nonzero elements.

The bottleneck of computing the primary obstruction is the EARLIEST SO-
LUTION algorithm described on page 11. An implementation based on a binary
or exponential search requires at most logN solutions of a linear system of Dio-
phantine equations. Each of them is a system of at most N rows and columns,
all coefficients being ±1 or 0. By [48, Thm. 19] we may solve any such Diophan-
tine system in O(N4 log4N) time, which yields O(N4 log5N + n(N + V )) as
a complexity bound for the primary obstruction. Assuming the lack of blowup
of matrix coefficients during the matrix reduction, we can bound the number
of arithmetic operations in EARLIEST SOLUTION by O(N3). This is dis-
cussed in more detail in Appendix B. In this scenario, sub-cubic bounds could
be achieved using randomization [49, Thm. 39]. In practice, however, our imple-
mentation of EARLIEST SOLUTION exhibits subquadratic scaling, allowing
us to experiment with instances for N ≤ 107. This is not entirely surprising—
large instances of simplicial boundary matrices are commonly reduced in the
field of computational topology.

Secondary obstruction. The bottleneck in the secondary obstruction al-
gorithm is the computation of all Steenrod squares of all the generators of
Hn−1(X,Ar;Z) for all filtration values r. In a naive implementation we may
compute a set of generators of Zn−1(X;Z) and their respective filtration values.
Generators of the kernel (over Z) of a matrix with at most N rows and columns
can be computed in O(N4) [16, Theorem 1]. The number of such generators
is bounded by N . In the Steenrod square computation, we need to compute,
in the worst case, the values on all (n + 1)-simplices; in each evaluation, the
formula for ^n−3 described in [46] contains an iteration over all elements of(
m
4

)
(Steenrod pairs). Thus, computing the Steenrod squares of the generators

of Zn−1(X;Z) is O(N2m4). The final matrix computation corresponding to
equation (7) is done over the field Z2 which only requires O(Nω) operations
for a constant ω < 3 [38, Proposition 6]. This yields a complexity bound of
O(N4 + N2m4) for the persistence of secondary obstruction. For all practical
purposes, it is safe to assume that the values of m can be ignored.
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[40] Krčál, M., Matoušek, J., Sergeraert, F.: Polynomial-time homology for
simplicial Eilenberg–MacLane spaces. J. Foundat. of Comput. Mathematics
13, 935–963 (2013). Preprint, arXiv:1201.6222

[41] Lang, A., Potthoff, J.: Fast simulation of gaussian random fields. Monte
Carlo Methods and Applications 17(3), 195–214 (2011)

[42] Maria, C., Boissonnat, J.D., Glisse, M., Yvinec, M.: The gudhi library:
Simplicial complexes and persistent homology. In: H. Hong, C. Yap (eds.)
Mathematical Software – ICMS 2014, Lecture Notes in Computer Sci-
ence, vol. 8592, pp. 167–174. Springer Berlin Heidelberg (2014). DOI
10.1007/978-3-662-44199-2 28. URL http://dx.doi.org/10.1007/
978-3-662-44199-2_28

[43] Merlet, J.P.: Interval analysis and reliability in robotics. International
Journal of Reliability and Safety 3(1-3), 104–130 (2009)

[44] Prasolov, V.V.: Elements of Homology Theory. Graduate Studies in Math-
ematics. American Mathematical Society (2007)

22

https://www.math.cornell.edu/~hatcher/AT/ATpage.html
https://www.math.cornell.edu/~hatcher/AT/ATpage.html
https://doi.org/10.1007/978-3-319-39441-1_13
https://doi.org/10.1007/978-3-319-39441-1_13
http://dx.doi.org/10.1007/978-3-662-44199-2_28
http://dx.doi.org/10.1007/978-3-662-44199-2_28


[45] Rump, S.M.: Verification methods: Rigorous results using floating-
point arithmetic. Acta Numerica 19, 287–449 (2010). DOI 10.
1017/S096249291000005X. URL http://journals.cambridge.org/
article_S096249291000005X

[46] Steenrod, N.E.: Products of cocycles and extensions of mappings. Annals
of Mathematics 48(2), pp. 290–320 (1947)

[47] Steenrod, N.E.: Cohomology operations, and obstructions to extending
continuous functions. Advances in Math. 8, 371–416 (1972)

[48] Storjohann, A.: A fast+ practical+ deterministic algorithm for triangular-
izing integer matrices (1996). URL http://e-collection.library.
ethz.ch/eserv/eth:3348/eth-3348-01.pdf

[49] Storjohann, A.: The shifted number system for fast linear algebra on integer
matrices. Journal of Complexity 21(4), 609–650 (2005)

[50] Vokř́ınek, L.: Decidability of the extension problem for maps into odd-
dimensional spheres. ArXiv e-prints (2014)

[51] Wang, P.S.: The undecidability of the existence of zeros of real elementary
functions. J. ACM 21(4), 586–589 (1974). DOI http://doi.acm.org/10.
1145/321850.321856

[52] Wofsey, E.: Triviality of relative cup product H2(X,A) × H2(X,A) →
H4(X,A) for spaces embeddable to R4. Mathematics Stack Exchange.
URL:https://math.stackexchange.com/q/1612524 (version: 2017-04-13)

23

http://journals.cambridge.org/article_S096249291000005X
http://journals.cambridge.org/article_S096249291000005X
http://e-collection.library.ethz.ch/eserv/eth:3348/eth-3348-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:3348/eth-3348-01.pdf


A Secondary obstruction.

Persistence of the secondary obstruction—the algorithm for n > 3.
Assume that a filtration X ⊇ Ar0 ⊇ Ar1 ⊇ . . . and a simplicial map f ′ :
Ar0 → Σn−1 are given, n > 3, and vertices on X and Σn−1 are ordered so that
f ′ is order-preserving: this order is used in the implementation of the ^n−3

operation on the level of cochains. Further, we assume that the persistence of
primary obstruction rj has already been computed by the algorithm described
on page 11. That is, the restriction of f to Arj is not extendable to some

continuous map Arj ∪X(n) → Σn−1, but the restriction to Arj+1
is extendable.

We continue to use the notation of Section 4: in particular, z is the characteristic
cocycle of a fixed (n − 1)-simplex in Σn−1, ȳ ∈ Cn−1(X,Ar0) is a cochain
extending the pullback y = (f ′)](z) ∈ Zn−1(Ar0) of z and ∅ 6= Ω(Arj+1

) is the
set of all (n− 1)-cocycles on X that extend y on Arj+1

.
By Proposition 4.2, the persistence of secondary obstruction is the largest

number rk such that

δc = v(x), c ∈ Cn(X,Ark ;Z2), x ∈ Ω(Ark) (5)

has no solution (where v is defined by (3)).
Let x ∈ Ω(Arj+1

) be a fixed extension of ȳ, computed in the algorithm for
primary persistence. Then also x ∈ Ω(Ark) for each k > j. For any such k,
Ω(Ark) is a coset in Zn−1(X)

Ω(Ark) = x+ Zn−1(X,Ark ;Z)

and hence equation (5) reduces to

δc = v(x− w), for some w ∈ Zn−1(X,Ark ;Z), c ∈ Cn(X,Ark ;Z2). (6)

The crucial property we will use is that v(x − w) is a relative coboundary iff
v(x)− v(w) is a relative coboundary: this follows directly from the linearity of
the Steenrod square operation Hn−1(X,A;Z2) → Hn+1(X,A;Z2) for n > 3.
Thus we can reformulate (6) to the problem of finding the maximal rk such that

δc+ v(w) = v(x), w ∈ Zn−1(X,Ark ;Z), c ∈ Cn(X,Ark ;Z2). (7)

has no solution. To simplify the computations, we don’t need to consider all co-
cycles w ∈ Zn−1(X,Ar) but only generators of the cohomology Hn−1(X,Ar;Z):
the Steenrod square of any relative coboundary is again a relative coboundary
δc′ for some c′ ∈ Cn(X,Ar;Z2), so adding it has no impact on the solvability
of (7).

The right-hand side of (7), v(x), is a cocycle that does not depend on k
(assuming k > j). The left-hand side is a combination of coboundaries of
characteristic cocycles of n-simplices ∆n and cochains of the form v(w) for
(n− 1)-cocycles w. To each ∆ and w is assigned a filtration value and we want
to minimize the value rk such that v(x) can be expressed as a combination of
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δc’s and v(w)’s such that c and w have filtration values ≤ rk, but cannot be
expressed as a combination of such cochains with filtrations of c and w strictly
smaller than rk.

Summarizing the above steps, we obtain the following algorithm:

• Order the vertices of Σn−1 and the vertices of X so that f is order-
preserving

• For a precomputed x ∈ Ω(Arj+1
), compute the relative cocycle v(x) ∈

Zn+1(X,Arj+1
;Z2) by the definition of the Steenrod operation ^n−3

• Compute a subset W ⊆ Zn−1(X) that contains all cohomology generators
w of all Hn−1(X,Ar;Z) for all r > rj . (It may be a set of generators of
Zn−1(X).) To each w ∈ W , assign its filtration value r(w) to be the
minimal r such that w is zero on Ar.

• Compute the filtration value of all n-simplices, using (1).

• Order all n-simplices and elements of W by their filtration.

• Choose a basis of (n + 1)-simplices and express the right-hand side v(x)
as a vector a ∈ (Z2)q.

• Create a matrix M whose column set consists of

– all coboundaries of characteristic cochains of n-simplices expressed
in the basis of (n+ 1)-simplices over Z2

– all elements v(w) expressed in the basis of (n+ 1)-simplices

• Order the columns of M by filtration.

Computing the persistence of the secondary obstruction then reduces to solving
the EARLIEST SOLUTION problem for Mx = a, this time over the Z2-field.

The hardest part is to compute the cohomology generators: this algorithm
is summarized as follows.

Problem Persistent Generators:
Input: A filtration X ⊇ A0 ⊇ . . . ⊇ Ah = ∅.
Output: A sequence g1, . . . , gν ∈ Zn−1(X;Z) and a sequence of integers
µ(0) ≤ . . . ≤ µ(h) such that [g1], . . . , [gµ(i)] generate Hn−1(X,Ai;Z) for
each i.

We give imeplementation details of this part on a lower-level in Section B.2.
Our algorithm will give the output with the number of generators ν minimal in
a certain sense. Notably, when working over Q or Zp instead of integers, the
output would correspond to a persistence bar code with all the death information
erased but including representative (co)cycles for each bar.

The special case f : [0, 1]4 → R
3. This section justifies the claim that

for X = [0, 1]4 and n = 3, the general algorithm for computing persistence of
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secondary obstruction works, if we completely ignore the persistence generators
w and perform all computations over Z-coefficients.

Assume first that n = 3 and X is arbitrary. The two main differences
compared to the algorithm above are:

• The Steenrod operation and final coboundary matrix have to be computed
over Z, not Z2. This goes back to the fact that the homotopy group
π3(S2) ' Z, unlike πn(Sn−1) ' Z2 for n > 3. The homotopy group serves
as cohomology coefficients in the theory of obstructions.

• The operation ^n−3 reduces to the cup product ^ and the operation
w 7→ w ^ w is not linear on the level of cohomology but quadratic.

This means that while for any particular extension x ∈ Ω(A) of ȳ, we may
test satisfiability of δc = v(x), we cannot test the existence of such x using a
linear system of equations. However, if X = [0, 1]4, we claim that for any two
extensions x, y ∈ Ω(A) of ȳ, v(x) − v(y) is a relative coboundary and thus we
need to check the equation δc = v(x) only for one x.

Lemma A.1. Let X be a triangulation of [0, 1]4, A ⊆ X, x ∈ Z2(X) and
w ∈ Z2(X,A). Then

(x− w) ^ (x− w) − (x ^ x) ∈ B4(X,A).

Using the parametrization Ω(A) = {x − w : w ∈ Zn−1(X,A;Z)} we im-
mediately obtain that our general algorithm for the persistence of secondary
obstruction works once we replace the Z2-coefficients by Z-coefficients in its
final step. Moreover, we may completely ignore the persistent generators w and
don’t need to compute them at all.11

Proof. By bilinearity of the cup product, (x−w) ^ (x−w) − x ^ x = −x ^
w − w ^ x + w ^ w. The mixed-term x ^ w is a relative coboundary, because
^ induces a bilinear product on the level of cohomology H2(X)×H2(X,A)→
H4(X,A) and H2(X) = 0, as X is contractible. It remains to show that w ^ w
is a relative coboundary. Let CA be the cone over A and A ↪→ CA be an
inclusion. The inclusion A ↪→ X can be extended to a map CA → X, because
X is contractible. The map of pairs (CA,A)→ (X,A) induces the commutative
diagram in which the rows are the long exact sequences of cohomology groups.

H∗−1(X) → H∗−1(A) → H∗(X,A) → H∗(X) → H∗(A)
↓ ↓ ↓ ↓ ↓

H∗−1(CA) → H∗−1(A) → H∗(CA,A) → H∗(CA) → H∗(A)

The vertical arrows H∗(−1)(X) → H∗(−1)(CA) are trivial as both spaces are
contractible and H∗(−1)(A)→ H∗(−1)(A) are identities. By the five-lemma [37,

11Note that x ^ x may represent a nontrivial element of H4(X,A), as x is not an element
of Z2(X,A) in general. The fact that x ^ x is zero on A follows from the fact that f is
order-preserving.
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p. 129], the middle homomorphism H∗(X,A)→ H∗(CA,A) is an isomorphism.
Further, Hj(CA,A) ' Hj(CA/A) for j > 0. The space CA/A =: ΣA is the
suspension of A. The cup product H2(ΣA)×H2(ΣA)→ H4(ΣA) of a suspen-
sion is trivial [15, Corollary 4.11] and the naturality of cup product implies that
the cup product H2(X,A)×H2(X,A)→ H4(X,A) is trivial for j > 0 as well.
This shows that w ^ w ∈ B4(X,A).

B Persistent integral homology computations

B.1 Algorithm for the Earliest Solution problem

The earliest solution algorithm is used to find the persistence of a (co)cycle.
This is closely related to computing persistent homology, which is a well-studied
problem, at least for coefficient in a finite field. We adapt the boundary matrix
reduction algorithm by Edelsbrunner, Letscher and Zomorodian [23], originally
developed for persistent homology. Note that this algorithm, unlike classical
Gaussian elimination or Smith normal form algorithms, is incremental, which is
required by our application. Moreover, it only uses column operations, making
efficient implementation for sparse matrices relatively easy.

Efficiency over finite fields. Recent work on computing persistent homology
over finite fields resulted in significant performance improvements, see [8, 42].
Despite the cubic worst-case bound, linear scaling is achieved on practical
datasets, involving sparse matrices of size 109 × 109 and more. This encour-
aged us to adapt the modern version of the classical persistence algorithm to
solve our problem over the integers, rather than adapting classical Smith or
Hermite normal form algorithms to the persistent setting.

Reduced form and reduction. We adapt the notation common in compu-
tational topology literature: the lowest nonzero of a nonzero column is defined
as the lowest position (largest index) with nonzero coefficient. A sub-matrix
is called reduced if all the lowest nonzeros are unique. In other words, given a
lowest nonzero, there may be other nonzero entries in the same row, but they
must not be lowest nonzeros. When this invariant is not satisfied, we say there
is a collision. By lowest value, we refer to the value of the lowest nonzero entry.

The algorithm starts from an empty matrix and adds one column at a time,
maintaining the reduced prefix of the matrix, R. The rightmost column of each
prefix is called the current column.

Procedure reduce column reduces the column curr with respect to the
reduced prefix R.

def reduce_column(current, R, force_divisibility=False):
while curr collides with some column in R:

coll = column in R colliding with curr
P = lowest_value(coll)
Q = lowest_value(curr)
if force_divisibility is True and P does not divide Q:

return curr
use Euclid to find nonzero a,b,c,d s.t.
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gcd(a,b) == 1 and gcd(c,d) == 1 and
a*P + b*Q == gcd(P,Q) and
c*P + d*Q == 0

coll, curr = a * coll + b * curr, c * coll + d * curr
return curr

Procedure earliest solution solves the stated problem.

def earliest_solution(M, a):
augment M with identity matrix (above)
augment a with zeros (above)
R = []
for col in M:

reduced = reduce_column(col, R, force_divisibility=False)
append reduced to R
reduce_column(a, R, force_divisibility=True)
if a is zero:

return change of basis of a
return None

Correctness. The basic operation is the addition of two different columns,
without affecting the column span of the relevant matrix prefix. Therefore the
solution is unaffected.

To retrieve the solution, at each step we attempt to reduce the input column
vector a with respect to the currently reduced prefix R. The solution exists iff a
becomes zero, and is encoded by (the negation of) the change of basis column
of a. Since we solve the equation Ax = a (and not Ax = ka) we perform ad-
ditional divisibility check: see force divisibility in the reduce column
procedure.

From finite fields to integers. In the integral case, we may modify both
the current column and the colliding column. This is in contrast with the finite
field case, in which only the current column is modified. To determine the
required linear combination of columns, we use the extended Euclid algorithm.
As a result, the lowest value of a certain column might change (decrease) many
times during the reduction of other columns, but the position is fixed once
the column is reduced. Because of this, while reducing column a, we need to
take into account previously reduced columns, and not only the current one.
Moreover, after a colliding column is affected, it may not be in the column span
of the prefix of the original matrix ending at this column. At this stage, however,
this column may only affect columns that succeed the currently reduced column.
Therefore, correctnes of the algorithm is unaffected.

Efficiency. For efficiency reasons we use one technique suggested in [8]: The
current column is stored in a data-structure handling fast column additions
and maximum element queries. One natural choice is a balanced binary search
tree; more efficient alternatives are available. This way we avoid the following
common bad case: Let n be the total number of columns in M . When an current
column becomes dense (the number nonzero entries is Θ(n)), adding Θ(n) sparse
columns takes time quadratic in n. Avoiding this situation does not imply that
we can efficiently handle matrices that become dense due to fill-in. However in
practice, often a small number of columns display this behavior.
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We also perform the computations in an on-line fashion – we read columns
one by one and stop once a solution is found. This gives significant practical
improvements, because often the necessary matrix prefix is very small compared
to the matrix of the entire complex.

Overall the algorithm performs well, exhibiting roughly linear scaling in the
number of nonzero entries of the original matrix. In particular, we didn’t ob-
serve coefficient blowup. Note that the lowest nonzero position in the current
column decreases after resolving each collision, so the number of collision reso-
lutions is quadratic in n. Each such resolution requires combining two columns,
potentially of size O(n), due to fill-in. This leads to cubic worst case running
time bound, assuming that the magnitude of coefficients can be bounded by
a constant. Of course, there exist cases when the blowup does occur, and the
above analysis does not apply. More advanced algorithms can be used to alle-
viate the effect of the blowup, possibly at the cost of simplicity and efficiency
in the situations that we encountered thus far.

B.2 Algorithm for the Persistent Generators problem

After possibly refining the sequence (Ai)i we may assume that for each filtration
value i there is exactly one (n − 1)-simplex ∆n−1

i of that filtration value, that
is ∆n−1

i ∈ Ai−1 \Ai (and possibly several (n− 2)-simplices in Ai−1 \Ai). This
makes the algorithm and its analysis simpler.

The algorithm for Persistent Generators problem follows. By the state-
ment “reduce the column” we refer to the procedure reduce column from
Section B.1

• Let M be the coboundary matrix for δn−1 : Cn−1(X;Z) → Cn(X;Z),
that is, it consists of columns m for integral combination for δ∆n−1 for
each ∆n−1 ∈ X of growing filtration values. In exactly the same way we
create the coboundary matrix N for δn−2. During the reduction of the
matrix M we keep track of the change of basis. (On low level, we augment
the matrix M and then the change of basis vector for a given column is
encoded in the augmented part of that column.)

• We initialize G := () to be an empty sequence of (n − 1)-cocycles on X
and µ(−1) := 0.

• For each filtration value i = 0, . . . , h do the following:

– Reduce all columns of N of the filtration value i.

– Reduce the column m of M of filtration value i (i.e., corresponding
to the cochain δ∆n−1

i ). Let g be the change of basis vector after the
reduction.

– If the reduced column m equals to 0 and there is no reduced column
n in N such that lowest(n) = i and nlowest(n)|glowest(g) then add g
to G and set µ(i) := µ(i− 1) + 1.
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– Otherwise set µ(i) := µ(i− 1)

• Output G and µ(1), . . . , µ(h).

Theorem B.1. The above algorithm solves the Persistent Cycles problem.
Namely, after its ith iteration, the cohomology group Hn−1(X,Ai) is generated
by [g1], . . . , [gµ(i)] where cycles g1, . . . , gµ(i) ∈ Zn−1(X,Ai;Z) correspond to the
columns g added to G during the iterations 0, . . . , i.

Proof. We proceed by induction on the value i. For i = −1 the claim trivially
holds.

Let us assume that i ≥ 0 and that the claim holds for i−1. First observe that
once the new column m is not reduced to a zero column, then Zn−1(X,Ai;Z) =
Zn−1(X,Ai−1;Z). Otherwise Zn−1(X,Ai;Z) = Zn−1(X,Ai−1;Z) ⊕ 〈g〉 where
the cocycle g ∈ Zn−1(X,Ai;Z) corresponds to the change of basis vector g in
the ith iteration. We only have to check whether [g] is a linear combination
of [g1], . . . , [gµ(i−1)]. By the induction hypothesis, it happens if and only if g
is cohomologous to a cocycle in Zn−1(X,Ai−1;Z). And this in turn is true if
and only if we can reduce to zero the lowest nonzero component (that is, the
ith component) of the vector g by adding a combination of columns from N
of filtration value at most i (these columns generate the group of coboundaries
Bn−1(X,Ai;Z)). Since this is exactly the reduced part of the matrix N , it is
enough to find if there is a column with the lowest nonzero index equal to i and
check the divisibility condition.

C Some details of our implementation: exploit-
ing the cubical structure

The domain X we consider in the implementation is a cube [0, 1]m triangulated
as follows. We define I1, . . . , Im to be unit intervals subdivided into ni equidis-
tant intervals of length 1/ni, i = 1, . . . ,m. This yields a cubical set structure∏
j Ij on the unit cube. Further, we subdivide each m-cube into m! simplices via

the Freudenthal triangulation [5, p. 154]. The resulting triangulation naturally
corresponds to the product

∏
Ij , understood as a product

∏
j Ij of simplicial

sets [31]. We call the set of vertices a grid. A function f : X → Rn is then
given by a set of Rn-vectors in each vertex (a multidimensional rasterized im-
age), together with a simplexwise Lipschitz constant α.

Many operations in the algorithm outlined in the paper body—such as the
computation of the pullback y = f ](z), computing codifferentials of cochains
and the ^n−3 operation—can be done locally, without having to work with the
full lists of simplices of a given dimension. The only step where global structure
is needed is the Earliest Solution algorithm, where the matrix M has rows
indexed by the set of all k-simplices and columns indexed by (k − 1)-simplices.
Indeed, the construction of this matrix and computation with it are the most
memory- and time-consuming operations, as the number of k-simplices increases
rapidly with dimension.
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Therefore, we implemented a modification of the algorithm described above
based on the more feasible cubical structure. Instead of working with the sim-
plicial filtration Ar, we use the filtration A�

r ⊆ A�
s where A�

r is defined to be
the triangulation of the set of all cubes c such that |f(v)| ≥ v for all vertices
v of c. These are still simplicial complexes and f ′, y, the extension ỹ of y and
δỹ are defined with no changes. For the computation of persistence, however,
we switch to the cubical setting via the Eilenberg-Zilber reduction [24]. We de-
note by C∗(ΠjIj) the simplicial cochains and by ⊗jC∗(Ij) the cubical cochains:
there exist chain homomorphisms of degree 0

AW : ⊗jC∗(Ij)→ C∗(ΠjIj)

EML : C∗(ΠjIj)→ ⊗jC∗(Ij)

such that EML ◦ AW is the identity and AW ◦ EML is chain homotopic to
the identity. Both maps induce cohomology isomorphisms and can be rel-
atively easily implemented using common formulas [36]. This allows us to
switch between the simplicial and cubical cochains anytime we need. Within
the computation of persistence of the primary obstruction, we compute the
smallest j so that there exists a cubical cochain c� ∈ Zn−1(X,A�

rj ) such that
δc� = (δỹ)� := EML(δỹ). The matrix computation part Earliest Solution
deals with the cubical coboundary matrix, which is significantly smaller than
the simplicial one. For an illustration, the number of k simplices in the triangu-
lation of one m-cube is 50 already for (m, k) = (4, 2) and more than 4 millions
for (m, k) = (8, 6).

For the secondary obstruction, we need to convert c� back into a simplicial
cochain and construct a simplicial (n − 1)-cochain x ∈ Ω(Arj ) that extends y
on Arj and is a global cocycle. We denote by SHI the cochain homotopy map
SHI : C∗(ΠjIj)→ C∗−1(ΠjIj), satisfying AW ◦EML− id = δ◦SHI+SHI ◦δ.
Then, using δ2 = 0, we obtain

δAWc� = AWδc� = AW (δỹ)� = AW EMLδỹ =

= δAW EML ỹ = δỹ + δ SHI δỹ.

We compute c̃ := AW (c�) − SHI(δỹ) which is a simplicial cochain zero on
A�
rj and the last equation asserts that δc̃ = δỹ which allows us to compute the

simplicial cocycle
x := ỹ − c̃ ∈ Ω(rj)

having avoided to work with large lists of all simplices. The computation of
v(x) := (x mod 2) ^n−3 (x mod 2) is done on the simplicial level and the
property x ∈ Zn+1(X,A�

rj ;Z2) depends on the fact that the chosen ordering of

vertices of X and Σn−1 is compatible with f ′. Then we again apply the EML
operator to v(x) and convert it to a cubical cochain v(x)�. Persistent generators
w ∈ Zn−1(X,A�

r ;Z) and their Steenrod images can be computed on the cubical
level [39] and the cubical persistence of the secondary obstruction is done via
a cubical coboundary matrix, this time in dimension n, (n+ 1).
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There is a price to pay for the more convenient cubical filtration: it is courser
than the simplicial one and we can no more use the estimate on the robustness
of zero set derived in Section 3. On one hand, we have the relation A�

r ⊆ Ar.
This implies that whenever f ′|Ar

is homotopic to f/|f |, then so is f ′|A�
r

, and

non-extendability of f ′|A�
r

to higher skeleta of X implies the non-extendability

of f ′|Ar
. Thus whenever the algorithm certifies non-extendability of f |A�

r
and

r > αn1/p, then r − α is a lower bound on the robustness of zero. If we
can additionally prove that As ⊆ A�

r , then the extendability of f ′|A�
r

implies

the extendability of f ′|As . The simplexwise α-Lipschitz condition implies that
any two vertices u, v of a cube c satisfy |f(u) − f(v)| ≤ 2α, as u, v can be
connected by path of at most two simplicial edges. This implies Ar+2α ⊆ A�

r

and extendability of f ′|A�
r

to all of X implies the upper bound r + 3α on the
robustness.

Based on the experience with various functions in low dimensions, the practi-
cal performance has not one significant bottleneck. The most resources-consuming
steps in the primary obstruction computation include the computation of the
cubical filtration and the EARLIER SOLUTION subroutine, especially if the
matrix has millions of columns.

D Experiments with formulas

Our prototype is implementation in Python using numpy. While the efficiency
is severely limited by this choice, we were able to run examples for dimX ≤ 8.

Although the strength of our methods is primarily in cases where we have
uncertainty on f , the following examples provide some observations about the
performance in cases where the function values at the vertices are computed
using exact formulas.

In what follows, we assume a subdivision of the interval [−1, 1] into a set Ig
of g equidistant points and consider a grid Img ⊆ [−1, 1]m of size gm. We chose

the max-norm `∞ on Rn which yields the smallest value of αn1/p and allows
smaller “initial r0”. This is desired, as for small grids it often happens that α
is large and αn1/p may be larger then the robustness of zero in which case we
fail to detect anything.

Testing primary obstruction on a quadratic function. First we used the
function f : [−1, 1]n → Rn given by

f1(x) = x2
1 − x2

2 − . . .− x2
n

f2(x) = 2x1x2

. . .

fn(x) = 2x1xn.

This function has a single zero in the origin and has been used as a benchmark
example in [26]. If n is even, then the zero is robust and its robustness equals
minx∈∂[−1,1]m |f(x)|: the zero has index two in this case. If n is odd, then
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the zero has index zero and can be removed by arbitrary small perturbations.
Using the max-norm, we use calculus to derive the estimate |f(x) − f(y)|∞ ≤
2n |x − y|∞. Whenever x, y are contained in one simplex of the triangulation,
then the max-norm satisfies |x− y|∞ ≤ 2/(g − 1) and we can use the piecewise
Lipschitz constant α := 4n/(g − 1).

For our experiments, we now assume that f is only given via a list of function
values in the grid gn and the simplexwise Lipschitz constant α = 4n/(g − 1).
In this case, we have dimX = n so only primary obstruction can be nontrivial.
Using Lemma 2.4 for p = ∞ yields that whenever r > α, then f ′ is simplicial
on Ar and homotopic to f/|f |. The relation A�

r ⊆ Ar then implies that f ′

is simplicial and homotopic to f/|f | on A�
r as well. Thus we can run our

algorithm with an initial r0 = α = 4n/(g − 1), compute the persistence of
primary obstruction r1 ≥ r0 and—using the estimates at the end of Section C—
conclude that whenever r1 > r0 then the robustness of zero is between r1 − α
and r1 + 3α.

The following table illustrates some properties of the computations: n refers
to the dimension, g is the number of points subdividing the intervals in each
dimension, the initial r0 = α is as above, r1 is the persistence of the primary
obstruction, δn−1 the number of columns of the cubical coboundary matrix
Cn−1

� → Cn�, the “computed robustness” displays lower and upper bounds r1−
α, r1 + 3α on the robustness of zero and the “true robustness” column the
approximation of the real robustness of zero of the function f defined exactly
by the above formula,12 all wrt. the | · |∞ norm.

n g r0 := α r1 # columns of δn−1 computed robustness true robustness
2 20 0.421 0.8643 760 [0.443, 2.127] 0.828
2 100 0.08 0.8285 19 800 [0.748, 1.07] 0.828
2 500 0.016 0.83 499 000 [0.814, 0.878] 0.828
3 20 0.632 = r0 21 660 ≤ 2.379 0
3 50 0.245 = r0 360 150 ≤ 0.971 0
3 100 0.121 = r0 2 940 300 ≤ 0.483 0
4 20 0.842 = r0 548 720 ≤ 3.37 0.667
4 30 0.552 0.711 2 926 680 [0.159, 2.367] 0.667
4 40 0.41 0.667 9 491 040 [0.257, 1.897] 0.667

The total running times of these 9 computations is displayed in Figure 3. The
data suggest that the at least in these simple cases, the running time is ap-
proximately linear in the number of (n− 1)-simplices. The n = 3 case is below
the other two, because the primary obstruction is trivial there and the EAR-
LIEST SOLUTION subroutine terminates almost immediately, using only very
few columns in the matrix reduction.

In higher dimensions, the condition r0 ≥ α := 4n(g − 1) is too strict and
we can only hardly start with r0 that is smaller than the robustness. However,
we could take r0 to be the minimal value for which f ′|A�

r0
is simplicial: in all

12This is 0 in odd dimensions and 2√
n+1

in even dimension.
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Figure 3: Total running time of the computations, performed on Intel Xeon
CPU X5680, 3.3 GHz, as a function of the number of (n − 1)-simplices (which
equals the number of columns in the coboundary matrix).
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cases that we have tried, we verified that f was nowhere zero on A�
r0 with f ′

homotopic to f/|f | on A�
r0 .

Surprisingly, starting with minimal r0 for which f ′|A�
r0

is simplicial and

computing the minimal r1 for which f ′ is extendable, yields in many cases
a much better estimate of the robustness of zero set than the estimates based
on Lemma 2.4: this can already be seen in the above table where the r1 column
is a good approximation of the true robustness. We give the table with smaller
grids that continues to higher dimensions.

n g min simplicial r0 r1 true robustness
2 10 0.025 0.889 0.828
3 10 0.025 = r0 0
4 10 0.025 0.667 0.667
5 10 0.074 = r0 0
6 10 0.074 0.667 0.58
7 6 0.241 = r0 0
8 5 0.251 1.0 0.522

It is an interesting question to find natural conditions on functions, other
than the relatively weak simplexwise Lipschitz property, that justify the usage
of smaller grids and guarantee that the robustness of zero set is close to the
computed minimal r for which f ′|A�

r
becomes extendable.

A function with nontrivial secondary obstruction. A second function we
experimented with is h : [−1, 1]n+1 → Rn given by

h1(x) = 2x0x2 + 2x1x3

h2(x) = 2x1x2 − 2x0x3

h3(x) = x2
0 + x2

1 − x2
2 − x2

3

h4(x) = x4

. . .

hn(x) = xn.

The restriction of h to ∂[−1, 1]n+1 is the generator of the nontrivial homotopy
group πn(Sn−1): in case n = 3 it is the Hopf map and for n > 3 its iterated
suspension. The robustness of zero equals minx∈∂[−1,1]n+1 |h(x)| and13 it is the
simplest example where a nontrivial secondary obstruction occurs. Common
tests for zero verification such as the degree test would fail here.

Again, we work with the max-norm `∞ and derive, via elementary calculus,
the estimate 2(n+1) on the global Lipschitz constant. This yields |h(x)−h(y)| ≤
4(n+1)
g−1 =: α. Assume that only α and a list of function values in a grid gn+1 is

given. If g is large enough so that r0 := α is smaller than min∂ |h(x)|∞ =
√

3−1,
then the algorithm computes the minimal r1 > r0 for which h|A�

r
is extendable

to a nowhere zero function [−1, 1]n+1 → Rn \ {0}. For this to succeed, we need
to take g at least 22 for n = 3.

13The robustness is 1 in the `2 norm and
√

3− 1 in the max-norm.
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Again, the program gives surprisingly good results for much smaller grids,
although Lemma 2.4 gives no guarantees. In all cases that we tried, we verified
that whenever r0 is large enough so that h′|A�

r
is simplicial, then it is homotopic

to h/|h| and the algorithm computes that the secondary obstruction dies close
to the real robustness of zero.

n g min simplicial r0 r1 true robustness
3 10 0.1 0.79 0.732
4 10 0.111 0.79 0.732
5 8 0.163 0.816 0.732
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