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TOPOLOGICAL SPACES OF PERSISTENCE MODULES AND THEIR
PROPERTIES

PETER BUBENIK AND TANE VERGILI

Abstract. Persistence modules are a central algebraic object arising in topological data
analysis. The notion of interleaving provides a natural way to measure distances between
persistence modules. We consider various classes of persistence modules, including many of
those that have been previously studied, and describe the relationships between them. In the
cases where these classes are sets, interleaving distance induces a topology. We undertake a
systematic study the resulting topological spaces and their basic topological properties.

1. Introduction

A standard tool in topological data analysis is persistent homology [30, 13, 29, 20, 41].
It is often applied as follows. One starts with some data, constructs an increasing family
of complexes or spaces, and applies homology with coefficients in some fixed field to obtain
a persistence module. Next, one computes a summary (e.g. barcode [22], persistence dia-
gram [21], or persistence landscape [7, 11]) which determines this persistence module up to
isomorphism. In practice, one computes these summaries directly from the increasing family
of complexes or spaces. Nevertheless, the persistence module is the central algebraic object
in this pipeline, and has been a focus of research.

A key discovery in the study of persistence modules is the notion of interleaving [15] which
provides a way of measuring the distance between persistence modules. For many persis-
tence modules, this distance equals the bottleneck distance [21] between the corresponding
persistence diagrams [31, 12]. Interleavings and the resulting interleaving distance have been
extensively studied both for the persistence modules considered here [31, 12, 1, 2, 18, 8, 5],
for Reeb graphs [26, 35], for zig-zag persistence modules [6], for multiparameter persistence
modules [31], and for more general persistence modules [9, 10, 27, 3, 33, 32].

For sets of persistence modules, the interleaving distance induces a topology. The main
goal of the research reported here is to study the basic topological properties of the resulting
topological spaces.

Unfortunately, this research program runs into an immediate difficulty: the collection of
persistence modules is not a set, but a proper class. While it is possible the consider this
class with the interleaving distance [9, 10, 8], here we want to work with actual topological
spaces.

So to start, we consider various classes of persistence modules. These include classes that
have been previously considered in theoretical work, such as pointwise finite-dimensional
persistence modules [23], q-tame persistence modules [19], interval-decomposable persistence
modules, ephemeral persistence modules [17], and constructible persistence modules [37, 25],
as well as classes of persistence modules that arise in applications, such as those decomposable
into finitely many interval modules, where each interval lies in some fixed bounded closed
interval.
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We determine various relationships between these classes, such as inclusion (Figure 1).
We also identify pairs of classes where for each element of one, there is an element of the
other that has interleaving distance 0 from the first (Section 3.3). We define and calculate an
asymmetric distance we call enveloping distance that measures how far one needs to expand
a given class to include another (Section 3.4). These two results are summarized in Figure 2.

Next, we determine which of these classes are sets and which are proper classes. We
show that the classes of interval-decomposable persistence modules and q-tame persistence
modules are not sets (Corollary 3.27), though the classes of pointwise finite-dimensional
persistence modules and persistence modules decomposable into countable-many interval
modules are sets (Propositions 3.22 and 3.25). We introduce a set of persistence modules
containing these two sets that consists of persistence modules decomposable into a set of
interval modules with cardinality of the continuum (Definition 3.28 and Proposition 3.29).

For the remainder, we restrict ourselves to the identified sets of persistence modules and
the topologies induced by the interleaving distance (Figure 3). We identify which of the
inclusions in Figure 3 are inclusions of open sets (Proposition 4.1).

We show that these topological spaces are large and poorly behaved in the following
ways. They do not have the T0 or Kolmogorov property (Corollary 4.6), they are not locally
compact (Corollary 4.9), and their topological dimension is infinite (Corollary 4.38). In fact,
we prove the following.

Theorem 1.1 (Cube Theorem (Theorem 4.37)). Let N ≥ 1. There exists an ε > 0 such
that there is an isometric embedding of the cube [0, ε]N with the L∞ distance into each of our
topological spaces of persistence modules.

On the other hand, our topological spaces of persistence modules do have the following
nice properties. They are paracompact (Lemma 4.10), first countable (Lemma 4.21), and
are compactly generated (Lemma 4.22).

We determine which of these topological spaces are separable (Theorems 4.18 and 4.20),
as well as second countable and Lindelöf (Lemma 4.23). We show that the space of point-
wise finite-dimensional persistence modules is not complete (Theorem 4.24), but that the
space of persistence modules that are both q-tame and that decompose into countably-many
intervals is complete (Theorem 4.25). We prove a Baire category theorem for complete ex-
tended pseudometric spaces (Theorem 4.35) that implies that this space is also a Baire space
(Corollary 4.36).

We also identify the path components of the zero module in our topological spaces (Propo-
sitions 4.14 and 4.16), and show that they are contractible (Proposition 4.17).

Along the way, we observe the following mild strengthening of the structure theorem for
persistent homology [17], which may be of independent interest.

Theorem 1.2 (Structure Theorem (Theorem 3.8)). The radical of a q-tame persistence
module is a countable direct sum of interval modules.

Persistence modules and persistence diagrams Topological data analysis tends to
focus on persistence diagrams [21] rather than persistence modules. Readers more familiar
with persistence diagrams may wonder why we work with persistence modules and what our
results imply for persistence diagrams.

Let us present three responses. First, persistent homology produces persistence modules.
In many but not all cases, these persistence modules may be represented by a persistence

2



diagram. Mathematically, persistence modules are the fundamental object of study. Second,
one of our main motivations was to develop a theory that could be extended to multipa-
rameter persistence modules [14, 31] and generalized persistence modules [9, 27, 10]. In this
more general setting there is no hope for an analog of the persistence diagram. Third, our
results for persistence modules may be used to obtain results for persistence diagrams as
corollaries.

To be more precise, consider persistence modules that are pointwise finite-dimensional (see
Section 3.1) with the interleaving distance. This forms an extended pseudometric space that
we label (pfd). If we take the quotient obtained by identifying persistence modules with zero
interleaving distance, then we obtain an extended metric space that is isometric with a space
of persistence diagrams with the bottleneck distance [21]. This is the celebrated isometry
theorem [16, 31, 18, 1, 12]. Call this extended metric space (pd).

Now (pd) inherits many of the properties of (pfd). Specifically, it is not totally bounded,
any element of (pd) does not have a compact neighborhood, it is not path connected, the
path component of the empty persistence diagram consists of persistence diagrams without
points with infinite persistence, and this path component is contractible. Furthermore, (pd)
is not separable and is not complete. In addition, for each N there is an ε > 0 such that
there is an isometric embedding of the N -cube with diameter ε and the L∞ distance into
(pd). So the topological dimension of (pd) is infinite.

For the data scientist For the reader primarily interested in topological data analysis,
we would summarize our results by stating that the extended metric space of persistence
diagrams with the bottleneck distance is “big”. Say we fix c < d and restrict ourselves to
persistence diagrams with finitely many points (ai, bi) each of which satisfies c ≤ ai < bi ≤ d.
This is a metric space. However, every neighborhood of every persistence diagram in this
metric space is not compact. Also, the topological dimension of this metric space is infinite.

In order to apply certain statistical and machine learning tools, one may be tempted to
start with a compact set of persistence diagrams. In light of these results, this is a drastic
step.

Extended pseudometric spaces The results presented here for extended pseudometric
spaces are straight-forward extensions of the standard results for metric spaces (Lemmas 4.10,
4.21, 4.22, and 4.23 and Theorem 4.35). However, in order to keep the material accessible to
applied mathematicians without a background in point-set topology, we include the proofs.

Related work Mileyko, Mukherjee, and Harer [34] consider the set of persistence diagrams
with countably many points in R2 together with the topology induced by the p-Wasserstein
distance for 1 ≤ p < ∞. They show that the subspace consisting of persistence diagrams
with finite distance to the empty persistence diagram is complete and separable. We show
the corresponding space for the bottleneck distance (p = ∞) is complete (Theorem 4.25) but
not separable (Theorem 4.20). In a subsequent paper with Turner [40] they study geometric
properties of the same set with a slightly different metric.

Blumberg, Gal, Mandell, and Pancia [4] show that the set of persistence diagrams with
finitely many points with the bottleneck distance is separable and that its Cauchy completion
is separable. This completion is the set of persistence diagrams with the property that for
every ε > 0 there are only finitely many points with persistence at least ε.
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The authors have been informed of related work that is in preparation. Perea, Munch,
and Khasawneh [38] have characterized (pre)compact sets of persistence diagrams with the
bottleneck distance. Their results imply that compact sets have empty interior. Cruz [24] has
results on metric properties for generalized persistence diagrams with interleaving distance.

Organization of the paper In Section 2, we provide background on persistence modules,
indecomposable modules, interleaving distance, and pseudometric spaces. In Section 3, we
define the classes of persistence modules that we consider, study the relationships between
them, and identify which of them are sets. In Section 4, we study the basic topological
properties of our topological spaces of persistence modules. Throughout, most of our argu-
ments are elementary, except our proof of completeness which uses basic ideas from category
theory. We also provide an appendix where we examine interleavings of interval modules.

2. Background

In this section we define persistence modules and interleaving distance, giving examples
and basic properties. We also define extended pseudometric spaces and their induced topo-
logical spaces.

2.1. Persistence modules Let k be a fixed field. A persistence module M is a set of k-
vector spaces {M(a) | a ∈ R} together with k-linear maps {vba :M(a) →M(b) | a ≤ b} such
that

i): for all a, vaa :M(a) →M(a) is the identity map, and
ii): if a ≤ b ≤ c then vca = vcb ◦ v

b
a.

Equivalently, a persistence module is a functor M : R → Vect
k
, where R is the category

whose set of objects is R and whose morphisms are the inequalities a ≤ b, and Vect
k
is the

category of k-vector spaces and k-linear maps.

Example 2.1. Let X be a topological space and f : X → R be a function. For each a ∈ R

the subset
Fa := {x ∈ X | f(x) ≤ a} ⊂ X

is called a sublevel set. Note that a ≤ b implies Fa ⊂ Fb so that we have an inclusion map
iba : Fa −֒→ Fb for all a ≤ b. This inclusion map induces a linear map

Hn(i
b
a) : Hn(Fa;k) → Hn(Fb;k)

on singular homology groups with a coefficients in k of degree n ≥ 0. We thus have a
persistence module HF : R → Vect

k
given by HF (a) = Hn(Fa;k) and HF (a ≤ b) = Hn(i

b
a).

Example 2.2. Consider the half open interval [0, 2) in R and define the persistence module
χ : R → Vect

k
given by

χ(a) =

{

k a ∈ [0, 2)

0 otherwise
and χ(a ≤ b) =

{

1 a, b ∈ [0, 2)

0 otherwise

where 1 is the identity map on k. For simplicity, we will abuse notation and denote this
persistence module by [0, 2).

Example 2.3. Replacing [0, 2) in the above with an arbitrary interval J ⊂ R we obtain a
persistence module that we call an interval module and we will also denote by J .
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Example 2.4. A trivial but important example is the zero module, denoted 0, that has
0(a) = 0 for all a.

A morphism of persistence modules M and N is a collection of linear maps {ϕa :M(a) →
N(a) | a ∈ R} such that the following diagram commutes for each pair a ≤ b.

(2.5)

M(a) M(b)

N(a) N(b)

vba

ϕa ϕb

wb
a

Equivalently, a morphism of persistence modules is a natural transformation ϕ : M ⇒ N .
We will often denote a morphism of persistence modules as ϕ : M → N . Such a morphism
is an isomorphism if and only if each linear map ϕa is an isomorphism.

Example 2.6. It is a good exercise to check that because of the constraints due to the
commutative squares in (2.5), there is a nonzero morphism from the interval module [a, b)
to the interval module [c, d) only if c ≤ a ≤ d ≤ b.

In the appendix, we present a more thorough discussion of interval modules (Section A.1)
and maps between them (Section A.2).

2.2. Indecomposables Given two persistence modules M and N , their direct sum is the
persistence module M ⊕ N given by (M ⊕ N)(a) = M(a) ⊕ N(a) and (M ⊕ N)(a ≤ b) =
M(a ≤ b) ⊕ N(a ≤ b). In the same way we can define the direct sum of a collection of
persistence modules indexed by an arbitrary set.

A persistence module is said to be indecomposable if it is not isomorphic to a nontrivial
direct sum. For example, interval modules are indecomposable. However, not all indecom-
posable persistence modules are interval modules (see [18, Theorem 2.5, Remark 2.6] for a
discussion of examples due to do Webb [42], Lesnick, and Crawley-Boevey).

A special case of the following theorem follows from work of Gabriel [28], but the general
case was proved by Crawley-Boevey [23].

Theorem 2.7 (Structure Theorem). LetM : R → Vect
k
be a persistence module. IfM(a) is

finite dimensional for each a ∈ R, then M is isomorphic to a direct sum of interval modules.

2.3. Interleaving distance Interleaving distance was introduced in [15] and further studied
in the context of multiparameter persistence in [31]. Here we also adopt the categorical point
of view from [12].

Definition 2.8. Let ε ≥ 0. An ε-interleaving between persistence modulesM andN consists
of morphisms ϕa : M(a) → N(a + ε) and ψa : N(a) → M(a + ε) for all a such that the
following four diagrams commute for all a ≤ b, where the horizontal maps are given by the
respective persistence modules.
(2.9)

M(a) M(b)

N(a + ε) N(b+ ε)

ϕa

ϕb

M(a + ε) M(b+ ε)

N(a) N(b)

ψa

ψb
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(2.10)

M(a) M(a + 2ε)

N(a + ε)

ϕa ψa+ε

M(a + ε)

N(a) N(a + 2ε)

ϕa+εψa

Equivalently, we may describe this in terms of natural transformations. First, for x ∈ R let
Tx : R → R denote the functor given by Tx(a) = a + x. Next if x ≥ 0, let ηx : 1R ⇒ Tx
denote the natural transformation from the identity functor on R to Tx that has components
(ηx)a : a ≤ a + x. Then an ε-interleaving consists of natural transformations ϕ : M ⇒ NTε
and ψ : N ⇒ MTε such that (ψTε)ϕ = Mη2ε and (ϕTε)ψ = Nη2ε. See [12, Section 3] for
more details. We say M and N are ε-interleaved.

Remark 2.11. Two persistence modules are 0-interleaved if and only if they are isomorphic.
If persistence modules M and N are ε-interleaved and N and P are δ-interleaved then M
and P are (ε+ δ)-interleaved.

Definition 2.12. Let M and N be two persistence modules. Then the interleaving distance
dI(M,N) between M and N is defined as

dI(M,N) := inf
(

ε ∈ [0,∞) | M and N are ε-interleaved
)

If no such ε exists, then dI(M,N) = ∞.

Example 2.13. The interval modules [0, 2] and (0, 2) are not 0-interleaved. In fact, there
are no nonzero maps between [0, 2] and (0, 2). However they are ε-interleaved for all ε > 0.
Thus, dI([0, 2], (0, 2)) = 0.

Example 2.14. The interval modules M = [0, 1) and N = [0,∞) are not ε-interleaved for
any ε ≥ 0. Indeed, assume ϕ and ψ provide such an interleaving. Consider the following
trapezoid.

M(ε) M(2 + ε)

N(0) N(2 + 2ε)

M(ε≤2+ε)

ϕ2+εψ0

N(0≤2+2ε)

It decomposes into a commutative parallelogram and commutative triangle from (2.9) and
(2.10) in two different ways. In either case, this diagram commutes. Furthermore, the
bottom horizontal arrow is the identity on k and the top horizontal arrow is 0, which is a
contradiction.

In the appendix, we give a careful study of interleavings of interval modules (Section A.3).
We will make use of the following lemma without reference.

Lemma 2.15 (Converse Algebraic Stability Theorem [31, Theorem 3.4]). Let ε ≥ 0. If for
all α ∈ A, the persistence modules Iα and Jα are ε-interleaved, then

⊕

α∈A Iα and
⊕

α∈A Jα
are ε-interleaved. Thus dI(

⊕

α∈A Iα,
⊕

α∈A Jα) ≤ supα∈A dI(Iα, Jα).

Proof For α ∈ A, let ϕα and ψα be maps giving an ε-interleaving of Iα and Jα. Then
⊕

ϕα
and

⊕

ψα provide the desired ε-interleaving. �
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2.4. Pseudometric spaces

Definition 2.16. A pseudometric on a set X is a map d : X ×X → [0,∞) that satisfies

M1): d(x, x) = 0,
M2): d(x, y) = d(y, x), and
M3): d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X . Note that we have omitted the condition d(x, y) = 0 implies x = y
required of metric. More generally, an extended pseudometric on X is a map d : X ×X →
[0,∞] satisfying the same three axioms. We call a set with an (extended) pseudometric an
(extended) pseudometric space.

Theorem 2.17 ([15, 31, 12]). The interleaving distance is an extended pseudometric on any
set of (isomorphism classes of) persistence modules.

Remark 2.18. A proper class of persistence modules with the interleaving distance is not
an extended pseudometric space since it is not a set. However it is a symmetric Lawvere
space [9, 8, 10].

In an extended (pseudo)metric space, the condition d(x, y) < ∞ defines an equivalence
relation. As a result, such a space has a natural partition into (pseudo)metric spaces.

In an (extended) pseudometric space one can consider equivalence classes of the equiv-
alence relation x ∼ y if d(x, y) = 0 to obtain an (extended) metric space. However, for
persistence modules, one may be interested in distinguishing nonisomorphic modules with
zero interleaving distance, so we will not apply this simplification.

Any extended pseudometric on a set induces a topology on it. Indeed, for any x ∈ X and
a real number r > 0 consider the open ball Br(x) centered at x with radius r,

Br(x) := {y ∈ X | d(x, y) < r}.

We call a set O open in X if for each x ∈ O, there exists r > 0 such that Br(x) ⊂ O. Then
it is easy to check that the collection of all open sets is a topology on X .

Note that each open ball Br(x) is also an open set in X and the collection of all open balls
forms a base for this topology X since each open set O in X can be written as a union of
open balls.

Example 2.19. Consider the interval module [0, 5) and let ε > 1. Then the ball Bε([0, 5))
contains the interval modules [−1, 6] and (1, 4).

In the appendix, we study the interval modules in an ε-neighborhood of an interval module
(Section A.4).

A sequence (xn)n≥1 in an extended pseudometric space X is said to converge to x ∈ X
if for all ε > 0 there exists N > 0 such that for all n ≥ N , d(xn, x) < ε. The point x is
called a limit of the sequence. Note that in an extended pseudometric space we no longer
have unique limits, but we do have that if x and x′ are limits, then by the triangle inequality
d(x, x′) = 0.

A sequence (xn)n≥1 in an extended pseudometric space is a Cauchy sequence if for all
ε > 0 there exists an N > 0 such that for all n,m ≥ N , d(xn, xm) < ε. If a subsequence
of a Cauchy sequence has a limit x, then by the triangle inequality, x is also a limit of the
Cauchy sequence.
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(pm)

(id) (qtame)

(cid) (pfd)

(cfid) (fid)

(ffid)

(ffid[c,d]) (eph)

(0)

Figure 1. Hasse diagram of sets and classes of persistence modules.

3. Sets and classes of persistence modules

In this section we define classes of persistence modules that contain many of the persistence
modules considered in the literature. We study the relationships between these classes and
determine which of them are in fact sets.

For the remainder of the paper, we will only consider isomorphism classes of persistence
modules. That is, whenever we say ‘persistence module’, we really mean ‘isomorphism class
of persistence modules’. This is standard when discussing both vector spaces and persistence
modules.

3.1. Classes of persistence modules In this section, we consider the classes of persistence
modules in Figure 1, which we now describe.

• (pm) is the class of persistence modules.
• (id) is the class of interval-decomposable persistence modules: those isomorphic to
⊕

α∈A Iα, where A is some indexing set, and each Iα is an interval module.
• (cid), the countably interval-decomposable persistence modules, is the subclass of (id)
where the index set A is countable.

• (cfid), the countably finite-interval decomposable persistence modules, is the subclass
of (cid) in which each interval Iα is finite.

• (fid), the finitely interval-decomposable persistence modules, is the class of persistence

modules isomorphic to
⊕N

k=1 Ik for some N , where each Ik is an interval module.
8



• (ffid), the finitely finite-interval decomposable persistence modules, is the subclass of
(fid) in which each Ik is a finite interval.

• Given c < d, (ffid[c,d]) is the subclass of (ffid) in which each Ik ⊂ [c, d].
• (pfd), the pointwise finite dimensional persistence modules, is the class of all persis-
tence modules M with each M(a) finite dimensional.

• (qtame), the q-tame persistence modules, is the class of all persistence modules M
where each a < b the linear map vba :M(a) →M(b) has a finite rank.

• (eph), the ephemeral persistence modules, is the class of all persistence modules M
where for each a < b the linear map vba :M(a) →M(b) is zero.

• (0) is the class consisting of only the zero persistence module.

Remark 3.1. The class (fid) is a slight generalization of the class of constructible persistence
modules. A persistence module M is said to be constructible [37] if there exists a finite
subset A = {a1, . . . , an} of R such that

• for t < a1, M(t) = 0,
• for ai ≤ s ≤ t < ai+1, M(s ≤ t) is an isomorphism where i ∈ {1, . . . , n− 1} , and
• for an ≤ s ≤ t, M(s ≤ t) is an isomorphism.

A constructible module M , satisfies M ∼=
⊕N

k=1 Ik where each Ik is of the form [ai, aj) or
[ai,∞).1

3.2. Inclusions

Lemma 3.2. Let M be an ephemeral module. Then M ∼=
⊕

α∈AMα, where each Mα
∼= [r, r]

for some r ∈ R.

Proof Let M ∈ (eph). For r ∈ R, let Mr be the persistence module with Mr(x) = M(r) if
x = r and otherwise Mr(x) = 0. Then M ∼= ⊕r∈RMr. Furthermore each M(r) has a basis,
so Mr decomposes over this basis into [r, r] interval modules. �

Proposition 3.3. The diagram in Figure 1 is a Hasse diagram for the poset structure of
these classes of persistence modules under the inclusion order.

Proof By Theorem 2.7, (pfd) is in (id). By Lemma 3.2, (eph) ⊂ (id). It is easy to check
that all of the other arrows indicated in the diagram are inclusions and that in fact all of the
inclusions are proper. With the observation that if A ⊂ B, C ⊂ D and A 6⊂ D then B 6⊂ C,
it remains to check the following cases.

(1) (eph) 6⊂ (pfd):
⊕∞

k=1[0, 0] is in (eph) but not in (pfd).
(2) (eph) 6⊂ (cid):

⊕

r∈R[0, 0] is in (eph) but not in (cid).

(3) (ffid[c,d]) 6⊂ (eph): [c, d] is in (ffid[c,d]) but is not in (eph).
(4) (fid) 6⊂ (cfid): [0,∞) is in (fid) but is not in (cfid).
(5) (pfd) 6⊂ (cid):

⊕

r∈R[r, r] is in (pfd) but is not in (cid).
(6) (cfid) 6⊂ (qtame):

⊕∞

k=1[0, 1) is in (cfid) but is not in (qtame).
(7) (qtame) 6⊂ (id):

∏∞

k=1[0,
1
k
) is in (qtame) but is not in (id) [17].

�

1In particular, the multiplicity of [ai, aj) can be calculated using the inclusion/exclusion formula
rankM(ai ≤ aj−1) − rankM(ai ≤ aj) − rankM(ai−1 ≤ aj−1) + rankM(ai−1 ≤ aj) [21], which is an
example of Möbius inversion [37].
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3.3. Almost inclusions

Definition 3.4. Say that a class of persistence modules A almost includes in a class of
persistence modules B if for each A ∈ A there exists an element B ∈ B such that dI(A,B) =
0.

Lemma 3.5. A finite sequence of inclusions and almost inclusions is an almost inclusion.

Proof This follows from the triangle inequality. �

Lemma 3.6. M is an ephemeral persistence module if and only if dI(M, 0) = 0. That is,
(eph) almost includes in (0).

Proof Let M be an ephemeral persistence module. Then M and 0 are ε-interleaved for all
ε > 0 by the zero maps.

Next assume dI(M, 0) = 0. Consider a < b. Let ε = b−a
2
. Since M and 0 are ε-interleaved,

the map M(a < b) factors through 0, and is thus the zero map.

M(a) M(b)

0

M(a<b)

ϕa ψa+b
2

Therefore M is an ephemeral persistence module. �

For a persistence module M , define the radical of M by (radM)(a) =
∑

c<a imM(c <
a) [17]. Note that radM ⊂M and inherits the structure of a persistence module.

Proposition 3.7. Let M be a persistence module. Then dI(M, radM) = 0.

Proof Let ε > 0. For all a ∈ R, let ϕa = M(a < a + ε) : (radM)(a) → M(a + ε), and let
ψa = M(a < a + ε) : M(a) → (radM)(a + ε). Then by the functoriality of M , this is an
ε-interleaving of radM and M . Therefore dI(radM,M) = 0. �

Theorem 3.8. Let M ∈ (qtame). Then radM ∈ (qtame) and radM ∈ (cid).

Proof Let M ∈ (qtame). Since radM is a submodule of M , it follows that radM ∈ (qtame)
as well. By [17, Corollary 3.6], radM ∈ (id). We will strengthen this to show that radM ∈
(cid).

Since radM ∈ (id), radM ∼=
⊕

α∈A Iα. For q, r ∈ Q with q < r, let Aq,r = {α ∈ A |
q, r ∈ Iα}, and let A′ =

⋃

q<r∈QAq,r. Since radM ∈ (qtame), for each q < r ∈ Q, |Aq,r| <∞.
Therefore A′ is countable.

Furthermore, by definition, for each a ∈ R and for each x ∈ (radM)(a) there exists c < a
and y ∈ M(c) such that M(c ≤ a)(y) = x. Choose b ∈ (c, a). Then z := M(c ≤ b)(y) ∈
(radM)(b) and (radM)(b ≤ a)(z) = x. Hence the interval decomposition of radM does not
contain any one-point intervals, and thus A = A′. Therefore radM ∈ (cid). �

Combining the previous two results we have the following.

Corollary 3.9. Let M ∈ (qtame). Then there exists N ∈ (cid) such that dI(M,N) = 0.
That is, (qtame) almost includes in (cid).
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3.4. Enveloping distance In this section, we define a non-symmetric distance between
classes of persistence modules and calculate its value for most of the pairs in Figure 1.

Definition 3.10. Let A and B be classes of persistence modules. We define the enveloping
distance from A to B as follows.

E(A,B) = inf(r | ∀B ∈ B and s > r, ∃A ∈ A such that A,B are s-interleaved)

If there is no such r, we set E(A,B) = ∞.

For example, as we will demonstrate later in this section, E((0), (ffid[c,d])) = d−c
2

and

E((ffid[c,d]), (0)) = 0.
We will use the following basic fact about interleavings.

Lemma 3.11 ([31, 12]). If persistence modules A and B are s-interleaved and persistence
modules B and C are t-interleaved, then A and C are (s+ t)-interleaved.

The enveloping distance has the following properties.

Lemma 3.12. E(A,A) = 0 and E(A, C) ≤ E(A,B) + E(B, C).

Proof For reflexivity, each persistence module is s-interleaved with itself for all s ≥ 0. The
triangle inequality follows from Lemma 3.11. �

Definition 3.13. In the case that E(A,B) = ∞, we write that E(A,B) = ∞− if ∀B ∈ B ∃s
and A ∈ A such that A,B are s-interleaved. From now on we reserve E(A,B) = ∞ for the
case that this condition is not satisfied.

Lemma 3.14. If A (almost) includes in B then E(B,A) = 0.

Proof This follows immediately from the definitions. �

Corollary 3.15. E((0), (eph)) = 0 and E((eph), (0)) = 0.

Lemma 3.16. If A (almost) includes in B, E(B, C) = ∞, and C (almost) includes in D,
then E(A,D) = ∞.

Proof Assume E(A,D) <∞. Then there is some s ≥ 0 such that for all D ∈ D there exists
an A ∈ A such that D and A are s-interleaved.

Let ε > 0. Let C ∈ C. Since C (almost) includes in D, there is a D ∈ D such that C
and D are ε-interleaved. By our first observation, there is an A ∈ A such that D and A
are s-interleaved. Since A (almost) includes in B, there is a B ∈ B such that A and B are
ε-interleaved. Therefore by Remark 2.11, C and B are (s+2ε)-interleaved. So for all C ∈ C
there is a B ∈ B such that C and B are (s+ 2ε)-interleaved. Thus E(B, C) <∞. �

Proposition 3.17. (1) We have the following enveloping distances: E((0), (ffid[c,d])) =
d−c
2

and E((ffid[c,d]), (ffid)) = ∞−. Also, E((0), (ffid)) = ∞−, E((eph), (ffid)) = ∞−

and E((eph), (ffid[c,d])) = d−c
2
.

(2) In addition, E((cfid), (fid)) = ∞ and E((qtame), (cfid)) = ∞.
(3) With the exception of (0) ⊂ (eph), (0) ⊂ (ffid[c,d]), (ffid[c,d]) ⊂ (ffid) and the possible

exception of (pfd) ⊂ (qtame), all of the other inclusions A ⊂ B in Figure 1 have
enveloping distance E(A,B) = ∞. Also E((qtame), (cid)) = ∞.
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Proof (1) • (0) ⊂ (ffid[c,d]): dI([c, d], 0) = d−c
2

and for all M ∈ (ffid[c,d]), dI(M, 0) ≤
d−c
2
.

• (ffid[c,d]) ⊂ (ffid): For all M ∈ (ffid[c,d]) and N ∈ (ffid), dI(M,N) ≤ dI(M, 0) +
dI(0, N) < ∞. Let z ≥ 0. For all M ∈ (ffid[c,d]), there are no nontrivial maps
from M to (d, d+ 2z]. Thus dI(M, (d, d+ 2z]) ≥ dI((d, d+ 2z], 0) ≥ z.

• The other three cases follow from the same arguments.
(2) • (cfid) to (fid): Consider [0,∞).

• (qtame) to (cfid): Consider
⊕∞

k=1[0, k).
(3) • (ffid) ⊂ (fid): Consider [0,∞).

• (ffid) ⊂ (cfid): Consider
⊕∞

k=1[0, k).
• (cfid) ⊂ (cid): Consider [0,∞).
• (fid) ⊂ (cid): Consider

⊕∞

k=1[0,∞).
• (fid) ⊂ (pfd): Consider

⊕∞

k=0[2
k, 2k+1).

• (cid) ⊂ (id): Consider
⊕

r∈R[0,∞).
• (id) ⊂ (pm): Consider

∏∞

k=1[0,∞).
• (eph) ⊂ (id), (eph) ⊂ (qtame), (pfd) ⊂ (id), (qtame) ⊂ (cid), and (qtame) ⊂
(pm) follow from Lemma 3.16.

�

Remark 3.18. Together with Corollary 3.15, Lemma 3.14, and Lemma 3.16, this proposi-
tion implies all of the pairwise enveloping distances between the sets and classes of persis-
tence modules in Figure 2, except E((pfd), (qtame)). For example, E((id), (qtame)) = 0,
E((cid), (pfd)) = 0, and E((cid), (qtame)) = 0 by Lemmas 3.14 and 3.5, andE((fid), (cfid)) =
∞ by Lemma 3.16.

We end this section by showing that E((pfd), (qtame)) = 0. First we give a definition.

Definition 3.19. Let M be a persistence module. Let p ≥ 0. We define the p-persistent
submodule of M by

M (p)(a) = imM(a − p ≤ a).

For a ≤ b, there is an induced map between objects M (p)(a) and M (p)(b) given by M(a ≤ b).
Since M is a persistence module, so is M (p), and since M (p)(a) is a sub-vector space ofM(a)
for all a, M (p) is a submodule of M .

Proposition 3.20. Let M be a persistence module and let p ≥ 0. Then M and M (p) are
p-interleaved.

Proof For a ∈ R, define ϕa :M(a) →M (p)(a+p) by ϕa =M(a ≤ a+p), and ψa :M
(p)(a) →

M(a+ p) by ψa =M(a ≤ a+ p). Then all the arrows in diagrams (2.9) and (2.10) are maps
in M and hence commute. �

Corollary 3.21. E((pfd), (qtame)) = 0.

Proof Let M be a q-tame persistence module. Let p > 0. Then by definition, M (p) is
a pointwise finite-dimensional persistence module. By Proposition 3.20, M and M (p) are
p-interleaved. Thus, by definition, E((pfd), (qtame)) = 0. �

12



(pm)

(id) (qtame)

(cid) (pfd)

(cfid) (fid)

(ffid)

(ffid[c,d]) (eph)

(0)

d−c
2

0

∞

∞

∞−

∞∞

∞ ∞ ∞

∞ ∞

0

∞ ∞

∞

∞

0

∞

Figure 2. Diagram of sets and classes of persistence modules. Solid ar-
rows indicate inclusions, dashed arrows indicate almost inclusions, and dotted
arrows do not indicate any relationship. Annotations of arrows indicate en-
veloping distance from the source to the target, given in Definitions 3.10 and
3.13.

3.5. Sets of persistence modules Next we consider whether the classes defined above
are sets or proper classes. We will use the following notation. Let R := R ∪ {±∞} and
N := N∪{∞}. Given a set X , let P(X) denote its power set. Let I be the set of all intervals
in R. We define a map, f : I −→ {1, 2, 3, 4} by

f(I) =



















1, inf I 6∈ I, sup I 6∈ I

2, inf I ∈ I, sup I 6∈ I

3, inf I 6∈ I, sup I ∈ I

4, inf I ∈ I, sup I ∈ I.

Proposition 3.22. The class (cid) is a set.

Proof Consider the map

(cid) −→ P(R
2
× {1, 2, 3, 4} × N)

defined by
⊕

α∈A

Iα 7−→
⋃

α∈A

[

{(inf Iα, sup Iα)} × {f(Iα)} × {m(i)}
]
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where m(i) denotes the multiplicity of the direct summand Iα. This map is an injection,
hence (cid) is a set. �

Corollary 3.23. Therefore the classes (cfid), (fid), (ffid), (ffid[c,d]), and (0) are also sets.

Lemma 3.24. Each interval appears only finitely many times in the direct-sum interval-
module decomposition of a pointwise finite-dimensional persistence module.

Proof For each interval I,
⊕∞

k=1 I 6∈ (pfd). �

Proposition 3.25. The class (pfd) is a set.

Proof Let M ∈ (pfd). By Theorem 2.7, M ∼=
⊕

α∈A Iα where Iα is an interval and A is a
set. By Lemma 3.24, we can define the following map.

(pfd) −→ P(R
2
× {1, 2, 3, 4} × N)

⊕

α∈A

Iα 7−→
⋃

α∈A

[

{(inf Iα, sup Iα)} × {f(Iα)} × {m(i)}
]

where m(i) denotes the multiplicity of the direct summand Iα. This map is an injection,
hence (pfd) is a set. �

Proposition 3.26. The class (eph) is not a set.

Proof For a cardinal c, let Fc =
⊕

α∈c[0, 0]. That is, Fc is the k-vector space generated by
c. For c 6∼= d, Fc 6∼= Fd. Thus we have an injection from the proper class of cardinals into
(eph). �

Corollary 3.27. Since (eph) is not a set, neither are (id) (qtame) and (pm).

3.6. Interval-decomposable persistence modules of arbitrary cardinality Motivated
by the desire to have a set of persistence modules that contains all of the sets of persistence
modules in Section 3.5 and the proofs of Proposition 3.22 and 3.25, we make the following
definition.

Definition 3.28. Given a cardinal κ, let (κ-id) denote the class of persistence modules
isomorphic to

⊕

α∈A Iα where Iα is an interval module and the cardinality of A is at most
κ. As a special case, and to avoid confusion with our previously defined notation, let (rid)
denote the class of interval-decomposable persistence modules with at most the cardinality
of R-many summands.

By definition, (cid) ⊂ (rid) and by Lemma 3.24, (pfd) ⊂ (rid).

Proposition 3.29. For any cardinal κ, the class (κ-id) is a set.

Proof The proof is the same as the proof of Proposition 3.22, replacing N with κ. �

4. Topological properties

Since we are interested in studying topological spaces of persistence modules, we will for
the most part restrict ourselves to the sets in Figure 3. We will consider the basic topological
properties of these sets with the topology induced by the interleaving metric.

14



(rid)

(cid) (pfd)

(cfid) (fid)

(ffid)

(ffid[c,d])

Figure 3. Sets of metric spaces, each with the topology induced by the in-
terleaving metric.

4.1. Open subsets In this section we consider which of the inclusion maps in Figure 3 are
inclusions of open subsets. Recall that in a pseudometric space X , a subset A ⊂ X is said
to be open if for all a ∈ A, there exists ε > 0 such that Bε(a) ⊂ A.

Proposition 4.1. Among the inclusion maps in Figure 3, only the inclusions (ffid) →֒ (fid)
and (cfid) →֒ (cid) are inclusions of open subsets.

Proof Let M ∈ (ffid) and N ∈ (fid) \ (ffid). Then N is isomorphic to a direct sum of interval
modules, at least one of which is unbounded. It follows that dI(M,N) = ∞. Thus (ffid) is
an open subset of (fid). The same argument shows that (cfid) is an open subset of (cid). For
each of the following inclusions A ⊂ B we show that for all M ∈ A and for all ε > 0, there
is an N ∈ B \ A such that dI(M,N) < ε. Therefore A is not an open subset of B.

• (ffid[c,d]) ⊂ (ffid). Let N =M ⊕ [d, d+ 2ε).
• (ffid) ⊂ (cfid). Let N =M ⊕

⊕∞

k=1[0, 2ε).
• (fid) ⊂ (cid). Let N =M ⊕

⊕∞

k=1[0, 2ε).
• (fid) ⊂ (pfd). Let N =M ⊕

⊕∞

k=1[k, k + 2ε).
• (cid) ⊂ (rid). Let N =M ⊕

⊕

R[0, 2ε).
• (pfd) ⊂ (rid). Let N =M ⊕

⊕∞

k=1[0, 2ε).

�

Remark 4.2. While (ffid[c,d]) is not an open subset of (ffid), if we restrict (ffid) to direct sums
of interval modules whose intervals are contained in an open interval (c, d), then we obtain
an open subset of (ffid).

4.2. Separation

Proposition 4.3. Any set of ephemeral persistence modules with the interleaving distance
has the indiscrete topology.
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Proof Let S be a set of ephemeral persistence modules. By Lemma 3.6, each M ∈ (eph)
has dI(M, 0) = 0. So for M,N ∈ S, by the triangle inequality, dI(M,N) = 0. Thus for all
M ∈ S and for all ε > 0, Bε(M) ⊇ S. �

Lemma 4.4. Let M be a persistence module let r ∈ R. Then dI(M,M ⊕ [r, r]) = 0.

A topological is said to be a T0-space (or a Kolmogorov space), if for any pair of distinct
elements in the space there exists at least one open set which contains one of them but not
the other.

Proposition 4.5. Let c < d. Then (ffid[c,d]) is not a T0-space.

Proof Apply Lemma 4.4 to M = [a, b) where c ≤ a < b ≤ d, and r = c+d
2
. Then M ′ =

M ⊕ [r, r] ∈ (ffid[c,d]) and there does not exist an open neighborhood U of M that does not
contain M ′ and vice versa. �

Since (ffid[c,d]) is a subspace of any the other spaces in Figure 3, we obtain the following.

Corollary 4.6. None of the spaces in Figure 3 are T0.

4.3. Compactness Let X be an extended pseudometric space. Then a subset S ⊂ X is
totally bounded if and only if for each ε > 0, there exists a finite subset F = {x1, x2, . . . , xn} ⊂
X such that S ⊂ ∪ni=1Bε(xi). Such a union is called a finite ε-cover.

Lemma 4.7. The space (ffid[c,d]) is not totally bounded.

Proof Let ε < d−c
2
. For n ≥ 0 consider Mn =

⊕n
k=1[c, d). Then for m 6= n, dI(Mm,Mn) =

d−c
2
. Therefore (ffid[c,d]) does not have a finite ε-cover. �

An open cover of a topological space X is a collection of open sets O = {Oi}i∈I of X such
that ∪i∈IOi = X . A topological spaces is compact if every open cover has a finite subcover.
We say that a topological space is locally compact if each point has a compact neighborhood,
where by a neighborhood of a point p ∈ X we mean a subset V ⊂ X such that there exists
an open set p ∈ U ⊂ V .

Proposition 4.8. Any of element in (ffid[c,d]) does not have a compact neighborhood.

Proof Let M ∼=
⊕q

j=1 Ij with Ij ⊂ [c, d]. Suppose that M has a compact neighborhood, K.

Then there exists a real number ε > 0 such that M ∈ Bε(M) ⊂ K.
Choose δ > 0 such that δ < ε, δ < d − c and δ < 1

4
minj diam Ij. Choose an interval

I of diameter δ contained in [c, d]. Consider for n ∈ N, the persistence modules Mn =
M ⊕

⊕n

k=1 I. Then for each n, dI(M,Mn) ≤ δ
2
so that the set {Mn}n∈N is contained in

Bε(M), and hence in K.
Let M0 = M . Then by the algebraic stability theorem [16], dI(Mp,Mq) ≥ δ

2
for all

p > q ≥ 0. Now consider the open cover {B δ
6

(N) | N ∈ K} of K. It does not have a finite

subcover, since there does not exist a persistence module N such that B δ
6

(N) contains Mn

and Mm for m 6= n. �

Corollary 4.9. All of the spaces in Figure 3 are not locally compact.

An open covering O = {Oi}i∈I of X is locally finite if every x ∈ X has a neighborhood
which has a nonempty intersection with only finitely many of the open sets {Oi}. Given an
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open cover {Oi}i∈I of X , another open cover V = {Vj}j∈J is called a refinement of O if for
each V in V, there exists O ∈ O such that V ⊂ O. A topological space X is said to be a
paracompact if every open covering admits a locally finite refinement.

Lemma 4.10. An extended pseudometric space is paracompact.

Proof Let (X, d) be an extended pseudometric space. Let Y = X/∼ be the quotient space
where the equivalence relation ∼ is defined on X by x ∼ y ⇔ d(x, y) = 0. So (Y, ρ) is an
extended metric space where ρ([x], [y]) = d(x, y). Let π : X → Y denote the quotient map.
Since π maps the open ball Br(x) to the open ball Br([x]) for all x ∈ X and all r > 0, it is
an open map.

Now the equivalence relation on Y given by x ∼ y ⇔ d(x, y) < ∞ partitions Y into a
disjoint union of metric spaces, Y =

∐

Yα. Given an open cover U of Y , each open set in U
is a disjoint union of open sets, each of which is in one of the Yα. This gives a refinement
of U that is a disjoint union of open covers of each of the Yα. Each of these metric spaces
is paracompact [36, Theorem 41.4]. Taking the disjoint union of the resulting locally finite
refinements gives the desired locally finite refinement of Y .

Let U = {Ui}i∈I be an open cover for X . Since π is an open map {π(Ui)}i∈I forms an
open cover for Y and since Y is paracompact there is a locally finite refinement V = {Vj}j∈J
for {π(Ui)}i∈I . Then the open cover π−1(V) = {π−1(Vj)}j∈J is a locally finite refinement for
U = {Ui}i∈I . Hence X is paracompact.

�

4.4. Path Connectedness

Lemma 4.11. Let S be an extended pseudometric space. Let a, b ∈ S with d(a, b) = ∞.
Then there does not exist a path in S from a to b.

Proof Suppose there is a path γ from a to b in S. Then γ has a compact image. Therefore
the cover {B1(x) | x ∈ γ} should have a finite subcover, which by the triangle inequality
contradicts d(a, b) = ∞. �

Corollary 4.12. The spaces of persistence modules (fid), (cid), (pfd), (rid), and (cfid) are
not path connected.

Proof The first four of these sets contain both 0 and [0,∞) and dI(0, [0,∞)) = ∞. The set
(cfid) contains 0 and

⊕∞

k=1[0, k) and dI(
⊕∞

k=1[0, k), 0) = ∞. �

Lemma 4.13. Let I be a finite interval. There exists a path in (ffid[c,d]) from I to the zero
module.

Proof Let c = inf I and d = sup I. Let M (0) = I and M (1) = 0. For 0 < t < 1, let
M (t) = [c + td−c

2
, d − td−c

2
). Then for 0 ≤ s ≤ t ≤ 1, dI(M

(s),M (t)) = (t − s)d−c
2
. Thus

γ(t) =M (t) is a (continuous) path from I to 0. �

With a similar argument we will show the following.

Proposition 4.14. The path component of the zero module in (fid) is (ffid).

Proof By Lemma 4.11, the path component of 0 in (fid) is contained in (ffid). It remains to
show that any M ∈ (ffid) is path connected to 0.
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Let M ∼=
⊕N

k=1 Ik, where Ik is a finite interval. For 1 ≤ k ≤ N , let ck = inf Ik and dk =

sup Ik. Let M
(0) =M and M (1) = 0. For 0 < t < 1, let M (t) =

⊕N
k=1[ck+ t

dk−ck
2

, d− tdk−ck
2

).

Then for 0 ≤ s ≤ t ≤ 1, dI(M
(s),M (t)) ≤ (t − s)max1≤k≤N

dk−ck
2

. So M (t) is a continuous
path from M to 0. �

Remark 4.15. It is not the case that the path component of the zero module in (cid) is (cfid),
since (cfid) is not path connected. Since infinite intervals have infinite distance from the zero
module, the path component of the zero module in (cid) is the same as the path component
of the zero module in (cfid).

Proposition 4.16. The path component of 0 in (cfid), (pfd), and (rid) consists of modules
⊕

α∈A Iα, where supα∈A length(Iα) <∞.

Proof Let M =
⊕

α∈A Iα. If supα∈A length(Iα) = ∞ then dI(0,M) = ∞ and M is not in the
path component of 0. If supα∈A length(Iα) <∞ then the proof of Proposition 4.14 (replacing
max with sup) shows that M is in the path component of 0. �

The paths in the previous proposition may be used to show that the following spaces are
nullhomotopic.

Proposition 4.17. The spaces (ffid[c,d]) and (ffid) and the path component of 0 of (cfid),
(pfd) and (rid) are contractible to the zero module.

Proof Let S denote either (ffid[c,d]), (ffid) or the path component of 0 in (cfid), (pfd), or
(rid). Assume M ∼=

⊕

k∈A Ik, where A is countable. Let ck = inf Ik, dk = sup Ik and let

hk =
dk−ck

2
. Let M (0) =M , M (1) = 0 and for 0 < t < 1, M (t) =

⊕

k∈A[ck + thk, d− thk).
We will use these paths to construct a homotopy from the identity map on S to the constant

map to the zero module. Define H : S × [0, 1] → S by (M, t) 7→ M (t). Let Ht = H(−, t).
Then H0 = 1S and H1 = 0. It remains to show that H is continuous. Let (M, t) ∈ S× [0, 1].
Given ε > 0, choose δ = ε

1+dI (M,0)
. Let d denote the product metric on S × [0, 1]. Whenever

(N, s) ∈ S × [0, 1] satisfies d((M, t), (N, s)) < δ, dI(M,N) < δ and |t− s| < δ. Furthermore

dI(M
(t), N (s)) ≤ dI(M

(t),M (s)) + dI(M
(s), N (s))

≤ |t− s|dI(M, 0) + sdI(M,N) ≤ δdI(M, 0) + δ = ε

which completes the proof. �

4.5. Separability A topological space is said to be separable if it has a countable dense
subset.

Theorem 4.18. The spaces (fid), (ffid) and (ffid[c,d]) are separable.

Proof First we will show that (ffid) is separable. Let

(4.19) Dn =
{

n
⊕

i=1

(pi, qi) ∈ (fid) | pi, qi ∈ Q, pi < qi
}

and then consider

D =
∞
⋃

i=1

Dn.

18



x

y

2

2

4

4

6

6

8

8

10

10

12

12

1
0

Figure 4. Persistence modules corresponding to binary sequences, which are
used in the proof of Theorem 4.20.

Then D is countable and D is dense in (ffid) since every open ball of every persistence module
in (ffid) contains an element of D.

This proof also works for (fid) if we allow the intervals in (4.19) to be infinite, and it works
for (ffid[c,d]) if we restrict the intervals in (4.19) to be subintervals of [c, d]. �

Theorem 4.20. The spaces (cfid), (cid), (pfd), and (rid) are not separable. The same is
true for the subspace of (cid) with finite distance to 0 (which equals the subspace of (cfid)
with finite distance to 0), and for (cid) ∩ (qtame) and (cfid) ∩ (qtame).

Proof We assign to each binary sequence, α = (αn)n≥1 where αn ∈ {0, 1}, a persistence
module. See Figure 4. For n ≥ 1, define

I(α)n =

{

[2n− 1, 2n+ 1), αn = 0

[2(n− 1), 2n+ 2), αn = 1

and let Mα =
⊕∞

n=1 I
(α)
n . Then Mα is a persistence module in (cfid), (cid), (pfd), (rid), and

(qtame) and dI(Mα, 0) ≤ 2.
The set {Mα | α is a binary sequence} is uncountable and for all pairs of binary se-

quences α 6= β, we have dI(Mα,Mβ) = 1. Then any dense subset of (cfid), (cid), (pfd),
or (rid), contains a point in an open ball centered at each Mα of radius 1

2
and thus cannot

be countable. The same is true for the subspace of (cid) with finite distance to 0, and for
(cid) ∩ (qtame) and (cfid) ∩ (qtame). �

4.6. Countability A topological space is said to be a first countable if it has a countable
basis at each of its points.

Lemma 4.21. An extended pseudometric space is first countable.
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Proof Let x be a point in the space. Then the countable collection of open balls {B 1

n
(x) | n ∈

N} is the desired local base at x. �

A space X is compactly generated if a set A ⊂ X is open if each A ∩ C is open in C for
each compact subspace C ⊂ X . Equivalently, a set B ⊂ X is closed if each B ∩ C is closed
in C for each compact subspace C ⊂ X . The following is well known.

Lemma 4.22. If a space is first countable then it is compactly generated.

Proof For B ⊂ X , assume that B ∩C is closed in C for each compact subspace C ⊂ X . Let
x be a limit point of B. That is, every neighborhood of x contains point of B other than x.
Since X is first countable, there is a sequence of points (xi) converging to x. Now (xi)∪{x}
is compact, so by assumption B ∩ ((xi) ∪ {x}) is closed in (xi) ∪ {x}. Since (xi) ⊂ B it
follows that x ∈ B. Therefore B is closed. �

A topological space is said to be second countable if it has a countable basis. A topological
space X is said to be Lindelöf if every open cover of X admits a countable subcover.

Lemma 4.23. For an extended pseudometric space the following properties are equivalent:

(1) second countable;
(2) separable; and
(3) Lindelöf.

Proof Let X be an extended pseudometric space.
(1) ⇒ (2): Assume that X has a countable basis {Bi}. For each i, choose xi ∈ Bi. Then

for each x ∈ X and r > 0, there exists i such that Bi ⊂ Br(x). So {xi} is a countable dense
subset of X .

(2) ⇒ (3): Assume that X has a countable dense subset {xi}. Let U be an open cover of
X . For each i, choose Ui ∈ U with xi ∈ Ui. Since Ui is open, Ui ⊃ Bri(xi) for some ri > 0.
Since {xi} is dense, {Ui} is a countable subcover.

(3) ⇒ (1): Assume that X has the Lindelöf property. For each n ≥ 1, let Un be a
countable subcover of the open cover {B 1

n
(x) | x ∈ X}. Then U := ∪nUn is a countable

basis for X . �

4.7. Completeness An extended pseudometric space is said to be complete if every Cauchy
sequence converges (see the end of Section 2.4).

Theorem 4.24. The spaces (pfd), (fid), (ffid) and (ffid[c,d]) are not complete.

Proof For n ≥ 0, letMn =
⊕n

k=0

[

− 1
2k
, 1
2k

)

. Then the sequence (Mn) ⊂ (ffid) ⊂ (fid) ⊂ (pfd),

and (Mn) →M =
⊕∞

k=0

[

− 1
2k
, 1
2k

)

, which is not in (pfd).
We claim that there is no N ∈ (pfd) such that dI(M,N) = 0. Assume N ∈ (pfd). Then

rankN(0) = R < ∞. Thus for all ε > 0, rankN(−ε ≤ ε) ≤ R. Now for all ε > 0, M
and N are ε-interleaved, and thus rankM(−2ε ≤ 2ε) ≤ rankN(−ε ≤ ε) ≤ R, which is a
contradiction.

If we adjustMn to lie in [c, d], then the same argument shows that (ffid[c,d]) is not complete.
�

Theorem 4.25. In the class of persistence modules and the class of q-tame persistence
modules, every Cauchy sequence has a limit. Furthermore, the space (cid) ∩ (qtame) is
complete, and so is (cfid) ∩ (qtame).
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Proof Let (M ′
n)n≥1 be a Cauchy sequence of persistence modules. For each k ≥ 0, choose a

natural number nk so that dI(M
′
m,M

′
n) <

1
2k

for all m,n ≥ nk. Let Mk denote M ′
nk
. Thus

(Mk) is a subsequence of (M ′
n) so that for all k ≥ 0, Mk and Mk+1 are 1

2k
-interleaved. By

the definition of interleaving, there exist natural transformations ϕk : Mk ⇒ Mk+1T 1

2k
and

ψk :Mk+1 ⇒ MkT 1

2k
such that the triangles corresponding to (2.10) commute.

Now we define shifted versions of ϕ and ψ. For k ≥ 0, let αk = ϕkT− 1

2k−1
:Mk−1T− 1

2k−1
⇒

MkT− 1

2k
, and βk = ψkT 1

2k
: MkT 1

2k
⇒ Mk−1T 1

2k−1
. Let a ∈ R. For every k ≥ 1, αka :

Mk−1(a−
1

2k−1 ) →Mk(a−
1
2k
) and βka :Mk(a+

1
2k
) →Mk−1(a+

1
2k−1 ). Thus we have a direct

system of vector spaces

(4.26) M0(a− 1)
α1
a−→M1(a−

1

2
)
α2
a−→M2(a−

1

4
)
α3
a−→ M3(a−

1

8
)
α4
a−→ · · ·

and an inverse system of vector spaces

(4.27) · · ·
β4
a−→M3(a+

1

8
)
β3
a−→ M2(a +

1

4
)
β2
a−→M1(a+

1

2
)
β1
a−→ M0(a+ 1)

given in Figure 5. Note that it follows from the definition of interleaving that each of
the trapezoids in Figure 5 commute. Let A(a) be the colimit (i.e. direct limit) of (4.26),

M0

M1

M2

M3

M4

M5

a

A(a) B(a)

α1
a

α2
a

α3
a

α4
a

α5
a

λ5a µ5
a

β5
a

β4
a

β3
a

β2
a

β1
a

Figure 5. A direct system of vector spaces and an inverse system of vector
spaces in a Cauchy sequence of persistence modules.

and let B(a) be the limit (i.e. inverse limit) of (4.27). For each k ≥ 0, we have maps
λka : Mk(a −

1
2k
) → A(a) and µka : B(a) → Mk(a +

1
2k
). By the universal properties of the

colimit and the limit, we have a map θa : A(a) → B(a), and

(4.28) µkaθaλ
k
a =Mk(a−

1
2k

≤ a+ 1
2k
).

Let M(a) denote the image of θa. Thus, θa factors as follows.

(4.29)
A(a) B(a)

M(a)

θa

ρa ιa
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Now observe that all of these constructions are functorial. Thus, we have persistence
modules A, B andM . We also have natural transformations λk :MkT− 1

2k
⇒ A and µk : B ⇒

MkT 1

2k
. In addition we have the following commutative diagram of natural transformations.

A B

M

θ

ρ ι

These fit into the commutative diagram in Figure 6, where we have corresponding arrows
for all a ∈ R.

M0

M1

M2

M3

M4

M5

A,B,M, radM
a

Figure 6. A particular subsequence of a Cauchy sequence of persistence mod-
ules and some persistence modules in the limit.

Let a ∈ R and k ≥ 1. Define b = a+ 1
2k−1 . Then we have the following bi-infinite sequence.

(4.30) · · ·
βk+3
a−−−→ Mk+2(a+

1

2k+2
)
βk+2
a−−−→Mk+1(a+

1

2k+1
)
βk+1
a−−−→Mk(a +

1

2k
)

αk+1

b−−−→ Mk+1(b−
1

2k+1
)
αk+2

b−−−→Mk+2(b−
1

2k+2
)
αk+3

b−−−→ · · ·

Notice that the left part of this sequence is an initial part of (4.27) and the right part of
this sequence is a terminal part of (4.26). It follows that (4.30) has limit B(a) and colimit
A(b), and there is an induced map ν : B(a) → A(b). We obtain the commutative diagram
in Figure 7.

By the universal properties of limit and colimit, we have the following commutative dia-
gram.

A(a) A(b)

B(a) B(b)

θa

A(a≤b)

θb

B(a≤b)

ν
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Mk

Mk+1

Mk+2

Mk+3

Mk+4

Mk+5

Mk(a+
1
2k
)

B(a) A(b)

βk+1
a

βk+2
a

βk+3
a

βk+4
a

βk+5
a

µk+5
a

αk+1
b

αk+2
b

αk+3
b

αk+4
b

αk+5
b

λk+5
b

ν

µka λkb

Figure 7. The bi-infinite sequence in (4.30), its limit and colimit, and three
induced maps.

By the commutativity of the bottom right part of this diagram, we have that imB(a ≤ b) ⊂
im θb. So we have the following commutative diagram.

M(a) = im θa B(a) A(b)

im θb =M(b)

ιa

M(a≤b)

ν

B(a≤b)
ρb

Thus

(4.31) ρbνιa = B(a ≤ b)|im θa =M(a ≤ b).

Now consider the following natural transformations.

(4.32) (ρλk)T 1

2k
:Mk ⇒ MT 1

2k

(4.33) µkι :M ⇒ MkT 1

2k

We claim that these natural transformations provide an interleaving (Section 2.3). That is,

(4.34) ((µkι)T 1

2k
)((ρλk)T 1

2k
) =Mkη 1

2k−1
, and ((ρλk)T 1

2k−1
)(µkι) =Mη 1

2k−1
,

where η is the natural transformation defined in Section 2.3.
A pair of natural transformations are equal if and only if their components are equal.

We remark that for a natural transformations α and β, the natural transformation αTx has
components (αTx)a = αa+x, and the natural transformation βα has components (βα)a =
βaαa.

Let a ∈ R. We will verify the identities in (4.34) using the a component. For the left hand
side of the first identity, we have

M(a)

λk
a+ 1

2k−−−−→ A(a +
1

2k
)
ρ
a+ 1

2k−−−→M(a +
1

2k
)
ι
a+ 1

2k−−−→ B(a+
1

2k
)

µk
a+ 1

2k−−−−→M(a +
1

2k−1
) =M(b).
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Using (4.29) the composition of the inner two maps equals θa+ 1

2k
. Then using (4.28) we see

that the entire composition equals Mk(a ≤ a + 1
2k−1 ), as desired.

For the left hand side of the second identity, we have

M(a)
ιa−→ B(a)

µka−→M(a +
1

2k
)

λk
a+ 1

2k−1

−−−−−→ A(a +
1

2k−1
)

ρk
a+ 1

2k−1

−−−−−→ M(a +
1

2k−1
) =M(b).

Using the commutativity of the induced maps in Figure 7, the composition of the inner two
maps equals ν. Then using (4.31), we see that the entire composition equals M(a ≤ b), as
desired.

Thus (4.32) and (4.33) is a 1
2k
-interleaving. ThereforeM is a limit of the sequence (Mk) and

hence also a limit of the Cauchy sequence (M ′
n). Thus any Cauchy sequence of persistence

modules has a limit.
Now assume that each of the M ′

n are in (qtame). We will show that M ∈ (qtame). Let
a < b, and choose k ≥ 0 so that 1

2k−1 < b− a. Then the following diagram commutes.

Mk(a +
1
2k
) Mk(b−

1
2k
)

M(a) M(b)

Mk(a+
1

2k
<b− 1

2k
)

ρbλ
k
bµkaιa

M(a<b)

Since Mk is q-tame, the top horizontal arrow has finite rank, and hence so does the bottom
horizontal arrow. Thus M ∈ (qtame). Therefore any Cauchy sequence of q-tame persistence
modules has a limit.

Now since M ∈ (qtame), by Theorem 3.8, radM ∈ (cid) ∩ (qtame). By Proposition 3.7,
dI(M, radM) = 0. Therefore by the triangle inequality, radM is also a limit of the Cauchy
sequence. Thus (cid) ∩ (qtame) is complete.

Finally, assume that in addition, each M ′
n ∈ (cfid) ∩ (qtame). Since M is 1

2k
-interleaved

with Mk, which does not contain any infinite intervals in its direct sum decomposition,
neither does M . Therefore radM also does not contain any infinite intervals in its direct
sum decomposition. That is, radM ∈ (cfid) ∩ (qtame). �

Now we present a second, more concise proof of the main result in the previous proof.

Proof We may consider the diagram in Figure 5 to be a functor M : (R × N,≤) → Vect
k
,

where (R× N,≤) is the poset generated by the inequalities (a, k) ≤ (b, k), where a ≤ b ∈ R

and k ≥ 0, and (a, k − 1) ≤ (a+ 1
2k
, k) and (a, k) ≤ (a + 1

2k
, k − 1), where a ∈ R and k ≥ 1.

Now extend this poset to (R×N,≤), by adding the generating inequalities (a,∞) ≤ (b,∞)
for all a ≤ b, and (a− 1

2k
, k) ≤ (a,∞) and (a,∞) ≤ (a+ 1

2k
, k).

(R× N,≤) Vect
k

(R× N,≤)

M

i

We can extend the functor M to (R × N,≤) by taking either the left or the right Kan
extension. We obtain functors corresponding to the diagram in Figure 6, where A = LaniM
and B = RaniM . Then there is a canonical map θ : A ⇒ B, and the image of this map
gives another extension of M . Abusing notation, let M = im(θ) : (R× N,≤) → Vect

k
.

24



For k ∈ N, let Mk = M(−, k). Then by construction, M∞ is 1
2k
-interleaved with Mk.

Thus, M∞ is a limit of the Cauchy sequence. �

4.8. Baire spaces Let X be a topological space. A subspace A ⊂ X has empty interior in
X if A does not contain an open set in X . The space X is said to be a Baire space if for
any countable collection of closed sets in X with empty interior in X , their union also has
empty interior in X .

Theorem 4.35 (Baire category theorem). A complete extended pseudometric space is a
Baire space.

Proof Let X be an extended pseudometric space. Let {An} be a countable collection of
closed sets in X with empty interior in X . We want to show that

⋃

An has empty interior
in X . Let U be an open set in X . We will show that U 6⊂

⋃

An. We need an x ∈ U such
that for all n, x 6∈ An. By assumption, there is a x1 ∈ U with x1 6∈ A1. Since U is open and
A1 is closed, there is an r1 ≤ 1 such that Br1(x1) ⊂ U and Br1(x1) ∩ A1 = ∅. Let s1 = r1

2
.

Then Bs1(x1) ⊂ U and Bs1(x1) ∩ A1 = ∅. Given Bsn(xn) with Bsn(xn) ∩ An = ∅, then by
assumption, there is a xn+1 ∈ Bsn(x) with xn+1 6∈ An+1. Since Bsn(x) is open and An+1 is
closed, there is an rn+1 ≤

1
n+1

with Brn+1
(xn+1) ⊂ Bsn(yn) and Brn+1

(xn+1) ∩An+1 = ∅. Let

sn+1 = rn+1

2
. Then Bsn+1

(xn+1) ⊂ Bsn(yn) and Bsn+1
(xn+1) ∩ An+1 = ∅. Since Bs1(x1) ⊃

Bs2(x2) ⊃ Bs3(x3) ⊃ · · · and (sn) → 0, (xn) is a Cauchy sequence in X . Since X complete,

there exists a x ∈ X such that (xn) → x. Since xn ∈ Bs1(x1) for all n, x ∈ Bs1(x1) ⊂ U .

Also, for all n, the sequence xn, xn+1, xn+2, . . . in Bsn(xn) converges to x, so x ∈ Bsn(xn).
Thus x 6∈ An for all n. �

Corollary 4.36. Hence (cid) ∩ (qtame) and (cfid) ∩ (qtame) are Baire spaces.

4.9. Topological dimension LetX be a topological space. A collection of subsets ofX has
order m if there is a point in X contained in m of the subsets, but no point of X is contained
in m+ 1 of the subsets. The topological dimension of X (also called the Lebesgue covering
dimension) is the smallest number m such that every open cover of X has a refinement (see
Section 4.3) with order m+ 1.

Theorem 4.37. Let N ≥ 1. There exists an ε > 0 such that there is an isometric embedding
of the cube [0, ε]N with the L∞ distance into (ffid[c,d]).

Proof Assume [c, d] = [0, 1]. The proof for the general case is similar. Choose ε < 1
100N

. Let

x = (x1, . . . , xN) ∈ [0, ε]N . We will define a map x 7→ M = M(x) =
⊕N

i=1 Ii, where each
interval Ii = Ii(xi) depends only on xi. We will choose I1, . . . , IN to be far from each other
and far from the zero module but so that Ii(xi) is close to Ii(x

′
i) for any xi, x

′
i ∈ [0, ε].

For 1 ≤ i ≤ N , let Ii =
[

i
N
, i
N
+ 1

10N
+ xi

)

. Then dI(Ii(xi), Ii(x
′
i)) = |xi − x′i| ≤

1
100N

.

Also dI(Ii, 0) ≥ 1
20N

. Since for i 6= j, Ii and Ij are disjoint, and so we also have that
dI(Ii, Ij) ≥

1
20N

. Therefore dI(M(x),M(x′)) = ‖x− x′‖∞. �

Corollary 4.38. The topological dimension of all of the topological spaces of persistence
modules in Figure 3 is infinite.

Proof Let X be one of the spaces in Figure 3. Then by the previous theorem, for all N ≥ 1,
dimX ≥ dim[0, ε]N = N . Thus dimX = ∞. �
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5. Open questions

We end with some unresolved questions.

• Are (cid) and (cfid) complete?
• Can the results presented here be extended to multiparameter persistence modules
and generalized persistence modules?
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Appendix A. The arithmetic of maps and interleavings of interval modules

In this appendix, we give some basic results on interval modules, maps of interval modules,
interleavings of interval modules, and neighborhoods of interval modules.

A.1. Some relations between intervals First we define some relations between intervals
that will be useful in the following sections and describe some of their properties.

Recall that I ⊂ R is an interval if a, c ∈ I and a ≤ b ≤ c then b ∈ I. It follows that the
intersection of two intervals is an interval.

Definition A.1. For A,B ⊂ R, define the relation A ≤ B if

(1) for all a ∈ A there is a b ∈ B such that a ≤ b, and
(2) for all b ∈ B there is an a ∈ A such that a ≤ b.

Lemma A.2. This relation defines a partial order on intervals.

Proof Let A, B, and C be intervals. A ≤ A since for all a ∈ A, a ≤ a. Assume A ≤ B and
B ≤ A. Let a ∈ A. Then by Definition A.1 (1), there is b ∈ B with a ≤ b, and by Definition
A.1 (2), there is b′ ∈ B with b′ ≤ a. Since B is an interval a ∈ B. Thus A ⊂ B. Similarly
B ⊂ A.

Finally assume A ≤ B and B ≤ C. For all a ∈ A there is a b ∈ B with a ≤ b and c ∈ C
with b ≤ c. Thus a ≤ c. For all c ∈ C there is a b ∈ B with b ≤ c and a ∈ A with a ≤ b.
Thus a ≤ c. Therefore A ≤ C. �

Let us define another relation.

Definition A.3. For A,B ⊂ R, define A ≺ B if for all a ∈ A and b ∈ B, a ≤ b.

Lemma A.4. Let I and J be disjoint, nonempty intervals. Then J ≤ I iff J ≺ I.

Proof See Figure 8. Let j ∈ J . Then either condition implies that there is an i ∈ I with
j ≤ i. The negation of either condition implies that there is an i ∈ I with i < j. Since I is
an interval, this would imply that j ∈ I which is a contradiction. �
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I

J

Figure 8. Two disjoint nonempty intervals.

Lemma A.5. If J and I are intervals with J ≤ I then J \ (I ∩J) = J \ I is an interval and
I \ (I ∩ J) = I \ J is an interval.

Proof Let a, c ∈ J \ (I ∩ J) and a ≤ b ≤ c. Since J is an interval, b ∈ J . Since c ∈ J there
is a d ∈ I with c ≤ d. Since c 6∈ I and I is an interval, b 6∈ I. Thus b ∈ J \ (I ∩ J).

Let a, c ∈ I \ (I ∩ J) and a ≤ b ≤ c. Since I is an interval b ∈ I. Since a ∈ I there is a
x ∈ J with x ≤ a. Since a 6∈ J and J is an interval, b 6∈ J . Thus b ∈ I \ (I ∩ J). �

Lemma A.6. Let I and J be intervals with J ≤ I. Then J \ (I ∩ J) ≺ (I ∩ J), and
(I ∩ J) ≺ I \ (I ∩ J).

Proof First note that if either A or B is empty then A ≺ B. Suppose j ∈ J \ (I ∩ J) and
i ∈ I ∩ J with i < j. Since J ≤ I, there is an i′ ∈ I with j ≤ i′. Since I is an interval,
j ∈ I, which is a contradiction. Thus, for all j ∈ J \ (I ∩ J) and for all i ∈ I ∩ J , j ≤ i.
That is, J \ (I ∩ J) ≺ (I ∩ J). Similarly, let j ∈ I ∩ J and i ∈ I \ (I ∩ J) with i < j.
Again, since J ≤ I, there is a j′ ∈ J with j′ ≤ i. Since J is an interval, i ∈ J , which is a
contradiction. �

I\(I ∩ J)

I

I ∩ J

J

J\(I ∩ J)

Figure 9. The interval modules in Lemma A.5, Lemma A.6, Proposition A.7,
Lemma A.8, and Corollary A.9.

A.2. Nonzero maps of interval modules In this section we characterize nonzero maps
of interval modules.

Proposition A.7. Let I and J be nonempty intervals. There is a nonzero map of persistence
modules f : I → J if and only if J ≤ I and I ∩ J 6= ∅.

Proof (⇒) Assume f 6= 0. Then there is an a ∈ R such that 0 6= fa : I(a) → J(a). Without
loss of generality, assume that fa = 1. Thus a ∈ I and a ∈ J . We need to check the
conditions in Definition A.1.
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(1) For all i ∈ I with a ≤ i, the condition is satisfied by a ∈ J . For all i ∈ I with i ≤ a,
we have the following commutative diagram,

I(i) I(a)

J(i) J(a)

1

fi fa=1

which implies that i ∈ J , and thus J(i ≤ a) = 1, and therefore fi = 1. (2) For all j ∈ J with
j ≤ a, the condition is satisfied by a ∈ I. For all j ∈ J with a ≤ j, we have the following
commutative diagram,

I(a) I(j)

J(a) J(j)

fa=1 fj

1

which implies that j ∈ I, I(a ≤ j) = 1, and fj = 1.
(⇐) Define f : I → J by fa = 1 if a ∈ I ∩ J , and fa = 0 otherwise. We claim that f is a

natural transformation. For a ≤ b, we need to check that the diagram

I(a) I(b)

J(a) J(b)

fa fb

commutes. There are four cases to check. If a, b ∈ I ∩ J , then all four maps are the identity
and thus the diagram commutes. If a, b 6∈ I ∩ J then both vertical maps are zero and thus
the diagram commutes.

If a ∈ I ∩ J and b 6∈ I ∩ J then by definition the left map is the identity and the right
map is zero. If b ∈ J then b 6∈ I, which implies, since I is an interval, that for all c ≥ b,
c 6∈ I. But this contradicts Definition A.1 (1). Therefore b 6∈ J . Thus J(b) = 0 and hence
the diagram commutes.

If a 6∈ I ∩ J and b ∈ I ∩ J , then fa = 0 and without loss of generality fb = 1. Again a ∈ I
implies a 6∈ J , which implies that for all c ≤ a, c 6∈ J , which is a contradiction. Therefore
a 6∈ I which implies that I(a) = 0 and thus the diagram commutes. �

Lemma A.8. Assume there is a nonzero map f : I → J of interval modules. Then (up to
isomorphism) fa = 1 if a ∈ I ∩ J and fa = 0 otherwise.

Proof Assume f 6= 0. The there is a b ∈ I ∩ J such that fb is nonzero. Without loss of
generality, we may assume that fb = 1. Let a ≤ b ≤ c ∈ I ∩ J . We have the following
commutative diagram,

I(a) I(b) I(c)

J(a) J(b) J(c)

1

fa fb=1

1

fc

1 1

which implies that fa = 1 and fc = 1. Thus fa = 1 for all a ∈ I ∩ J .
If a 6∈ I ∩ J then either I(a) = 0 or J(a) = 0, which implies that fa = 0. �
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Corollary A.9. Let f : I → J be a nonzero map of interval modules. Then the image of
f is I ∩ J , the kernel of f is I \ (I ∩ J), the cokernel of f is J \ (I ∩ J), and f factors as
follows.

I J

I ∩ J

f

A.3. Interleavings of interval modules In this section we characterize interleavings of
interval modules.

Definition A.10. Let I be an interval and ε ∈ R. Define the shifted interval I[ε] by x ∈ I[ε]
if and only if x+ ε ∈ I. For example, [a, b)[ε] = [a− ε, b− ε).

The next lemma follows immediately from the definitions.

Lemma A.11. If I is a nonempty interval and ε ≥ 0, then I[ε] ≤ I.

Definition A.12. Let M be a persistence module and let ε ∈ R. We define the shifted
persistence module M [ε] by M [ε](a) =M(a+ ε) and M [ε](a ≤ b) =M(a+ ε ≤ b+ ε). That
is, M [ε] =MTε.

We remark that these two definitions are compatible. If I is an interval module and ε ∈ R,
then the shifted persistence module I[ε] is the interval module on the interval I[ε]. Also note
that 0[ε] = 0.

Let I be an interval and ε ≥ 0. If I ∩ I[ε] 6= ∅, we denote the corresponding nonzero map
from Proposition A.7 by I(ε) : I → I[ε]. If I and I[ε] are disjoint, we denote the zero map
by I(ε) : I → I[ε]. In either case, I(ε) = Iηε.

Definition A.13. Given a map of persistence modules α : M → N and ε ∈ R, define
α[ε] :M [ε] → N [ε] by α[ε]a = αa+ε. That is, α[ε] = αTε.

As a special case of Definition 2.8, we have the following.

Definition A.14. Let I and J be interval modules and ε ≥ 0. Then I and J are ε-interleaved
if there exist maps ϕ : I → J [ε] and ψ : J → I[ε] such that ψ[ε]ϕ = I(2ε) and ϕ[ε]ψ = J (2ε).

Lemma A.15. If intervals satisfy K ≤ J ≤ I then I ∩K ⊂ J .

Proof Let x ∈ I ∩K. Then there is a j ∈ J such that x ≤ j. Also, there is a j′ ∈ J with
j′ ≤ x. Since J is an interval, x ∈ J . �

Lemma A.16. If K ≤ J ≤ I then I ∩K = (I ∩ J) ∩ (J ∩K).

Proof One direction is easy: (I ∩ J) ∩ (J ∩K) = I ∩ J ∩K ⊂ I ∩K. The other direction
follows from Lemma A.15. �

Proposition A.17. Let I and J be interval modules and ε ≥ 0. If J [ε] ≤ I and I[ε] ≤ J
then I and J are ε-interleaved.

Proof Define ϕ : I → J [ε] by ϕx = 1 if x ∈ I ∩ J [ε] and ϕx = 0 otherwise. Similarly define
ψ : J → I[ε] by ψx = 1 if x ∈ J ∩ I[ε] and ψx = 0 otherwise. We claim that these provide
the desired ε-interleaving.
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First, I(2ε) : I → I[2ε] is given by I
(2ε)
x = 1 if x ∈ I ∩ I[2ε] and I

(2ε)
x = 0 otherwise. Next,

ψ[ε]ϕx = 1 if x ∈ (I ∩J [ε])∩ (J [ε]∩ I[2ε]) and ψ[ε]ϕx = 0 otherwise. By Lemma A.16, these
maps are equal. Similarly, ϕ[ε]ψ = J (2ε). �

Next, we define the erosion of a persistence module. Compare with [37, 39].

Definition A.18. Let I be an interval or an interval module and ε ≥ 0. We define the
ε-erosion of I to be I−ε = I[ε] ∩ I[−ε].

Note that I[ε] ≤ I−ε ≤ I[−ε]. See Figure 10.

I

I[−ε]

I−ε

I[ε]

Figure 10. An interval module and its erosion.
.

Corollary A.19. If J [ε] ≤ I and I[ε] ≤ J then I−ε ⊂ J and J−ε ⊂ I.

Proof It follows from the assumptions that we also have J ≤ I[−ε] and I ≤ J [−ε]. So we
have J [ε] ≤ I ≤ J [−ε] and I[ε] ≤ J ≤ I[−ε]. The result follows from Lemma A.15. �

Theorem A.20. Let I and J be interval modules and ε ≥ 0. Then I and J are ε-interleaved
if only if I−ε ⊂ J and J−ε ⊂ I.

Proof (⇒) Let ϕ and ψ be an ε-interleaving. If either ϕ or ψ are zero, then from Defini-
tion A.14, I(2ε) and J (2ε) are zero. It follows that I−ε and J−ε are both empty and the
condition is satisfied. If both ϕ and ψ are nonzero, then by Proposition A.7, J [ε] ≤ I and
I[ε] ≤ J . The result follows from Corollary A.19.

(⇐) We need to check four cases. (1) I−ε and J−ε are both empty. Then I and J are
ε-interleaved by ϕ = 0 and ψ = 0.

(2) I−ε and J−ε are both nonempty. Let a ∈ I[ε]. Then there is an element b ∈ I−ε ⊂ J
with a ≤ b. Let b ∈ I. Then there is an element a ∈ I−ε[ε] ⊂ J [ε] with a ≤ b. Let a ∈ J [ε].
Then there is an element b ∈ J−ε ⊂ I with a ≤ b. Let b ∈ J . Then there is an element
a ∈ J−ε[ε] ⊂ I[ε] with a ≤ b. The result follows from Proposition A.17.

(3) I−ε is nonempty and J−ε is empty. Let a ∈ I[ε]. Then there is b ∈ I−ε ⊂ J with a ≤ b.
Since J is shorter than I, it follows that I[ε] ≤ J . Let b ∈ I. Then there is a ∈ I−ε[ε] ⊂ J [ε]
with a ≤ b. Since J is shorter than I, it follows that J [ε] ≤ I. The result follows from
Proposition A.17.

(4) is the same as the third case. �

A.4. Neighborhoods of interval modules Using Theorem A.20, one obtains a complete
characterization of the interval modules within distance ε of an interval module.
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Example A.21. Consider the interval module [a, b) and let ε ∈ [0, b−a
2
). Then an interval

module I is ε-interleaved with [a, b) if and only if [a+ε, b−ε) ⊂ I ⊂ [a−ε, b+ε). Furthermore
Bε([a, b)) consists of those interval modules I satisfying

a− ε < inf I < a+ ε and b− ε < sup I < b+ ε.

Example A.22. Consider the interval module [a, b) and let ε ≥ b−a
2
. Then an interval I is

ε-interleaved with [a, b) if and only if either I ⊂ [a− ε, b+ ε) or if for no x ∈ R do we have
[x − ε, x + ε] ⊂ I. Furthermore, Bε([a, b)) consists of those interval modules I with either
a− ε < inf I and sup I < b+ ε or diam I < ε.

Example A.23. Consider the interval module [a,∞) and let ε ≥ 0. Then an interval
module I is ε-interleaved with [a,∞) if and only if [a+ ε,∞) ⊂ I ⊂ [a− ε,∞). Furthermore
Bε([a,∞)) consists of interval modules I satisfying a− ε < inf I < a+ ε.
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