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Abstract
Motivated by applications in Topological Data Analysis, we consider decompositions
of a simplicial complex induced by a cover of its vertices. We study how the homotopy
type of such decompositions approximates the homotopy of the simplicial complex
itself. The difference between the simplicial complex and such an approximation
is quantitatively measured by means of the so called obstruction complexes. Our
general machinery is then specialized to clique complexes, Vietoris-Rips complexes
and Vietoris-Rips complexes of metric gluings.

Keywords Vietoris-Rips complexes · Metric gluings · Closed classes · Homotopy
push-outs

Mathematics Subject Classification 55 · 55N31 · 62R40

1 Introduction

Homology is an example of an invariant that is both calculable and geometrically infor-
mative. These two features are key reasons why invariants derived from homology
are fundamental in Algebraic Topology in general and in Topological Data Analysis
(TDA), see (Carlsson 2009), in particular. Themost effective strategies for calculating
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homology in algebraic topology are based on the fact that homology converts homo-
topy push-outs of spaces into Mayer-Vietoris exact sequences. Thus decomposing a
space into a homotopy push-out enables the extraction of homologies of the decom-
posed space (global information) from the homologies of the spaces in the push-out
(local information).

The ability to extract global information from local is important. What is meant
by local information however depends on the input and the description of considered
spaces. For example what is often understood as local information in TDA differs from
the local information described above (push-out decomposition).

In TDA the input is typically a finite pseudo-metric space. This information is
then converted into spacial information and in this article we focus on the so called
Vietoris-Rips construction (Hausmann 1995) for that purpose. Homologies extracted
from this space give rise to invariants of the metric space used in TDA such as persis-
tent homology (Cagliari et al. 2001; Delfinado and Edelsbrunner 1995; Edelsbrunner
and Harer 2008; Ferri 1995; Frosini and Landi 1999), barcodes (Carlsson et al. 2005),
stable ranks (Chachólski and Riihimäki 2020; Scolamiero et al. 2017), or persistent
landscapes (Bubenik 2015). This conversion process, from metric into spacial infor-
mation, does not in general transform the gluing of metric spaces (Taubes 1996) into
homotopy push-outs and homotopy colimits of simplicial complexes. The aim of this
paper is to understand how close such metric space decompositions are to decompo-
sitions into homotopy push-outs. Our work was inspired by Adamaszek et al. (2018)
and Adamaszek et al. (2020), and grew out from realising that analogous statements
hold true for arbitrary simplicial complexes and not just Vietoris-Rips complexes. To
get these general statements we use categorical techniques. This enables us to prove
stronger results using arguments that for us are more transparent.

The most general input for our investigation is a simplicial complex K and a cover
X ∪ Y = K0 of its set of vertices. In this article we study the map K X ∪ KY ⊂ K
where K X and KY are subcomplexes of K consisting of all these simplices of K which
are subsets of X and Y respectively. The goal is to estimate the homotopy fibers of
this inclusion. We do that in terms of obstruction complexes St(σ, X ∩ Y ) := {μ ⊂
X ∩Y | 0 < |μ| and μ∪σ ∈ K } indexed by simplices σ in K (see Definition 5.1). Our
main result, Theorem 8.6, states that the homotopy fibers of K X ∪ KY ⊂ K are in the
same closed class (see Paragraph 3.5, and Chachólski (1996), Dror Farjoun (1995),
Farjoun (1996)) as the obstruction complexes St(σ, X ∩ Y ) for all σ in K such that
σ ∩ X �= ∅, σ ∩ Y �= ∅, and σ ∩ X ∩ Y = ∅. For instance (see Corollary 8.7.1) if,
for all such σ , the obstruction complex St(σ, X ∩ Y ) is contractible, then K X ∪ KY ⊂
K is a weak equivalence and consequently K decomposes as a homotopy push-out
hocolim(K X ←↩ K X∩Y ↪→ KY ) leading to a Mayer-Vietoris exact sequence. Another
instance of our result (see Corollary 8.7.2) states that if these obstruction complexes
have trivial homology in degrees not exceeding n, then so do the homotopy fibers of
K X ∪ KY ⊂ K and consequently this map induces an isomorphism on homology
in degrees not exceeding n, leading to a partial Mayer-Vietoris exact sequence. Yet
another consequence (see Corollary 8.7.3) is that if these obstruction complexes have
p-torsion homology for a prime p, then, for any field F of characteristic different
than p, the inclusion K X ∪ KY ⊂ K induces an isomorphism on homology with
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Homotopical decompositions of simplicial and Vietoris Rips complexes 217

coefficients in F leading again to a Mayer-Vietoris exact sequence (see (Adamaszek
2014) for examples of relevant complexes where torsion is present).

An essential assumption to guarantee stability of the formation of Vietoris-Rips
complexes is the triangular inequality of the input distance spaces. We thus believe
it is important to investigate and understand the role of the triangular inequality in
persistent homology. That is why in Sect. 10 we specialise our theorem about the
cellularity of the homotopy fibers of the inclusion K X ∪ KY ⊂ K to the case when K
is clique and give some conditions that imply the assumptions of the theorem in this
case. Obtained results generalize the statements proven in Adamaszek et al. (2018)
and Adamaszek et al. (2020) for Vietoris-Rips complexes. We would like to stress
that our results are not just for Vietoris-Rips complexes but hold more generally for
clique complexes. In particular, the triangular inequality of the input distance space is
not needed for these statements to hold. However in order to prove Theorem 12.5 it is
essential that the considered complex is the Vietoris-Rips complex of themetric gluing
of pseudo-metric spaces for which the triangular inequality is satisfied. This theorem
gives 2-connectedness of the relevant homotopy fibers and hence can be used to cal-
culate H1 and H0 of the gluing in terms of H1’s and H0’s of the components and the
intersection.

Putting the results of Adamaszek et al. (2018) and Adamaszek et al. (2020) in
a broader context was a mathematical motivation for this article. Presenting math-
ematical foundations for a strategy of calculating persistent homology based on
decompositionswas anothermotivation. Even in the case ametric is obtained by gluing
together several metrics defined locally (metric gluing), homology of its Vietoris-Rips
complex is a global invariant. That is one of the reason why there are no efficient par-
allelisable algorithms for calculating persistent homology in general. That prohibits
calculating persistent homology based invariants for metrics constructed out of large
networks such as large-scale collections of GPS traces for vehicles and pedestrians or
trackmotions of high-energy particlesmoving along filamentary trajectories (see Aan-
janeya et al. 2011). However since strategies based on decompositions would allow
parallelisation, they can bemore useful for such largemetrics. For example one can use
Theorem 12.5 to calculate the 1-st persistent homology of certain metrics in terms of
local information. More generally one can use Theorem 8.6 to estimate the difference
between the global persistent homology of a distance and the persistent homologies
of its local pieces appropriately glued. Theorem 8.6 not only can be used to estimate
homological differences between global and local persistent homologies but also can
be used to estimate the difference on the space level. Illustrating this is the reason we
wrote Sect. 13.

Following the mathematical foundations presented in this article, next steps in
developing more effective strategies of calculating persistent homology using decom-
positions would require understanding effects of decompositions into homotopy
colimits of diagrams indexed by more complex categories. Categories of interest are
higher dimensional cubes (corresponding to covers into more than two sets), or zig-
zags (related to the formation of Reeb graphs and the mapper algorithms) or categories
related to groups and group actions.
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2 Homotopy primer on simplicial sets

We refer the reader to Curtis (1967), Goerss and Jardine (1999) for an overview of
how to do homotopy theory on simplicial sets. To make the paper more self con-
tained however, we recall in this section basic homotopical constructions which play
a fundamental role in our statements. We consider the standard model structure on the
category of simplicial sets where weak equivalences are the maps inducing bijections
on all the homotopy groups with respect to any choice of a base point.

Amodel structure guarantees that an arbitrarymap f : X → Y of simplicial sets can
be factored in two ways, a weak equivalence followed by a fibration and a cofibration
followed by a weak equivalence:

X ′

X Y

Y ′

p f

f

�

c f

�

Once such factorisations of f are chosen, we refer to the fiber p−1
f (y) (of the

fibration p f ) as a homotopy fiber of f over y, and to the quotient Y ′/c f (X) as a
homotopy cofiber of f . The homotopy types of homotopy fibers and of f do not
depend on the choice of the factorisations and we use the symbols Fib( f , y) and
Cof( f ) to denote them. Homotopy fibers and cofibers of f fit into the following exact
sequences for every natural number k, where H• is a homology functor (possibly
extraordinary):

πk+1(X , x) πk+1(Y , f (x))

πk(Fib( f , f (x))) πk(X , x) πk(Y , f (x))

Hk+1(Y ) Hk+1(Cof( f ))

Hk(X) Hk(Y ) Hk(Cof( f ))

πk+1( f )

πk ( f )

Hk ( f )

In particular, Fib( f , y) is n-connected for every y, if and only if, for every x in X ,
πk( f ) is a bijection for all k ≤ n and a surjection for k = n + 1. Thus the homotopy
fibers measure to what extent f is a weak equivalence.

Homotopy fibers and cofibers can be assigned not only to 1-dimensional cubes,
i.e., maps, but also to higher dimensional cubes. Here we just illustrate how to do that
for a commutative square i.e., a 2-dimensional cube. Let us consider a commutative
square represented by the diagonal ABC D in the following diagram. We can use the
same factorisation axiom of the model structure to fit this square into the following
commutative 3-dimensional cube where the indicated arrows are respectively weak
equivalences, fibrations, cofibrations, the square AB ′C Q is a push-out, and the square
P BC ′ D is a pull-back:
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A B ′

P B

C Q

C ′ D

�

�

Themaps A → P and Q → D are then uniquely determined by the commutativity of
this diagram and the fact that the squares P BC ′ D and AB ′C Q are pull-back and push-
out respectively. If the map Q → D is a weak equivalence, then the square ABC D is
called a homotopy push-out. If A → P is a weak equivalence, then ABC D is called
a homotopy pull-back. For example, a push-out square ABC D for which A → B
is a cofibration is a homotopy push-out, and a pull-back square ABC D for which
C → D is a fibration is a homotopy pull-back.

Consider now two composable maps X Y Zf g . These maps are said to
form a cofibration sequence, respectiely a fibration sequence, if they can be fitted
into a commutative square:

X Y

O Z

f

g

where O is contractible and the square is homotopy push-out, respectively homotopy

pull-back. For example if g : Y → Z is a fibration, then g−1(z) Y Zg

form a fibration sequence. If f : X → Y is a cofibration then f together with the
quotient map Y → Y/ f (X) is a cofibration sequence.

If X Y Zf g is a fibration sequence, then X is a homotopy fiber of
g : Y → Z and, for every natural number k, there is an exact sequence:

πk+1(Y , f (x)) πk+1(Z , g( f (x)))

πk(X , x) πk(Y , f (x)) πk(Z , g( f (x)))

πk+1(g)

πk ( f ) πk (g)

If X Y Zf g is a cofibration sequence, then Z is the homotopy cofiber of
f : X → Y and, for every natural number k, there is an exact sequence, where H• is
a homology functor:
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Hk+1(Y ) Hk+1(Z)

Hk(X) Hk(Y ) Hk(Z)

Hk+1(g)

Hk ( f ) Hk (g)

3 Small categories and simplicial sets

In this section we recall some elements of a convenient language for describing and
discussing homotopical properties of small categories. The key role here is played by
the nerve construction (Latch et al. 1979, [25]) that transforms small categories into
simplicial sets.

Here is a list of definitions and characterizations of various homotopical notions
for small categories and some statements regarding these notions.

3.1 Let C be a property of simplicial sets, such as being contractible, n-connected,
having p-torsion integral reduced homology, or having trivial reduced homology in
some degrees. By definition a small category I satisfies C if and only if its nerve N (I )
satisfies C.
3.2 Let C be a property of maps of simplicial sets, such as being a weak equivalence,
a homology isomorphism, or having n-connected homotopy fibers. By definition, a
functor f : I → J between small categories satisfies C if and only if the map of
simplicial sets N ( f ) : N (I ) → N (J ) satisfies C.
3.3 Functors f , g : I → J are homotopic if the maps N ( f ), N (g) : N (I ) → N (J )

are homotopic. For example, if there is a natural transformation φ : f ⇒ g between
f and g, then f and g are homotopic.
Assume I has a terminal object t . Then there is a unique natural transformation

from the identity functor id : I → I to the constant functor t : I → I with value t .
The identity functor is therefore homotopic to the constant functor, and consequently
I is contractible. By a similar argument, a category with an initial object is also
contractible.

3.4 A commutative square of small categories is called a homotopy push-out (pull-
back) if after applying the nerve construction the obtained commutative square of
simplicial sets is a homotopy push-out (pull-back).

3.5 Recall that a collection C of simplicial sets is closed if it contains a nonempty
simplicial set and it is closed under weak equivalences and homotopy colimits indexed
by arbitrary small contractible categories (Chachólski 1996,Corollary 7.7).Any closed
collection contains all contractible simplicial sets (Chachólski 1996, Proposition 4.5).
If a closed collection contains an empty simplicial set, then it contains all simplicial
sets.

The following are some examples of collections of simplicial sets that are closed:
contractible simplicial sets, n-connected simplicial sets, connected simplicial sets
having p-torsion reduced integral homology, simplicial sets having trivial reduced

123



Homotopical decompositions of simplicial and Vietoris Rips complexes 221

homology with some fixed coefficients up to a given degree, and simplicial sets which
are acyclic with respect to some (possibly not ordinary) homology theory.

Let C be a closed collection of simplicial sets and f : I → J be a functor between
small categories. We say that homotopy fibers of f satisfy C if the homotopy fibers of
N ( f ) : N (I ) → N (J ), over any component in N (J ), belong to C.
3.6 Let f : I → J be a functor between small categories. For an object j in J , the
symbol j ↑ f denotes the categorywhose objects are pairs (i, α : j → f (i)) consisting
of an object i in I and a morphism α : j → f (i) in J . The set of morphisms in
j ↑ f between (i, α : j → f (i)) and (i ′, α′ : j → f (i ′)) is by definition the set of
morphisms β : i → i ′ in I for which the following triangle commutes:

j

f (i) f (i ′)′

α α′

f (β)

The composition in j ↑ f is given by the composition in I .
For an object j in J , the symbol f ↓ j denotes the category whose objects are pairs

(i, α : f (i) → j) consisting of an object i in I and a morphism α : f (i) → j in J .
The set of morphisms in f ↓ j between (i, α : f (i) → j) and (i ′, α′ : f (i ′) → j)
is by definition the set of morphisms β : i → i ′ in I for which the following triangle
commutes:

f (i) f (i ′)

j

f (β)

α α′

The composition in f ↓ j is given by the composition in I .

Theorem 3.7 (Chachólski 1996, Theorem 9.1) LetC be a closed collection of simplicial
sets and f : I → J be a functor between small categories.

1. If, for every j , f ↓ j satisfies C, then so do the homotopy fibers of f .
2. If, for every j , j ↑ f satisfies C, then so do the homotopy fibers of f .

Depending on the choice of a closed collection, Theorem 3.7 leads to:

Corollary 3.8 Let f : I → J be a functor between small categories.

1. If, for every j , f ↓ j (respectively j ↑ f ) is contractible, then f is a weak equiva-
lence.

2. If, for every j , f ↓ j (respectively j ↑ f ) is n-connected for some n ≥ 0, then the
homotopy fibers of f are n-connected. Thus in this case f induces an isomorphism
on homotopy groups in degrees 0, . . . , n and a surjection in degree n + 1.

3. If, for every j , f ↓ j (respectively j ↑ f ) is connected and has p-torsion reduced
integral homology in degrees not exceeding n (n ≥ 0), then the homotopy fibers
of f are connected and have p-torsion reduced integral homology in degrees not
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exceeding n. Thus in this case, for primes q �= p, f induces an isomorphism on
H∗(−,Z/q) for ∗ ≤ n and a surjection on Hn+1(−,Z/q).

4. If, for every j , f ↓ j (respectively j ↑ f ) is acyclic with respect to some homology
theory, then f induces an isomorphism in this homology theory.

4 Simplicial complexes and small categories

4.1 Fix a set U called a universe. A simplicial complex is a collection K of finite
nonempty subsets of U that satisfies the following requirement: if σ ⊂ U is in K , then
every non-empty subset of σ is also in K .

Let X ⊂ U be a subset. The collection {{x} | x ∈ X}, consisting of singletons in
X , is a simplicial complex denoted also by X , called the discrete simplicial complex
on X . The collection {σ ⊂ X | 1 ≤ |σ | < ∞} of all finite nonempty subsets of X is
also a simplicial complex denoted by Δ[X ] and called the simplex on X . A simplicial
complex is called a standard simplex if it is of the form Δ[X ] for some X ⊂ U . The
simplex Δ[∅] is called the empty simplex or the empty simplicial complex.

4.2 Let K be a simplicial complex. An element σ in K is called a simplex of K of
dimension |σ | − 1. The set of n-dimensional simplices in K is denoted by Kn . An
element x ∈ U is called a vertex of K if {x} is a simplex in K . The assignment
x �→ {x} is a bijection between the set of vertices in K and the set of its 0-dimensional
simplices K0. We use this bijection to identify these sets. Thus we are going to refer
to 0-dimensional simplices in K also as vertices.

4.3 If {K i }i∈I is a family of simplicial complexes, then both the intersection ∩i∈I K i

and the union ∪i∈I K i are also simplicial complexes. In particular, if K is a simplicial
complex and X ⊂ U is a subset, then the intersection K ∩Δ[X ] is a simplicial complex
consisting of the elements of K that are subsets of X . This intersection is called the
restriction of K to X and is denoted by K X .

Note that Δ[X ] ∩ Δ[Y ] = Δ[X ∩ Y ]. Thus the intersection of standard simplices
(see 4.1) is again a standard simplex, which can possibly be empty.

Let L and K be simplicial complexes. If L ⊂ K , then L is called a subcomplex
of K . Being a subcomplex is a partial order relation on the collection of all simplicial
complexes which gives this collection the structure of a lattice. The union is the join
and the intersection is the meet.

The collection ∪0≤i≤n Ki is a subcomplex of K called the n-th skeleton of K and
denoted by skn K .

4.4 A map between two simplicial complexes K and L is by definition a function
φ : K → L for which there exists a function f : K0 → L0 such that φ(σ) =
∪x∈σ f ({x}) for all σ in K . In particular φ({x}) = f ({x}) for every vertex x in
K . Thus f is uniquely determined by φ and we often use the symbol φ0 to denote f .
If K and L are fixed, then φ is determined by f = φ0. The inclusion L ⊂ K of a
subcomplex is an example of a map.

For any simplicial complex K , the inclusions K0 ⊂ K ⊂ Δ[K0], between the
discrete simplicial complex K0, K , and the simplexΔ[K0]on K0 aremapsof simplicial
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complexes. The induced functions on the set of vertices for these two inclusions are
given by the identity function id : K0 → K0.

4.5 Classically, the geometrical realization is used to define and study homotopical
properties of simplicial complexes. For example, a commutative square of simplicial
complexes is called a homotopy push-out (pull-back) if after applying the realization,
the obtained commutative square of spaces is a homotopy push-out (pull-back). For
instance two simplicial complexes K and L fit into the following commutative diagram
of subcomplex inclusions:

K ∩ L K

L K ∪ L

By applying the realization construction to this square, we obtain a commutative
square of spaces which is a push-out and hence a homotopy push-out as the maps
involved are cofibrations.

There are situations however when another way of extracting homotopical proper-
ties of simplicial complexes is more convenient. In the rest of this section, we recall
how one can retrieve and study such information by first transforming simplicial com-
plexes into small categories and then using the nerve construction as explained in
Sect. 3.

4.6 Let K be a simplicial complex. The simplex category of K , denoted also by the
same symbol K , is by definition the inclusion poset of its simplices. Thus, the objects
of K are the simplices in K and the sets of morphisms are either empty or contain
only one element:

|morK (σ, τ )| =
{
1 if σ ⊂ τ

0 otherwise

If φ : K → L is a map of simplicial complexes, then the assignment σ �→ φ(σ) is a
functor of simplex categories. We denote this functor also by the symbol φ : K → L .
Not all functors between K and L are of such a form.

The geometrical realization of a simplicial complex is weakly equivalent to the
realization of the nerve of this simplicial complex. Thus to describe homotopical
properties of simplicial complexes we can either use their geometrical realizations or
the nerves of their simplex categories.

Proposition 4.7 Let K be a simplicial complex, n ≥ 0 a natural number, and P ⊂ K a
subposet such that skn+1K ⊂ P. Then the homotopy fibers of P ⊂ K are n-connected.
In particular the functor P ⊂ K induces an isomorphism on homotopy and integral
homology groups in degrees 0, . . . , n and a surjection in degree n + 1.

Proof Let us denote the inclusion skn+1K ⊂ P functor by f . For every simplex σ

in P , the category f ↓ σ is the simplex category of skn+1Δ[σ ]. Since skn+1Δ[σ ] is
n-connected, Corollary 3.8.2 implies that the homotopy fibers of f are n-connected.
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The same argument gives n-connectedness of the homotopy fibers of the inclusion
skn+1K ⊂ K . Consequently the homotopy fibers of the inclusion P ⊂ K are also
n-connected. ��
4.8 Let K be a simplicial complex. Define the star of a simplex σ in K to be St(σ ) :=
{μ ∈ K | σ ∪ μ ∈ K }. Note that St(σ ) is a subcomplex of K which contains Δ[σ ].
If τ ⊂ σ , then St(σ ) ⊂ St(τ ), and thus σ �→ St(σ ) is a contravariant functor indexed
by the simplex category K with values in the inclusion poset of subcomplexes of K .

The star of any simplex is contractible. More generally:

Proposition 4.9 Let σ be a simplex in K . Then, for any proper subset S � σ , the
collection L := {μ ∈ K | μ ∩ S = ∅ and σ ∪ μ ∈ K } is a contractible simplicial
complex (note that if S = ∅, then L = St(σ )).

Proof For all μ in L , the inclusions μ ↪→ μ ∪ (σ\S) ←↩ σ\S form natural transfor-
mations between:

– the identity functor id : L → L , μ �→ μ,
– L → L , given by μ �→ μ ∪ (σ\S),
– and the constant functor L → L , μ �→ σ\S.

The identity functor id : L → L is therefore homotopic to the constant functor and
consequently L is contractible. ��
4.10 Let K be a simplicial complex. It’s simplex τ is called central if K = St(τ ),
i.e., if for any simplex σ in K , the set σ ∪ τ is also a simplex in K . For example, if
X ⊂ U is non empty, then all simplices in Δ[X ] (see 4.1) are central. If τ is a central
simplex in K , then so is any subset τ ′ ⊂ τ . According to Proposition 4.9, a simplicial
complex that has a central simplex is contractible.

4.11Let K and L be simplicial complexes. If K ∩L = ∅, thenwe define their join K ∗L
to be the simplicial complex consisting of all subsets of U of the form σ ∪τ where σ is
in K and τ is in L . The join is only defined for disjoint simplicial complexes. The set
of vertices (K ∗ L)0 is given by the (disjoint) union K0∪ L0. Note that K ∗Δ[∅] = K .
If σ ∈ L is central in L , then it is central in K ∗ L . Thus, for any non-empty subset
X ⊂ U\K0, the join K ∗ Δ[X ] is contractible. Furthermore the join commutes with
unions and intersections: if (K1∪K2)∩L = ∅, then (K1∪K2)∗L = (K1∗L)∪(K2∗L)

and (K1∩ K2)∗ L = (K1∗ L)∩(K2∗ L). This can be used to show that, for any choice
of a base-points in K and L , the join K ∗ L has the homotopy type of the suspension
of the smash Σ(|K | ∧ |L]). In particular if K is n-connected and L is m-connected,
then K ∗ L is n + m + 1-connected.

5 One outside point

In this section we recall how the homotopy type of a simplical complex changes when
a vertex is added. We start with defining subcomplexes that play an important role in
describing such changes. These complexes are essentially used throughout the entire
paper.
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Fig. 1 The simplicial complex
K has five vertices in total. The
set A = K0\{v0, v1} here
consists of three points
{a0, a1, a2}. The obstruction
complex associated to the
simplex σ , St(σ, A), contains
only vertices a0 and a1, but not
the edge {a0, a1}

Definition 5.1 Let K be a simplicial complex and A ⊂ U be a subset. For a simplex
σ in K , define the obstruction complex:

St(σ, A) := {μ ⊂ A | 0 < |μ| and μ ∪ σ ∈ K } = K A ∩ St(σ )

Ifμ belongs to St(σ, A), then so does any of its non empty finite subsets. Thus St(σ, A)

is a simplicial complex. It is a subcomplex of K A. Note that the complex St(σ, A)may
be empty. If τ ⊂ σ , then St(σ, A) ⊂ St(τ, A) and hence σ �→ St(σ, A) is a con-
travariant functor indexed by the simplex category K with values in the inclusion poset
of subcomplexes of K A (see 4.8). Figure 1 illustrates an example of an obstruction
complex.

Fix a vertex v in K . Any simplex in K either contains v or it does not. This means
K = KK0\{v} ∪ St(v) and hence we have a (homotopy) push-out square:

KK0\{v} ∩ St(v) St(v)

KK0\{v} K

By definition KK0\{v} ∩ St(v) = St(v, K0\{v}), which coincides with what is also
called the link of a vertex v (see Maunder 1996). Proposition 4.9 gives contractibility
of St(v). The simplicial complex K fits therefore into the following homotopy cofiber
sequence:

St(v, K0\{v}) ↪→ KK0\{v} ↪→ K

Here are some basic consequences of this fact:
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Corollary 5.2 Let v be a vertex in a simplical complex K .

1. If St(v, K0\{v}) is contractible, then KK0\{v} ⊂ K is a weak equivalence.
2. If St(v, K0\{v}) is n-connected for a natural number n ≥ 0, then the map

KK0\{v} ⊂ K induces an isomorphism on homotopy groups in degrees 0, . . . , n
and a surjection in degree n + 1.

3. If St(v, K0\{v}) is connected and has p-torsion reduced integral homology in
degrees not exceeding n (n ≥ 0), then for a prime q not dividing p, KK0\{v} ⊂
K induces an isomorphism on H∗(−,Z/q) for ∗ ≤ n and a surjection on
Hn+1(−,Z/q).

4. If St(v, K0\{v}) is acyclic with respect to some homology theory, then KK0\{v} ⊂ K
is this homology isomorphism.

6 Two outside points

Let us fix two distinct vertices v0 and v1 in a simplicial complex K . Note that
(K0\{v0})∪ (K0\{v1}) = K0. In this section we are going to investigate the inclusion
KK0\{v0} ∪ KK0\{v1} ⊂ K .

There are two possibilities. First, {v0, v1} is not a simplex in K . In this case
KK0\{v0} ∪ KK0\{v1} = K .

Assume {v0, v1} is a simplex in K . Then:

K = KK0\{v0} ∪ KK0\{v1} ∪ St(v0, v1)

Consequently there is a (homotopy) push-out square (see 4.5):

(
KK0\{v0} ∪ KK0\{v1}

) ∩ St(v0, v1) St(v0, v1)

KK0\{v0} ∪ KK0\{v1} K

Since the star complex St(v0, v1) is contractible (see Proposition 4.9), K is therefore
weakly equivalent to the homotopy cofiber of the map:

(
KK0\{v0} ∪ KK0\{v1}

) ∩ St(v0, v1) ↪→ KK0\{v0} ∪ KK0\{v1}

The complex
(
KK0\{v0} ∪ KK0\{v1}

)∩St(v0, v1)fits into the following homotopy push-
out square:

KK0\{v0} ∩ KK0\{v1} ∩ St(v0, v1) KK0\{v0} ∩ St(v0, v1)

KK0\{v1} ∩ St(v0, v1)
(
KK0\{v0} ∪ KK0\{v1}

) ∩ St(v0, v1)

Let us identify the complexes in this square:
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– KK0\{v0} ∩ St(v0, v1) = {μ ∈ K | μ ∩ {v0} = ∅ and {v0, v1} ∪ μ ∈ K } and thus
according to Proposition 4.9 this complex is contractible;

– by the same argument KK0\{v1} ∩ St(v0, v1) is also contractible;
– KK0\{v0}∩KK0\{v1}∩St(v0, v1) = KK0\{v0,v1}∩St (v0, v1) = St ({v0, v1}, K0\{v0, v1})

It follows that
(
KK0\{v0} ∪ KK0\{v1}

)∩St(v0, v1) has the homotopy type of the suspen-
sion of the obstruction complex St := St ({v0, v1}, K0\{v0, v1}) and hence we have a
homotopy cofiber sequence of the form:

ΣSt → KK0\{v0} ∪ KK0\{v1} ↪→ K

7 Several outside points

Homotopy cofiber sequences as described in Sect. 5 and 6 are particular cases of a
more general statement regarding an arbitrary number of outside points. The aim of
this section is to present this generalization.

Let us fix a set σ = {v0, v1, . . . , vn} ⊂ K0 of n + 1 distinct vertices in a simplicial
complex K which may not necessarily be a simplex in K . Note that

⋃
v∈σ (K0\{v}) =

K0. In this section we are going to investigate the inclusion
(⋃

v∈σ KK0\{v}
) ⊂ K

There are two possibilities. First, σ is not a simplex in K . In this case⋃
v∈σ KK0\{v} = K .
Assume σ is a simplex in K . Then:

K =
(⋃

v∈σ

KK0\{v}

)
∪ St(σ )

Consequently there is a homotopy push-out square (see 4.5):

(⋃
v∈σ KK0\{v}

) ∩ St(σ ) St(σ )

⋃
v∈σ KK0\{v} K

Since the star complex St(σ ) is contractible (see Proposition 4.9), K is therefore
weakly equivalent to the homotopy cofiber of the map:

(⋃
v∈σ

KK0\{v}

)
∩ St(σ ) ↪→

⋃
v∈σ

KK0\{v}

Next we identify the homotopy type of
(⋃

v∈σ KK0\{v}
) ∩ St(σ ):

Proposition 7.1 Let σ be a simplex of dimension n in a simplicial complex K . Then(⋃
v∈σ KK0\{v}

)∩St(σ ) has the homotopy type of the n-th suspension of the obstruction
complex ΣnSt(σ, K0\σ).
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Proof Consider the inclusion poset of all subsets τ ⊂ σ . For any such subset τ ⊂ σ ,
define:

F(τ ) :=
{⋂

v∈τ KK0\{v} = KK0\τ if τ �= ∅⋃
v∈σ KK0\{v} if τ = ∅

Note that if τ ′ ⊂ τ ⊂ σ , then F(τ ) ⊂ F(τ ′). Thus by assigning to the inclusion τ ′ ⊂ τ

the map F(τ ) ⊂ F(τ ′), we obtain a contravariant functor indexed by the inclusion
poset of all subsets of σ . For example in the case σ = {v0, v1, v2}, this contravariant
functor describes a commutative cube:

KK0\{v0,v1,v2} KK0\{v1,v2}

KK0\{v0,v2} KK0\{v2}

KK0\{v0,v1} KK0\{v1}

KK0\{v0} KK0\{v0} ∪ KK0\{v1} ∪ KK0\{v2}

For arbitrary n, the functor F describes a commutative cube of dimension n + 1.
This cube is both co-cartesian and strongly cartesian (Munson and Volić 2015). It is
therefore also a homotopy co-cartesian. By intersecting with St(σ ), we obtain a new
cube τ �→ F(τ ) ∩ St(σ ). The properties of being co-cartesian and strongly cartesian
are preserved by taking such intersections. Consequently

(⋃
v∈σ KK0\{v}

)∩St(σ ) has
the homotopy type of hocolim∅�=τ⊂σ

(
KK0\τ ∩ St(σ )

)
.

For any proper subset ∅ �= τ � σ , we have an equality:

KK0\τ ∩ St(σ ) = {μ | μ ∩ τ = ∅ and σ ∪ μ ∈ K }

We can then use Proposition 4.9 to conclude that KK0\τ ∩ St(σ ) is contractible if
∅ �= τ � σ . Thus all the spaces in the cube τ �→ F(τ ) ∩ St(σ ), except for the
initial and the terminal ones, are contractible. That implies that the terminal space
F(∅)∩St(σ ) = (⋃

v∈σ KK0\{v}
)∩St(σ ) is homotopy equivalent to the n-th suspension

of the initial space: Σn (F(σ ) ∩ St(σ )) = Σn
(
KK0\σ ∩ St(σ )

) = ΣnSt(σ, K0\σ).
��

We finish this section with summarising the consequences of the discussion leading
to Proposition 7.1 and the proposition itself:

Corollary 7.2 Let σ ⊂ K0 be a subset consisting of n+1 distinct vertices in a simplicial
complex K .

1. If σ is not a simplex in K , then
⋃

v∈σ KK0\{v} = K .
2. Assume σ is a simplex in K .
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(a) Then there is a homotopy cofiber sequence:

ΣnSt(σ, K0\σ) →
⋃
v∈σ

KK0\{v} ↪→ K

(b) If St(σ, K0\σ) = ∅, then there is a homotopy cofiber sequence (here S−1 = ∅):

Sn−1 →
⋃
v∈σ

KK0\{v} ↪→ K

(c) If St(σ, K0\σ) �= ∅, then the homotopy fibers of
⋃

v∈σ KK0\{v} ↪→ K are
m-connected for m ≥ 0 if and only if Hi (St(σ, K0\σ),Z) = 0 for i ≤ m − n.

(d) If St(σ, K0\σ) �= ∅, then
⋃

v∈σ KK0\{v} ↪→ K is a weak equivalence if and
only if Hi ( St(σ, K0\σ),Z) = 0 for all i .

8 Push-out decompositions I

In this section our starting assumption is:

8.1(Starting input I) K is a simplicial complex, X ∪ Y = K0 is a cover of its set of
vertices, and A := X ∩ Y .

By restricting K to X and Y , and taking the union of these restrictions we obtain
a subcomplex K X ∪ KY ⊂ K . Since K X ∩ KY = K A, this subcomplex fits into the
following homotopy push-out square:

K A K X

KY K X ∪ KY

This push-out can be then used to extract various homotopical properties of the union
K X ∪ KY from the properties of K X , KY and K A. For example, if K X , KY and K A

belong to a closed collection (see 3.5), then so does K X ∪ KY . If K A is contractible,
then K X ∪ KY has the homotopy type of the wedge of K X and KY , and its reduced
homology is the sum of the reduced homology of K X and KY . More generally, there
is a Mayer-Vietoris sequence connecting homology of K X ∪ KY with those of K X ,
KY and K A.

A fundamental question discussed in this article is: under what circumstances is
the inclusion K X ∪ KY ⊂ K a weak equivalence, or homology isomorphism, or has
highly connected homotopy fibers etc? Such circumstances would enable us to express
various homotopical properties of K in terms of the properties of its restrictions K X ,
KY and K A.

Definition 8.2 Under the starting assumption 8.1, define P to be the subposet of K
given by:

P := {σ ∈ K | σ ⊂ X or σ ⊂ Y or σ ∩ A �= ∅}
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Fig. 2 The two light blue regions represent the restrictions K X and KY of a simplicial complex K . The
simplices σ and ρ belong to P and τ is an example of a simplex in K\P

Note that P ∩ sk1K = sk1(K X ∪ KY ), in particular K0 ⊂ P .
We are going to be more interested in the set of simplices of K that do not belong

to P , which explicitly can be described as:

K\P = {σ ∈ K | σ ∩ X �= ∅ and σ ∩ Y �= ∅ and σ ∩ A = ∅}

The poset P may not be the simplex category of any simplicial complex. There are
two poset inclusions that we denote by f and g:

K X ∪ KY P K
f g

Our first general observation is:

Proposition 8.3 The functor f : K X ∪ KY ↪→ P is a weak equivalence.

Proof We are going to show that, for every σ in P , f ↓σ is contractible.
First assume σ ⊂ X or σ ⊂ Y . Then the object (σ, id : σ → σ) is terminal in

f ↓σ , and consequently this category is contractible, and the proposition in this case
follows from Corollary 3.8.1.

Assume σ ∩ A �= ∅. Then, for every object (τ, τ ⊂ σ) in f ↓ σ , the subsets τ ,
τ ∪ (σ ∩ A), and σ ∩ A of σ are simplices that belong to K X ∪ KY . We can then form
the following commutative diagram in P where the top horizontal arrows represent
morphisms in K X ∪ KY :

τ τ ∪ (σ ∩ A) σ ∩ A

σ

These horizontal morphisms form natural transformations between:

– the identity functor id : f ↓σ → f ↓σ , (τ, τ ⊂ σ) �→ (τ, τ ⊂ σ),
– the constant functor f ↓σ → f ↓σ , (τ, τ ⊂ σ) �→ (σ ∩ A, σ ∩ A ⊂ σ),
– and f ↓σ → f ↓σ given by (τ, τ ⊂ σ) �→ (τ ∪ (σ ∩ A), τ ∪ (σ ∩ A) ⊂ σ).
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The identity functor id : f ↓σ → f ↓σ is therefore homotopic to the constant functor.
This can happen only if f ↓σ is a contractible category. ��

The dimensions of the simplices involved in the constructions performed in the
proof of Proposition 8.3 do not exceed the dimension of the considered simplex σ .
Consequently, this proof shows a stronger statement:

Proposition 8.4 The functor f : (K X ∪ KY ) ∩ skn K ↪→ P ∩ skn K is a weak equiva-
lence for every natural number n.

According to Proposition 8.3, the homotopy fibers of g : P ⊂ K and the inclusion
K X ∪ KY ⊂ K are weakly equivalent. To understand these homotopy fibers, we
are going to focus on the categories σ ↑ g and then utilise Corollary 3.8. The functor
σ �→ σ ↑g fits into the following diagram of natural transformations between functors
indexed by K op with small categories as values:

σ

St(σ, A) σ ↑g St(σ )
ψσ φσ

where:

– ψσ : St(σ, A) → σ ↑ g assigns to μ in St(σ, A) the object in σ ↑ g given by the
pair ψσ (μ) := (μ ∪ σ, σ ⊂ μ ∪ σ).

– φσ : σ ↑g → St(σ ) assigns to (τ, σ ⊂ τ) the simplex τ in St(σ ).

The contravariant functor σ �→ σ ↑g interpolates between the contravariant func-
tors σ �→ St(σ ) (see 4.8) and σ �→ St(σ, A) (see 5.1) in the following sense:

Proposition 8.5 Let σ be a simplex in K .

1. If σ is in P, then σ ↑g is contractible and φσ : σ ↑g → St(σ ) is a weak equivalence.
2. If σ is in K\P, then ψσ : St(σ, A) → σ ↑g is a weak equivalence.

Proof If σ is in P , then (σ, id : σ → σ) is an initial object in σ ↑ g and hence this
category is contractible. That proves (1).

Assume σ is not in P , which is equivalent to σ ∩ Y �= ∅ and σ ∩ X �= ∅ and
σ ∩ A = ∅. Let (τ, σ ⊂ τ) be an object in σ ↑ g. Define ασ (τ, σ ⊂ τ) := τ ∩ A.
Since σ ∩ Y �= ∅ and σ ∩ X �= ∅, then τ ∩ Y �= ∅ and τ ∩ X �= ∅. This together
with the fact that τ belongs to P implies ασ (τ, σ ⊂ τ) = τ ∩ A �= ∅. Furthermore
(τ ∩ A) ∪ σ ⊂ τ ∈ P ⊂ K . Thus ασ defines a functor ασ : σ ↑g → St(σ, A). Note:

ασ ψσ (μ) = ασ (μ ∪ σ, σ ⊂ μ ∪ σ) = (μ ∪ σ) ∩ A

Since σ ∩ A = ∅ and μ ⊂ A, we get ασ ψσ (μ) = (μ∪ σ)∩ A = μ. The composition
ασ ψσ is therefore the identity functor.

Note further:

ψσ ασ (τ, σ ⊂ τ) = ψσ (τ ∩ A) = ((τ ∩ A) ∪ σ, σ ⊂ (τ ∩ A) ∪ σ)

123



232 W. Chachólski et al.

Since σ ⊂ τ , we have a commutative diagram:

σ

(τ ∩ A) ∪ σ τ

The bottom horizontal morphisms form a natural transformation between:

– the composition ψσ ασ : σ ↑g → σ ↑g and
– the identity functor id : σ ↑g → σ ↑g.

The functor ψσ : St(σ, A) → σ ↑ g has therefore a homotopy inverse and hence is a
weak equivalence which proves (2). ��

We use Corollary 3.8 and Proposition 8.5 to obtain our main statement describing
properties of the homotopy fibers of the inclusion K X ∪ KY ⊂ K :

Theorem 8.6 Notation as in 8.1 and Definition 8.2. Let C be a closed collection of
simplicial sets (see 3.5). Assume that, for every σ in K\P, the obstruction complex
St(σ, A) (see 5.1) satisfies C. Then the homotopy fibers of the inclusion K X ∪ KY ⊂ K
also satisfy C.

The following are someparticular cases of the above theoremspecialized to different
closed collections of simplicial sets.

Corollary 8.7 Notation as in 8.1 and 8.2. Let n be a natural number.

1. If, for every σ in K\P (see 8.2), the simplicial complex St(σ, A) (see 5.1) is
contractible, then K X ∪ KY ⊂ K is a weak equivalence.

2. If, for every σ in K\P, the simplicial complex St(σ, A) is n-connected, then the
homotopy fibers of K X ∪ KY ⊂ K are n-connected and this map induces an
isomorphism on homotopy groups in degrees 0, . . . , n and a surjection in degree
n + 1.

3. Let p be a prime number. If, for every σ in K\P, the simplicial complex St(σ, A) is
connected and has p-torsion reduced integral homology in degrees not exceeding
n, then the homotopy fibers of K X ∪ KY ⊂ K are connected and have p-torsion
reduced integral homology in degrees not exceeding n. Thus in this case, for prime
q �= p, K X ∪ KY ⊂ K induces an isomorphism on H∗(−,Z/q) for ∗ ≤ n and a
surjection on Hn+1(−,Z/q).

4. If, for every σ in K\P, the simplicial complex St(σ, A) is acyclic with respect to
some homology theory, then K X ∪ KY ⊂ K is this homology isomorphism.

Requirements for obtaining n-connected fibers can be weakened:

Proposition 8.8 Notation as in 8.1 and 8.2. Let n be a natural number. If St(σ, A) is
n-connected for every σ in (skn+1K )\P, then the homotopy fibers of K X ∪ KY ⊂ K
are n-connected.
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Proof For every m ≥ n + 1 Consider the following poset inclusions:

K X ∪ KY P P ∪ skn+1K K
f g1

g

g2

According to Proposition 8.3, f is a weak equivalence. The homotopy fibers of g2 are
n-connected by Proposition 4.7. Thus if the homotopy fibers of g1 are n-connected,
then so are the homotopy fibers of the inclusion K X ∪ KY ⊂ K . To show that the
homotopy fibers of g1 are n-connected it is enough to show that the categories σ ↑g1
are n-connected for every σ in P ∪ skn+1K . Proposition 8.5 gives that σ ↑ g1 is
contractible if σ is in P , and is weakly equivalent to St(σ, A) if σ is in skn+1K\P .
By the assumption St(σ, A) are therefore n-connected. ��

It would be natural at this point to wonder about a generalisation of our results to
coverings of the set of vertices of a simplicial complex K by more than two sets. In
that case, any possible intersection between sets of the considered covering should be
taken into account. This not only increases the level of complexity of the problem,
but also makes it very easy to lose control over the information one aims to obtain,
since some of the intersections may be empty. Although much more complex, the
situation is not hopeless. For example, in Sect. 7 we already considered instances of
such coverings for which a decomposition statement holds.

9 Push-out decompositions II

Theorem 8.6 states that the homotopy fibers of the inclusion K X ∪ KY ⊂ K belong
to the smallest closed collection containing all the complexes St(σ, A) for σ in K\P .
Recall that if a closed collection contains an empty simplicial set, then it contains all
simplicial sets, in which case Theorem 8.6 has no content. Thus St(σ, A) being non
empty, for all σ in K\P , is an absolute minimum requirement for Theorem 8.6 to
have any content. In most of our statements that follow, the assumptions we make
have much stronger global non emptiness consequences of the form:

⋂
σ∈K\P

St(σ, A) �= ∅
⋂

σ∈Kn+1\P

St(σ, A) �= ∅
⋂

σ∈(skn+1K )\P

St(σ, A) �= ∅

Here is a consequence of having one of these intersections non-empty:

Proposition 9.1 Notation as in 8.1 and 8.2. Assume:

⋂
σ∈K1\P

St(σ, A) �= ∅

Then the homotopy fibers of K X ∪ KY ⊂ K are connected.
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Proof Let v be a vertex in
⋂

σ∈K1\P St(σ, A). Observe that sk1(K ) is a disjoint union
of K1\P and sk1(K ) ∩ P . This can fail for skn(K ) if n > 1. For every τ in sk1(K ),
define:

φ(τ) :=
{

τ ∪ v if τ ∈ K1\P

τ if τ ∈ sk1(K ) ∩ P

Since v is in A, we have (τ ∪{v})∩ A �= ∅, and hence φ(τ) belongs to P . If τ � τ ′ in
sk1(K ), then τ is in P and hence τ = φ(τ) ⊂ φ(τ ′). In this way we obtain a functor
φ : sk1(K ) → P . The inclusion τ ⊂ φ(τ), is a natural transformation between the
skeleton inclusion sk1(K ) ⊂ K and the composition:

sk1(K ) P K
φ g

Thus these two functors from sk1(K ) to K are homotopic. The map g : P ↪→ K and,
hence the inclusion K X ∪ KY ⊂ K , induces therefore a surjection on π1 for every
choice of a basepoint. Thus to show K X ∪ KY ⊂ K has connected homotopy fibers it
is enough to prove this map induces a bijection on π0. Surjection on π0 is clear. Let
τ0, . . . , τn be a path of edges in K connecting two vertices. If an edge τi = {x, y}
in this path does not belong to K X ∪ KY , then it can not belong to P either. In this
case {x, y, v} is a simplex in K , and we can substitute τi , in the considered path, by
two edges {x, v}, {v, y}. By performing these substitutions we obtain a path consisting
only of edges in K X ∪ KY . The map K X ∪ KY ⊂ K induces therefore an injection on
π0. ��

Proposition 9.1 does not generalise to n > 0. Non-emptiness of the intersection⋂
σ∈(skn+1K )\P St(σ, A) does not imply that the homotopy fibers of K X ∪ KY ⊂ K

are n-connected. For an easy example see 11.4. To guarantee n-connectedness of
these homotopy fibers we need additional restrictions. For example in the following
corollary the assumptions imply that St(σ, A) does not depend on σ in (skn+1K )\P:

Corollary 9.2 Notation as in 8.1 and 8.2. Let n be a natural number. Assume that one
of the following conditions is satisfied:

1. There is an n-connected simplicial complex L such that, for every simplex σ in
(skn+1K )\P, St(σ, A) = L.

2. The complex K A is n-connected and, for every simplex σ in (skn+1K )\P,
St(σ, A) = K A.

3. The set A is non empty. Furthermore, for every simplex σ in (skn+1K )\P and every
finite subset μ in A, the union σ ∪ μ is a simplex in K .

4. A = {v} and, for every simplex σ in (skn+1K )\P, the union σ ∪ {v} is also a
simplex in K .

Then the homotopy fibers of K X ∪ KY ⊂ K are n-connected.

Proof The corollary under assumption 1 is a direct consequence of Proposition 8.8.
Assumption 2 is a particular case of 1 with L = K A. Assumption 3 is a particular case
of 1 with L = Δ[A]. Finally, assumption 4 is a particular case of 3. ��
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Here is another example of a statement whose assumption, referred to as “one entry
point”, has a global nonemptiness consequence:

Corollary 9.3 Notation as in 8.1 and 8.2. Let n be a natural number. Assume there is
an element v in A with the following property. For every simplex τ in K such that
τ ∩ (X\A) �= ∅, τ ∩ (Y\A) �= ∅, and |τ ∩ (K0\A)| ≤ n + 2, the union τ ∪ {v} is also
a simplex in K . Then, for every simplex σ in (skn+1K )\P, the element v is a central
vertex (see 4.10) in St(σ, A). Furthermore the homotopy fibers of K X ∪ KY ⊂ K are
n-connected.

Proof Let σ be a simplex in (skn+1K )\P . Thus σ ∩ (X\A) �= ∅, σ ∩ (Y\A) �= ∅,
and |σ ∩ (K0\A)| = |σ | ≤ n + 2. If μ belongs to St(σ, A) then, τ = σ ∪ μ also
satisfies these assumptions, since μ is entirely contained in A, and the hypothesis of
the corollary only involve points outside A. Therefore σ ∪ μ ∪ {v} is a simplex in
K and hence μ ∪ {v} is a simplex in St(σ, A). This means v is central in St(σ, A)

(see 4.10). Consequently, St(σ, A) is contractible (see 4.10) and the corollary follows
from Proposition 8.8. ��

10 Clique complexes

Recall that a simplicial complex K is called clique if it satisfies the following condition:
a set σ of size at least 2 is a simplex in K if and only if all the two element subsets of
σ are simplices in K . Thus a clique complex is determined by its sets of vertices and
edges.

If K is clique, then the complexes St(σ, A) satisfy the following properties:

Proposition 10.1 Notation as in 8.1. Assume K is clique. Then:

1. For all σ in K , St(σ, A) is clique.
2. If τ and σ are simplices in K such that τ ∪ σ is also a simplex in K , then St(τ ∪

σ, A) = St(τ, A) ∩ St(σ, A).
3. If σ is a simplex in K and σ = τ1 ∪ · · · ∪ τn, then St(σ, A) = ⋂n

i=1 St(τi , A).
4. For every simplex σ in K , St(σ, A) = ⋂

x∈σ St({x}, A).

Proof Let μ be a subset of A such that, for every two element subset τ of μ, the set
τ ∪ σ is a simplex in K , i.e., τ is in St(σ, A). Then, since K is clique, μ ∪ σ is also
a simplex in K . Consequently, μ belongs to St(σ, A) and hence St(σ, A) is clique.
That proves (1).

To prove (2), first note that the inclusion St(τ ∪ σ, A) ⊂ St(τ, A) ∩ St(σ, A) holds
even without the clique assumption. Let μ belong to both St(τ, A) and St(σ, A). This
means that μ ∪ τ and μ ∪ σ are simplices in K . Since every 2 element subset of
μ∪ τ ∪ σ is a subset of either μ∪ τ or μ∪ σ or τ ∪ σ , by the assumption it is an edge
in K . By the clique assumption,μ∪τ ∪σ is then also a simplex in K and consequently
μ is in St(τ ∪σ, A). This shows the other inclusion St(τ ∪σ, A) ⊃ St(τ, A)∩St(σ, A)

proving (2).
Statements (3) and (4) follow from (2). ��
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The clique assumption in Proposition 10.1 is essential. For example consider
the situation described in Fig. 1 where the complex is not clique. In this exam-
ple St(v0, A) = {a0} and St(v1, A) = {a1}, so St(v0, A) ∩ St(v1, A) = ∅, while
St(σ, A) = {a0} ∪ {a1}.

Recall that an intersection of standard simplices is again a standard simplex
(see 4.3). This observation together with Propositions 8.8 and 10.1 gives:

Corollary 10.2 Notation as in 8.1 and 8.2. Assume K is clique and, for every edge
τ in K1\P, the complex St(τ, A) is a standard simplex. If, for all simplices σ in
(skn+1K )\P, the complex St(σ, A) is non-empty, then the homotopy fibers of the
inclusion K X ∪ KY ↪→ K are n-connected.

Since clique complexes are determined by their edges, one can wonder if, for such
complexes, the conclusions of Corollaries 9.2 and 9.3 would still hold true if their
assumptions are verified only for low dimensional simplices. Here is an analogue of
Corollary 9.2 for clique complexes.

Proposition 10.3 Notation as in 8.1 and 8.2. Let n be a natural number. Assume K is
clique and that one of the following conditions is satisfied:

1. There is an n-connected simplicial complex L such that, for every edge τ in K1\P,
St(τ, A) = L.

2. The complex K A is n-connected and, for every edge τ in K1\P and every element
v in A, the set τ ∪ {v} is a simplex in K .

Then the homotopy fibers of the inclusion K X ∪ KY ↪→ K are n-connected.

Proof Assumption 1 together with Proposition 10.1.4 implies assumption 1 of Corol-
lary 9.2, proving the proposition in this case.

Let τ be an edge in K1\P and μ be a simplex in K A. Assume (2). This assumption
implies that any two element subset of τ ∪ μ is a simplex in K . Since K is clique, the
set τ ∪ μ is a simplex in K and consequently μ is a simplex in St(τ, A). Thus for any
τ in K1\P , there is an inclusion K A ⊂ St(τ, A), and hence K A = St(τ, A) for any
such τ . Assumption 2 implies therefore assumption 1 with L = K A. ��
Corollary 10.4 Notation as in 8.1 and 8.2. Assume K is clique and that one of the
following conditions is satisfied:

1. The set A is non empty. Furthermore, for every edge τ in K1\P and every subset
μ in A such that |μ| ≤ 2, the union τ ∪ μ is a simplex in K .

2. A = {v} and, for every edge τ in K1\P, the set τ ∪ {v} is also a simplex in K .

Then the inclusion K X ∪ KY ↪→ K is a weak equivalence.

Proof Assume (1). If K1\P is empty, then so is K\P , and hence P = K . In this case
the corollary follows from Proposition 8.3. Assume K1\P is non-empty. Since any
two element subset of A is a simplex in K and K is clique, then all finite non-empty
subsets of A belong to K and hence K A = Δ[A]. In this case assumption 1 is a
particular case of condition 2 in Proposition 10.3 for all n as Δ[A] is contractible.

Finally note that assumption 2 is a particular case of 1. ��
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The following is an analogue of Corollary 9.3 which is also referred to as “one entry
point".

Proposition 10.5 Notation as in 8.1 and 8.2. Assume K is clique and that one of the
following conditions is satisfied:

1. There is a vertex v in
⋂

τ∈K1\P St(τ, A) such that, for every edge τ in K1\P and
every vertex w in St(τ, A), {v,w} is a simplex in K .

2. There is a vertex v in
⋂

τ∈K1\P St(τ, A) such that, for every edge τ in K1\P, v is
a central vertex of St(τ, A) (see 4.10).

3. There is an element v in A with the following property. For every simplex τ in K
such that |τ ∩ (X\A)| = 1, |τ ∩ (Y\A)| = 1, and |τ ∩ A| ≤ 1, the union τ ∪ {v}
is also a simplex in K .

Then the inclusion K X ∪ KY ↪→ K is a weak equivalence.

Proof Assume 1. We aim to show St(σ, A) is contractible and then conclude by
applying Corollary 8.7.1. Let σ be a simplex in K\P . Choose a cover σ = τ1∪· · ·∪τn

where τi is an edge in K1\P for all i . Then according to Proposition 10.1.3, St(σ, A) =⋂n
i=1 St(τi , A). Let w be a vertex in St(σ, A). Then it is also a vertex in St(τi , A) for

all i . By the assumption {v,w} is then a simplex in K . Thus all the 2 element subsets
of σ ∪ {v,w} are simplices in K and hence {v,w} is a simplex in St(σ, A). As this
happens for all vertices w in St(σ, A), since St(σ, A) is clique, for every simplex μ

in St(σ, A), the set μ ∪ {v} is also a simplex in St(σ, A). The vertex v is therefore
central in St(σ, A) and consequently St(σ, A) is contractible. The proposition under
assumption 1 follows then from Corollary 8.7.1.

Condition 2 is a particular case of 1.
Assume 3. Let τ be an edge in K1\P . This in particular means |τ ∩ A| = 0.

Condition 3, applied to the simplex τ , gives that τ ∪ {v} is a simplex in K , and hence
v is a vertex in St(τ, A). Let w be a vertex in St(τ, A). Then |(τ ∪ {w}) ∩ A| = 1 and
by applying condition 3 to the simplex τ ∪ {w} we get that {v,w} ⊂ τ ∪ {v,w} are
simplices in K . We can conclude that 3 implies 1. ��

We finish this section with a statement referred to as “two entry points”. This has
been inspired by Adamaszek et al. (2020, Theorem 3), in which the gluing of two
metric graphs along a path is considered. While in that case the two entry points are
the endpoints of the path the graphs are glued along, in our framework they have to
satisfy the listed properties. In both cases however this couple of points determine the
weak equivalence stated.

Proposition 10.6 Notation as in 8.1 and 8.2. Assume K is clique and there are two
elements aX and aY in A with the following properties:

– For every edge τ in K1 such that |τ ∩ A| = 1 and |τ ∩(X\A)| = 1, the set τ ∪{aX }
is a simplex in K .

– For every edge τ in K1 such that |τ ∩ A| = 1 and |τ ∩ (Y\A)| = 1, the set τ ∪{aY }
is a simplex in K .

– For every edge τ in K1\P, the set τ ∪ {aX , aY } is a simplex in K .
Then, for every σ in K\P, the set {aX , aY } is a central simplex (see 4.10) in
St(σ, A), and the inclusion K X ∪ KY ⊂ K is a weak equivalence.
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Proof Let σ be a simplex in K\P . Any vertex v in σ is a vertex of an edge τ ⊂ σ that
belongs to K1\P . According to the assumption, the sets {v, aX , aY } ⊂ τ ∪{aX , aY } are
simplices in K . This, together with the clique assumption on K , implies σ ∪ {aX , aY }
is a simplex in K . Consequently, {aX , aY } is a simplex in St(σ, A).

Let μ be a simplex in St(σ, A). To prove the proposition, we need to show the set
μ ∪ {aX , aY } is a simplex in St(σ, A) or equivalently σ ∪ μ ∪ {aX , aY } is a simplex
in K . Let x be an arbitrary element in σ ∩ X , y an arbitrary element in σ ∩ Y , and
v an arbitrary element in μ. The sets {x, v}, {y, v}, and {x, y} are simplices in K .
Thus according to the assumptions so are {x, v, aX }, {y, v, aY }, and {x, y, aX , aY }.
Consequently, the 2-element sets {x, aX }, {v, aX }, {y, aX }, {x, aY }, {v, aY }, {y, aY },
{aX , aY }, {x, y} are simplices in K . Since all the 2-element subsets of σ ∪μ∪{aX , aY }
are of such a form and K is clique, σ ∪ μ ∪ {aX , aY } is a simplex in K . ��

11 Vietoris-Rips complexes for distances

Let Z be a subset of the universe U (see 4.1). A function d : Z × Z → [0,∞] is called
a distance if it is symmetric d(x, y) = d(y, x) and reflexive d(x, x) = 0 for all x and
y in Z . A pair (Z , d) is called a distance space. A distance space (Z , d) is sometimes
denoted simply by Z , if d is understood from the context, or by d, if Z is understood
from the context.

Let (Z , d) be a distance space. The diameter of a non empty and finite subset
σ ⊂ Z is by definition diam(σ ) := max{d(x, y) | x, y ∈ σ }.

A subset X ⊂ Z together with the distance function given by the restriction of d
to X is called a subspace of (Z , d).

Let (Z , d) be a distance space and r be in [0,∞). By definition, the Vietoris-
Rips complex VRr (Z) consists of these non-empty finite subsets σ ⊂ Z for which
diam(σ ) ≤ r (explicitly: d(x, y) ≤ r for all x and y in σ ). Vietoris-Rips complexes
are examples of clique complexes (see Sect. 10).

Let X be a subspace of (Z , d). Then the Vietoris-Rips complex VRr (X) coincides
with the restriction VRr (Z)X (see 4.3).

Our starting assumption in this section is:

11.1 (Starting input II) (Z , d) is a distance space, X ∪ Y = Z is a cover of Z , and
A := X ∩ Y .

In the rest of this section we are going to reformulate in terms of the distance d
on Z some of the statements given in the previous sections regarding the homotopy
properties of the inclusion VRr (X) ∪ VRr (Y ) ↪→ VRr (Z) for various r in [0,∞).
Here is a direct restatement of Proposition 10.3:

Proposition 11.2 Notation as in 11.1. Let r be an element in [0,∞) and n be a natural
number. Assume that one of the following conditions is satisfied:

1. There is a subset L ⊂ A such that VRr (L) is n-connected and, for every x in X\A
and every y in Y\A with d(x, y) ≤ r , there is an equality {v ∈ A | d(x, v) ≤
r and d(y, v) ≤ r} = L, in particular the set on the left does not depend on x and
y.
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2. The complex VRr (A) is n-connected and, for all x in X\A, y in Y\A, and v in A,
if d(x, y) ≤ r , then both d(x, v) ≤ r and d(v, y) ≤ r .

Then the homotopy fibers of the inclusion VRr (X) ∪ VRr (Y ) ⊂ VRr (Z) are n-
connected.

Assumption 2 of Proposition 11.2 can be restated as: (connectivity condition)
VRr (A) is n-connected, and (intersection condition) if VRr (Z)1\P (see 8.2 for the
definition of P) is non-empty, then

A =
⋂

σ∈VRr (Z)1\P

St(σ, A)0

What if the intersection above does not contain all the points of A (the intersection
condition is not satisfied)? For example consider Z = {x, a1, a2, a3, a4, y} with the
distance function depicted by the following diagram, where the dotted lines indicate
distance 2 and the continuous lines indicate distance 1:

a1 a2

x y

a3 a4

Let X = {x, a1, a2, a3, a4} and Y = {a1, a2, a3, a4, y}. Choose r = 1. In this
case VR1(Z)1\P consists of only one edge {x, y} and St({x, y}, A) = Δ[{a1, a3}] ∪
Δ[{a3, a4}]. Thus condition 2 of Proposition 11.2 is not satisfied. However, since
the complex St({x, y}, A) is contractible, according to Corollary 8.7.1, the inclusion
VR1(X) ∪ VR1(Y ) ⊂ VR1(Z) is a weak equivalence.

Assumption 1 of Proposition 11.2 can be restated as: (connectivity condition)
for every τ in VRr (Z)1\P , the complex St(τ, A) is n-connected, and (indepen-
dence condition) for all pairs of edges τ1 and τ2 in VRr (Z)1\P , there is an equality
St(τ1, A) = St(τ2, A). What if the independence condition is not satisfied? For exam-
ple consider a distance space Z = {x1, x2, a1, a2, a3, a4, y}with the distance function
depicted by the following diagram, where the dotted lines indicate distance 2 and the
continuous lines indicate distance 1:

123



240 W. Chachólski et al.

x1 a1 a2

y

x2 a3 a4

Let X = {x1, x2, a1, a2, a3, a4} and Y = {a1, a2, a3, a4, y}. Choose r = 1.
In this case VR1(Z)1\P consists of two edges {x1, y} and {x2, y}. Note that
St({x1, y}, A) = Δ[{a1, a2}] ∪ Δ[{a2, a4}] and St({x2, y}, A) = Δ[{a2, a4}]. Thus
the independence condition does not hold in this case. However, since the obstruction
complexes St({x1, y}, A), St({x2, y}, A) and St({x1, x2, y}, A) = St({x1, y}, A) ∩
St({x2, y}, A) = Δ[{a2, a4}] are contractible, the inclusion VR1(X) ∪ VR1(Y ) ⊂
VR1(Z) is a weak equivalence by Corollary 8.7.

Consider a relaxation of the intersection condition in assumption 2 of Proposi-
tion 11.2.

11.3 (Assumption I) Notation as in 11.1. Let r be an element in [0,∞). There exists
an element v in A satisfying the following property. For all x in X\A and y in Y\A,
if d(x, y) ≤ r , then d(x, v) ≤ r and d(y, v) ≤ r .

11.4 The assumption 11.3 is equivalent to non-emptiness of the following intersection,
where n ≥ 0 and the first equality is a consequence of Vietoris-Rips complexes being
clique (see Proposition 10.1.3):

⋂
σ∈(skn+1VRr (Z))\P

St(σ, A) =
⋂

σ∈VRr (Z)1\P

St(σ, A) �= ∅

According to Proposition 9.1, Assumption 11.3 implies connectedness of the homo-
topy fibers of VRr (X)∪VRr (Y ) ⊂ VRr (Z). This assumption however does not imply
n-connectedness of these homotopyfibers. For example consider Z = {x, a, b, y}with
the distance function depicted by the following diagramwhere the dotted line indicates
distance 2 and the continuous lines indicate distance 1:

a

x y

b

Let X = {x, a, b} and Y = {a, b, y}. Then VR1(Z) is contractible but VR1(X) ∪
VR1(Y ) has the homotopy type of a circle. Thus in this case the homotopy fiber of
the inclusion VR1(X) ∪VR1(Y ) ⊂ VR1(Z) is not 1-connected. Note further that the
complex St({x, y}, A) consists of two vertices a and b with no edges.
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To assure VRr (X) ∪ VRr (Y ) ↪→ VRr (Z) is a weak equivalence assumption 11.3
is not enough and we need additional requirements. For example the following is an
analogue of Corollary 10.4.

Proposition 11.5 Notation as in 11.1. Assume 11.3. Let v be an element in A given by
this assumption. In addition assume that one of the following conditions is satisfied:

1. For every x in X\A and y in Y\A such that d(x, y) ≤ r , if w in A satisfies
d(w, x) ≤ r and d(w, y) ≤ r , then d(v,w) ≤ r .

2. diam(A) ≤ r .
3. A = {v}.

Then the inclusion VRr (X) ∪ VRr (Y ) ↪→ VRr (Z) is a weak equivalence.

Proof If Assumption 11.3 and condition 1 hold, then so does assumption 1 of Propo-
sition 10.5. Furthermore condition 3 implies 2 and condition 2 implies 1. Thus this
proposition is a consequence of Proposition 10.5.1. ��

The intersection condition of assumption 2 in Proposition 11.2 requires a choice of
a parameter r . The following is its universal version where no parameter is required:

11.6 (Assumption II) Notation as in 11.1. The set A is non empty and for every x in
X\A, y in Y\A, and v in A, the following inequalities hold d(x, y) ≥ d(x, v) and
d(x, y) ≥ d(y, v).

Assumption 11.6 has an intuitive interpretation in terms of angles when Z is a
subspace of the Euclidean space. In such a setting this condition means that every
triangle xvy with vertices x in X\A, y in Y\A and v in A, the angle at v must be at
least 60◦. We therefore call this assumption the 60◦ angle condition.

Proposition 11.7 Notation as in 11.1. Assume 11.6. Assume in addition that, for every
x in X\A and y in Y\A, the following inequality holds d(x, y) ≥ diam(A). Then
VRr (X) ∪ VRr (Y ) ↪→ VRr (Z) is a weak equivalence for all r in [0,∞).

Proof We already know that the proposition holds if r ≥ diam(A) (see Proposi-
tion 11.5). Assume r < diam(A). We claim that in this case VRr (Z) = P (see 8.2).
If not, there are x in X\A and y in Y\A such that d(x, y) ≤ r . The assumption would
then lead to the following contradictory inequalities r ≥ d(x, y) ≥ diam(A) > r .
Thus in this case VRr (Z) = P and the proposition follows from Proposition 8.3. ��

12 Metric gluings

A distance d on Z is called a pseudometric if it satisfies the triangle inequality:
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in Z .

12.1 Notation as in 11.1. Assume that the distance d on Z is a pseudometric. Let x
be in X\A and y be in Y\A. For all a in A, by the triangular inequality, d(x, y) ≤
d(x, a) + d(a, y), and hence:
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d(x, y) ≤ inf{d(x, a) + d(a, y) | a ∈ A}

The pseudometric space (Z , d) is called metric gluing if the above inequality is an
equality for all x in X\A and y in Y\A.

If A is finite, then the pseudometric (Z , d) is a metric gluing if and only if, for
every x in X\A and y in Y\A, there is a in A such that d(x, y) = d(x, a) + d(a, y).

If dX is a pseudometric on X and dY is a pseudometric on Y such that dX (a, b) =
dY (a, b) for all a and b in A, then the following function defines a pseudometric on
Z which is a metric gluing:

dZ (z, z′) =

⎧⎪⎨
⎪⎩

dX (z, z′) if z, z′ ∈ X

dY (z, z′) if z, z′ ∈ Y

inf{d(z, a) + d(z′, a) | a ∈ A} if z ∈ X\A and z′ ∈ Y\A

If (Z , d) is a metric gluing and A is finite, then, for any edge σ = {x, y} in
VRr (Z)\P , there is a in A such that r ≥ d(x, y) = d(x, a) + d(a, y). Thus in this
case the obstruction complex St(τ, A) is non-empty as it contains the vertex a. To
assure contractibility of St(τ, A) we need additional assumptions, for example:

12.2 (Simplex assumption) Notation as in 11.1 and 8.2. Let r be in [0,∞). For any
vertex v in an edge σ in VRr (Z)\P , if a and b are elements in A such that d(a, v) ≤ r
and d(v, b) ≤ r , then d(a, b) ≤ r .

The simplex assumption can be reformulated as follows: for any vertex v in a sim-
plex σ in VRr (Z)\P , the complex St(v, A) is a standard simplex (see 4.1). Since
the intersection of standard simplices is again a standard simplex, under Assump-
tion 12.2, an obstruction complex St(σ, A), for an arbitrary simplex σ in VRr (Z)\P ,
is contractible if and only if it is non empty. This, together with the discussion at the
end of 12.1 and Corollary 10.2 gives:

Proposition 12.3 Notation as in 11.1 and 8.2. Let r be in [0,∞). Assume A is finite and
(Z , d) is a metric gluing that satisfies the simplex assumption 12.2. Then, for any edge
σ in VRr (Z)\P, the obstruction complex St(σ, A) is contractible. The homotopy fibers
of VRr (X)∪VRr (Y ) ↪→ VRr (Z) are connected and this map induces an isomorphism
on π0 and a surjection on π1.

The assumptions of Proposition 12.3 are not enough to guarantee the non-emptiness
of the obstruction complexes for simplices in VRr (Z)\P of dimension 2 and higher.
For example consider Z = {x1, x2, a1, a1, y} with the distance function depicted by
the following diagram, where the dotted lines indicate distance 4, the dashed lines
indicate distance 3, the squiggly lines indicate distance 2 and the continuous lines
indicate distance 1:
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x1 a1

y

x2 a2

1

13

3

3

2

4

1
3

2

Let r = 3, X = {x1, x2, a1, a2}, Y = {y, a1, a2}, and A = {a1, a2}. Then Z is ametric
gluing. Note that St(y, A) = Δ[{a1, a2}], St(x1, A) = St({x1, y}, A) = Δ[{a1}],
St(x2, A) = St({x2, y}, A) = Δ[{a2}], and St({x1, x2, y}, A) is empty. Furthermore
A and Y have diameter not exceeding 3. Consequently, VR3(Y ) and VR3(A) are
contractible. The complex VR3(X) has the homotopy type of the circle S1 and so
does VR3(X) ∪ VR3(Y ). The entire complex VR3(Z) is however contractible. The
inclusion VR3(X) ∪ VR3(Y ) ⊂ VR3(Z) induces therefore a surjection on π1 but
not an isomorphism. This example should be compared with Proposition 11.5 under
condition 2.

To assure isomorphism on π1, the simplex assumption 12.2 should be strengthened.

12.4 (Strong simplex assumption) Notation as in 11.1 and 8.2. Let r be in [0,∞).
For any vertex v in an edge σ in VRr (Z)\P , if a and b are elements in A such that
d(a, v) ≤ r and d(v, b) ≤ r , then 2d(a, b) ≤ d(a, v) + d(v, b).

Note that the strong simplex assumption 12.4 implies the simplex assumption 12.2.

Theorem 12.5 Notation as in 11.1 and 8.2. Let r be in [0,∞). Assume A is finite and
(Z , d) is a metric gluing that satisfies the strong simplex assumption 12.4. Then, for any
simplex σ in VRr (Z)\P such that either |σ ∩ X | = 1 or |σ ∩ Y | = 1, the obstruction
complex St(σ, A) is contractible. The homotopy fibers of the inclusion VRr (X) ∪
VRr (Y ) ↪→ VRr (Z) are simply connected and this map induces an isomorphism on
π0 and π1 and a surjection on π2.

Proof Since the strong simplex assumption 12.4 is satisfied, then so is the simplex
assumption 12.2 and consequently any obstruction complex St(σ, A) is a simplex.
Thus St(σ, A) is contractible if and only if it is non empty.

We are going to show by induction on the dimension of a simplex a more general
statement:
Under the assumption of Theorem 12.5, for every simplex σ in VRr (Z)\P for which
σ ∩ X = {x1, . . . , xn} and σ ∩ Y = {y}, if (a1, . . . , an) is a sequence in A such that
d(xi , y) = d(xi , ai ) + d(ai , y) for every i , then there is an integer 1 ≤ l ≤ n for
which al is in St(σ, A) (d(xi , al) ≤ r for all i).

If σ = {x, y} is such an edge, then the statement is clear.
Let n > 1 and assume that the statement is true for all relevant simplices of

dimension smaller than n. Let σ be in VRr (Z)\P be such that σ ∩ X = {x1, . . . , xn}
and σ ∩Y = {y}. Choose a sequence (a1, . . . , an) in A such that d(xi , y) = d(xi , ai )+
d(y, ai ) for every i .
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By the inductive assumption, for every j = 1, . . . , n, the statement is true for
τ j = σ j\{x j } and the sequence (a1, . . . , â j , . . . , an) obtained from (a1, . . . , an) by
removing its j-th element. Thus for every j = 1, . . . , n, there is as( j) such that
s( j) �= j and d(xi , as( j)) ≤ r for all i �= j . If, for some j , d(x j , as( j)) ≤ r , then as( j)

would be a vertex in St(σ, A), proving the statement. Assume d(x j , as( j)) > r for all
j . If j �= j ′, then d(x j , as( j ′)) ≤ r and d(x j , as( j)) > r , and hence as( j) �= as( j ′).
It follows that s is a permutation of the set {1, . . . , n}. This leads to a contradictory
inequality:

nr <

n∑
i=1

d(xi , as(i)) ≤
n∑

i=1

(
d(xi , ai ) + d(ai , as(i))

)

≤
n∑

i=1

(
d(xi , ai ) + 1

2
d(ai , y) + 1

2
d(y, as(i))

)

≤
n∑

i=1

(d(xi , ai ) + d(y, ai )) =
n∑

i=1

d(xi , y) ≤ nr

In the above chain of inequalities the second one is obtained by applying triangu-
lar inequality, the third one is the strong simplex assumption and the fourth one is
a consequence of the fact that s is a permutation. Note that, for any simplex σ in
sk2VR(Z)\P , either |σ ∩ X | = 1 or |σ ∩ Y | = 1. Thus, for any such simplex, the
obstruction complex St(σ, A) is contractible. We can then use Proposition 8.8 to con-
clude that the homotopy fibers of the inclusion VRr (X) ∪ VRr (Y ) ↪→ VRr (Z) are
simply connected. ��

The conclusion of Theorem 12.5 is sharp. Its assumptions are not enough to assure
that the homotopy fibers of the map VRr (X) ∪VRr (Y ) ↪→ VRr (Z) are 2-connected.
We finish this section with an example illustrating this fact.

12.6 Let Z = {x1, x2, a11, a12, a21, a22, y1, y2}, X = {x1, x2, a11, a12, a21, a22} and
Y = {y1, y2, a11, a12, a21, a22}. Consider the distance function d on Z described by
the following table:

x2 a11 a12 a21 a22 y1 y2
x1 6 3 5 7 9 8 8
x2 0 9 7 5 3 8 8
a11 0 4 4 6 5 7
a12 0 6 4 9 3
a21 0 4 3 9
a22 0 7 5
y1 0 6

The distance d satisfies the triangular inequality and hence (Z , d) is a metric space.
Furthermore d(xi , y j ) = d(xi , ai j ) + d(ai j , y j ) for any i and j . Thus (Z , d) is a
metric gluing of X and Y . The metric space (Z , d) can be represented by the following
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diagram, where the continuous lines or no line indicate distance 8 or smaller and the
dotted lines indicate distance 9:

a11 y1

a21

x1 a12 y2

x2 a22

Bydirect calculation one checks that, for r = 8 and Z = X∪Y , themetric space (Z , d)

satisfies the strong simplex assumption 12.4. However, the complexVR8(X)∪VR8(Y )

is contractible and VR8(Z) is weakly equivaent to S3 (3-dimensional sphere).The
homotopy fiber of VR8(X) ∪ VR8(Y ) ⊂ VR8(Z) is therefore weakly equivalent to
the loops space ΩS3 and hence is not 2 connected.

Here are steps that one might use to see that VR8(Z) is weakly equivalent to
S3. Consider the simplex {x1, x2} in VR8(Z). According to Corollary 7.2, there is a
homotopy cofiber sequence:

ΣSt ({x1, x2},VR8(Z\{x1, x2}) → VR8(Z\{x1}) ∪ VR8(Z\{x2}) → VR8(Z)

The complexes in this sequence have the following homotopy types:

– St ({x1, x2},VR8(Z\{x1, x2}) is weakly equivalent to the circle S1;
– VR8(Z\{x1}), VR8(Z\{x2}), VR8(Z\{x1, x2}) are contractible;
– the above implies that VR8(Z\{x1}) ∪ VR8(Z\{x2}) is also contractible;
– we can then use the cofiber sequence above to conclude VR8(Z) is weakly equiv-
alent to Σ2S1 � S3 as claimed. It is also possible to see this by noticing that
VR8(Z) is homeomorphic to the boundary of the cross-polytope on 8 vertices,
since all edges except the antipodal ones are present.

13 Vietoris-Rips of 9 points on a circle

In Adamaszek (2013), Adamaszek andAdams (2017), Adamaszek et al. (2016) a lot of
techniques were introduced aiming at describing homotopy types of certain Vietoris-
Rips complexes, particularly for metric graphs built from points on a circle. In this
section we showcase how our techniques can be used to describe the homotopy type
of one of such examples. Consider a metric space given by 9 points, Z = {zi }i with
the following distances between them:
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Fig. 3 Only some of the edges
of the simplicial complex are
represented. In particular the
edges connecting points a1, a2
and a3 in A, having distance 3
between each other, are
represented as straight lines

x1 y1 a2 x2 y2 a3 x3 y3
a1 1 2 3 4 4 3 2 1
x1 0 1 2 3 4 4 3 2
y1 0 1 2 3 4 4 3
a2 0 1 2 3 4 4
x2 0 1 2 3 4
y2 0 1 2 3
a3 0 1 2
x3 0 1

This metric space can be visualised as a metric graph consisting of 9 points on a circle,
where distances between adjacent points are set to be 1.

We are going to illustrate how to use our techniques to prove that VR3(Z) is weakly
equivalent to the wedge S2∨ S2 of two 2-dimensional spheres, a result already present
in the mentioned work of Adamaszek et al. Set X := {x1, x2, x3, a1, a2, a3} and
Y := {y1, y2, y3, a1, a2, a3}. Note that X ∪ Y = Z and A := X ∩ Y = {a1, a2, a3}.

Note that VR3(X ∩ Y ) is contractible, and thus VR3(X) ∪ VR3(Y ) is homotopy
equivalent to the wedge VR3(X)∨VR3(Y ). Furthermore we claim that all the obstruc-
tion complexes St(σ, A) are contractible for all simplices σ in VR3(Z) such that
σ ∩ X �= ∅, σ ∩ Y �= ∅, and σ ∩ X ∩ Y = ∅. For example if σ = {x1, y1} then
St(σ, A) = Δ[a1, a2] which is contractible. According to Corollary 8.7.1, the inclu-
sion V R3(X)∪V R3(Y ) ⊂ V R3(Z) is therefore a weak equivalence and consequently
V R3(Z) has the homotopy type of the wedge VR3(X) ∨ VR3(Y ). The metric spaces
X and Y are isometric, and hence the corresponding Vietoris-Rips complexes are iso-
morphic. It remains to show that V R3(X) has the homotopy type of S2. Consider
X ′ = {a1, x2} and X ′′ = {x1, a2, x3, y3}. Note that X = X ′ ∐ X ′′, VR3(X ′) has the
homotopy type of S0 and VR3(X ′′) has the homotopy type of S1. Finally note that,
for all simplices σ in VR3(X ′) and μ in VR3(X ′′), the union σ ∪ μ is a simplex in
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V R3(X). This implies that V R3(X) is the join of VR3(X ′) and VR3(X ′′) (see Para-
graph 4.11) and hence it is weakly equivalent toΣ(S0 ∧ S1) � S2. As in the previous
example, it is also possible to see this by noticing that VR3(X) is homeomorphic to
the boundary of the cross-polytope on 6 vertices, since all edges except the antipodal
ones are present.

Acknowledgements A. Jin and F. Tombari were supported by theWallenberg AI, Autonomous System and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation. W. Chachólski was partially
supported by VR andWASP. M. Scolamiero was partially supported by Brummer & Partners MathDataLab
and WASP.

Funding Open access funding provided by Royal Institute of Technology.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aanjaneya, M., Chazal, F., Chen, D., Glisse, M., Guibas, L., Morozov, D.: Metric graph reconstruction from
noisy data. In: Computational geometry (SCG’11), pp. 37–46. ACM, New York (2011). https://doi.
org/10.1145/1998196.1998203

Adamaszek, M.: Clique complexes and graph powers. Israel J. Math. 196(1), 295–319 (2013)
Adamaszek, M.: Small flag complexes with torsion. Canad. Math. Bull. 57(2), 225–230 (2014). https://doi.

org/10.4153/CMB-2013-032-9
Adamaszek, M., Adams, H.: The Vietoris-Rips complexes of a circle. Pacific J. Math. 290(1), 1–40 (2017)
Adamaszek, M., Adams, H., Frick, F., Peterson, C., Previte-Johnson, C.: Nerve complexes of circular arcs.

Discrete Comput. Geom. 56(2), 251–273 (2016)
Adamaszek, M., Adams, H., Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang,
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