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Abstract. This paper introduces decorated merge trees (DMTs) as a novel invariant for persistent spaces.

DMTs combine both π0 and Hn information into a single data structure that distinguishes filtrations that
merge trees and persistent homology cannot distinguish alone. Three variants on DMTs, which empha-

size category theory, representation theory and persistence barcodes, respectively, offer different advantages

in terms of theory and computation. Two notions of distance—an interleaving distance and bottleneck
distance—for DMTs are defined and a hierarchy of stability results that both refine and generalize existing

stability results is proved here. To overcome some of the computational complexity inherent in these dis-

tances, we provide a novel use of Gromov-Wasserstein couplings to compute optimal merge tree alignments
for a combinatorial version of our interleaving distance which can be tractably estimated. We introduce

computational frameworks for generating, visualizing and comparing decorated merge trees derived from
synthetic and real data. Example applications include comparison of point clouds, interpretation of persis-

tent homology of sliding window embeddings of time series, visualization of topological features in segmented

brain tumor images and topology-driven graph alignment.
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1. Introduction

In this paper we introduce a new set of tools for Topological Data Analysis (TDA) called Decorated
Merge Trees (DMTs). Not only do these new tools have a rich underlying theory that spans category
theory and metric geometry, they also provide topological signatures for datasets such as point clouds, time
series, grayscale images and networks which are more informative and interpretable than standard persistent
homology barcodes. Figure 1 illustrates the main construction of the paper with a simple example. In
this figure, two point clouds with different coarse topological structure are depicted. Their traditional TDA
signatures—degree-0 and degree-1 Vietoris-Rips persistence diagrams—do not distinguish these point clouds.
Our DMT construction illustrates the multiscale topology of each point cloud by overlaying a merge tree
(capturing multiscale connectivity) with a degree-1 persistent homology barcode. This depicts not only the
multiscale homological (H1) data of each point cloud, but also the (topological) location of each degree-1
feature in the dataset. This paper formalizes the DMT construction from several perspectives and extends

1

ar
X

iv
:2

10
3.

15
80

4v
5 

 [
m

at
h.

A
T

] 
 2

8 
Ju

l 2
02

1



2 J. CURRY, H. HANG, W. MIO, T. NEEDHAM, AND O. B. OKUTAN

Figure 1. Decorated Merge Trees. The left column shows two point clouds. Their degree-0 and
degree-1 Vietoris-Rips persistence diagrams in the middle column are essentially the same, despite
clear topological differences in the point clouds. The decorated merge trees (DMTs) in the third
column clearly distinguish the datasets topologically by fusing degree-0 and degree-1 information
to track the topological location of the degree-1 features. Each red bar corresponds to a degree-1
persistent feature and its placement in the merge tree indicates the connected components over
which the feature persists.

classical lines of inquiry in the TDA literature—metric stability, decomposability and practical computational
aspects—to this novel setting.

Although the construction of the decorated merge tree presented above is intuitive, it turns out that there
are multiple ways of tracing births and deaths of homological features along an evolving set of connected
components. To this end we provide in Section 2 three different definitions of a decorated merge tree:

(1) The categorical decorated merge tree relies on the definition of a category of parameterized
vector spaces pVect. This definition fits squarely within the framework of generalized persistence
modules [9, 10] as it is defined in terms of a functor from (R,ď) to pVect. This definition allows
us to leverage existing results to define an interleaving distance and establish its stability.

(2) The concrete decorated merge tree takes the perspective that the underlying merge tree, along
with its poset structure (MF, ď), should define the domain of a functor to the category of vector
spaces Vect, where the homology of each component at each time is recorded. This definition is
equivalent to the categorical one, but is more intuitive and suggests computational approaches.

(3) The barcode decorated merge tree takes a perspective similar to other TDA techniques [42, 44,
71] that reduce the study of complicated persistent spaces to ensembles of 1-dimensional persistence
modules. The barcode DMT associates to each point in the merge tree the barcode gotten by
restricting the filtration to the line that starts at that point and stretches to infinity.

In Section 3, we introduce an interleaving distance between decorated merge trees and establish several
bounds that set decorated merge trees apart from existing TDA methods. In particular, let f,g : XÑ R be
functions whose sublevel sets are locally connected. For every homological degree n, one obtains categorical
decorated merge trees F̃n and G̃n, as well as classical merge trees and persistence modules, associated to the
sublevel set filtrations of f and g. Theorems 3.18 and 3.20 allow one to extract the following statement:
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Theorem. The interleaving distance between F̃n and G̃n is stable with respect to L∞-distance between
f and g, and is more sensitive than (i.e., lower bounded by) both the interleaving distance between the
associated merge trees and the interleaving distance between the associated persistence modules.

After these stability results are proven, we focus on barcode decorated merge trees. We show in Theo-
rem 3.7 that a barcode decorated merge tree can be understood as a Lipschitz map from the merge tree to the
space of barcodes. Barcode decorated merge trees are amenable to a theory of matchings (Definition 3.12)
and thus a new decorated bottleneck distance (Definition 3.13). This offers a tractable and approximable
metric for comparing these enriched invariants. Theorem 3.18 shows that this matching distance is stable
with respect to the interleaving distance between categorical decorated merge trees.

In Section 4, representation-theoretic aspects of DMTs take center stage. In general, one cannot hope for
simple indecomposables such as the barcode decompositions that appear in standard persistent homology—
see Example 4.2 for an illustration. We say that a DMT is real interval decomposable if it decomposes as
a direct sum of DMTs with totally ordered support. Theorem 4.9 provides a condition which is equivalent
to real interval decomposability. The class of real interval decomposable DMTs is of particular interest. As
Theorem 4.10 shows, on this class the map taking a DMT to a barcode DMT is injective, thus providing
a positive solution to a topological inverse problem [55]. We also give methods for generating real interval
decomposable DMTs directly from data, with theoretical guarantees of their correctness (Proposition 4.14).

Section 5 shifts the focus to computational aspects of interleaving distance between decorated merge
trees. Building on work of Gasparovic, et al. [34], we reformulate computation of the matching distance
between barcode decorated merge trees as the search for an alignment between nodes of the trees which is
optimal with respect to a certain cost function (Proposition 5.4). This reformulation allows us to introduce
a method for estimating the metric via a continuous relaxation which can be solved within the Gromov-
Wasserstein framework from optimal transport theory [49]. Our algorithm is novel even when estimating the
interleaving distance between (undecorated) merge trees, but has close connections to other recent advances
in the literature [45, 52, 51]. The computational focus is continued in Section 6, where algorithms for
computing and visualizing decorated merge trees from synthentic and real datasets are described. The
Python code used to produce the figures and experiments for the paper are publicly available under an open
source license at https://github.com/trneedham/Decorated-Merge-Trees.

The main paper concludes with a discussion of future directions of research in Section 7. In particular,
we note that the DMT concept has natural generalizations such as Reeb or MAPPER graphs decorated with
zig-zag modules [13], correspondence modules [38] or Leray (co)sheaves [25]. These constructions will be
the subject of future work as they require more substantative theoretical and algorithmic developments. By
contrast, DMTs fit naturally into a pre-existing body of literature and a fleshed out code base. Regardless,
decorated merge trees and decorated Reeb graphs are just a small part of a broader research program to
construct enriched TDA invariants that are more informative than classical barcodes.

The paper includes three appendices. We draw readers’ attention to Appendices A and B, which contain
results on merge tree topology which are theoretically fundamental but fall outside of the narrative of the
main body of the paper. Appendix C contains proofs of some technical results.

Acknowledgements. JC would like to thank Rachel Levanger for discussions dating back to 2017
when the module-theoretic and lift-theoretic approaches to DMTs were first considered. JC would also
like to thank Gabriel Bainbridge for teaching him about the category of parameterized objects during the
summer of 2020. Gabe’s use of the parameterized category is set to appear in [3]. Finally, JC would like to
acknowledge NSF Grant CCF-1850052 and NASA Contract 80GRC020C0016 for supporting his research.
WM acknowledges partial support by NSF grant DMS-1722995. TN would like to thank Facundo Mémoli
for useful feedback on an earlier draft of the paper. HH would like to acknowledge NSF grant DMS-1854683.

2. Decorated Merge Trees Three Different Ways

In this paper we investigate topological signatures which go beyond standard persistent homology of
filtered topological spaces. To this end, we formally define three notions of decorated merge trees—categorical,
concrete and barcode-decorated—which were described informally in the introduction. Before doing so, we
review some preliminary definitions.

https://github.com/trneedham/Decorated-Merge-Trees
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2.1. Preliminaries. We now introduce the general class of objects to which our decorated merge tree
constructions will be applied.

Definition 2.1. A persistent space is a functor F : (R,ď) Ñ Top, where (R,ď) is considered as a poset
category. Concretely, a persistent space associates to each s P R a topological space F(s) and to each ordered
pair s ď t a continuous map F(s ď t) : F(s) Ñ F(t). These maps collectively satisfy the usual composition
rules of a functor. When each map F(s ď t) is an injection, we will call such a persistent space a filtration.

We now describe several situations where persistent spaces arise, focusing on the case of filtrations.

Example 2.2. Given a continuous function f : XÑ R, one can consider the sublevel-set filtration, which
is a persistent space where

F(s) := f´1(´∞, s] = tx P X | f(x) ď su.

By equipping each sublevel-set with the subspace topology, the inclusion maps F(s) Ď F(t) are continuous
and define the maps F(s ď t) for the persistent space.

The following gives a flexible class of instances of sublevel-set filtrations.

Example 2.3. Given a subset Z of a metric space X, we define the offset function fZ : XÑ R to be

fZ(x) := inf
zPZ

d(x, z).

The offset filtration FZ, defined by

FZ(s) := tx P X | d(x,Z) := inf
zPZ

d(x, z) ď su,

is the sublevel-set filtration of fZ.

Sublevel-set filtrations can be extended to certain non-continuous functions on simplicial complexes
which arise frequently in topological data analysis.

Example 2.4. Let X be a simplicial complex and f : XÑ R a function which is constant on each simplex.
If f is monotone, that is whenever σ is a face of τ then f(σ) ď f(τ), then the sublevel-set filtration
F(s) = |f´1(´∞, s]| defines a persistent space, where | ¨ | denotes geometric realization.

We now introduce some basic concepts of Topological Data Analysis (TDA). These are invariants built
to study persistent spaces. We assume that the reader is familiar with the fundamentals of TDA and mainly
use the definitions here to set terminology and notation—see the survey [12] for more background. For the
remainder of this paper we let π0 denote the connected components functor π0 : Top Ñ Set and let Hn
denote some choice of homology theory with coefficients in a field k.

Definition 2.5. A functor S : (R,ď) Ñ Set is called a persistent set [14, 23]. If F : (R,ď) Ñ Top is a
persistent space, then the persistent set of components is the composition of F : (R,ď)Ñ Top with the
connected components functor π0 : TopÑ Set, i.e.

π0 ˝ F : (R,ď)Ñ Set where s ù π0(F(s)).

Associated to any persistent set S : (R,ď)Ñ Set is its display poset, which is simply the disjoint union of
all the sets that appear in S, i.e.

S :=
ğ

tPR
S(t) :=

ď

S(t)ˆ ttu

The poset structure on S is defined by declaring

(x, s) ď (y, t) if and only if S(s ď t)(x) = y.

The generalized merge tree of F is the display poset (MF, ď) associated to the persistent set π0 ˝ F.

We use the term “generalized” to distinguish it from the classical merge tree.

Definition 2.6. Let X be a topological space and f : X Ñ R a continuous function. The epigraph of f
is the set Ef := t(x, r) | f(x) ď ru. The classical merge tree Mf is the Reeb graph of the projection
function πf : Ef Ñ R : (x, r) ÞÑ r. That is, the merge tree is the quotient space Mf := Ef/ „, where „ is
the equivalence relation p = (x, r) „ (x 1, r 1) = p 1 if and only if r = r 1 and p and p 1 lie in the same connected
component of the level set π´1

f (r). Let π̃f : Mf Ñ R denote the projection map induced by πf.
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Remark 2.7. The differences between the classical and generalized merge tree have gone largely uncom-
mented on in the literature and are often treated as interchangeable. Observe that MF is defined for any
persistent space F and comes endowed with a poset structure. On the other hand, Mf is defined for a con-
tinuous function f on a space X and comes equipped with a quotient topology. This difference only creates
problems when one notices that there are two notions of interleaving, which might not agree always. In
Appendix A we prove that for functions on compact spaces with finitely many critical points, this difference
can be ignored.

Beyond using π0 to discriminate persistent spaces, we can use homology.

Definition 2.8. A persistence module is a functor from the poset category (R,ď) into Vectk, the category
of vector spaces over the field k. A persistence module is pointwise finite dimensional if its image lies in
vectk, the category of finite dimensional vector spaces over k.

Let F : (R,ď) Ñ Top be a persistent space. For any non-negative integer n ě 0 the nth persistent
homology module Fn : (R,ď)Ñ Vectk is the persistence module

Fn := Hn ˝ F : (R,ď)Ñ Vectk with s ù Hn(F(s);k).

We will frequently drop the subscript k, with the understanding that a field of coefficients has been fixed.

One of the central results in the theory of TDA is the theoreom of Crawley-Boevey [22, Theorem 1.1]
which states that pointwise finite-dimensional persistence modules always decompose into direct sums of
simple indecomposables. We introduce the relevant terminology and notation below.

Definition 2.9. Let I Ă R be an interval. The interval module associated to I is the persistence module
kI : (R,ď)Ñ vectk with kI(s) = k if and only if s P I and otherwise kI(s) is the zero vector space. We define
kI(s ď t) = idk if and only if s, t P I and otherwise kI(s ď t) is the zero map.

Crawley-Boevey’s theorem says that any pointwise finite-dimensional persistence module is isomorphic to
a direct sum of interval modules, and that this representation is unique up to permuting factors. A barcode
B = t(I,mI)u is a multiset of intervals in the real line, i.e. I Ď R is an interval and mI P N indicates its
multiplicity. It follows from the discussion above that any pointwise finite dimensional R-module F has a
uniquely associated barcode B(F). Let Barcodes denote the set of all barcodes.

The existence of barcode representations of persistence modules allows for various methods of visual-
ization and analysis of the multiscale topology of a filtered space. A barcode can be represented visually
by drawing the collection of intervals in the plane (see the righthand column of Figure 2) or as a multiset
of points in the plane called a persistence diagram (see the righthand column of Figure 1); here, the
endpoints of each interval are plotted as an ordered pair.

We now consider the simple example illustrated in Figure 2 to see these concepts in action and to
motivate the definitions introduced below. The spaces X, Y Ă R2 give rise to persistent spaces via their
respective offset filtrations. Despite the fact that X and Y are topologically distinct, the degree-0 and degree-
1 persistent homology barcodes extracted from these persistent spaces are the same. This brings us to the
goal of defining richer topological signatures (decorated merge trees), which are able to track interactions of
topological features in a persistent space.

2.2. The Categorical Decorated Merge Tree. The first definition of a decorated merge tree will be
given as a purely category-theoretic construction. This perspective allows for streamlined proofs of stability
theorems below, but has the downside that the connection to merge trees may not be as transparent. This
is remedied with alternative constructions in the following subsections.

The key observation for defining the categorical decorated merge tree is that homology decomposes into
a direct sum of the homology of each connected component. This is expressed in the well known fact that

if X –
ğ

Xi :=
ď

Xi ˆ tiu then Hn(X) –
à

i

Hn(Xi).

Moreover, if f : X Ñ Y is a continuous map of spaces then we can view f as a map between disjoint unions
that send each factor in the domain to a unique factor in the range. In other words, the continuous map

f = \fi :
ğ

iPπ0(X)

Xi Ñ
ğ

jPπ0(Y)

Yj
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L

Figure 2. A motivating example for the need for decorated merge trees. Two subsets X and Y
of R2 along with two times in their offset filtration are shown. Degree-0 and degree-1 persistent
homology fails to distinguish them as the number of components and the number of holes are the
same across all stages in the filtration. This is witnessed by their identical persistent homology
barcodes, shown to the right.

can be parameterized by the underlying map of sets π0(f) : π0(X) Ñ π0(Y). This indicates that we can pa-
rameterize maps inside of a persistent space along its associated persistent set of connected components. This
requires some further restrictions on properties of the topological spaces involved such as local connectedness.
First we isolate an important categorical construction.

Definition 2.10. Let C be a category. The category of discretely parameterized objects in C, written
pC, has for objects functors I : SÑ C where S is a set viewed as a discrete category, i.e. the only morphisms
in S are identity morphisms. The functor I amounts to a choice of object of C for each s P S. We will refer
to such a functor as an S-parameterized object. A morphism from an S-parameterized object I : S Ñ C
to a T -parameterized object J : T Ñ C consists of a map of sets m : S Ñ T and a natural transformation
from the functor I to the pullback of J along m, i.e. a morphism is a natural transformation α : I ñ m˚J
where m˚J := J ˝m.

We note that if C has coproducts, then pC participates in the following diagram of categories and
functors:

pC

Set C

copdom

The functor dom sends any S-parameterized object I : S Ñ C to the underlying parameterizing set S. The
functor cop sends the diagram I : SÑ C to its colimit, which is the coproduct in this case. Before exploiting
the above diagram further, we state the result that was used implicitly at the outset of this subsection.

Lemma 2.11. Let Topc denote the category of connected and locally connected topological spaces. Let
Toplc denote the category of locally connected spaces. The coproduct functor induces an equivalence between
these categories:

cop : pTopc Ñ Toplc where I : SÑ Topc ù
ğ

sPS

I(s).

Proof. To complete the proof, it suffices to show that cop : pTopc Ñ Toplc is full, faithful and
essentially surjective [61, Thm. 1.5.9]. The essentially surjective property is true by virtue of the fact
that every locally connected space is naturally homeomorphic to the coproduct (i.e., disjoint union) of its
components. Full and faithful mean that if I : SÑ Topc and J : T Ñ Topc are two parameterized connected
spaces, then the map

HompTopc(I, J)Ñ HomToplc(
ğ

sPS

I(s),
ğ

tPT

J(t))
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is surjective and injective, respectively. To show surjectivity (fullness), we have to show that every continuous
map

f :
ğ

sPS

I(s)Ñ
ğ

tPT

J(t)

is realized by some morphism (m,α) in pTopc. Here connectivity of each I(s) is an essential part of the
hypothesis because it allows us to associate to each s P S a unique t P T so that f(I(s)) Ď J(t). This specifies
the map of sets m : SÑ T . The restriction of the continuous map f to each I(s) specifies the components of
a natural transformation α : Iñ m˚J. Injectivity is not difficult to see because if (m,α) and (n,β) are two
morphisms that induce the same map between the disjoint unions, then set-theoretically they are equal as
well. Recalling the set-theoretic definition of the disjoint union, this means that

\αs = \`s :
ď

sPS

I(s)ˆ tsu Ñ
ď

tPT

J(t)ˆ ttu

and in particular that m = n and m˚α = n˚β. �

One consequence of Lemma 2.11 is that we can define another functor that serves as sort of “inverse”
to cop, up to natural isomorphism.

Definition 2.12. The parameterized by components functor

pbc : Toplc Ñ pTopc

takes each locally connected space X to the object I : π0(X) Ñ Topc which takes the label i P π0(X) for
an equivalence class to the underlying subset of X carved out by this equivalence class, equipped with the
subspace topology. A map of spaces f : X Ñ Y is taken to the morphism (m,α) where m = π0(f) is
the map recording which connected component of X maps to which component of Y and α is the natural
transformation that records the restriction of f to each component.

By virtue of [61, Def. 1.5.4], an alternative proof to Lemma 2.11 is that

pbc ˝ cop – idpToplc and cop ˝ pbc – idToplc .

We leverage the above identities to provide our first refinement of persistent spaces into functors from
(R,ď)Ñ pTopc. This is the heart of the definition of a categorical decorated merge tree.

Lemma 2.13. Any persistent space F : (R,ď) Ñ Toplc has an associated persistently parameterized
space

F̃ := pbc ˝ F : (R,ď)Ñ pTopc.

The functor F̃ fits into the following diagram, which commutes up to natural isomorphism.

(R,ď)

pTopc

Set Toplc

F̃

π0˝F̃ F

–

copdom

π0

Proof. The natural isomorphism cop ˝ pbc – idToplc from the remark above can be restricted to the
image of F to yield

cop ˝ pbc ˝ F – F ô cop ˝ F̃ – F.

Explicitly this means that for every s P R the spaces cop ˝ F̃(s) and F(s) are homeomorphic. Since homeo-

morphic spaces have isomorphic sets of components, we know that the persistent sets π0 ˝ F and dom ˝ F̃ are
naturally isomorphic as well. �

We are now able to define the categorical decorated merge tree of a persistent (locally connected) space.
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x

k2

y

0

I

a

k

b

k

J

x

k2

a

k

⍺x

m
x

k2

n

βa

I ≇ J

(m*J)(x) (n*I)(a)
S T

Figure 3. Associated to the offset filtration of the two subsets X and Y of R2 from Figure 2 are
two categorical decorated merge trees F̃1 and G̃1, as defined in Definition 2.14. This figure shows
the mechanics of checking if the parameterized vector spaces at offset 0, F̃1(0) = I : S Ñ Vect and

G̃1(0) = J : T Ñ Vect, are isomorphic. They are not, which proves that our categorical decorated
merge tree can distinguish these spaces. See Example 2.15 for more details.

Definition 2.14. Let F : (R,ď) Ñ Toplc be a persistent space where every space is locally connected and

let F̃ : (R,ď) Ñ pTopc denote the persistently parameterized space from Lemma 2.13. The categorical
decorated merge tree in degree n is the functor

F̃n := Hn ˝ F̃ : (R,ď)Ñ pVect where s ù I(s) : π0(F(s))Ñ Vect.

The functor I(s) : π0(F(s)) Ñ Vect is a parameterized vector space (in the sense of Definition 2.10) that
sends each component index i P π0(F(s)) to the homology vector space of that component, i.e. Hn(F(s)i).

Example 2.15 (Our Motivating Example, Reconsidered). In Figure 2, we considered the offset filtrations
F and G associated to two different subsets of the plane X and Y, respectively. Following Definition 2.14
we can associate two categorical decorated merge trees in degree 1, F̃1 and G̃1, to X and Y. To verify that
F̃1 fl G̃1 it suffices to show that their values at filtration value 0, which we denote by I : tx,yu Ñ Vect and
J : ta,bu Ñ Vect, are not isomorphic in the category pVect.

Two parameterized vector spaces I : S Ñ Vect and J : T Ñ Vect are isomorphic if there are set maps
m : SÑ T and n : T Ñ S and natural transformations α : Iñ m˚J and β : Jñ n˚I satisfying

m˚β ˝ α = idI and n˚α ˝ β = idJ;

in particular,

n ˝m = idS and m ˝ n = idT .

By considering the parameterized vector spaces at 0 in our example, I : tx,yu Ñ Vect and J : ta,bu Ñ Vect,
where I(x) = k2, I(y) = 0, J(a) = k and J(b) = k, we can easily show that no isomorphism is possible
because any bijection between S = tx,yu and Y = ta,bu will force a linear transformation of the form

k2 Ñ kÑ k2,

which can never be an isomorphism.

2.3. The Concrete Decorated Merge Tree. The categorical notion of a decorated merge tree boils
down to the following sequence of assignments: to each real number s P R a set I(s) is assigned and then
to each element i P I(s) a (homology) vector space is assigned. This process is reminiscent of specifying an
element of Hom(A, Hom(B,C)), which amounts to assigning to each element of A a map from B to C. The
reader then might find it useful to consider the adjunction between products and exponentials gotten by
currying:

Hom(A, Hom(B,C)) – Hom(Aˆ B,C).

In this section we work with, in essence, the right hand side of this isomorphism, where A ˆ B is replaced
with the generalized merge tree MF and C is replaced with the category of vector spaces. The analog of
currying in this section is concretization, the namesake of the concrete decorated merge tree defined below.
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v

w

Pushforward
Barcode to ℝ

Barcodes “viewed”
from v and w

v

w
F1=I1 I2

BF1(v)
BF1(w)

⨁

v

w

Pushforward
Barcode to ℝ

Barcodes “viewed”
from v and w

v

w

BG1(v)
BG1(w)

G1=J1 J2⨁

Figure 4. The Barcode Decorated Merge Tree comes from restricting a tree module to its leaf
nodes, one at a time, and then calculating the barcode associated to the restriction of this tree
module to the principal up set at each leaf node. In this figure two non-isomorphic tree modules
are shown to have identical barcodes, when “viewed” from each of its leaf nodes. This example
proves that the association of tree modules to their associated barcode decorations is not injective.

Definition 2.16 (The Concrete Decorated Merge Tree). Let F : (R,ď)Ñ Toplc be a persistent space with
all F(s) locally connected and let (MF, ď) denote its generalized merge tree. The concrete decorated
merge tree in degree n is the functor

Fn : (MF, ď)Ñ Vectk where (i, s) ù Hn(F(s)i;k)

that records the nth homology of the ith component of F(s).

Remark 2.17. The definition of a concrete decorated merge tree can be abstracted in a way that does not
refer to a persistent space F at all. That is, we can define a concrete decorated merge tree more generally
to be a functor F : (MF, ď)Ñ Vect on a generalized merge tree (considered as a poset) associated to some
persistent set. When we wish to displace emphasis on the originating persistent space F, we will use the term
tree module to refer to F.

2.4. The Barcode Decorated Merge Tree. To a persistent space F : (R,ď) Ñ Toplc we have
already shown how to associate two (equivalent) devices to record homology in degree n as it varies across
components and filtration values s P R. Unfortunately, unlike ordinary persistent homology modules, neither
of these devices have simple summaries such as barcodes or persistence diagrams. This is due to the fact
that the underlying poset (MF, ď) is not totally-ordered. However, if one considers the restriction of a tree
module Fn to the principal up set at a point p = (i, s) P MF, then we do obtain a module indexed by a
totally ordered set and can call this the “barcode at p.” This motivates the following definitions.

Definition 2.18. A barcode decorated merge tree is a map from a generalized merge tree to the set of
barcodes,

B : (MF, ď)Ñ Barcodes.

We say that a barcode decorated merge tree is determined by restriction if whenever (i, s) =: p ď q :=
(j, t) PMF, we have that

B(q) = B(p)X [s,∞).

If the generalized merge tree has leaves, meaning that every maximal chain in (MF, ď) has a minimal
element, then we call a barcode decorated merge tree that is determined by restriction a leaf-decorated
merge tree.

Definition 2.19. Suppose (MF, ď) is the generalized merge tree associated to the persistent set π0 ˝ F.
Given a tree module F : (MF, ď) Ñ Vect and a point p = (i, s) P MF, we define the restriction of F to
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the principal up set Up to be the R-module

F|Up
: (R,ď)Ñ Vect where, for s ď t, F|Up

(t) = F(π0 ˝ F(s ď t)(i), t).

For r ă s we defined F|Up
(r) = 0.

Proposition 2.20. Assume that the generalized merge tree (MF, ď) has leaves. To any pointwise finite
dimensional tree module F : (MF, ď)Ñ vect, we have a leaf-decorated merge tree

BF : (MF, ď)Ñ Barcodes where BF(p) = BC(F|Up
).

Here Up := tq P MF | p ď qu is the principal up set at p. Note that since (MF, ď) has leaves, it suffices to
compute this barcode for every leaf node v.

Definition 2.21 (Barcode Transform). The map BF whose existence is implied by Proposition 2.20 is
referred to as the barcode transform of F.

Proof of Proposition 2.20. Since the tree module is already pointwise finite dimensional, the re-
striction at each principal up set Up will be a pointwise finite dimensional R-module. Crawley-Boevey’s
Theorem [22] then implies that this restricted tree module has a barcode. Obviously the barcode decoration
is determined by restriction because for any pair of comparable points p ď q the restriction at Uq can be
obtained by restricting the module at Up. �

We have the following immediate corollary.

Corollary 2.22. If F : (R,ď)Ñ Top is a persistent space whose associated generalized merge tree MF has
leaves and whose associated concrete decorated merge tree in degree n ě 0 Fn : (MF, ď)Ñ vect is pointwise
finite dimensional, then F has an associated leaf-decorated merge tree in degree n, BFn.

Remark 2.23. The barcode transform associates an (indexed) ensemble of barcodes to a filtered space
through a certain “slicing” operation (i.e., slicing along upsets from leaves). This operation is analogous to
several other recent methods in the TDA literature; we provide a few examples here. The persistent homology
transform [24, 71] associates to an embedded simplicial complex a barcode for each direction, obtained by
using projection onto the direction axis as a filtration function. A fibered barcode [38, 44] is a collection of
barcodes associated to a multiparameter persistence module by slicing the parameter space by affine lines.
The barcode embedding [28, 54] associates a barcode to each point in a metric graph by computing extended
persistence with respect to a radial filtration centered at that point.

Leaf decorated merge trees are the most computationally tractable of the three variants of DMTs intro-
duced in this section. Algorithms for analyzing DMTs are described in Sections 5 and 6.

3. Continuity and Stability of Decorated Merge Trees

In this section we focus on metric theoretic aspects of decorated merge trees—namely, continuity of the
barcode transform BF : MF Ñ Barcodes of a decorated merge tree and stability of various pseudometrics
on the space of decorated merge trees. To properly state our results, we first briefly review standard metrics
in the TDA literature.

3.1. Metrics on Persistence Modules. Let B,B 1 P Barcodes be barcodes.

Definition 3.1. A matching of barcodes B and B 1 is a bijection ξ between subsets dom(ξ) Ă B and
ran(ξ) Ă B 1—such a ξ is also commonly referred to as a partial bijection between B and B 1. The cost of
a matching ξ is

max

"

max
IPdom(ξ)

}I´ ξ(I)}∞, max
IPBzdom(ξ)

}I}∆, max
I1PB1zran(ξ)

}I 1}∆

*

,

where, for I and I 1 with endpoints b ď d and b 1 ď d 1, respectively,

}I´ I 1}∞ := maxt|b´ b 1|, |d´ d 1|u and }I}∆ :=
d´ b

2
.

If a matching ξ has cost less than or equal to ε, we refer to ξ as an ε-matching. The bottleneck distance
between B and B 1 is

dB(B,B 1) := inftε ě 0 | there exists an ε-matching of B and B 1u.

A matching realizing the bottleneck distance will be called an optimal matching.
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The bottleneck distance is an especially natural metric due to its connection to a category-theoretic
metric on persistence modules called interleaving distance. In fact, interleaving distance can be defined for
more general functor categories [9, 10]. Generalizing interleaving distances to increasingly abstract classes
of functors is an active field of research (e.g., [26, 65]), we define the interleaving distance below at the level
of generality which will be most useful to us. In what follows, C denotes a fixed but arbitrary category.

Definition 3.2 (Interleaving Distance). Consider (R,ď) as a poset category. For ε P [0,∞), we define the
poset map σε : R Ñ R via σε : s ÞÑ s + ε. Now let F : (R,ď) Ñ C be a functor, which is an object in the
functor category Fun(R,C). We define the ε-shift of F, written Fε : (R,ď) Ñ C, as Fε := F ˝ σε. This
shift is functorial, i.e. to every morphism ϕ : Fñ G in Fun(R,C) we have another morphism ϕε : Fε ñ Gε,
which defines the ε-translation functor (‚)ε : Fun(R,C)Ñ Fun(R,C). Since each object F has a naturally
associated internal ε-shift,

ηεF : Fñ Fε where ηεF(s) : F(s)Ñ F(σε(s)) is F(s ď s+ ε),

there is a natural transformation from the identity functor idCR on Fun(R,C) to (‚)ε.
Two objects F,G : (R,ď) Ñ C are ε-interleaved if there are morphisms ϕ : F ñ Gε and ψ : G ñ Fε

such that

ψε ˝ϕ = η2εF and ϕε ˝ψ = η2εG .

We define the interleaving distance between F and G as

dI(F,G) = inftε ě 0 | F and G are ε-interleavedu.

When considering persistence modules F,G : (R,ď)Ñ Vect, the above definition reduces to the classical
interleaving distance of persistence modules as introduced in the landmark paper [16]. Building on this work,
it was shown in [43] that the map taking a persistence module to its barcode is an isometry with respect to
the interleaving and bottleneck distances.

3.2. Continuity of the Barcode Transform. We now establish the continuity of the barcode trans-
form BF : MF Ñ Barcodes associated to a concrete decorated merge tree F. Continuity is measured with
respect to a whole family of `p-type metrics on the underlying merge tree MF for p P [1,∞]. These metrics
measure distance between pairs of points via their least common ancestor. The metric on Barcodes is the
bottleneck distance (Definition 3.1).

Definition 3.3. Let (MF, ď) be a generalized merge tree where πF : MF Ñ R is the projection function.
The merge height of points u, v PMF is

mergeF(u, v) := inftπF(w) | u, v ď wu.

We define the least common ancestor of u and v to be the least common upper bound of u and v,

LCAF(u, v) := argmintπF(w) | u, v ď wu,

when it exists. In this case,

mergeF(u, v) = πF(LCAF(u, v)).

We will drop the subscript F when convenient. Finally, if every pair of points in a merge tree have a least
common ancestor, then we say the merge tree is connected.

Remark 3.4. Note that for a generalized merge tree the least common ancestor need not exist. For example
if S : (R,ď) Ñ Set is the persistent set that assigns S(t) = tx,yu for t ď 0 and S(t) = tzu for t ą 0, then
there will not be a least upper bound for x,y. The assumption that S is constructible (Definition 4.5) will,
however, guarantee the existence of least common ancestors.

Definition 3.5. If the generalized merge tree MF is connected, then the `p metric on (MF, ď) for 1 ď p ď∞
associates to every pair of points u, v PMF the value

dpMF
(u, v) = }(merge(u, v)´ π(u), merge(u, v)´ π(v))}p.

Using general estimates for `p norms on R2, one sees that the `p metrics are bi-Lipschitz equivalent and
therefore induce the same topology. Moreover, we have the following characterization when MF comes from
a sublevel set filtration.
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Proposition 3.6. Let f : X Ñ R be a continuous map such that the associated merge tree Mf has finitely
many leaves. Then the topology induced by each `p metric coincides with the quotient space topology.

We defer the proof of the proposition to Appendix A, since it relies on other technical results about
merge tree topologies.

Theorem 3.7 (Continuity of Barcode DMTs). Let (MF, ď) be a connected generalized merge tree associated
to a persistent set π0˝F. Endow MF with the extended metric dpMF

and Barcodes with the bottleneck distance

dB. For any pointwise finite dimensional tree module F : (MF, ď)Ñ vect, the associated barcode decorated
merge tree BF : MF Ñ Barcodes is 21´1/p-Lipschitz for p P [1,∞) and 2-Lipschitz for p = ∞.

Proof. Suppose that p = (i, s) and q = (j, t) are carried to z = (k, r) via π0 ˝ F. This means that
d1MF

(p,q) ď (r ´ s) + (r ´ t) There is an obvious ε1 := r ´ s interleaving between the R-modules F|Up

and F|Uz
. To see this, note that there is a natural morphism of R-modules F|Uz

Ñ F|Up
given by the 0

map up to, but not including, r. For real values greater than r this morphism is the identity map. The
other morphism that participates in an interleaving is given by the internal morphisms from F|Up

to F|ε1

Uz
.

This proves that there is an ε1-interleaving between these restrictions. The exact same argument shows
that there is an ε2 = r´ t interleaving between the restrictions F|Uq

and F|Uz
. The triangle inequality for

the interleaving distance proves that there is at most an ε1 + ε2 interleaving between F|Up
and F|Ur

. By
Lesnick’s isometry theorem [43], this implies that the bottleneck distance between BC(F|Up

) and BC(F|Ur
)

is at most ε1 + ε2. This proves that the map is 1-Lipschitz with respect to d1MF
and the remaining cases

follow by the general bounds } ¨ }1 ď 21´1/p} ¨ }p, for p P [1,∞) and } ¨ }1 ď 2} ¨ }∞ in R2. �

3.3. Interleavings of Merge Trees. Implicit in Definition 3.2 is a way of comparing generalized
merge trees. If F and G are persistent spaces, then the interleaving distance between π0 ˝ F and π0 ˝ G,
which are both objects of Fun(R,Set), is covered by that definition. However, the original definition of the
merge tree interleaving distance given in [53] used the classical merge tree construction (Definition 2.6) and
assumed continuity of the interleaving maps. In this section we review the construction of [53] and prove
that under suitable hypotheses this classical interleaving distance is the same as the interleaving distance
implied by Definition 3.2, which we have isolated as Definition 3.9.

Definition 3.8 (Classical Merge Tree Interleaving Distance [53]). Let f : XÑ R and g : Y Ñ R be continuous
functions and let Mf and Mg be their associated merge trees, as defined in Definition 2.6. For ε ě 0 we
define an ε-map to be a continuous (with respect to quotient space topologies) map α : Mf ÑMg such that

π̃g ˝ α([x], t) = t+ ε

for all points ([x], t) P Mf. Two ε-maps α : Mf Ñ Mg and β : Mg Ñ Mf are said to be ε-compatible
if β ˝ α = η2εf and α ˝ β = η2εg . The Morozov-Bekatayev-Weber (MBW) interleaving distance
between merge trees Mf and Mg is

θMBWI (Mf,Mg) := inftε ě 0 | D ε-compatible maps α : Mf ÑMg and β : Mg ÑMfu.

Given two functions f : X Ñ R and g : Y Ñ R, we note that their associated sublevel set filtrations
determine persistent spaces F,G : (R,ď) Ñ Top. By post-composing these functors with π0 : Top Ñ Set,
we get two persistent sets, which can be compared with Definition 3.2 when C = Set. We isolate this special
case now.

Definition 3.9 (Modern Merge Tree Interleaving Distance [9]). The interleaving distance between
merge trees Mf and Mg associated to f : X Ñ R and g : Y Ñ R is defined to be the interleaving distance
between the persistent sets π0 ˝ F and π0 ˝ G where F : (R,ď) Ñ Top is defined by F(t) := f´1(´∞, t] and
G : (R,ď)Ñ Top is defined by G(t) := g´1(´∞, t]. We introduce the special notation

θI(Mf,Mg) := dI(π0 ˝ F,π0 ˝G).

We now compare these two definitions of interleaving distance. As a preliminary observation, note that
an ε-map α : Mf ÑMg carries components of f´1(´∞, t] to g´1(´∞, t+ ε]. This is exactly the expression
that α defines a natural transformation α : π0 ˝ Fñ π0 ˝G

ε.

Lemma 3.10. If α : Mf Ñ Mg and β : Mg Ñ Mf are ε-maps that are ε-compatible, then they induce an
ε-interleaving between the persistent sets π0 ˝ F and π0 ˝ G of the sublevel set filtrations of f : X Ñ R and
g : Y Ñ R.
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Proof. The discussion above has already established that and ε-map α is equivalent to specifying a
natural transformation α : π0 ˝ Fñ π0 ˝ G

ε and that β is likewise tantamount to a natural transformation
β : π0 ˝Gñ π0 ˝ F

ε without referring to continuity. By comparing with Definition 3.2 it is now obvious that
setting α to be ϕ and β to be ψ and enforcing the ε-compatibility condition then implies the interleaving
condition defined there. �

We note that because an ε-interleaving of persistent sets does not necessarily guarantee continuity of
the maps between the merge trees Mf and Mg, Lemma 3.10 establishes the bound:

θI(Mf,Mg) ď θ
MBW
I (Mf,Mg).

In the next proposition we provide hypotheses under which these two interleaving distances are the same.
This fills a gap in the literature that is not usually remarked upon and helps bridge the gap between [53]
and [9].

Proposition 3.11. Suppose f : X Ñ R and g : Y Ñ R are continuous maps defined on compact spaces X
and Y so that their (classical) merge trees Mf and Mg have finitely many leaves. Let F and G denote the
sublevel set filtrations of f and g. Every ε-interleaving of the persistent sets π0 ˝ F and π0 ˝G defines a pair
of ε-compatible maps between the merge trees Mf and Mg. Consequently,

θMBWI (Mf,Mg) = θI(Mf,Mg) = dI(π0 ˝ F,π0 ˝G).

Proof. Suppose φ : π0 ˝ Fñ π0 ˝G
ε and ψ : π0 ˝Gñ π0 ˝ F

ε specify an ε-interleaving. Now consider
the display posets of π0 ˝ F and π0 ˝ G, written MF and MG to distinguish them from the merge trees Mf

and Mg. It is obvious that MF and Mf are identical as posets, similarly for MG and Mg. Following the
discussion in Appendix A we can equip MF and MG with the interval topology (see Definition A.3). By
Lemma A.5 the principal up set of any point is closed in this topology. Since MF and MG have finitely
many leaves, consider the closed cover of each by the principal up sets at each of the leaf nodes. It is
easy to see that the map φ : MF Ñ MG is continuous when restricted to the up set of any leaf node in
MF. Since a map is continuous if its restricted to any member of a finite closed cover, we conclude that
φ : MF ÑMG is continuous with respect to the interval topology. A completely symmetric argument proves
that ψ : MG Ñ MF is continuous with respect to the interval topology as well. By Proposition A.4 we can
conclude that the interval topology and the quotient topology are the same, thus φ and ψ can be viewed as
ε-maps (with the continuity assumption) that are ε-compatible. The claim now follows. �

3.4. A Decorated Bottleneck Distance. In this section we leverage the barcode decorated merge
tree perspective to define a second distance that uses an interleaving of merge trees along with an ε-matching
of the barcodes over each of the merge trees, as determined by their decorations. Although finding optimal
interleavings between merge trees is NP-Hard [1], we provide in Section 5 an algorithm for estimating them.

Definition 3.12. Assume that MF and MG are generalized merge trees associated to the persistent sets
π0 ˝ F and π0 ˝G. Given two barcode decorated merge trees

BF : MF Ñ Barcodes and BG : MG Ñ Barcodes

we define an (ε, δ)-matching of BF and BG to consist of

‚ an ε-interleaving of the underlying generalized merge trees i.e. natural transformations φ : π0 ˝Fñ
π0 ˝ G

ε and ψ : π0 ˝ G ñ π0 ˝ F
ε that satisfy ψε ˝ φ = η2εF and φε ˝ ψ = η2εG . We will abuse

notation and write φ : MF ÑMG and ψ : MG ÑMF to make clear that interleaving of persistent
sets always provide ε-compatible maps in the sense of [53] (without the continuity assumption)
between the associated generalized merge trees;

‚ a δ-matching of the barcodes BF(p) and BG(φ(p)) for every p P MF and a δ-matching of the
barcodes BG(q) and BF(ψ(q)) for every q PMG.

Definition 3.13. Let p P [1,∞]. The decorated bottleneck p-distance between two barcode decorated
merge trees BF and BG is defined as

dB,p(BF,BG) := inft}(ε, δ)}p | D (ε, δ)-matching of BF and BGu.

When p = ∞, we refer to the metric simply as the decorated bottleneck distance and write dB := dB,∞.



14 J. CURRY, H. HANG, W. MIO, T. NEEDHAM, AND O. B. OKUTAN

Remark 3.14. We use the notation dB for both the bottleneck distance between barcodes and for the
decorated bottleneck ∞-distance to emphasize the connection between the metrics. The meaning of dB
should always be clear from context.

Remark 3.15. We define the general family of decorated bottleneck p-distances in anticipation that they
will be be useful in data analysis tasks down the line. In this paper, we develop the theory of the p = ∞
metric dB and will almost exclusively refer to the decorated bottleneck distance in what follows.

The (p = ∞) decorated bottleneck distance can be formulated more simply than the general p version.
An (ε, δ)-matching of barcode decorated merge trees where ε = δ will be referred to as an ε-matching.
The proof of the following proposition is elementary but technical. We relegate it to Appendix C.1.

Proposition 3.16. Let BF and BG be barcode decorated merge trees which are determined by their leaves.
The decorated bottleneck distance can be expressed as

dB(BF,BG) = inftε ě 0 | D ε-matching of BF and BGu.

The last result of this subsection says that “determined by leaves” assumption allows us to check one of
the matching conditions only at leaves. Its proof uses technical tools from the proof of Proposition 3.16, so
we delay it to Appendix C.1.

Proposition 3.17. Let BF : MF Ñ Barcodes and BG : MG Ñ Barcodes be two leaf-decorated merge trees.
Let φ and ψ be an ε-interleaving of the underlying generalized merge trees MF and MG where for each leaf
v PMF and each leaf w PMG we have a δ-matching between BF(v) and BG(φ(v)) and a δ-matching between
BG(w) and BF(ψ(w)). Then there is an (ε, δ)-matching between the entire barcode decorated merge trees
BF and BG.

3.5. Hierarchy of Distances. In this section we prove the main two results of this paper.

Theorem 3.18 (The Hierarchy of Stability Results for DMTs). Let f : XÑ R and g : Y Ñ R be continuous
functions whose sublevel sets are locally connected. Let F and G be the sublevel set filtrations, viewed as
persistent spaces. The categorical decorated merge trees for homological degree n are denoted F̃n and G̃n
and the associated barcode decorated merge trees are BFn and BGn. Our various distances satisfy

θI(MF,MG) ď dB(BFn,BGn) ď dI(F̃n, G̃n) ď δI(Xf, Yg).

Moreover, if X = Y then we have that

δI(Xf, Yg) ď ||f´ g||∞.

The distance δI is a special case of the persistent homotopy type distance introduced in [33]. We recall
the definition below.

Definition 3.19. An R-space is a topological space X endowed with a continuous function f : XÑ R. An
ε-interleaving of R-spaces f : XÑ R and g : Y Ñ R is a pair of continuous maps Φ : XÑ Y and Ψ : Y Ñ X
along with homotopies HX : Xˆ [0, 1]Ñ X and HY : Yˆ [0, 1]Ñ Y connecting the identity maps idX and idY
with Ψ ˝Φ and Φ ˝Ψ, respectively. We require further that the following four properties hold for Φ, Ψ, HX
and HY :

(1) Φ(Xďs) Ď Yďs+ε for all s P R
(2) Ψ(Yďs) Ď Xďs+ε for all s P R
(3) f ˝HX(x, t) ď f(x) + 2ε for all x P X and t P [0, 1]
(4) g ˝HY(y, t) ď g(y) + 2ε for all y P Y and t P [0, 1]

The persistent homotopy type distance between R-spaces Xf := f : X Ñ R and Yg := g : Y Ñ R is
defined as

δI(Xf, Yg) := inf tε | Xf and Yg are ε-interleavedu.

If no interleaving exists, we set δI(Xf, Yg) = ∞.

This metric was used in [37] to develop persistent homology of R-spaces with different, but homotopic
domains. A similar metric on R-spaces, called the homotopy interleaving distance, was defined in [6],
but the exact connection between homotopy type distance and homotopy interleaving distance remains to
be studied.
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Proof of Theorem 3.18. The leftmost inequality θI(MF,MG) ď dB(BFn,BGn) follows from the
definition of the decorated bottleneck distance, since the data of an interleaving of merge trees is part
of the definition. Moreover it is obvious that dI(F̃n, G̃n) ě θI(MF,MG) since one can always apply the

functor dom to any ε-interleaving φ̃ : F̃n ñ G̃εn and ψ̃ : G̃n ñ F̃εn of categorical decorated merge trees
to obtain an ε-interleaving φ and ψ of the underlying persistent sets or generalized merge trees; this is
the Lipschitz stability result of [9, Thm. 2.3.6] applied to the functor dom. Moreover, if we take a point

p P MF then φ̃ : F̃n ñ G̃εn specifies, by restriction, a morphism between the restriction of F̃n to the upset

at p and the restriction of G̃εn to the upset at φ(p). Similarly, since ψ(φ(p)) must equal the 2ε translate

of p in MF, we can conclude that the module F̃n|Up
and φ˚G̃εn|Up

are ε interleaved, as R-modules. By the
Algebraic Stability Theorem [5, 16], which states that an ε-interleaving of R-modules induces an ε-matching
of barcodes, we have an ε-matching between the barcodes BFn(p) and BGn(φ(p)) for all p. A completely

symmetric argument works where we consider q P MG and the natural transformation ψ̃ : G̃n ñ F̃εn. This
proves that

dB(BFn,BGn) ď dI(F̃n, G̃n).

To prove the rightmost inequality, first observe that if δI(Xf, Yf) = ∞ then we are done, so assume
not. Given ε ą δI(Xf, Yg), there exists an ε-interleaving of the R-spaces Xf and Yg. In particular, for each
t P R we have that the map Φ restricts to a continuous map between the sublevel sets Φ : F(t) := Xďt Ñ
Yďt+ε =: G(t + ε). Since Φ is continuous and defined globally on X, it specifies a natural transformation
of the persistent spaces φ : F ñ Gε. Moreover, since the continuous image of a (path) connected set is
connected, the natural transformation φ defines a natural transformation between the associated persistent
spaces that are parameterized by their (path) components φ̃ : F̃ ñ G̃ε. Interchanging the roles of X and Y

in the above discussion implies that Ψ : Y Ñ X defines a natural transformation ψ̃ : G̃ñ F̃ε.
It should be noted that φ̃ and ψ̃ do not define an interleaving of the functors F̃ and G̃ because that would

require that for each t P R the composition ψ(t + ε) ˝ φ(t) equals the inclusion map Xďt Ď Xďt+2ε. This
is not true, but condition (3) of Definition 3.19 does require that Ψ ˝Φ restrict to a map that is homotopic
to the inclusion map Xďt Ď Xďt+2ε for all t. Since homotopic maps induce the same map on homology, we

can conclude that the natural transformations φ̃ : F̃ ñ G̃ε and ψ̃ : G̃ ñ F̃ε define an ε-interleaving of the
persistent component homology modules F̃n and G̃n.

In the case that X = Y, the desired inequality is [33, Proposition 2.11]. This completes the proof. �

Although the above result establishes that categorical DMTs are more sensitive than undecorated merge
trees, the relationship to higher dimensional persistent homology is not described above. The next result
establishes that categorical DMTs are, in fact, more sensitive than ordinary persistent homology.

Theorem 3.20. For locally connected persistent spaces F,G : (R,ď) Ñ Toplc, the categorical decorated
merge tree in homological degree n is more sensitive than the interleaving distance of the persistent homology
modules in degree n, i.e

dI(Hn ˝ F,Hn ˝G) ď dI(F̃n, G̃n).

Proof. We have

cop ˝ F̃n(s) :=
à

iPπ´1(s)

Hn(F(s)i) – Hn(
ğ

iPπ´1(s)

F(s)i) – Hn ˝ F(s),

and similarly for G.
Note that the last isomorphism on the right uses the assumption that each F(s) is locally connected.

Since naturally isomorphic modules have the same interleaving distance, the result now follows from the
Lipschitz stability result of [9, Thm. 2.3.6] applied to the functor cop, i.e. applying cop is a 1-Lipschitz map
from Fun(R,pVect) to Fun(R,Vect). �

Remark 3.21 (No Contradiction to Universality). By reconsidering the example from Figure 2, we know
that the above inequality is not an equality, in general. Moreover, when taken together Theorem 3.20 and
Theorem 3.18 may appear to contradict Lesnick’s Universality result [43, Thm. 5.5], which asserts that the
interleaving distance on persistent homology modules is the most sensitive distance that is bounded above
by the L∞ distance. However, there is no contradiction because universality theorems of the type stated and
conjectured in [43] only apply to functors from R (or Rd) to Vect and not pVect.
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Figure 5. Consider a cylinder with height function induced by the implied embedding. The
concrete decorated merge tree in degree-1 is an indecomposable tree module that is two dimensional
at the merge point and for values up to, but not including, the maximum. This is equivalent to an
indecomposable tree module, which is equivalent to one of the 12 indecomposable representations
of the Dynkin Diagram D4. This shows that not every tree module is real interval decomposable.

Remark 3.22 (No One-Way Relationship of Bottleneck Distances). In the case where locally connected
persistent spaces F and G give rise to pointwise finite dimensional persistent homology modules, we know
that dI(Hn ˝ F,Hn ˝G) coincides with the bottleneck distance by virtue of the isometry theorem [43, Thm.
3.4]. Unfortunately, the decorated bottleneck distance dB(BFn,BGn) can be greater than or less than the
bottleneck distance between Hn ˝ F and Hn ˝ G. If one considers the motivating example in Figure 2, then
the decorated bottleneck distance there is obviously greater than the bottleneck distance between H1 ˝ FX
and H1 ˝ FY . For this example, the bottleneck distance is 0, but the decorated bottleneck distance is R/2,
corresponding to half the radius of the circles in Figure 2. On the other hand, Figure 4 gives an example
of two non-isomorphic tree modules (concrete DMTs) with identical barcode decorations, so the decorated
bottleneck distance for F and G in those examples is 0. However, the underlying persistent homology modules,
which arise via the pushforward to R are separated by the length of the edge from the merge point to w in
the bottleneck distance.

4. Representations of Tree Posets and Lift Decorations

This section treats questions about the decomposability of decorated merge trees. We will see that the
situation is much more subtle than in the classical persistence setting, due to the fact that merge tree posets
are not totally ordered.

4.1. Indecomposables with totally ordered support. A crucial feature of pointwise finite di-
mensional (PFD) persistence modules is that they decompose as a direct sum of interval modules; these
decompositions are used ubiquitously in visualization and analysis tasks in TDA. Although a PFD concrete
decorated merge tree F : MF Ñ vect also admits a (Remak) decomposition into a direct sum of indecom-
posables F «

À

i Fi, where the direct sum is taken pointwise [7, Theorem 1.1], the indecomposables need
not have any special structure. However, we will consider a construction where the DMT does decompose
into modules that are supported on totally ordered subsets of the merge tree, which will give us a structure
theorem analogous to the usual one in persistence.

Definition 4.1. A concrete decorated merge tree F : MF Ñ Vectk is real interval decomposable if it
can be expressed as a direct sum F =

À

i Fi, where each Fi : MF Ñ Vectk is indecomposable and has totally
ordered support.

The next example shows that an arbitrary DMT does not have to be real interval decomposable.

Example 4.2. Consider the space and map shown in Figure 5. The concrete decorated merge tree F1 :
(MF, ď) Ñ vect reduces to the study of the four vector spaces and the maps between them, indicated in
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red. It is a fact that this tree module is equivalent to one of the twelve indecomposable representations of
the Dynkin Diagram D4. This gives a natural, Morse-theoretic example of a function whose associated tree
module is not real-interval decomposable.

The aim of this subsection is to establish a sufficient condition for a decorated merge tree to be real
interval decomposable.

Definition 4.3. A collection of vector subspaces V1, . . . ,Vm of a fixed vector space V is independent if
for all i Vi X

(
ř

j‰i Vj
)
= 0. Under this hypothesis we have that

V1 + ¨ ¨ ¨+ Vm = V1 ‘ ¨ ¨ ¨ ‘ Vm.

Let (MF, ď) be a generalized merge tree and let F : (MF, ď) Ñ Vect be a tree module. We say that F is
untwisted if whenever we have a set of incomparable elements p1,p2, ¨ ¨ ¨ ,pn P MF and any upper bound
p PMF of these, the collection of vector subspaces

ImF(p1 ď p), ImF(p2 ď p) ¨ ¨ ¨ , ImF(pn ď p)

is independent.

Remark 4.4. It should be noted that this notion of untwisted is completely unrelated to the notion used
in [41], which is used to describe Reeb graphs which admit sections when restricted to certain intervals.

To state our sufficient condition for real interval decomposability, we impose a mild geometric constraint
on our generalized merge trees (Definition 2.5).

Definition 4.5 (cf. Defn. 2.2 of [56]). A persistent set S : (R,ď) Ñ set is constructible if there exists a
collection of times τ = tt0 ă t1 ă ¨ ¨ ¨ ă tnu such that

‚ S(t) = ∅ for t ă t0,
‚ S(t) = t‹u for t ą tn, and
‚ S(t ď s) is a bijection for every pair t ď s Ă [ti, ti+1).

Assuming these conditions, the associated display poset (S, ď) is said to be tame.

It is known that a constructible persistent set has an associated display poset that can be topologized
as a finite cell complex, making it into a bona fide tree [23, 65]. There are a few other consequences of this
tameness condition that are worth noting.

Proposition 4.6. Suppose (MF, ď) is a tame generalized merge tree, i.e. the defining persistent set π0 ˝ F
is constructible. The following consequences of this assumption are obvious:

‚ Any maximal chain C Ď MF has a minimum, which we call a leaf node. The set of leaf nodes of
MF is finite.

‚ Every leaf node has a (unique) least upper bound p∞ = (‹, tn), which we call the root node.
‚ Any PFD tree module F : (MF, ď) Ñ vect pushes forward along the natural projection map
π : MF Ñ R to a PFD R-module π˚F : (R,ď)Ñ vect, which is defined pointwise as

π˚F(s) :=
à

pPπ´1(s)

F(s).

Remark 4.7. When the need arises, we use notation πF : MF Ñ R for the projection map. The extra
notation will be necessary when comparing merge trees MF and MG later in the paper.

Remark 4.8. In Appendix B, we give an alternative construction of a merge tree which is guaranteed to
produce a tree, in the metric sense, without any tameness assumption.

Theorem 4.9. Let (MF, ď) be a tame generalized merge tree. A pointwise finite dimensional tree module
F : (MF, ď)Ñ vect is real interval decomposable if and only if it is untwisted.

Proof. We proceed by induction on the number of leaf nodes n of a generalized merge tree (MF, ď). If
n = 1, then MF is totally ordered and any tree module is automatically untwisted. The result then follows
from the usual decomposition theorem for R-indexed persistence modules. If the result is true for any PFD
tree module on a generalized merge tree with ` leaves where 1 ď ` ď m, then we now show the result is true
for tree modules on trees with m+ 1 leaf nodes.
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To begin, we assume that (MF, ď) has m+ 1 leaf nodes and a root node p∞. Write MF as the union of
two subsets M1 and M2 where each subset has at least one leaf node and M1XM2 = Up∞—the intersection
is the principal up set at the root node, which is totally ordered. Associated to any PFD tree module
F : (MF, ď) Ñ vect and such a decomposition MF = M1 YM2 are two natural submodules F1 and F2. We
define F1 via three cases:

(1) If p PM1 and p ă p∞, then F1(p) := F(p).
(2) If p ě p∞, then F1(p) :=

ř

qPM1|qăp∞ ImF(q ă p).

(3) If p PM2zM1, then F(p) = 0.

F2 is defined exactly in the same manner, simply by interchanging 1 and 2 in the above definition. By the
induction hypothesis both F1 and F2 are untwisted and hence real interval decomposable, i.e. F1 – ‘αPI1Fα
and F2 – ‘βPI2Fβ and each of Fα and Fβ are supported on totally ordered subsets of M1 and M2,
respectively.

By Proposition 4.6, π˚F, π˚F1 and π˚F2 are each PFD R-modules. Moreover, since π˚ : Fun(MF, vect)Ñ
Fun(R, vect) is an additive functor, we know that

π˚F1 – π˚ ‘α Fα – ‘π˚Fα,

which agrees, up to permuting factors with the Remak decomposition of π˚F1 guaranteed by the usual
decomposition theorem in persistence. The symmetric statement is true for π˚F2 as well. This implies that
we can collect the interval modules that appear in the Remak decomposition of π˚F into three terms:

π˚F – F1 ‘ F2 ‘ F3 where F1 – π˚F1 and F2 – π˚F2.

We claim that F3 is the direct sum of real interval modules that are born at or after π(p∞). In particular,
the support of F3 is contained in [π(p∞),∞). This is clear because for any t ă π(p∞) the set of pre-images
π´1(t) can be partitioned into points that are in M1 or M2 exclusively, because π´1(t) XM1 XM2 = ∅.
This implies that

for t ă π(p∞) π˚F(t) – π˚F1(t)‘ π˚F2(t).

We now use this observation to define F3 := π˚F3.
The proof of this direction concludes by showing that F – F1 ‘ F2 ‘ F3. This decomposition obviously

holds for the MF-module when restricted to the set of points strictly below p∞. Since Fi for i = 1, 2, 3 are
naturally submodules of F, it suffices to show that whenever p ě p∞ and vi P Fi(p) are chosen such that
v1 + v2 + v3 = 0, then each vi = 0. Of course if v1 + v2 + v3 = 0, then v3 P (F1(p)‘ F2(p))X F3(p) = 0, so
v3 = 0. Moreover v1 and v2 are the images of w1 and w2 under the maps F1(q1 ă p) and F2(q2 ă p), so
the untwisted condition implies that v1 and v2 are independent, hence 0 as well.

A real interval module satisfies the untwisted condition and this property is inherited by direct sums.
This proves the converse statement and completes the proof of the theorem. �

4.2. Injectivity of the Barcode Transform. The class of real interval decomposable tree modules
is nice for various reasons, but one reason of interest to us is that the barcode transform is injective when
restricted to real interval decomposable modules.

Theorem 4.10. Suppose that F : (M, ď)Ñ vect and F 1 : (M 1, ď 1)Ñ vect are two real interval decompos-
able tree modules with finitely many intervals in their Remak decompositions. If their associated barcode
decorated merge trees BF : MÑ Barcodes and BF 1 : M 1 Ñ Barcodes are isomorphic then F – F 1.

To prove the theorem, we introduce some notation. Let I Ă MF be a totally ordered subset. We use
kI : (MF, ď) Ñ vectk to denote the functor that assigns the ground field k to points p P I and where any
ordered pair p ď q in I is assigned the identity map. If a decorated merge tree F : MF Ñ Vect is real interval
decomposable, then it can be expressed as

F «
à

R(F)

kI, (1)

where R(F) := t(I,mI)u indicates the collection of intervals I that appear in the Remak decomposition of F
along with their multiplicity; the sum in (1) is taken with multiplicity.

The following proposition is obvious.
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Proposition 4.11. Suppose that the tree module F : (MF, ď)Ñ vect is real interval decomposable. Then
the associated barcode decorated merge tree BF : MF Ñ Barcodes is determined at each point by the
formula

BF(p) := t(Up X I,mI) | (I,mI) P R(F)u

where Up is the principal up set at p in MF. Moreover, when MF is tame, the associated barcode decorated
merge tree is completely described as the disjoint union of the barcodes when viewed from each leaf node v,
i.e.

BF =
ğ

vPL(M)

BF(v),

where BF(v) is determined via intersection with the principal up set Uv as indicated above. We note that
every bar (I,mI) in the barcode viewed from v can be expressed as a sum

(I,mI, v) =
ÿ

IPR(F)

Uv X (I,mI) where IXUv = I.

Informally, we may write this as mI = mI1 + ¨ ¨ ¨+mIk

Proof of Theorem 4.10. Two barcode decorated merge trees are isomorphic if there exists an under-
lying isomorphism of their generalized merge trees ϕ : MÑM 1 and ψ : M 1 ÑM so that BF(x) = BF 1(ϕ(x))
and BF 1(x 1) = BF(ψ(x 1)) for all x P M and x 1 P M 1. The argument proceeds by proving that F – F 1 ˝ ϕ
and symmetrically F 1 – F ˝ ψ. Both arguments would be completely symmetric over the two generalized
merge trees, so it suffices to consider the case where M = M 1 and where we can assume that ϕ and ψ are
identity maps. We now proceed to showing that if BF = BF 1 then F – F 1 as M-modules.

The argument proceeds by showing that every real interval (I,mI) that appears in the Remak decompo-
sition for F must appear in the Remak decomposition for F 1 with no intervals left over. This will establish
the isomorphism of F and F 1. We start by considering an oldest interval (I,mI, v) in B[F], this means that
if we consider the projection of I to R via the natural map π : M Ñ R then inftπ(I)u ď inftπ(J)u for any
(J,mJ,w) P BF; such an oldest interval exists due to our finiteness assumption. By Proposition 4.11 we
know that any (I,mI, v) has a unique (up to permutation) expression

mI = mI1 + ¨ ¨ ¨+mIk

for Ij P R(F) with Ij X Uv = I. We claim that if (I,mI, v) is an oldest interval then there exists an
(Ij,mIj) P R(F) with (I,mI, v) = (Ij,mIj). Indeed, if there does not exist a unique contributor, then this
contradicts the assumption that (I,mI, v) was oldest. The interval Ij is the oldest contributing factor in the
sum for mI displayed above. Since the barcode decoration associated to F 1 is equal to the barcode decoration
associated to F, then (I,mI, v) must also be an oldest interval and there must be the same oldest contributor

Ij P R(F 1). This proves that F 1 – G 1 ‘ k
mIj

Ij
and of course F – G ‘ k

mIj

Ij
and BG 1 = BG. The argument

repeats with the barcode decorated merge tree B[G] until it is empty. �

4.3. Lift Decorated Merge Trees. The process of extracting a decorated merge tree from a dataset
is an algorithmic challenge that we need to address. When a persistent space F : (R,ď)Ñ Top is a filtration
of a simplicial complex, existing software can be used to extract a merge tree MF and a degree-k persistent
homology barcode B. One would hope to use this easily accessible data to reverse engineer the underlying
decorated merge tree F : MF Ñ vect, for which the persistent homology barcode is the pushforward; i.e.,
B = π˚F, where π : MF Ñ R is the projection function. Indeed, algorithms presented in Section 6 are based
on such a reverse engineering process and can be used to produce decorated merge trees from point cloud
and filtered graph data. In this subsection, we provide the theoretical underpinning of these algorithms.

Let F : (R,ď) Ñ Top be a filtration of a simplicial complex with a tame merge tree MF. The standard
algorithm for extracting the barcode B records a birth simplex σ for each interval I = [b,d) in the barcode
[29]. This is to say that σ is a simplex with filtration value b whose birth creates a representative homology
class for I. The birth point of I is the unique point p P MF with π(p) = b and where p is an ancestor of
all the vertices of σ. Let q PMF be the unique ancestor of p such that π(q) = d.

Definition 4.12. With the notation above, define the lift of I to be the decorated merge tree I : MF Ñ vect
defined by

I(r) :=

"

k p ď r ď q
0 otherwise.
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The lift of B is the decorated merge tree
pF :=

à

IPB

I.

A decorated merge tree is called a lift decorated merge tree if it is obtained as the lift of some barcode.

Based on the above discussion, it is straightforward to determine the lift decorated merge tree directly
from the filtered simplicial complex. However, the lift DMT is not guaranteed to be isomorphic to the true

DMT F : M Ñ vect; indeed, we have pF « F if and only if F is real interval decomposable, in the sense of
Definition 4.1. The task which we aim to address for the rest of this subsection is to determine a condition
on the filtration F which

‚ can be verified directly from the merge tree MF and degree-k barcode B, and

‚ implies that pF « F.

Our proposed condition is the following.

Definition 4.13. Let F : (R,ď) Ñ Top be a filtered simplicial complex with merge tree MF and degree-
k barcode B. We say that F has the Hk-disjointness property if for any pair of bars I = [b,d) and
I 1 = [b 1,d 1) in B with incomparable birth points p and p 1, their death times are less than their merge height
(Definition 3.3), i.e.

mintd,d 1u ă merge(p,p 1).

Intuitively, this means that the lifts of I and I 1 have disjoint support.

Proposition 4.14. If a filtered simplicial complex F : (R,ď)Ñ Top has the Hk-disjointness property, then

the lift decorated merge tree and the concrete decorated merge tree are isomorphic, i.e. pF « F.

This result says that Hk-disjointness is sufficient to guarantee that the lifting procedure produces a valid
decorated merge tree. Our proof is straightforward but technical, so we delay it to Appendix C.2.

5. Computing Interleaving Distances

The goal of this section is to develop a practically feasible algorithm for approximating the matching
distance between barcode decorated merge trees (Definition 2.18). This relies on the notion of labeling a
DMT.

5.1. Labeled Distance. Throughout this section, we consider generalized merge trees MF arising from
persistent spaces F : (R,ď)Ñ Top such that the persistent set π0 ˝ F is constructible and MF is tame, as in
Proposition 4.6. The finite set of leaves of MF is denoted L(MF). The canonical projection function MF Ñ R
is denoted πF.

Remark 5.1. The results of this section do not require that decorated merge trees arise from persistent
spaces at all; they could be derived formally treating tree modules as the fundamental objects.

We restrict our attention to the case of barcode decorated merge trees BF : MF Ñ Barcodes which are
determined by restriction and which have leaves, i.e. BF is a leaf-decorated merge tree. Recall that we denote
an element of Barcodes as a multiset t(I,mI)uIPI, where I is an interval and mI is its multiplicity. We make
the (realistic, in practice) assumption that all barcodes are finite.

Inspired by a similar result for merge trees in [34], we will now explain how the bottleneck distance
between leaf decorated merge trees can be expressed in terms of matrices obtained from labelings of merge
trees.

Definition 5.2. A labeling of a merge tree MF is a map

λF : [n] := t1, . . . ,nu ÑMF,

for some integer n ě 1, which is surjective onto the set of leaves L(MF); that is, L(MF) Ď Im(λF).

To each labeling λF : [n] Ñ MF one associates an n ˆ n matrix ΛF of merge heights (Definition 3.3),
referred to as the least common ancestor (LCA) matrix and defined by

ΛF(i, j) = πF(LCAF(λF(i), λF(j))) = mergeF(λF(i), λF(j)). (2)
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It is shown in [34, Proposition 4.1] that interleaving distance between merge trees can be expressed in terms
of the `∞ distance between these LCA matrices. To adapt this result to the decorated merge tree setting,
we introduce a more involved objective function.

Definition 5.3. Let BF : MF Ñ Barcodes and BG : MG Ñ Barcodes be leaf decorated merge trees. Define
the matching cost of labelings λF : [n]ÑMF and λG : [n]ÑMG to be

cost(λF, λG) = max

"

}ΛF ´ΛG}∞ , max
i
dB (BF(λF(i)),BG(λG(i)))

*

, (3)

where } ¨ }∞ is the `∞-norm on nˆ n matrices.

Proposition 5.4. The decorated bottleneck distance between leaf decorated merge trees BF : MF Ñ

Barcodes and BG : MG Ñ Barcodes is given by

dB(BF,BG) = min
λF,λG

cost(λF, λG),

where the minimum is taken over labelings λF and λG with common domain [n], where n is the sum of the
number of leaves in MF and the number of leaves in MG.

The proof adapts the proof of [34, Proposition 4.1] to this new setting. We provide a sketch of the idea
and omit technical, but ultimately routine, details.

Proof Sketch. Throughout the proof sketch, fix leaf decorated merge trees BF : MF Ñ Barcodes and
BG : MG Ñ Barcodes. Suppose that MF has k leaves and MG has ` leaves.

First assume that we have ε-compatible maps (φ,ψ) of MF and MG; recall from Definition 3.12 that we
slightly abuse notation and conflate the notion of natural transformation with that of ε-compatible maps.
Also assume that

dB(BF(u),BG(φ(u)),dB(BG(v),BF(ψ(v))) ă ε.

We construct labelings λF and λG on the common set of labels [k+ `] as follows.

(1) Label each leaf of MF with a unique element of t1, . . . ,ku; this defines λF on [k]. Each label i is
also assigned to MG as λG(i) = ψ(λF(i)).

(2) Similarly, for each j P tk+ 1, . . . ,k+ `u define λG(j) to be a unique leaf of MG and define λF(j) =
ψ(λG(j)).

One must then show that the labelings λF and λG defined above have the property that, for any i, j P [k+ `],

|πF(LCAF(λF(i), λF(j)))´ πG(LCAG(λG(i), λG(j)))| ă ε (4)

and
dB(BF(λF(i)),BG(λG(i))) ă ε. (5)

Conversely, suppose that we have labelings λF and λG such that cost(λF, λG) ă ε. For each i P [k + `]
set ui = λF(i) and vi = λG(i).

(1) We first define the map φ : MF ÑMG. Let x PMF and choose an arbitrary labeled point ui PMF

with ui ď x (always possible because all leaves of MF are labeled). Define φ(x) P MG to be the
unique ancestor of vi such that πG(φ(x)) = πF(x) + ε.

(2) The map ψ : MG ÑMF is constructed similarly.

We first note that the maps φ and ψ are well defined. Indeed, if ui and uj are a pair of labeled points
in MF with ui,uj ď x, then LCAF(ui,uj) ď x. This means that πG(LCAG(vi, vj)) ď πF(x) + ε, by our
assumption on the cost of the labelings λF and λG, so that vi and vj have the same ancestor at height
πF(x) + ε. By the same reasoning, ψ is well defined. The proof is completed by showing that the maps
(φ,ψ) define an ε-matching of barcode decorated merge trees. �

5.2. Approximating Merge Tree Interleaving via Gromov-Wasserstein Distance. Computing
interleaving distance between merge trees is known to be NP-Hard [1]. A dynamic programming approach to
computing interleaving distance is taken in [31], illustrating that the computation is at least fixed parameter
tractable (roughly, precise upper bounds on interleaving distance are computable in time with polynomial
growth in the number of the nodes, provided one has a uniform upper bound on node degrees). An alternative
and more efficient method for analyzing merge trees is to apply [34, Proposition 4.1]: given any labeling of
merge trees, one obtains an upper bound on their interleaving distance, so one could rely on a good heuristic
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for estimating optimal labelings. Such a heuristic, based on replacing the problem with the simpler one
of finding optimal bipartite graph matchings, is proposed in [78], yielding a comprehensive framework for
statistical analysis of merge tree ensembles.

In this section, we propose an alternative heuristic for estimating optimal labelings using the concept
of Gromov-Wasserstein (GW) distances. Different formulations of GW distances were introduced around
a decade ago by Sturm [66, 67], to study abstract convergence of sequences of metric measure spaces, and
Mémoli [48, 49], with a view towards applications to object matching. GW distances have found recent
popularity in the machine learning community [2, 15, 76, 77], largely due to the observation by Peyré et
al. [59] that they can be used to measure distances between general kernel matrices; this point of view was
formalized mathematically in [17]. We now briefly present GW distances from a computational point of
view—see the references above more thorough treatments.

Definition 5.5 (cf. [17]). A (finite) measure network is a pair C = (C,µ), where C is an nˆ n matrix
and µ is a length-n probability vector (that is,

ř

µ(i) = 1 and µ(i) ě 0). A coupling between probability
vectors µ1 P Rn and µ2 P Rm is a matrix ν P Rnˆm such that ν(i, j) ě 0 and

ÿ

i

ν(i, j) = µ2(j),
ÿ

j

ν(i, j) = µ1(i).

That is, ν is a joint probability distribution with marginals µ1 and µ2. The set of couplings between fixed
µ1 and µ2 is denoted C(µ1,µ2) Ă Rnˆm.

The Gromov-Wasserstein p-distance between finite measure networks (C1,µ1) and (C2,µ2) is defined
by

dGW,p ((C1,µ1), (C2,µ2)) = min
νPC(µ1,µ2)

Jp(ν)
1/p, (6)

where

Jp(ν) =
ÿ

i,j,k,`

(C1(i,k)´ C2(j, `))
p
ν(i, j)ν(k, `) (7)

denotes the Gromov-Wasserstein p-distortion functional.

To handle computational aspects of merge tree interleaving, we introduce the following discrete repre-
sentation of a merge tree.

Definition 5.6 (cf. [34]). A computational merge tree is a (discrete) graph together with a height
function on its nodes satisfying the following conditions:

(1) the graph must be a tree—that is, there is a unique edge path between any two nodes;
(2) exactly one of the leaf nodes (called the root) of the graph gets assigned height ∞;
(3) adjacent nodes do not have equal function value; and
(4) every non-root node has exactly one neighbor with higher function value.

A computational decorated merge tree is a computational merge tree together with an assignment of
a barcode to each of its nodes.

Remark 5.7. In what follows, we use the notation MF for a computational merge tree and BF : MF Ñ

Barcodes for a computational decorated merge tree. This is in agreement with the notation used for their
non-computational counterparts earlier in the paper, but the distinction should be clear from context. We
also generally drop the “computational” qualifier.

Algorithm 5.8. The GW framework is incorporated into the pipeline for estimating the interleaving distance
between merge trees MF and MG as follows (see also the schematic of the pipeline in Figure 6):

(1) Probability distributions µF and µG, respectively, are chosen for the nodes of the trees. We use
uniform distributions in our experiments

(2) An optimal coupling ν of µF and µG is estimated by numerically solving the GW problem (6).
Intuitively, the GW problem promotes large values of ν(i, j) when node i of MF and node j of MG

are structurally similar.
(3) We use ν to estimate interleaving maps of MF and MG: for each leaf u in MF, we locate the

maximum entry of the row of ν corresponding to this leaf and define this to be φ(u) P MG. We
likewise define a map ψ from the leaf set of MG to MF by examining columns of ν.



DECORATED MERGE TREES FOR PERSISTENT TOPOLOGY 23

Figure 6. Pipeline for estimating interleaving distance between merge trees. From left to right:
we aim to compute the interleaving distance between merge trees shown in the left column. We
sample the merge trees with a user-defined mesh (here the mesh is equal to 1). We assign arbitrary
labels to the nodes in each tree independently; LCA matrices for each merge tree (with respect to
these labels) are shown in the third column. The fourth column shows an optimal coupling between
the sampled nodes of the merge tree. From the coupling, we estimate an optimal labeling of the
merge trees (fifth column), and this easily yields an upper estimate on the interleaving distance
between the merge trees.

(4) We use φ and ψ to construct labelings λF and λG with domain [k + `] of the merge trees as in
the algorithm in the proof of Proposition 5.4, where k is the number of leaves in MF and ` is the
number of leaves in MG.

(5) From λF and λG, we construct matrices ΛF and ΛG and compute }ΛF´ΛG}∞, yielding a principled
upper estimate of interleaving distance.

Remark 5.9. Computing GW distance is an instance of quadratic programming problem with a nonconvex
objective function and is therefore NP-Hard to compute exactly [49]. However, since the space of couplings
C(µ1,µ2) forms a convex polytope, it is possible to approximate GW distance via Frank-Wolfe-style projected
gradient descent; our computations of GW distance will be handled by the Python Optimal Transport
package [32]. Gradient updates have computational complexity O(n3 log(n)) when p = 2 [59], so we focus
on this case for the sake of efficiency.

The quality of the gradient descent-based estimation in step (2) of the algorithm can be improved
by upsampling the trees—i.e., adding degree-2 nodes at user-specified heights to better approximate the
continuous nature of the true merge trees. We have found empirically that this procedure for estimating
interleaving distance from above tends to give meaningful labelings of merge trees. This is illustrated by an
experiment on synthetic data in Section 6.1.

Remark 5.10. Similar applications of Gromov-Wasserstein distance have recently appeared in the literature.
In [45], a framework for summarizing sets of merge trees is developed using the Riemannian structure of the
GW metric on measure networks developed in [19]. There, the authors use GW distance to align merge trees,
but the measure network representation of the merge trees used there is different than the one proposed here
and has a less clear connection to [34] and the computation of interleaving distance. The authors of [52]
study a variant of GW distance on the space of ultrametric spaces (metric spaces which satisfy a stronger
version of the triangle inequality). Applications to merge tree interleaving are not directly discussed in [52],
but our matrix representations of merge trees are inherently utilizing an underlying ultrametric structure
(or, using the terminology of [52], ultradissimilarity structure), which is not the usual geodesic metric one
considers when representing a merge tree as a metric tree. Similar ideas for comparing metric spaces go back
to [64] and [51] (the latter describing specific connections to merge tree interleavings), but to our knowledge
the specific algorithm and implementation described here for approximating merge tree interleaving is novel.

5.3. Matchings of DMTs via Fused Gromov-Wasserstein Matchings. The GW framework de-
scribed above has thus far only been applied to estimate interleavings between (undecorated) merge trees.
In order to incorporate barcodes into comparisons between decorated merge trees, we employ the more gen-
eral Fused Gromov-Wasserstein (FGW) framework [72]. The FGW framework is used to compare measure
networks with additional structure.
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Definition 5.11. Let Z = (Z,dZ) be a metric space. A Z-structured (finite) measure network is a
triple (C,µ,B) consisting of a finite measure network (C,µ), where C P Rnˆn, together with an n-tuple B
of points in Z.

Let (C1,µ1,B1) and (C2,µ2,B2) be Z-structured measure networks. For α P [0, 1], we define the Fused
Gromov-Wasserstein (FGW) distance for parameter ζ P [0, 1] as

dFGW,ζ((C1,µ1,B1), (C2,µ2,B2))
2 = min

νPC(µ,ν)
((1´ ζ)I2(ν) + ζJ2(ν)) , (8)

where J2 is the GW p-loss (7) with p = 2 and

I2(ν) =
ÿ

i,j

dZ(B1(i),B2(j))
2ν(i, j)

is the standard 2-Wasserstein loss from classical optimal transport (see, e.g., [74]).

The FGW framework is used to augment Algorithm 5.8 to estimate matching distance between DMTs
BF : MF Ñ Barcodes and BG : MG Ñ Barcodes. The difference is that the optimal coupling of step (2) is
obtained by solving (8) for some choice of hyperparameter ζ, where the functional J2 is the GW 2-distortion
functional with respect to the measure networks (Λ̄F,µF) and (Λ̄G,µG), exactly as in the previous subsection.
The I2 term is Wasserstein 2-loss with respect to bottleneck distance between node barcodes. Examples of
FGW-based estimation of DMT matching distance are provided in Sections 6.4 and 6.6.

6. Algorithmic Details and Examples

In this section, we outline theoretical and practical aspects of generating and comparing decorated merge
trees. We provide several computational examples coming from real and synthetic data. Implementations
(in Python) of all of these experiments as well as source code are freely available in our GitHub repository1.
The code uses standard Python data science packages (scikit-learn [57], scipy [75], etc.), as well as more
specialized packages for topological data analysis (gudhi [70], giotto-tda [69], ripser [4] and scikit-tda

[62]) and optimal transport (Python Optimal Transport, pot [32]).

6.1. Merge Tree Interleaving Distances. To test the reliability of our method for estimating merge
tree interleaving distances, we create a simple classification experiment (summarized in Figure 7). We define
a parametric model for generating merge trees by considering merge trees MF given by sublevel-set filtrations
F of functions f : [0, 1]Ñ R given by

f(t) = sin(ρ1πt) + cos(ρ2πt) + g(t), (9)

where ρj are parameters and g(t) P [0, 1/2] is uniformly distributed random additive noise. We construct
a dataset of 120 random merge trees by drawing 10 samples for each combination of parameter choices
ρ1 P t1, 2, 4, 8u and ρ2 P t1, 3, 5u. The random additive noise has the effect of generating many spurious local
minima for the functions which yield extraneous leaves in the merge trees, making the matching process
nontrivial. We compute a 120 ˆ 120 pairwise distance matrix using our interleaving distance estimator
with uniform node weights and height sampling mesh size equal to 0.5. The leave-one-out nearest neighbor
classification rate for this distance matrix is 98.33%, indicating that our interleaving distance computation
provides a meaningful comparison for the merge tree dataset.

Since the labelings in the GW-based interleaving computation are obtained via optimization of an `2
loss, we also give a small tweak to the interleaving distance formulation and compute the `2-interleaving
distance between merge trees MF and MG, defined to be

min
λF,λG

}ΛF ´ΛG}2,

where the minimum is, as usual, over labelings of the merge trees and } ¨ }2 is the standard `2 norm on
matrices. The classification rate for this distance is 100%. Exploring theoretical properties of `p versions of
merge tree interleaving distance will be a direction of future work.

1https://github.com/trneedham/Decorated-Merge-Trees
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Figure 7. Merge tree classification experiment. The merge trees shown on the left are samples from
6 different classes generated from the family of scalar functions (9). Pairwise distance matrices and
leave-one-out nearest neighbor classification scores for `∞ and `2 interleaving distances are shown
on the right.

6.2. Decorated Merge Trees for Point Clouds. Vietoris-Rips complexes of point clouds in metric
spaces provide a ubiquitous source for persistence diagrams in topological data analysis. In this subsection
we provide details on the construction of decorated merge trees and on the methods used to visualize them.
These constructions fit into the general theory by considering the DMTs as being generated by a filtered
simplicial complex, viewed as a persistent space as in Example 2.4. Throughout the rest of this section, we
will use the term DMT to refer specifically to tame leaf decorated merge trees (Definitions 2.18 and 4.5).

Let X be a finite subset of a metric space (in our examples, the metric space is Rn, but the procedure we
describe here can be performed on any distance matrix). From the Vietoris-Rips complex of X, we are easily
able to compute a (discrete representation of a) merge tree MF (F denoting the Vietoris-Rips filtration for the
complete simplex on X)—i.e., a single linkage hierarchical clustering dendrogram of X [14]—via off-the-shelf
functions available in standard packages (e.g., scipy).

It remains to determine barcodes for the leaves of MF. A straightforward algorithm produces a lift
decorated merge tree, as was considered in Section 4.3. The inputs are the tree MF and a degree-k Vietoris-
Rips barcode, generated by existing software (ripser or gudhi). For convenience, we assume the generic
condition that all pairwise distances in X are distinct, but this condition can be removed with a bit more
work. The basic idea of the algorithm is that we can decorate the merge tree with the bars of the barcode by
locating the unique (under our generic assumption on the distances) point in the tree where each bar in the
barcode is born. Recall from Section 4.3 that the lift decorated merge tree is not necessarily isomorphic to
the true decorated merge tree—this will be the case if and only if the true DMT is real interval decomposable
(Definition 4.1). Fortunately, Proposition 4.14 gives a simple method for certifying correctness of the lift
decorated merge tree. If a given merge tree does not meet this certification, the true leaf decorations of the
merge tree for the dataset can be computed via a more laborious algorithm, where the idea is to construct a
modification of the Vietoris-Rips complex for each leaf and to then assign the associated persistent homology
barcode to that leaf. This is guaranteed to produce the correct leaf barcodes, but comes with higher
computational cost and less intuitive visualizations.

To visualize the lift decorated merge trees, we draw the merge tree together with offset edges indicating
homology bars. Examples of decorated merge trees generated via this algorithm are shown in Figure 1. We
can also visualize merge trees decorated with bars from several higher homology degrees—see Figure 8. Our
visualizations employ some tricks to improve legibility:

(1) on the DMT, we typically only plot bars from the barcode which have persistence longer than a
(tunable, user-defined) threshold;

(2) we truncate the merge tree itself at a relatively low (tunable, user-defined) height and then extend
the truncated edges to zero.

Both of these options are used to simplify the visualizations by removing unstable, noisy topological features
(transient higher-dimensional features and changes in connectivity at small radii, respectively). Moreover, the
simplified DMTs are frequently used in matching distance computations—since this is an `∞-type distance, it
is stable under these small adjustments, but the simplifications provide a significant computational speedup.
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Figure 8. Summarizing the topology in all degrees. The figure on the left shows a toy point cloud
dataset consisting of points sampled from a torus, a sphere and a figure-8. The figure on the right
shows the associated merge tree decorated with both degree-1 and degree-2 persistent homology
data (the merge tree and the persistence diagrams have been thresholded for visual clarity—see
text). This summarizes the topology of the dataset in all degrees simultaneously, essentially giving
a complete description of its overall topology.

Figure 9. A point cloud with non-real interval decomposable merge tree. The figure on the left
shows a dataset in R2. The DMT shown in the middle is the one produced by the lifting algorithm—
observe that this does not satisfy the hypotheses of Proposition 4.14. In fact, the output of the
more involved algorithm disagrees with the lifted version, meaning that the true DMT for the point
cloud is not real interval decomposable. The true DMT is depicted in on the right. In the non-real
interval decomposable case, we must visualize the leaf barcode for each leaf independently. All
leaves colored blue (respectively, red) have the same barcode, also depicted in blue (resp., red).

Figure 9 shows an example of a pointcloud where the hypotheses of Proposition 4.14 (i.e. H1-disjointness)
fail. In fact, the true DMT for this dataset is not real interval decomposable and the true leaf barcodes are
determined by the more computationally taxing algorithm. In this case, a different technique for visualizing
decorated merge trees must be used—see the caption to the figure for details. We found in practice that
almost all of our other examples naturally satisfied the hypotheses of Proposition 4.14.

6.3. Sliding Window Embeddings. Established in [58], sliding window embeddings provide a method
for applying the techniques of point cloud TDA to 1-dimensional signals. Given a function f : [0, T ]Ñ R, one
defines for each pair of parameters d P N and τ P (0, T/d) the sliding window embedding (also referred
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Figure 10. Decorated Merge Trees from Takens embeddings. Each row shows a different ex-
periment. Starting with a time series (left), we produce an embedded point cloud via a Takens
embedding (parameters determined automatically). The figure second from the left shows a PCA
projection of the embedded point cloud. From the embedded point cloud, we produce a decorated
merge tree (second from right) after light preprocessing via density-based subsampling in order to
remove outliers (see text). Using the method described in the text, we are able to locate samples
in the original time series which correspond to a point in the connected component where any
particular degree-1 bar is born (shown on the right, color-coded to the bars on the DMT). The top
row shows a synthetic time series and the bottom row shows a real world time series (heartrate
data from [60]). The heartrate data shows component-specific periodic behavior at the beginning
and at the end of the time series, with the middle part apparently filtered out as a ‘transitionary
phase’ when subsampling.

to as the Takens embedding, in reference to Takens’s theorem from dynamical system theory [68]) as

SWd,τ(f) : [0, T ´ dτ]Ñ Rd+1

t ÞÑ (f(t), f(t+ τ), f(t+ 2τ), ¨ ¨ ¨ , f(t+ dτ)).

The sliding window embedding assigns a (d + 1)-dimensional Euclidean point cloud to each collection of
finite samples of f. Methods of TDA can then be applied to this point cloud; this approach to signal analysis
has found success in applications such as wheeze detection in audio recordings of breathing [30] and action
recognition from scalar measurements of joint movement [73].

When performing this sort of analysis, the focus is typically on degree-1 homological features, which
indicate periodicity in the signal. We hypothesize that there may also be interesting degree-0 features in the
case that the signal includes a sudden shift. We illustrate this behavior in the examples shown in Figure 10.
Given a signal with an apparent shift, we:

(1) construct a point cloud via a sliding window embedding; parameters d and τ are chosen automat-
ically via statistical tools in the giotto-tda package;

(2) subsample the resulting point cloud by density—this has the effect of accentuating disconnected
clusters, which correspond to the pre- and post-shift regimes in the original signal;

(3) create a decorated merge tree from the result.

The examples in Figure 10 (on both synthetic and real time series data) show that the DMTs resulting from
this process uncover interesting features of the signals.

From a real interval decomposable DMT, we obtain a simple method for locating the connected com-
ponent of a dataset which contains a given higher degree homology cycle. For an interval I in the higher
degree barcode of the dataset, the points belonging to the connected component of the homology cycle are
those corresponding to descendent leaves of the birth point of I in the merge tree. Using our cycle compo-
nent location procedure, we can determine portions of the signals which generate various degree-1 homology
classes—these are indicated by color coding in Figure 10.



28 J. CURRY, H. HANG, W. MIO, T. NEEDHAM, AND O. B. OKUTAN

6.4. Clustering Point Clouds. In this example, we demonstrate the ability of DMT matching dis-
tance to distinguish point clouds with subtle topological differences. Figure 11a shows samples from six
classes of synthetically-generated point clouds consisting of noisy blobs and circles. Each class contains 3
examples, with examples within class differing only due to noise effects. All classes have similar degree-0
topological structure, classes in the top row have three main degree-1 features and classes in the bottom
row have two main degree-1 features. The distribution of the cycles among the connected components differ
from class-to-class, but are the same within class.

For each point cloud, we construct various topological descriptors: a degree-0 persistence diagram, a
degree-1 persistence diagram and a decorated merge tree. Pairwise distance matrices are computed for all
18 samples with respect to various metrics: bottleneck distance on degree-0 features, bottleneck distance on
degree-1 features, maximum of bottleneck distance between degree-0 and degree-1 features and an estimation
of decorated merge tree interleaving distance computed via the Fused Gromov-Wasserstein algorithm of
Section 5.3. The resulting matrices and corresponding MDS plots are shown in Figure 11b.

(a) (b)

Figure 11. (a) Samples from six classes of simple pointclouds in R2. Each class contains 3
examples of pointclouds with similar topological patterns. (b) Pairwise distance matrices for various
methods shown in the top row, with corresponding MDS plots shown in the bottom row.

6.5. Networks. Beyond Vietoris-Rips complexes of point clouds, we can generate DMTs for more gen-
eral filtered simplicial complexes. A class of such objects which is important from a data science perspective
is the class of filtered networks. To make this precise, a filtered network is a graph G = (V,E) together
with a function f : V Ñ R. This function is extended to each edge tv,wu P E by the rule

f(tv,wu) := maxtf(v), f(w)u,

and this yields a sublevel-set filtration in the sense of Example 2.4. We found it useful to add 2-dimensional
simplices to the graphs by computing the 2-skeleton of the Vietoris-Rips complex with respect to shortest
path distance; this has the effect of allowing degree-1 bars to die at finite times which reflect the size of their
representative cycles. We are also able to threshold out small bars corresponding to triangles in the networks
when displaying DMTs. This method is admittedly ad hoc, but it results in more informative topological
summaries which capture both the topology of the filtration and the distance structure of the graph.

Given a filtered network, we produce a DMT by first building the merge tree itself by iteratively adding
nodes to the tree in order of function value. Degree-1 homological information can be added to the merge
tree by lifting bars (guaranteed to produce the correct DMT if the disjointness condition (Definition 4.13)
is satisfied) or by a more involved construction, as in the case of point clouds.

An important source of network data comes from images represented as node-weighted graphs. Figure
12 shows a decorated merge tree describing the topological features of real fMRI brain scan image data. This
is accomplished by considering an image as a weighted grid graph; that is, each pixel of the image is a node,
nodes are connected in a grid to their neighbors and weights are assigned according to grayscale value. This
procedure is also summarized in the figure.
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Figure 12. Grayscale images as a filtered networks. The top row illustrates the pipeline for
extracting a decorated merge tee from a grayscale image. Beginning with a toy image on the
left, we convert it to a filtered network (a regular graph with nodes weighted by grayscale value).
From this, we produce a decorated merge tree (right). The bottom row shows two examples of
decorated merge trees extracted from MRI images of Glioblastoma Multiforme tumors from The
Cancer Imaging Archive [20, 63], with the segmentations coming from [21]. Each example shows
the original image, with an inset showing a more detailed and lightly preprocessed version of the
region of interest.

6.6. Network Matching. Computation of the decorated merge tree matching distance provides rich
information about correspondences between points in the merge trees, since it involves the computation of
an optimal coupling between these points. This is especially informative in the setting of filtered networks,
since each node in the merge tree produced via our algorithm corresponds to a node in the original network.
The optimal coupling then provides a probabilistic matching between nodes of the filtered networks which
captures the topology of the filtration function.

Estimation of node correspondences between graphs is a classical problem which has recently been a
focus of Gromov-Wasserstein-based methods. The optimal coupling used to match two graphs depends on
the how they are represented as measure networks in the GW matching problem (6); for example a graph can
be represented by its geodesic distance matrix [39], its adjacency matrix [76] or by a heat kernel matrix at
a chosen scale [18]. The coupling produced in the process of computing the decorated merge tree matching
distance differs from existing approaches in that it matches based on purely topological features of the graphs.
A simple example illustrating the qualitative differences in graph matchings is shown in Figure 13. In this
example, the node filtration for each graph is given by a diffusion Fréchet function, which measures local
node density [47]. Learning the best filtration function for a given task in the context of classical TDA is an
active field of research [36, 40]; extending this line of research to learn filtration functions which capture the
interplay between degree-0 and degree-1 features will be taken up in future work.

7. Discussion

In this paper, we defined several variants of the notion of a decorated merge tree. We introduced a
metric on the space of DMTs as well as a metric on the simpler space of leaf decorated merge trees which
is more amenable to computation. A stability result was demonstrated for these metrics, and stability was
extended to compare these metrics to several other metrics which have appeared in the literature. Several
use cases for the DMT framework were demonstrated via computational examples.

There are many directions for future research on DMTs and related ideas. On the computational side,
we plan to refine our algorithms to efficiently handle DMT computations on real datasets. This challenge
comes with some interesting theoretical questions. For example, we are currently using off-the-shelf methods
for approximating Gromov-Wasserstein matchings between merge trees; the hierarchical structure of merge
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Figure 13. Matching networks. The top row shows two networks, constructed to have similar
topological motifs. The bottom row illustrates node matchings between the graph; each matching is
illustrated by transferring the node colors from the source graph (the node colors here are arbitrary)
to the target graph via a probabilistic coupling of its nodes—node j in the target graph receives the
color of target node i when the (i, j) entry is the largest in the jth column of the coupling matrix. The
first color transfer utilizes the coupling obtained during the computation of DMT matching distance
via the Fused GW framework, while the latter two couplings come from the GW framework applied
to adjacency matrices and geodesic distance matrices, respectively. Qualitatively, the matching
produced using DMTs most strongly preserves topological features.

trees should allow for specialized algorithms which utilize this structure to produce faster and more accurate
estimates. To scale DMT-based analyses to handle large datasets in a modern machine learning setting, we
also plan to explore principled vectorizations of these signatures.

There are also several directions for research on the theoretical side. Two natural ways to generalize the
concept of a decorated merge tree are to vary the object being decorated (the merge tree) and to vary the
type of decoration (persistence barcodes). In future work, we plan to extend these ideas to treat decorated
Reeb graphs. We also plan to explore decorations by zig-zag persistence modules and extended persistence
modules.

Furthermore, Remark 3.21 suggests that perhaps the interleaving distance on categorical decorated merge
trees is universal [43]. One avenue for studying this result could leverage an observation of Gunnar Carlsson:
that the cup product structure on cohomology determines π0 information. Perhaps a universality result
that preserves the richer algebraic structure of cup productsis the right framework for framing this result.
Finally, one might take up the question of how to define “higher” decorated merge trees—via cochains, for
example [46]—that might offer a complete homotopical invariant of persistent spaces. Repeating much of
the standard template of results in algebraic topology from the past hundred years for persistent spaces is
an active and interesting line of research.
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Appendix A. Interval Topology

Let X be a compact topological space and f : XÑ R be a continuous function. Let Ef be the epigraph of
f : XÑ R, φ : Ef Ñ R be the projection map, and π : Ef Ñ TfX be the Reeb quotient map, which identifies
two points if they are in the same connected component of a level set.

Define a partial order on TfX by letting p ď q if there exists x in X and r, s in R such that f(x) ď r ď s
and p = π(x, r) and q = π(x, s). The fact that this defines a poset follows from the following lemma:

Lemma A.1. Let (x, r) and (y, s) be points in Ef such that r ď s. The following are equivalent:

i) π(x, r) ď π(y, s).
ii) π(x, s) = π(y, s).
iii) π(x, t) = π(y, t) for all t ą s.

Proof. i) =ñ ii) : Let z be a point in X such that π(z, r) = π(x, r) and π(z, s) = π(y, s). Let C be the
connected component of φ´1(r) containing (x, r) and D be the connected component in φ´1(s) containing
(y, s). Let C 1 be the subset of Ef obtained by shifting up the second coordinates of points in C to s. As C
contains (z, r) and D contains (z, s), both C 1 and D contains (z, s). Since C 1 is connected, it is contained in
D. Hence π(x, s) = π(y, s).

ii) =ñ iii) Note that π(x, s) = π(y, s) ď π(y, t). Now, the result follows from the argument in the
previous part.

iii) =ñ i) Let (sn) be a decreasing sequence converging to s. Let Cn ˆ tsnu be the connected
component of φ´1(sn) containing both (x, sn) and (y, sn). Note that (Cn) is a decreasing sequence of closed
connected sets in X. Let C be the intersection of C 1ns. Note that C ˆ tsu is contained in Ef and x,y are
elements of C. Let us show that C is connected. Let V and W be open subsets in X such that C is contained
in the disjoint union of U of V and W. Assume x is in V. Let Un be the complement of Cn in X. The
collection consisting of U and all Un’s is an open cover of X, hence it has a finite subcover. Since (Un) is an
increasing family of open sets, this implies that for n large enough X is the union of U and Un, hence Cn is
contained in U. Since Cn is connected and has non-empty intersection with V for all n, for n large enough
Cn is contained in V. Therefore C is contained in V. This shows C is connected, hence π(x, s) = π(y, s). By
definition, π(x, r) ď π(y, s). �

Corollary A.2. i) (TfX,ď) is a tree poset in the sense that the upper set of any point is a chain (i.e.,
well ordered).

ii) Let C be a chain in (TfX,ď). Then C has an infimum (i.e., the maximum of its lower bounds), and the
closure of C in the quotient topology is contained in the upper set of its infimum.

Proof. i) : Assume that π(x, r) ď π(y, s), π(x, r) ď π(z, t) and s ď t. Then, by Lemma A.1, π(y, t) =
π(x, t) = π(z, t), and therefore π(y, s) ď π(z, t).

ii) : let (xn, rn) be a sequence in C such that lim rn = r := infts : (x, s) P Cu. The sequence (xn) has a
subsequence converging to a point x in X. Let (yn, sn) be a convergent sequence in Ef such that π(yn, sn)
is in C for all n. Let lim(yn, sn) = (y, s). We need to show that π(x, r) ď π(y, s). Let t ą s. Without loss
of generality, we can assume that rn, sn ď t for all n and (xn) converges to x. Since C is a chain, by Lemma
A.1, π(yi, t) = π(xj, t) for all i, j. Let D be the connected component of φ´1(t) containing (yn, t) and (xn, t)
for all n. Since D is closed, it contains (x, t) and (y, t), hence π(x, t) = π(y, t). Since t ą s was arbitrary,
by Lemma A.1, π(x, r) ď π(y, s). This shows π(x, r) is a lower bound for the closure of C. Let π(x 1, r 1) be
another lower bound for C. For any t ą r, there exists n such that rn ď t, so π(x, t) = π(xn, t) = π(x 1, t).
Therefore, by Lemma A.1, π(x 1, r 1) ď π(x, r). �

We introduce a new topology on TfX, which we call the interval topology, defined as follows.

Definition A.3. Let TfX be the merge tree, viewed as a poset. A subset U of TfX is open in the interval
topology if for each p in U and each q in Xztpu comparable to p, there exists w in U strictly in between p
and q such that the interval between p and w is contained in U.

Proposition A.4. If (TfX,ď) has finitely many leaves (i.e., minimal elements in the poset), then the quotient
topology coincides with the interval topology.

Lemma A.5. The upper set of any point is closed in the interval topology.
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Proof. Let C be the upper set of a point π(z,u) in TfX. Let U be its complement. Let us show that U
is open in the interval topology. Let π(x, r) be in U. Let π(y, s) be comparable to π(x, r). If π(y, s) ă π(x, r),
then everything in between them is already in U as U is the complement of an upper set. Let us assume
then π(x, r) ă π(y, s). By Lemma A.1, there exists t such that r ă t ă s and π(x, t) is not in the upper
set of π(z,u). Then π(x, t) is strictly in between π(x, s) and π(y, s) and the interval in between π(x, s) and
π(x, t) is in U. �

Lemma A.6. The height map h : TfXÑ R, π(x, r) ÞÑ r is continuous with respect to the interval topology.

Proof. Let r be a real number and ε ą 0. We need to show that the preimage of (r´ ε, r+ ε) is open
in the interval topology. Assume that π(x, s) is in TfX and |s ´ r| ă ε. Let π(y, t) be a point comparable
to π(x, s). If π(y, t) ă π(x, s), then π(x, s) = π(y, s). Pick s 1 ą t such that r ´ ε ă s 1 ă s. Then π(y, s 1)
is strictly in between π(y, t) and π(x, s) and the image of the interval between π(y, s 1) and π(x, s) is [s 1, s],
which is contained in (r ´ ε, r + ε). If π(y, t) ą π(x, s) , then π(x, t) = π(y, t). Pick s 1 ă t such that
s ă s 1 ă r+ ε. Then π(x, s 1) is strictly in between π(x, s) and π(y, t), and the image of the interval between
π(x, s) and π(x, s 1) is [s.s 1], which is contained in (r´ ε, r+ ε). �

Lemma A.7. For each x in X, the map ψx : [f(x),∞)Ñ TfX, r ÞÑ π(x, r) is continuous with respect to the
interval topology.

Proof. Let U be an open set in the interval topology. Assume ψx(r) = π(x, r) is in U. The result
follows from the comparability of π(x, r) with π(x, f(x)) and π(x, r+ 1). �

Proof of Proposition A.4. Let C1, . . . ,Cn be the upper sets of leaves in TfX. In both topologies,
they give a finite closed cover by Corollary A.2 and Lemma A.5. This implies that a set U is open in these
topologies if and only if its intersection with each Ci’s is relatively open. Hence, it is enough to show that
the relative topologies on the Ci’s coincide for the quotient and the interval topologies. Both the height map
π(x, r) ÞÑ r of Lemma A.6 and ψx of Lemma A.7 are continuous with respect to both topologies. If we let
π(x, f(x)) denote the leaf of Ci, and restrict h to Ci, then these maps becomes inverses of each other. This
completes the proof. �

We now return to the proof of Proposition 3.6 from the main text, which says that the topology induced
by the `p-metrics on a merge tree agrees with the quotient space topology.

Proof of Proposition 3.6. Using the logic from the proof of Proposition A.4, it suffices to show that
the relative topologies on the Ci’s with respect to the interval and metric topologies coincide. Indeed, the
intersection of an `p-ball with each upper set Cj of a leaf of the merge tree is relatively open with respect to
the interval topology. This is clear, since this intersection is homeomorphic to an open interval via the height
map. Similarly, relatively open sets in the interval topology are relatively open in the metric topology. �

Appendix B. Comparison and Existence of Merge Trees

In this paper we used two primary perspectives on merge trees: the classical merge tree (Definition 2.6),
which defines the merge tree as the Reeb graph of the epigraph, and the generalized merge tree (Defini-
tion 2.5), which is defined as the display poset of the persistent set. Each approach has its own advantages,
but in order to ensure that the Reeb graph of a function is actually a graph requires specifying conditions
on f : X Ñ R such as the Morse condition or piecewise linearity [27, p. 857]. In this section, we describe a
third way of constructing the merge tree following the metric tree construction in [50] and show that when
X is locally path connected, the classical construction coincides with the metric construction described here.

For this section we assume that X is a compact path-connected topological space and f : X Ñ R is a
continuous function. We are using the definition of metric tree given in [8, Section 3.4], which is also called
real tree or R-tree.

Remark B.1. As the quotient of the epigraph of f, the merge tree is the wedge of the image of the graph
of f and the half real line. Let us denote the image of the graph of f : XÑ R inside the merge tree by MfX.

Definition B.2 (Metric Merge Tree). Let X be a compact path connected topological space and f : XÑ R
be a continuous function. Let us define mf : Xˆ XÑ R by

mf(x,y) := inftmax f ˝ γ|γ : [a,b]Ñ X,γ(a) = x,γ(b) = yu.
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Define tf : Xˆ XÑ R by

tf(x,y) = 2mf(x,y)´ f(x)´ f(y).

It is easy to see that tf is a pseudo-metric (symmetric, non-negative and satisfies triangle inequality). Let
us denote the associated metric space by (TfX, tf) and call it metric merge tree. The function f is still well
defined on TfX.

Proposition B.3. Let X be a compact topological space and f : X Ñ R be a continuous function. Then
(TfX, tf) is a metric tree.

Proof. It is enough to show that tf is a path metric and it has hyperbolicity zero (see [8, Proposition
3.4.2]). To show that tf is a path metric, it is enough to show that for each x,y i X and ε ą 0, there exists
z in X such that

tf(x, z) ď
tf(x,y)

2
+ ε, tf(y, z) ď

tf(x,y)

2
+ ε

(see [11, Theorem 2.4.16]). Take x,y in X and ε ą 0. Let γ : [0, 1] Ñ X be a continuous curve from x to y
such that

mf(x,y) ě max f ˝ γε.

Let M := max f ˝ γ. Define

t0 := mintt : f(γ(t)) =Mu, t1 := maxtt : f(γ(t)) =Mu.

Let d0 :=M´ f(x) and d1 :=M´ f(y). Without loss of generality d0 ą= d1. Let r := (d0 + d1)/2 and

s := mintt : f ˝ γ(t) = f(x) + ru.

Let z = γ(s). Now, we have:

tf(x,y) ě 2(M´ ε)´ f(x)´ f(y) = d0 + d1 ´ 2ε

tf(x, z) = r =
d0 + d1

2

tf(y, z) ď (M´ f(x)´ r) + d1 =
d0 + d1

2
.

Now let us show that tf has 0-hyperbolicity. Let p be a point where f takes its maximum. The Gromov
product gp : Xˆ XÑ R with respect to the pseudo-metric tf is defined by:

gp(x,y) =
1

2
(tf(p, x) + tf(p,y)´ tf(x,y)).

The metric tf has zero hyperbolicty if

gp(x, z) ě min(gp(x,y),gp(y, z))

for all x,y, z in X (see [35, Corollary 1.1.B]).
Claim 1: gp(x,y) = f(p)´mf(x,y) for all x,y in X:
By maximality of p, mf(p, x) = f(p). Hence,

tf(p, x) = 2mf(p, x)´ f(p)´ f(x) = f(p)´ f(x).

So we have

gp(x,y) =
1

2
(tf(p, x) + tf(p,y)´ tf(x,y))

=
1

2
(f(p)´ f(x) + f(p)´ f(y)´ 2mf(x,y) + f(x) + f(y))

= f(p)´mf(x,y)

Claim 2: gp(x, z) ě min(gp(x,y),gp(y, z)) for all x,y, z in X.
By its definition, mf(x, z) ď max(mf(x,y),mf(y, z)). Claim 2 follows from this and Claim 1.
Therefore the hyperbolicity of TfX is 0. �

Theorem B.4. If X is locally path connected, then MfX is the underlying topological space of TfX.
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Proof. It is enough to show that tf(x,y) = 0 if and only if (x, f(x)) and (y, f(y)) are identified under
the Reeb quotient map π.

Assume tf(x,y) = 0. Then, mf(x,y) = f(x) = f(y). So, for each t ą f(x) = f(y), there is a path in the
sublevel set Xďt connecting x,y. Therefore, π(x, t) = π(y, t), and by Lemma A.1, π(x, r) = π(y, r).

Assume π(x, f(x)) = π(y, f(y)). Let r = f(x) and t ą r. Since x and y are in the same connected
component of the (closed) sublevel set Xďr and X is locally path connected, x,y are in the same path
component of the (open) sublevel set Xăt. This implies that mf(x,y) ă t. Since t ą r arbitrary, mf(x,y) =
r = f(x) = f(y), so tf(x,y) = 0.

�

Appendix C. Technical Proofs

This section contains proofs from the main body of the paper which are technical, but essentially
straightforward. These results are focused on barcodes and bottleneck distances. To keep the exposition
clean, we deal with barcodes satisfying the simplifying assumptions:

‚ the barcode is a set (all multiplicities of intervals are equal to one);
‚ the barcode is finite;
‚ each interval in the barcode is a half open interval of the form [b,d), where 0 ď b ď d ď∞.

C.1. Proof of Proposition 3.16. To prove the proposition, we will introduce the notion of truncating
a barcode.

Definition C.1. Let B be a barcode and let I = [b,d) P B. The truncation of I at height h, denoted
trunch(I) is

‚ equal to I if h ď b;
‚ the interval [h,d) if b ď h ď d;
‚ the empty interval if h ą d.

The truncation of B at height h, trunch(B), is the barcode obtained by truncating all of the intervals of B
at height h.

Lemma C.2. Let B and B 1 be barcodes whose intervals [b,d) all satisfy b ě H for some constant H ě 0.
Suppose that there exists a δ-matching between B and B 1. For ε ď δ, there is a δ-matching between B and
truncH+ε(B

1).

Proof. Let ξ be a δ-matching of B and B 1. Define a matching pξ of B and truncH+ε(B
1) by setting

dom(pξ) := tI P dom(ξ) | truncH+ε(ξ(I)) ‰ Hu

ran(pξ) := tI 1 P ran(ξ) | truncH+ε(I
1) ‰ Hu, and

pξ(I) := truncH+ε(ξ(I)).

Let I = [b,d) P dom(pξ) with I 1 = [b 1,d 1) = ξ(I). Then b 1 ď H+ ε ď d 1 and truncH+ε(I
1) = [H+ ε,d 1). We

have |d´ d 1| ď δ, by the assumption that ξ was a δ-matching. Moreover,

δ ě b´ b 1 ě b´ (H+ ε)

and

δ ě ε ě ε+ (H´ b) = (H+ ε)´ b

imply that |b´ (H+ ε)| ď δ, so that the cost of matching I with truncH+ε(I
1) is less than δ. On the other

hand, if I R dom(pξ) then either I R dom(ξ), in which case we are done, or truncH+ε(ξ(I)) =H. In the latter
case, let I = [b,d) and I 1 = [b 1,d 1) = ξ(I). We have

d´ b ď d 1 + δ´ b ď d 1 + δ´H ď H+ ε+ δ´H ď 2δ,

hence }[b,d)}∆ ď δ. Similar arguments handle intervals I 1 R ran(pξ). �

Proof of Proposition 3.16. Let

pdB(BF,BG) := inftε ě 0 | D ε-matching of BF and BGu,
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so that our goal is to show dB = pdB. Clearly dB ď pdB, since the former infimizes over a larger set of
matchings than the latter. To see the reverse inequality, let Φ, Ψ define an (ε, δ)-matching. If ε ě δ, then
each of the δ-matchings between BF(p) and BG(Φ(p)) and between BG(q) and BF(Ψ(q)) is, in particular,
an ε-matching. This implies the existence of an ε-matching between BF and BG. Finally, suppose that

δ ě ε. Let pΦ and pΨ denote the δ-interleaving maps obtained by composing Φ and Ψ with flows in their

respective target merge trees. We claim that there exist δ-matchings between all pairs BF(p) and BG(pΦ(p))

and between BG(q) and BF(pΨ(q)). Indeed, setting H = πF(p), with πF : MF Ñ R denoting projection, we
have that

BG(pΦ(p)) = truncH+δ´ε(BG(Φ(p))).

Lemma C.2 therefore implies that there exists a δ-matching of BF(p) and BG(pΦ(p)). The existence of a

δ-matching of BG(q) and BF(pΨ(q)) follows for the same reason. �

We now have the tools at hand to prove Proposition 3.17.

Proof of Proposition 3.17. Let p P MF be an arbitrary point. Choose a leaf v of MF with v ď p
and a leaf w ď Φ(p). Let πF : MF Ñ R be the projection map. Then the barcodes at these points can be
expressed as

BF(p) = truncπF(p)(BF(v)),and

BG(Φ(p)) = truncπF(p)+ε(BG(w)).

It is straightforward to check that a δ-matching of BF(p) and BF(Φ(p)) induces a δ-matching of the truncated
barcodes. A similar argument applies to pairs q PMG and Ψ(q) PMF. �

C.2. Proof of Proposition 4.14. Let B = tIj = [bj,dj)u
N
j=1 be the degree-k barcode for F. To ease

exposition, assume that the births in the barcode are distinct—this assumption is easily removed at the cost of
necessitating more involved notation. Suppose that the indices have been chosen so that b1 ă b2 ă ¨ ¨ ¨ ă bN.
For each bar Ij, we choose a representative cycle cj which generates the persistent homology class represented
by Ij; in particular, choose cj so that all of its simplices are contained in the connected component of the
birth simplex for Ij. Let [cj] denote the homology class of cj. Let pj PMF denote the birth point of Ij.

We can use these representative cycles to build bases for various homology vector spaces which agree
with the barcode decomposition. In the following, let ιb,d denote the inclusion map F(b) ãÑ F(d) for each
b ă d. By an abuse of notation, we also let ιb,d denote the induced map on homology Hk(F(b))Ñ Hk(F(d)).
We now construct our bases:

(1) tv1 := [c1]u is a basis for Hk(F(b1)),
(2) t[c2], ιb1,b2

(v1)u is a spanning set for Hk(F(b2)) and is linearly independent if

ιb1,b2
(v1) ‰ 0.

Moreover, we can choose λ
(2)
1 P k so that

v2 := [c2] + λ
(2)
1 ιb1,b2

(v1)

has the property that

ιb2,d(v2) R spantιb1,d(v1)u

for any d ă d2. In particular, v2 R ker(ιb2,d) for d ă d2.
(3) Suppose that we have defined v1, . . . , vj´1. Then

t[cj], ιbj´1,bj
(vj´1), . . . , ιb1,bj

(v1)u

is a spanning set for Hk(F(bj)) which is linearly independent once any zero vectors have been
removed. We define

vj := [cj] + λ
(j)
j´1ιbj´1,bj

(vj´1) + ¨ ¨ ¨+ λ
(j)
1 ιb1,bj´1

(v1),

where coefficients λ
(j)
i are chosen so that

ιbj,d(vj) R spantιbj´1,d(vj´1), . . . , ιb1,d(v1)u (10)

for all d ă dj. In particular, vj R ker(ιbj,d) for d ă dj.
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The lifespan of the vector vj defined via this process represents the persistent homology bar Ij.

To prove that pF « F, we will show that F is real interval decomposable. To do so, it suffices to show
that each of these vj can be chosen to be a linear combination of classes with cycle representatives that lie
in the same connected component as the birth simplex of Ij. This will be achieved via induction.

For the base case of the induction argument, we have v1 = [c1], and the claim follows immediately.
Suppose that v1, . . . , vj´1 have the desired property and consider vj. We sort the v1, . . . , vj´1, into a collection
vr1 , . . . , vrm of vectors corresponding to bars in B which are born in the same component as cj (i.e., bars
whose birth points satisfy pr1 , . . . ,prm ď pj) and a collection vs1 , . . . , vsn of vectors which do not have this
property, so that

vj = [cj] + λ
(j)
r1
ιbr1

,bj
(vr1) + ¨ ¨ ¨

+ λ(j)rmιbrm ,bj
(vrm) + λ(j)s1 ιbs1

,bj
(vs1) + ¨ ¨ ¨+ λ

(j)
sn
ιbsn ,bj

(vsn).

We claim that taking λ
(j)
si = 0 for all i = 1, . . . ,n results in a valid vector vj; i.e., that this yields a vj

satisfying (10). Indeed, let d ă dj and suppose that

ιbj,d

(
[cj] + λ

(j)
r1
ιbr1

,bj
(vr1) + ¨ ¨ ¨+ λ

(j)
rm
ιbrm ,bj

(vrm)
)

= µ1ιbj,d(vs1) + ¨ ¨ ¨+ µmιbj,d(vsm) (11)

for some coefficients µi. We first note that there must be some vsi R ker(ιsi,d)—otherwise the right-hand
side of (11) is zero, hence left-hand side is as well and we arrive at the contradiction that ιbj,d(vj) = 0. We
therefore have a well defined number

d 1 := mintmerge(pj,psi) | ιbsi
,d(vsi) ‰ 0u.

By the Hk-disjointness assumption, either dj ă d
1 or dsi ă d

1 for all si. The former case implies d ă d 1.
By the induction hypothesis, there is a cycle representation of the left-hand side of (11) whose vertices all
belong to the same connected component as those of ιbj,d(cj) and a cycle representation of the right-hand
side whose vertices belong to a different connected component than cj. Moreover, these cycle representatives
are homologous, and we have arrived at a contradiction. On the other hand, if dsi ă d

1 for all si then it
must be that d ă dsi for some si (since there exists some vsi R ker(ιbsi

,d)) and a similar argument yields a
contradiction. This completes the proof. �
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