
ar
X

iv
:1

80
9.

09
65

4v
4 

 [
m

at
h.

R
A

] 
 2

6 
A

ug
 2

02
2 Exact weights, path metrics, and algebraic

Wasserstein distances

Peter Bubenik, Jonathan Scott, and Donald Stanley

Abstract. We use weights on objects in an abelian category to define what we
call a path metric. We introduce three special classes of weight: those compatible
with short exact sequences; those induced by their path metric; and those which
bound their path metric. We prove that these conditions are in fact equivalent, and
call such weights exact. As a special case of a path metric, we obtain a distance
for generalized persistence modules whose indexing category is a measure space.
We use this distance to define Wasserstein distances, which coincide with the pre-
viously defined Wasserstein distances for one-parameter persistence modules. For
one-parameter persistence modules, we also describe maps to and from an interval
module, and we give a matrix reduction for monomorphisms and epimorphisms.

1. Introduction

In nice cases, one-parameter persistence modules are isomorphic to a direct sum
of interval modules [17, 4] and they have a combinatorial description called a per-
sistence diagram [15, 36]. Persistence diagrams have a family of Lp distances, for
1 ≤ p ≤ ∞, called p-Wasserstein distances [16]. For p = ∞, this distance is also
called the bottleneck distance [15]. These distances have a common generalization
with Wasserstein distances for probability measures [20, 9]. The bottleneck distance
for one-parameter persistence modules has an equivalent linear-algebra formulation
called interleaving distance [14, 27, 11, 2, 24] which has been extended to various
generalized persistence modules [33, 6, 19, 18, 3, 7, 34, 5]. However, from the
metric point of view, these distances, being L∞ distances, are rather weak. Saying
that two persistence modules are close in p-Wasserstein distance for p < ∞ is much
stronger, with 1-Wasserstein distance giving the strongest notion of proximity.

We generalize the 1-Wasserstein distance for one-parameter persistence modules
to abelian categories. If these abelian categories satisfy some additional standard
axioms we also obtain a generalization of the p-Wasserstein distances.

For an abelian categoryA a weight assigns each object A ∈ A an associated weight
w(A) ∈ [0,∞] such that w(0) = 0 and if A ∼= B then w(A) = w(B). For example,
for a field K and the category of K-vector spaces, we have the weight w(A) given by
the dimension of A. For another example, for a ring R and the category of left R-
modules, we have the weight w(M) = pd(M)+1, where pd(M) denotes the projective
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dimension of M . Say that a weight w is exact (Definition 3.9) if for each short exact
sequence 0 → A → B → C → 0, w(A) ≤ w(B) + w(C), w(B) ≤ w(A) + w(C), and
w(C) ≤ w(A) + w(B). Both of the previous two examples of weights are exact.

Given A,B ∈ A, a zigzag from A to B consists of a sequence of morphisms

γ : A = A0
γ1
−→ A1

γ2
←− A2

γ3
−→ · · ·

γn
←− An = B for some n ≥ 0. Define the cost of a

zigzag by

costw(γ) =
n

∑

i=1

(w(ker γi(p)) + w(coker γi(p))) ,

and let dw(A,B) = infγ costw(γ), where the infimum is taken over all zigzags between
A and B (Definition 3.4). We show (Lemma 3.5) that dw is a metric (Definition 3.3)
which we call the path metric.

Given a metric d onA, there is a weight given by |d|(A) = d(A, 0) (Definition 3.19).
Therefore, given a weight w, we obtain a sequence of weights w1, w2, w3, . . . with w1 =
w and wn+1 = |dwn

| for n ≥ 1. We prove that w1 ≥ w2 ≥ w3 ≥ · · · (Lemma 3.20).
This sequence stabilizes if there exists an n ≥ 1 such that wn+1 = wn. We call a
weight w stable if |dw| = w (Definition 3.21).

We prove that any weight provides an upper bound for its path metric: dw(A,B) ≤
w(A) + w(B) (Proposition 3.25). We say that a weight bounds its path metric if in
addition |w(A)− w(B)| ≤ dw(A,B) (Definition 3.26).

We prove that the three seemingly unrelated conditions on weights we have intro-
duced are in fact equivalent.

Theorem 1.1 (Theorem 3.28). For a weight w the following are equivalent:

• w is exact;
• w is stable; and
• w bounds its path metric.

We also show (Definition 3.17) that for each weight there is a canonical exact
weight and that for each exact weight there is a canonical amplitude, a strengthening
of our notion of exact weight introduced by Giunti et al [23] (Definition 3.12).

A persistence module indexed by a small category P and valued in A is a functor
from P to A and a morphism of persistence modules is a natural transformation. For
example, consider (Rn,≤) or (Zn,≤) with the coordinatewise partial order, viewed
as a category. The category of such persistence modules and their morphisms is an
abelian category.

To define a path metric on this category of persistence modules, we use one addi-
tional ingredient. We assume that the underlying set P of the small category P has
a measure µ. For example, consider Rn with the Lebesgue measure or Zn with the
counting measure. Then a persistence module M has an associated weight defined
by W (M) = µ(w(M)) =

∫

P
w(M) dµ (Definition 4.1). If w is exact or an amplitude

then so is W (Lemmas 4.2 and 4.3). Using this weight we obtain the path metric
dW = dµ◦w.

We prove that exact weights may be used to bound the path metric for persistence
modules.
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Theorem 1.2 (Proposition 4.6 and Theorem 4.7). If w is an exact weight and
w(M) and w(N) are µ-integrable then

∫

P

|w(M)− w(N)| dµ ≤ dW (M,N) ≤

∫

P

(w(M) + w(N)) dµ.

Now assume that the persistence modules have values in a Grothendieck category
(Section 2.3) such as VectK, the category of vector spaces over a field K, or ModR,
the category of left R-modules for some ring R, and that they have a decomposition
into a direct sum of persistence modules with local endomorphism rings (Section 2.4).
Given a metric d and p ∈ [1,∞], we define the associated p-Wasserstein distance
(Definition 5.1),

Wp(d)(M,N) = inf ‖{d(Ma, Na)}a∈A‖p ,

where the infimum is taken over all isomorphisms M ∼=
⊕

a∈A Ma and N ∼=
⊕

a∈A Na,
where each Ma and Na is either 0 or has a local endomorphism ring and is thus
indecomposable (Lemma 2.1). We show that Wp(d) is a metric (Proposition 5.4),
which has the following universal property.

Theorem 1.3. (Theorem 5.15) The metric Wp(d) is the largest p-subadditive met-
ric that is bounded above by d on indecomposables.

For one-parameter persistence modules we prove the following two isometry the-
orems.

Theorem 1.4 (Theorem 5.9). For persistence modules indexed by the integers
or the real numbers with values in VectK, Wp(dW ) agrees with the p-Wasserstein
distance of the corresponding persistence diagrams (Section 2.7).

Theorem 1.5 (Theorem 6.17). For persistence modules indexed by the integers
or the real numbers with values in VectK, W1(dW ) agrees with the path metric dW .

As part of the proof we show that monomorphisms and epimorphisms of one-
parameter persistence modules have the following representations which imply that
there is an induced matching of interval modules.

Theorem 1.6 (Theorem 6.11). A monomorphism between persistence modules
given by finite direct sums of interval modules can be represented by a matrix in
which blocks corresponding to interval modules with the same right end are diagonal.

Theorem 1.7 (Theorems 6.13). An epimorphism between persistence modules
given by finite direct sums of interval modules can be represented by a matrix in
which blocks corresponding to interval modules with the same left end are diagonal.

We generalize the following well-known important elementary result for nonzero
maps between persistence modules.

Lemma 1.8 (Lemma 4.9). Nonzero maps between interval modules may be visu-
alized as follows.



4 PETER BUBENIK, JONATHAN SCOTT, AND DONALD STANLEY

Theorem 1.9 (Theorem 6.7). Nonzero maps from an interval module to a finite
direct sum of interval modules may be visualized as follows.

Theorem 1.10 (Theorem 6.9). Nonzero maps from a finite direct sum of interval
modules to an interval module may be visualized as follows.

Open questions. We have not addressed algorithms for computing our path metric
or our algebraic Wasserstein distance, under suitable finiteness conditions [28, 30].
For example, is there an effective algorithm for computing the distance dW between
two finitely-presented two-parameter persistence modules? Furthermore, for particu-
lar applications in which generalized persistence modules arise, one may ask whether
or not our distances are stable.

Related work. Patel [36] defines persistence diagrams for functors on (R,≤) (which
are obtained from functors on (N,≤) by a left Kan extension) to essentially small
symmetric monoidal categories with images and more generally to essentially small
abelian categories. In the latter case one can apply the tools developed here. Note
that our metric dW is similar in spirit to the construction of the Grothendieck group
of an abelian category. Also note that the distances considered in [36] and the follow-
up paper by McCleary and Patel [29] (interleaving distance, erosion distance, and
bottleneck distance) are L∞ distances. Elchesen and Memoli [21] define a distance
for zigzag persistence modules (the reflection distance) that is similar to our metric
dW . Related recent papers on the algebra of persistence modules include [25, 1, 30,
32, 31, 10]. The first author and Elchesen have also shown a universality result for
Wasserstein distance for persistence diagrams [8].

Skraba and Turner [39] have independently defined an algebraic p-Wasserstein dis-
tance for pointwise-finite-dimensional one-parameter persistence modules and showed
that for diagrams with finite total p-persistence it is isometric to the usual p-Wasserstein
of the corresponding persistence diagrams.
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Scolamiero et al [38] define what they call a noise system for tame persistence
modules indexed by (Qr,≤) and valued in VectK and use it to define a path metric.
Giunti, Nolan, Otter, and Waas [23] have defined axioms for a weight on an abelian
category which they call an amplitude. Their requirements are closely related to our
conditions for an exact weight, but are more restrictive. They observe that noise
systems generalize to abelian categories and they prove that an abelian category with
an amplitude is equivalent to an abelian category with a noise system. Thus, exact
weights may be considered to be generalizations of amplitudes and noise systems. For
the path metric on noise systems and amplitudes, it is sufficient to consider zigzags
which are cospans (or spans) [38, 23].

In Section 6.3 we show that for monomorphisms and epimorphisms of persistence
modules there is an induced algebraic matching of interval modules. Compare this
with the induced combinatorial matchings of Bauer and Lesnick [2, Theorem 4.2]
and the related result by Skraba and Vejdemo Johansson [2, Remark 4.4]. A closely
related result has been proved by Ezra Miller [31, Remark 9.24]. Miller’s result holds
in greater generality, though in our case his result is perhaps slightly weaker or at
least less explicit. Our proof is elementary, using a matrix reduction argument.

Outline of the paper. Section 2 consists of background material. In Section 3 we
define weights and path metrics and study exact weights and their properties. In
Section 4 we define metrics for generalized persistence modules indexed by a mea-
sure space and consider some of their properties. In Section 5 we define Wasserstein
distances for persistence modules with values in a Grothendieck category, prove that
it extends the usual definition, and establish a universal property. In Section 6 we
show that for one-parameter persistence modules our algebraic 1-Wasserstein dis-
tance agrees with the path metric. We also prove structure theorems for maps into
and out of an interval module and show that monomorphisms and epimorphisms of
persistence modules can be represented by matrices whose form induces a matching
of interval modules. Finally, in Section 7, we apply our metrics to three examples of
two-parameter persistence modules and a pair of zigzag persistence modules.

2. Background

In this section we give background material that will be used later.

2.1. Additive categories. A zero object in a category is an object 0 such that
for every object X there are unique morphisms 0 → X and X → 0. In a category
with a zero object, for any two objects A,B there is a unique zero morphism given
by the composition A → 0 → B. An additive category is one that is enriched in
abelian groups (i.e. hom sets are abelian groups, and composition of morphisms is
biadditive) and that has all finite products and a zero object.

Let A be an additive category. We say that X is the direct sum of Y and Z in
A if there are morphisms i : Y → X , j : Z → X , p : X → Y , and q : X → Z such
that ip + jq = 1X , pi = 1Y , and qj = 1Z . Thus p and q are epimorphisms, i and
j are monomorphisms, and we consider Y and Z to be subobjects of X . We write
X ∼= Y ⊕ Z. One can show that qi = 0 and pj = 0, from which it is easy to deduce
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that i and j determine an isomorphism X ∼= Y ∐ Z, and that p and q determine an
isomorphism X ∼= Y × Z. An object X ∈ A is indecomposable if X ∼= Y ⊕ Z implies
that either Y or Z is 0. See Krause [26] for more details.

In an additive category A, the kernel of a morphism f : A → B, if it exists, is
the equalizer of f and the zero morphism between A and B. Dually, the cokernel of
f , if it exists, is the coequalizer of f and the zero morphism.

2.2. Abelian categories. An additive category is abelian if it has all kernels
and cokernels, and if for every f : M → N , the induced morphism f̄ in the natural
factorization,

ker f M N coker f

coker j ker q

j f q

f̄

is an isomorphism. Note that ker q is called the image of f and coker j is called the
coimage of f .

Let R be a commutative ring (with identity). Then the category ModR of R-
modules and R-module homomorphisms is an abelian category. As a special case,
let K be a field. The category VectK of vector spaces over K and K-linear maps
is an abelian category. If A is an abelian category and D is a small category then
the category AD, of functors from D to A and natural transformations, is an abelian
category.

2.3. Grothendieck categories. An AB5 category is an abelian category with
all coproducts (and hence all colimits) in which filtered colimits of exact sequences
are exact. A Grothendieck category is an AB5 category which has a generator (i.e.
separator).

For example, for any unital ring R, the category ModR of left R-modules and R-
module homomorphisms is a Grothendieck category. This includes the cases VectK
(where R is a field K) and Ab the category of abelian groups and group homomor-
phisms (where R = Z). Let P be a small category. For any Grothendieck category A,
the category AP is a Grothendieck category. In particular, VectK

P is a Grothendieck
category.

Let A be a Grothendieck category. For an arbitrary set A and a collection of
objects {Ma}a∈A inA, by definition we have the direct sum (i.e. coproduct)

⊕

a∈A Ma,
and canonical maps ia : Ma →

⊕

a∈A Ma for all a ∈ A. It follows from the Gabriel-
Popescu Theorem that A also has all limits [40, Chapter X], and thus products, in
particular. Therefore, we have the product

∏

a∈A Ma. For a, b ∈ A define τa,b : Ma →
Mb to be the identity on Ma if a = b and to be the zero map otherwise. For b ∈ A

the maps τa,b induce a canonical projection map pb :
⊕

a∈A Ma → Mb. These maps
induce a canonical map

⊕

a∈A Ma →
∏

a∈A Ma.

2.4. Krull-Remak-Schmidt-Azumaya Theorem. An element r in a ring R

is a nonunit if Rr 6= R and rR 6= R. A local ring is a ring in which the sum of two
nonunits is a nonunit.
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Lemma 2.1. Let A be an abelian category. If M ∈ A has a local endomorphism
ring, then M is indecomposable.

Proof. Assume M ∼= M1⊕M2, with corresponding maps i1, p1, i2, p2. Then i1p1
and i2p2 are nonunits but their sum is not. �

Theorem 2.2 (Krull-Remak-Schmidt-Azumaya Theorem). [13, Section 6.7], [35,
Section 4.8], [37, Section 5.1]. Let A be an AB5 category and M ∈ A. If

M ∼=
⊕

i∈I

Ai
∼=

⊕

j∈J

Bj ,

where each Ai and Bj has a local endomorphism ring, then there is a bijection ϕ :
I → J such that for all i ∈ I, Ai

∼= Bϕ(i).

Definition 2.3. For a Grothendieck category A, let Aℓ denote the full additive
subcategory of A whose objects are those objects of A that are isomorphic to a direct
sum of objects with a local endomorphism ring.

2.5. Persistence modules. Let P be a small category and let A be an abelian
category. Functors M : P → A are called persistence modules indexed by P with
values in A. Natural transformations of such functors are called morphisms of per-
sistence modules. Of particular interest are the cases that A is ModR or its spe-
cial case VectK. Let P denote the set of objects of P. For a persistence module
M : P → VectK the dimension vector or Hilbert function for M is the function
dimM : P → [0,∞] given by p 7→ dimM(p).

Among persistence modules with values in VectK, of greatest interest is the case
where P ⊆ Rd for some d and the morphisms are given by the coordinate-wise/product
partial order: (x1, . . . , xd) ≤ (y1, . . . , yd) iff xi ≤ yi for all 1 ≤ i ≤ d. When d ≥ 2
these are called multi-parameter persistence modules and when d = 1 these are called
one-parameter persistence modules or just persistence modules.

Definition 2.4. Let P be a poset. A subset C ⊆ P is convex if for all p ≤ q ≤ r

with p, r ∈ C, we have q ∈ C. A subset C ⊆ P is connected if for each p, q ∈ C

there is a sequence p = p0, p1, . . . , pn = q in C such that for each 1 ≤ j ≤ n, either
pj−1 ≤ pj or pj ≤ pj−1. An interval in P is a convex connected subset. Note that if P
is totally ordered then an interval is just a convex subset. Let I be an interval in P .
Define a persistence module M indexed by P with values in VectK as follows. For
each p ∈ P , let M(p) = K if p ∈ I and M(p) = 0 if p 6∈ I. For p ≤ q with p, q ∈ I, let
M(p ≤ q) be the identity map on K. All other maps M(p ≤ q) are zero, since either
the domain or codomain is zero. Call M an interval module and it is convenient to
abuse notation and denote M by I.

Lemma 2.5. Each interval module has a local endomorphism ring and is thus
indecomposable.

Proof. The endomorphism ring of an interval module, which by definition has
values in VectK, is isomorphic to K. �
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2.6. p-Norms. It is customary to restrict p-norms to those elements for which
they have a finite value; we will not do so. Let x = {xa}a∈A, where each xa ∈ [0,∞].

Then for 1 ≤ p <∞, let ‖x‖p = (
∑

a∈A|xa|
p)

1

p and ‖x‖∞ = supa∈A|xa|.

Lemma 2.6. Let A and B be disjoint indexing sets. Let x = {xa}a∈A, y = {xb}b∈B

and z = {xc}c∈A∪B. Then for 1 ≤ p ≤ ∞,
∥

∥

∥

(

‖x‖p , ‖y‖p

)
∥

∥

∥

p
= ‖z‖p.

2.7. Persistence diagrams and their Wasserstein distances. Let P ⊆ R,
where R is given the usual total order. For an interval I in P , let P>I = {p ∈ P | ∀x ∈
I, x < p}. For an interval module I indexed by P , let x(I) = (inf I, inf P>I) ∈
[−∞,∞]2, where inf ∅ = ∞. For x, y ∈ [−∞,∞]2, let d(x, y) = ‖x− y‖1. Let
∆ ⊂ [−∞,∞]2 denote the diagonal, {(x, x) | −∞ ≤ x ≤ ∞} and for x ∈ [−∞,∞]2,
let d(x,∆) := infy∈∆ d(x, y). By a matching between index sets A and B, we mean
an injection ϕ : C → B, where C ⊂ A.

Let P ⊂ R and let M be a persistence module indexed by P with values inVectK.
Assume that M ∼=

⊕

j∈J Ij where each Ij is an interval module. By Lemma 2.5

and Theorem 2.2, there is a well-defined multiset DgmM := {x(Ij)}j∈J , called the
persistence diagram of M .

Definition 2.7. Let 1 ≤ p ≤ ∞. Let M,N be persistence modules indexed
by P with values in VectK that have persistence diagrams DgmM = {xa}a∈A and
DgmN = {x′

b}b∈B. Define

Wp(M,N) =

inf
ϕ:C→B

∥

∥

∥

∥

(

∥

∥

∥

{

d(xc, x
′
ϕ(c))

}

c∈C

∥

∥

∥

p
,
∥

∥{d(xa,∆)}a∈A−C

∥

∥

p
,
∥

∥

∥
{d(∆, x′

b)}b∈B−ϕ(C)

∥

∥

∥

p

)
∥

∥

∥

∥

p

,

where the infimum is over all matchings ϕ between the index sets A and B. Call this
the p-Wasserstein distance between the persistence modules M and N .

We alert the reader that in [16], the Wasserstein distance uses the ∞-norm to
measure distances in R2. We use the 1-norm.

2.8. Zigzags of morphisms. Let A be a category. Let M,N ∈ A. A zigzag
of morphisms from M to N is a finite collection of morphisms in A of the form

M = M0
f1
−→ M1

f2
←− M2

f3
−→ · · ·

fn
←− Mn = N . The number n ≥ 0 is called the length

of the zigzag. Note that by inserting identity maps, we can allow the morphisms to
point in either direction.

2.9. Symmetric Lawvere metric. A symmetric Lawvere metric is a class C
together with a function d that assigns to any pair M,N ∈ C a number d(M,N) ∈
[0,∞] such that for all M ∈ C, d(M,M) = 0, for all M,N ∈ C, d(M,N) = d(N,M),
and for all M,N, P ∈ C, d(M,P ) ≤ d(M,N) + d(N,P ). This definition relaxes the
usual definition of a metric in three ways: it is allowed to take on the value ∞;
d(M,N) = 0 does not imply that M = N ; and the class C is not required to be a set.
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3. Weights and path metrics

In this section we use weights on morphisms in a category or weights on objects
in an additive category to define a distance that we call a path metric.

3.1. Weights and metrics on categories. In this section we define weight, give
examples of weights, define a metric on a category, and give an elementary property
of such a metric.

Definition 3.1. A weight, w, on a class A assigns w(a) ∈ [0,∞] to each a ∈ A.
A weight on a category is a weight on the class of all objects of the category.

Example 3.2. For any category we have the zero weight that assigns each object
the weight 0. For any additive category we the one weight that assigns all nonzero
objects weight 1 and the zero object weight 0. For an abelian category let S be the
class of simple objects, whose only subobjects are 0 and themselves, together with
0. Define a weight on S, called the simple weight, by w(0) = 0 and w(S) = 1 for all
other S ∈ S. For a field K and the category VectK of K-vector spaces, we have a
weight given by the dimension of the vector space. Call this the dimension weight.
More generally, if R is an integral domain, then for the categoryModR of R-modules,
we have a weight given by the rank of a module M , which equals the dimension of
M ⊗R K where K is the field of fractions of R. Call this the rank weight.

Definition 3.3. Let C be a class of objects in a category C. We define a metric
on C to be a symmetric Lawvere metric with the additional property that if M,N ∈ C
with M ∼= N then d(M,N) = 0. A metric on a category C is a metric on the class
of all objects in C.

Our definition does allow non-isomorphic objects M and N to have d(M,N) = 0.
Let M,M ′, N,N ′ ∈ C with M ∼= M ′ and N ∼= N ′. It follows from the triangle
inequality that d(M,N) = d(M ′, N ′).

3.2. Path metric from a weight. We use a weight on a class of morphisms in
a category to define a metric for that category which we will call the path metric. As
a special case we use a weight on a class of objects in an additive category to define
a metric on that category.

Let C be a category together with a class, M, of morphisms in C and a weight
w onM.

Definition 3.4. Let γ be a zigzag in C in which each morphism in the zigzag is
in M. Define the cost of γ, denoted costw(γ), to be the sum of the weights of the
morphisms in the zigzag. As a special case, the cost of the zigzag of length 0 is 0. Let
A,B ∈ C. Define the path distance by dw(A,B) = infγ costw(γ), where the infimum
is taken over all zigzags from A to B such that each morphism in the zigzag is inM.
If there are no such zigzags then let dw(A,B) =∞.

Lemma 3.5. The path distance dw is a symmetric Lawvere metric on C (Sec-
tion 2.9). IfM includes all isomorphisms in C and the weight of each isomorphism
is 0, then dw is a metric on C (Section 3.1), which we call the path metric.
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Proof. First, for any object A, dw(A,A) = 0 since there is a zigzag of length 0
from A to A, whose cost, by definition is 0. Next, dw(A,C) ≤ dw(A,B) + dw(B,C)
since we may concatenate a zigzag from A to B with a zigzag from B to C to obtain a
zigzag from A to C whose cost is the sum of the costs of the two zigzags. Furthermore,
dw(A,B) = dw(B,A) since every zigzag has a reverse zigzag with the same cost.

For the second statement, for isomorphic objects A,B, consider the zigzag of

length 1 given by f : A
∼=
→ B, which has cost 0. Thus dw(A,B) = 0. �

Assumption 3.6. Let A be an additive category. Let O be a class of objects in
A. We will always assume that such a class contains 0 and that if A ∼= B and A ∈ O
then B ∈ O. Let w be a weight on O. We will always assume that w(0) = 0 and if
A ∼= B and A,B ∈ O then w(B) = w(A).

Definition 3.7. Let O be a class of objects in an additive category A and let
w a weight on O. See Assumption 3.6. Let M be the class of morphisms in A

whose kernel and cokernel and both are in O. Define a weight onM, which we also
denote w, by w(f) = w(ker f) +w(coker f). Note that it follows thatM contains all
isomorphisms and that these have weight 0. Applying Definition 3.4, with zigzags of
morphisms whose kernel and cokernel are in O, we obtain a path distance dw on A.
By Lemma 3.5, dw is a metric, which call the path metric.

Since any morphism in an abelian category factors through its image (Section 2.2)
we have the following.

Lemma 3.8. Assume that A is an abelian category. In Definition 3.7, if we restrict
M to morphisms having either zero kernel or zero cokernel then we obtain the same
path metric.

3.3. Exact weights and amplitudes. In this section we consider weights com-
patible with short exact sequences.

Let A be an abelian category (or more generally a (Quillen) exact category)
together with a class of objects O containing 0 and a weight w on O (see Assump-
tion 3.6).

Definition 3.9. Say that the weight w on O is exact if for each short exact
sequence 0 → A → B → C → 0 in A with A,B,C ∈ O, w(A) ≤ w(B) + w(C),
w(B) ≤ w(A) + w(C), and w(C) ≤ w(A) + w(B).

The following are examples of exact weights.

Example 3.10. Let vectK be the category of finite-dimensional vector spaces
over K and K-linear maps. For V ∈ vectK, let w(V ) = 0 if V = 0, otherwise
w(V ) = 1 if dim(V ) is even and w(V ) = 2 if dim(V ) is odd. Then w is an exact
weight on vectK.

Example 3.11. Let ModR denote the category of right (or left) R-modules
over a ring R. For A ∈ ModR, let pd(A) denote the projective dimension of A.
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We claim that w(A) = pd(A) + 1 is an exact weight. Consider a short exact se-
quence 0 → A → B → C → 0 in ModR. Using the characterization of pro-
jective dimension using ext groups and the long exact sequence of ext groups, one
obtains pd(A) ≤ max(pd(B), pd(C)), pd(B) ≤ max(pd(A), pd(C)), and pd(C) ≤
1 +max(pd(A), pd(B)). It follows that w is exact. Similarly, if we replace projective
dimension with injective dimension or flat dimension, we also obtain an exact weight.

Giunti et al [23] consider a stronger notion of exact weight on an abelian category
which they call amplitude. We generalize their definition slightly to weights on O.

Definition 3.12. Say that the weight w on O an amplitude if for each short
exact sequence 0 → A → B → C → 0 in A, if A,B ∈ O then α(A) ≤ α(B), if
B,C ∈ O then α(C) ≤ α(B), and if A,B,C ∈ O then α(B) ≤ α(A) + α(C). If, in
addition, for each short exact sequence 0 → A → B → C → 0 with A,B,C ∈ O,
α(B) = α(A) + α(C) then the amplitude is called additive.

Example 3.13. The zero weight on an abelian category is an additive amplitude.
The one weight on an abelian category is a non-additive amplitude. Since any short
exact sequence of vector spaces splits, the dimension weight is an additive amplitude.
Since localization is an exact functor, the rank weight is also an additive amplitude.
For many other examples of amplitude, see [23]. The exact weights in Examples 3.10
and 3.11 are not amplitudes. The simple weight extends to an additive amplitude on
the class of semisimple objects. In the case of VectK this produces the dimension
weight.

Example 3.14. For the one weight w on an abelian category A, the path metric
dw satisfies the following. For A,B ∈ A, dw(A,B) = 0 iff A ∼= B, dw(A,B) = 1 iff
A 6∼= B and there exists either an injection or a surjection between A and B, and
otherwise dw(A,B) = 2.

3.4. How to obtain weights with stronger properties. We will show that
each weight has a canonical associated exact weight and the each exact weight has a
canonical associated amplitude. Let A be an abelian category with a class of objects
O including 0. First, we need the following lemma.

Lemma 3.15. Let {αj}j∈J be a set of amplitudes on O. For A ∈ O, let α(A) =
supj∈J αj(A). Then α is an amplitude on O.

Proof. To start, observe that α(0) = 0. Next consider a short exact sequence
0→ A→ B → C → 0. Assume A,B,C ∈ O. Let ε > 0. Then by definition there is
a j ∈ J such that αj(B) > α(B)− ε. It follows by definition and by assumption that
α(A) +α(C) ≥ αj(A) +αj(C) ≥ αj(B) > α(B)− ε. Therefore α(A) +α(C) ≥ α(B).
A similar argument shows that if A,B ∈ O then α(A) ≤ α(B) and that if B,C ∈ O
then α(C) ≤ α(B). �

Similarly, we have the following.

Lemma 3.16. Let {αj}j∈J be a set of exact weights on O. For A ∈ O, let α(A) =
supj∈J αj(A). Then α is an exact weight on O.
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For two weights w,w′ on O say that w ≤ w′ iff for all A ∈ O, w(A) ≤ w′(A).

Definition 3.17. Let w be a weight on O. We define the associated exact weight
w on O to the supremum of the exact weights upper-bounded by w. Note that this
set of exact weights is nonempty because of the zero weight. We define the associated
amplitude αw on O to be the supremum of the amplitudes upper-bounded by w.

Note that if w is an exact weight then w = w and if w is an amplitude, then
αw = w.

Example 3.18. For the exact weight w in Example 3.10, the associated amplitude
is the one weight (Example 3.2). For the exact weight w in Example 3.11, if A

has enough projectives, then for each A ∈ A there is a surjection P
f
−→ A with P

projective. From the short exact sequence 0 → kerf → P → A → 0, we obtain
αw(A) ≤ αw(P ) ≤ w(P ) = 1. Thus the associated amplitude is also the one weight.

3.5. Weight from a metric and stable weights. In this section, we use a
metric on a category to define a weight on that category. Let A be a category
together with a class of objects O in A (see Assumption 3.6).

Definition 3.19. Let d be a metric on A (Section 3.1). For A ∈ A define
|d|(A) = d(A, 0). Then |d|(0) = 0 and if A ∼= B then |d|(A) = |d|(B). Let |d|O denote
the restriction of |d| to O. Then |d|O is a weight on O (Assumption 3.6).

From a weight we obtain a path metric and from this path metric we obtain a
weight.

Lemma 3.20. For a weight w on O, |dw|O ≤ w.

Proof. For A ∈ O, the zigzag A→ 0 shows that dw(A, 0) ≤ w(A). �

Thus, for a weight w on O, we obtain a sequence of decreasing weights on O,
w = w1 ≥ w2 ≥ w3 ≥ · · · , with wn+1 = |dwn

|O. Say that this sequence stabilizes if
wn+1 = wn for some n.

Definition 3.21. Say the weight w on O is stable if |dw|O = w.

Lemma 3.22. For a metric d on A, |d| need not be an amplitude.

Proof. Consider Example 3.10, where the weight w is not an amplitude and
|dw| = w. �

Lemma 3.23. For a weight w on A, we may have |dw| 6= w.

Proof. Consider the following weight on vectK. Let w(0) = 0, w(V ) = 1 if
dim(V ) = 1 and w(V ) = 3 otherwise. Then |dw|(V ) = 2 if dimV = 2. �

3.6. Bounds on path metrics. For a weight, we give an upper bound for its
path metric. We define weights that give lower bounds for their path metrics. In
Section 3.7 we will show that exact weights give such lower bounds.

Let A be an additive category, together with a class, O, of objects in A, and a
weight w on O (see Assumption 3.6).
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Lemma 3.24. For all A,B ∈ A, dw(A,B) ≤ |dw|(A) + |dw|(B).

Proof. By the triangle inequality, dw(A,B) ≤ dw(A, 0) + dw(0, B) = |dw|(A) +
|dw|(B). �

Combining Lemmas 3.24 and 3.20 we have the following.

Proposition 3.25. For all A,B ∈ O, dw(A,B) ≤ w(A) + w(B).

Definition 3.26. Say that the weight w lower bounds its path metric if for all
A,B ∈ O, |w(A)− w(B)| ≤ dw(A,B).

3.7. Equivalent conditions on a weight. We conclude this section by showing
that the three conditions on a weight that we have introduced are equivalent.

Theorem 3.27. LetA be an additive category, together with a class of objects O in
A and a weight w on O (see Assumption 3.6). The weight w is stable (Definition 3.21)
if and only if it lower bounds its path metric (Definition 3.26).

Proof. Assume that w is stable. By the triangle inequality, for all A,B ∈ O,
|dw(A, 0) − dw(B, 0)| ≤ dw(A,B). Since w is stable, we obtain |w(A) − w(B)| ≤
dw(A,B).

Assume that w lower bounds its path metric. For all A ∈ O, w(A) = |w(A)−0| =
|w(A) − w(0)| ≤ dw(A, 0). By Lemma 3.20, dw(A, 0) ≤ w(A). Thus, dw(A, 0) =
w(A). �

Theorem 3.28. Let A be an additive category, together with a class of objects O
in A and a weight w on O. Assume that for all short exact sequences 0→ A→ B →
C → 0 in A in which two of A,B,C are in O then so is the third. The following
three conditions on w are equivalent:

(1) w is exact (Definition 3.9);
(2) w is stable; and
(3) w lower bounds its path metric.

Proof. We will show (1) iff (2). The remainder of the statement follows from
Theorem 3.27.

First we show that (2) implies (1). Consider a short exact sequence 0 → A
f
−→

B
g
−→ C → 0 with A,B,C ∈ O. Then by assumption and the triangle inequality

w(A) = dw(A, 0) ≤ dw(A,B) + dw(B, 0). By assumption dw(B, 0) = w(B) and from

the zigzag A
f
−→ B we have that dw(A,B) ≤ w(C). Thus w(A) ≤ w(C) + w(B).

Similarly w(B) = dw(B, 0) ≤ dw(B,A) + dw(A, 0) ≤ w(C) + w(A) and w(C) =
dw(C, 0) ≤ dw(C,B) + dw(B, 0) ≤ w(A) + w(B).

It remains to show that (1) implies (2). By Lemma 3.20, |dw|O ≤ w. We will
obtain a contradiction to |dw|O < w. Assume |dw|O < w. By Definition 3.7 and
Lemma 3.8, there is a zigzag γ consisting of morphisms with either zero kernel and
cokernel in O or zero cokernel and kernel in O from some object A ∈ O to 0 such that
costw(γ) < w(A). The length of any such zigzag is a nonnegative integer. Take γ to
be such a zigzag of minimal length. Let f be the first morphism of this zigzag, which
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is either of the form A
f
−→ B or A

f
←− B. Since f has either zero kernel and cokernel in

O or zero cokernel and kernel in O, by our assumption on O, B ∈ O. Let γ′ denote
the remainder of the zigzag γ without the morphism f . Then γ′ is a zigzag from B to
0 consisting of morphisms with either zero kernel and cokernel in O or zero cokernel
and kernel in O. Since the length of γ′ is less than the length of γ, by the minimality of
γ, costw(γ

′) = w(B). There are four cases to consider, depending on the direction of

f and whether or not f has zero kernel or zero cokernel. For example, if A
f
←− B and f

has zero cokernel, then we have the short exact sequence 0→ ker(f)→ B → A→ 0.
Since w is exact, w(A) ≤ w(B) + w(ker(f)) = costw(γ

′) + w(ker(f)) = costw(γ),
which is a contradiction. In the other cases, we also have a short exact sequence
containing A, B, and either ker f or coker f . The same argument again gives us a
contradiction. �

4. Path metrics for persistence modules

In this section, we specialize the results of Section 3 to the case of persistence
modules indexed by a small category whose set of objects comes equipped with a
measure.

4.1. Indexing categories with measures. In Section 4.2, we will show that
for an indexing category P with a measure on its set of objects and a weight on an
abelian category A there is an induced weight on the category of persistence modules
indexed by P with values in A.

Let P be a small category whose set of objects P has a σ-algebra Ω and measure µ.
The classical case of persistence modules is given by P ⊆ Z or P ⊆ R (assumed to be
measurable) with morphisms ≤ and the counting measure or the Lebesgue measure,
respectively. The case of multi-parameter persistence modules is given by P ⊆ Zd or
P ⊆ Rd (assumed to be measurable) with the coordinate-wise/product partial order
≤ and the counting measure or the Lebesgue measure, respectively.

4.2. Weights and path metrics for persistence modules. We now define
an induced weight for persistence modules. Let P be a small category whose set of
objects P has a measure µ. Let A be an abelian category together with a class of
objects O in A and a weight w on O (see Assumption 3.6).

Assume that we have a persistence module M : P→ A such that for each p ∈ P ,
M(p) ∈ O. Then we have a function w(M) : P → [0,∞] given by p 7→ w(M(p)).
For example, if M is a persistence module with values in VectK then dim(M) is the
Hilbert function of M . If w(M) is µ-integrable then we write µ(w(M)) to denote the
integral

∫

P
w(M) dµ, which is also written as

∫

P
w(M(p)) dµ(p).

Definition 4.1. Consider the category of persistence modules indexed by P with
values in A. Let TO,µ,w be the class of persistence modules M such that for all p ∈ P ,
M(p) ∈ O and such that w(M) is µ-integrable. Then (µ ◦w)(M) = µ(w(M)) defines
a weight µ ◦ w on TO,µ,w.

Lemma 4.2. If w is an exact weight on O then µ◦w is an exact weight on TO,µ,w.
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Proof. Let 0 be the zero persistence module. Then (µ ◦ w)(0) = µ(w(0)) =
∫

P
0 dµ = 0. Also, if M ∼= N then for all p ∈ P , M(p) ∼= N(p), so w(M(p)) =

w(N(p)), and hence (µ ◦ w)(M) = (µ ◦ w)(N).
Let 0 → M → N → Q → 0 be a short exact sequence of persistence modules.

Then for all p ∈ P , 0 → M(p) → N(p) → Q(p) → 0 is a short exact sequence
in A. If M,N,Q ∈ TO,µ,w then for all p ∈ P , M(p), N(p), Q(p) ∈ O. Since w is
an exact weight on O, w(M(p)) ≤ w(N(p)) + w(Q(p)). Thus

∫

P
w(M(p))dµ(p) ≤

∫

P
w(N(p))dµ(p)+

∫

P
w(Q(p))dµ(p). That is, (µ ◦w)(M) ≤ (µ ◦w)(N)+ (µ ◦w)(Q).

The other cases are similar. �

Similarly, we have the following.

Lemma 4.3. If α is an amplitude on O, then µ ◦ α is an amplitude on TO,µ,w.

Definition 4.4. Combining Definitions 3.7 and 4.1, we have a path metric dµ◦w
on persistence modules indexed by P with values in A.

Lemma 4.5. Let M,N be persistence modules indexed by P with values in A and
let γ be a zigzag in TO,µ,w from M to N . Then costµ◦w(γ) = µ(costw(γ)).

Proof. Consider a zigzag γ in TO,µ,w given by M
f1
−→ M1

f2
←− M2

f3
−→ · · ·

fn
←− N .

Then costµ◦w(γ) =
∑n

j=1((µ◦w)(ker fj)+(µ◦w)(coker fj)) =
∑n

j=1(
∫

P
w(ker fj) dµ+

∫

P
w(coker fj)) dµ =

∫

P

∑n
j=1(w(ker fj) + w(coker fj)) dµ =

∫

P
costw(γ) dµ. �

4.3. Bounds for the path metric on persistence modules. We now provide
an upper bound for the path metric induced by a weight and a lower bound on the
path metric induced by an exact weight. Let P be a small category whose set of
objects P has a measure µ. Let A be an abelian category together with a class of
objects O in A and a weight w on O (see Assumption 3.6).

Proposition 4.6. For persistence modules M and N indexed by P with values in
A, such that for all p ∈ P , M(p), N(p) ∈ O, and w(M) and w(N) are µ-integrable,
we have

dµ◦w(M,N) ≤ µ(w(M) + w(N)) =

∫

P

(w(M) + w(N)) dµ.

Proof. By Definition 4.1 and Proposition 3.25, dµ◦w(M,N) ≤ (µ ◦w)(M) + (µ ◦
w)(N) =

∫

P
w(M) dµ+

∫

P
w(N) dµ =

∫

P
(w(M)+w(N)) dµ = µ(w(M)+w(N)). �

Theorem 4.7. Assume that O that satisfies the 2-of-3 property and that the weight
w is exact. For persistence modules M,N indexed by P with values in A, such that
for all p ∈ P , M(p), N(p) ∈ O, and w(M) and w(N) are µ-integrable, we have

µ(|w(M)− w(N)|) =

∫

P

|w(M)− w(N)| dµ ≤ dµ◦w(M,N).

Proof. Consider a zigzag γ in TO,µ,w given by M = M0
f1
−→ M1

f2
←−M2

f3
−→ · · ·

fn
←−

Mn = N such that each fj has either zero kernel or zero cokernel. Then for all p ∈ P ,
γ(p) is a zigzag in O from M(p) to N(p). By Lemma 4.5, costµ◦w(γ) = µ(costw(γ)).
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For each p ∈ P , by Definition 3.7 and Theorem 3.28, costw(γ(p)) ≥ dw(M(p), N(p)) ≥
|w(M(p)) − w(N(p))|. Therefore costµ◦w(γ) ≥ µ(|w(M) − w(N)|) =

∫

P
|w(M(p)) −

w(N(p))| dµ(p). Hence, by Lemma 3.8, dµ◦w(M,N) ≥ µ(|w(M)− w(N)|). �

For example, for persistence modules M and N indexed by (P, µ) with values in
VectK such that dimM and dimN are µ-integrable, we have

(4.8)

∫

P

|dimM − dimN | dµ ≤ dµ◦dim(M,N) ≤

∫

P

(dimM + dimN) dµ.

4.4. Distance between interval modules. In this section we compute the
path distance between interval modules indexed by a totally ordered set. Our interval
modules are persistence modules indexed by (P, µ), where P is a totally ordered set,
and valued in VectK.

It is a good exercise to check the following two lemmas (or see [12, Appendix A]).

Lemma 4.9. Let I and J be interval modules. Then there is a nonzero map
f : I → J if and only if the intervals intersect and for each a ∈ I there exists b ∈ J

with b ≤ a and for each b ∈ J there is an a ∈ I with b ≤ a.

Lemma 4.10. Let I and J be interval modules. Then, after possibly interchanging
I and J , we have one of the following two possible cases.

(1) There are maps I
f
−→ I ∩ J

g
−→ J with f surjective, ker(f) = I \ (I ∩ J), g

injective, and coker(g) = J \ (I ∩ J). (This includes the case I ∩ J = ∅.)

(2) I ⊂ J and there is an interval module K and maps I
f
←− K

g
−→ J with f

surjective, g injective and J \ I is the disjoint union of ker(f) and coker(g).

Proposition 4.11. Let I, J be interval modules or the zero module, which we
also denote by the empty set. Then dµ◦dim(I, J) = µ(I△ J), where I △ J denotes the
symmetric difference (I ∪ J) \ (I ∩ J).

Proof. (≤) If either I or J are zero, then we have a canonical zigzag I → 0 or
0→ J . By Lemma 4.10 we have one of two canonical zigzags from I to J . In each of
these cases the cost of this zigzag is µ(I △ J).

(≥) By (4.8) dµ◦dim(I, J) ≥
∫

|dim I − dim J | dµ = µ(I △ J). �

5. Wasserstein distances for Grothendieck categories

In this section we define p-Wasserstein distances for a Grothendieck category and
show that it generalizes the usual definition. We also show that it satisfies a universal
property.

5.1. The p-Wasserstein distance. Let A be a Grothendieck category with a
metric d (Section 3.1). Recall (Definition 2.3) that Aℓ is the full subcategory of
objects isomorphic to direct sums of objects with local endomorphism rings. For
1 ≤ p ≤ ∞, define the p-Wasserstein distance as follows.
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Definition 5.1. Let M,N ∈ Aℓ. Define

(5.2) Wp(d)(M,N) = inf ‖{d(Ma, Na)}a∈A‖p ,

where the infimum is taken over all isomorphisms M ∼=
⊕

a∈A Ma and N ∼=
⊕

a∈A Na,
where each Ma and Na is either 0 or has a local endomorphism ring (and is thus
indecomposable).

Lemma 5.3. Let M,N ∈ Aℓ. Assume M ∼=
⊕

a∈A Ma and N ∼=
⊕

b∈B Nb, where
each Ma and Nb has a local endomorphism ring. Then

Wp(d)(M,N) = inf
ϕ

∥

∥

∥

∥

(

∥

∥

∥

(

d(Mc, Nϕ(c))
)

c∈C

∥

∥

∥

p
,
∥

∥(d(Ma, 0))a∈A−C

∥

∥

p
,
∥

∥

∥
(d(0, Nb))b∈B−ϕ(C)

∥

∥

∥

p

)
∥

∥

∥

∥

p

,

where the infimum is over all matchings: C ⊂ A and ϕ : C → B is injective.

Proof. By Theorem 2.2, the decompositions of M and N are unique up to iso-
morphism and reordering. Note that the direct sum in Definition 5.1 also allows
zero objects. So the infimum in (5.2) is over all matchings of A and B, where the
unmatched terms are matched with the zero object. �

Proposition 5.4. Wp(d) is a metric (Section 3.1) on Aℓ.

Proof. By assumption, if M ∼= N then d(M,N) = 0. It follows that if M ∼= N

then Wp(d)(M,N) = 0. Since d is symmetric, it follows that Wp(d) is symmetric.
The proof of the triangle inequality uses Theorem 2.2. Let M,N, P ∈ Aℓ. Let

ε > 0. By including sufficiently many zero modules and relabeling, we may assume
that M ∼=

⊕

a∈A Ma, N ∼=
⊕

a∈A Na, P ∼=
⊕

a∈A PA, and that Wp(d)(M,N) ≥
‖{d(Ma, Na)}a∈A‖p − ε and Wp(d)(N,P ) ≥ ‖{d(Na, Pa)}a∈A‖p − ε. Then

Wp(d)(M,P ) ≤ ‖{d(Mk, Pk)}k‖p ≤ ‖{d(Mk, Nk) + d(Nk, Pk)}k‖p
≤ ‖{d(Mk, Nk)}k‖p + ‖{d(Nk, Pk)}k‖p ≤Wp(d)(M,N) +Wp(d)(N,P ) + 2ε,

where the first inequality is by definition, the second inequality is by the triangle
inequality for d, and the third inequality is by the Minkowski inequality. The triangle
inequality follows. �

For example, if we have a measure space (P, µ) and a small category P with set
of objects P , we have the Grothendieck category VectK

P and metric Wp(dµ◦dim) on
the subcategory VectK

P

ℓ whose objects are isomorphic to direct sums of objects with
local endomorphism rings.

5.2. The Wp Isometry Theorem. In this section we show that in the case
of persistence modules indexed by P ⊆ R our definition of p-Wasserstein distance
(Definition 5.1) agrees with the definition using persistence diagrams (Definition 2.7).
Consider R with the usual total order and let P ⊆ R. For an interval I in P , let
P>I = {p ∈ P | ∀x ∈ I, x < p}. Let µ be a measure on P such that for all intervals
I in P , µ(I) = inf P>I − inf I, where inf ∅ = ∞. For example, we may take P = R

or P = [0,∞) with the Lebesgue measure, or P = Z or P = N with the counting
measure.
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Recall (Section 2.7) that for an interval module I, x(I) = (inf I, inf P>I) and that
∆ denotes the diagonal in [−∞,∞]2. Also, for x, y ∈ [−∞,∞]2, d(x, y) = ‖x− y‖1.

Lemma 5.5. Let I be an interval in P . Then d(x(I),∆) = µ(I).

Proof. d(x(I),∆) = d((inf I, inf P>I),∆) = inf P>I − inf I = µ(I). �

Lemma 5.6. If I, J are intervals in P with I ∩ J 6= ∅, then d(x(I), x(J)) =
µ(I △ J), where I △ J denotes the symmetric difference (I ∪ J) \ (I ∩ J).

Proof. There are a number of cases to consider. However, in each case, µ(I △ J) =
|inf I − inf J |+ |inf P>I − inf P>J | = ‖x(I)− x(J)‖1 = d(x(I), x(J)). �

Lemma 5.7. If I and J are intervals in P with I ∩ J = ∅, then d(x(I), x(J)) ≥
µ(I) + µ(J).

Proof. Without loss of generality, assume that inf I ≤ inf P>I ≤ inf J ≤ inf P>J .
Then d(x(I), x(J)) = inf P>J−inf P>I+inf J−inf I ≥ inf P>J−inf J+inf P>I−inf I =
µ(I) + µ(J). �

Proposition 5.8. For intervals I and J in P , W1(I, J) = µ(I △ J).

Proof. There are only two matchings between I and J : one in which I and J are
matched to one another, and one in which I and J are both matched to the diagonal.
So by Definition 2.7 and Lemma 5.5,

W1(I, J) = min (d(x(I), x(J)), d(x(I),∆) + d(∆, x(J)))

= min (d(x(I), x(J)), µ(I) + µ(J)) .

If I ∩ J 6= ∅, then by Lemma 5.6, d(x(I), x(J)) = µ(I △ J) ≤ µ(I) + µ(J), so
W1(I, J) = µ(I △ J). If I ∩ J = ∅, then by Lemma 5.7 it follows that W1(I, J) =
µ(I) + µ(J) = µ(I △ J). �

Theorem 5.9 (Wp Isometry Theorem). Let P ⊆ R with measure µ such that for
each interval I in P , µ(I) = inf P>I − inf I. If M,N ∈ VectK

P have a persistence
diagram, then for 1 ≤ p ≤ ∞,

Wp(dµ◦dim)(M,N)) = inf ‖{µ(Ma△Na)}a∈A‖p = Wp(M,N),

where the infimum is taken over all isomorphisms M ∼=
⊕

a∈A Ma and N ∼=
⊕

a∈A Na

where every Ma and Na is either an interval module or is zero, which corresponds to
the empty set.

Proof. The first equality follows from Definition 5.1 and Proposition 4.11.
Assume M ∼=

⊕

a∈A Ia and N ∼=
⊕

b∈B I ′b, where each Ia and I ′b is an interval
module. By Definition 2.7 and Lemma 5.5,

Wp(M,N) =

inf
ϕ

∥

∥

∥

∥

(

∥

∥

∥

{

d(x(Ic), x(I
′
ϕ(c)))

}

c∈C

∥

∥

∥

p
,
∥

∥{µ(Ia)}i∈A−C

∥

∥

p
,
∥

∥

∥
{µ(I ′b)}j∈B−ϕ(C)

∥

∥

∥

p

)
∥

∥

∥

∥

p

,



EXACT WEIGHTS, PATH METRICS, AND ALGEBRAIC WASSERSTEIN DISTANCES 19

where the infimum is over all matchings ϕ between A and B. By Lemma 5.7, this
equals the infimum taken over matchings ϕ : C → B with the property that Ic∩I

′
ϕ(c) 6=

∅ for all c ∈ C (where it could be that C = ∅). Thus, by Lemma 5.6,

Wp(M,N) =

inf
ϕ

∥

∥

∥

∥

(

∥

∥

∥

{

µ(Ic△ I ′ϕ(c))
}

c∈C

∥

∥

∥

p
,
∥

∥{µ(Ia △∅)}i∈A−C

∥

∥

p
,
∥

∥

∥
{µ(∅△ I ′b)}j∈B−ϕ(C)

∥

∥

∥

p

)
∥

∥

∥

∥

p

.

Writing this more compactly we obtain the second equality. �

5.3. The universal property of Wp(d). In this section we show that Wp(d)
may be characterized as the largest p-subadditive metric that is is bounded by d on
those objects with local endomorphism rings. Let A be a Grothendieck category with
metric d (Section 3.1). Let 1 ≤ p ≤ ∞.

Definition 5.10. ForA,B ∈ A, let dp(A,B) = min(d(A,B), ‖(d(A, 0), d(0, B))‖p).

One may check that dp is a metric on A (see [8, Lemma 3.13]).

Lemma 5.11. Restricted to objects with local endomorphism rings and zero, Wp(d)
equals dp.

Proof. Consider M,N with local endomorphism rings or being zero. By Defini-

tions 5.1 and 5.10,Wp(d)(M,N) = min
(

d(M,N), ‖(d(M, 0), d(0, N))‖p

)

= dp(M,N).

�

Definition 5.12. Say that a metric d on Aℓ is p-subadditive if for any sets
{Ma}a∈A and {Na}a∈A of objects inAℓ, d(

⊕

a∈A Ma,
⊕

a∈A Na) ≤ ‖{d(Ma, Na)}a∈A‖p .

Proposition 5.13. Wp(d) is a p-subadditive metric on Aℓ.

Proof. Consider
⊕

a∈A Ma and
⊕

a∈A Na, where Ma, Na ∈ Aℓ for all a ∈ A.
For the left hand side, Wp(d)(

⊕

a∈A Ma,
⊕

a∈A Na) = inf ‖{d(Ps, Qs)}s∈S‖p, where
⊕

a∈A Ma
∼=

⊕

s∈S Ps and
⊕

a∈A Na
∼=

⊕

s∈S Qs with each Ps and Qs either having a
local endomorphism ring or being zero. For the right hand side, ‖{Wp(d)(Ma, Na)}a∈A‖p =

inf ‖{d(Pa,s, Qa,s)}a∈A,s∈Ba
‖
p
, whereMa

∼=
⊕

s∈Ba
Pa,s andNa

∼=
⊕

s∈Ba
Qa,s with each

Pa,s and Qa,s either having a local endomorphism ring or being zero. By Theorem 2.2
each term in the right hand side is a term in the left hand side. The result follows. �

Proposition 5.14. Let d′ be a p-subadditive metric on Aℓ that is bounded above
by d on objects with local endomorphism rings and zero. Then d′ ≤Wp(d).

Proof. Let M,N ∈ Aℓ. Consider Definition 5.1. For each pair of isomorphisms
M ∼=

⊕

a∈A Ma and N ∼=
⊕

a∈A Na where each Ma or Na is either 0 or has a lo-
cal endomorphism ring, since d′ is p-subadditive, d′(M,N) ≤ ‖{d′(Ma, Na)}a∈A‖p,
which by assumption is bounded above by ‖{d(Ma, Na)}a∈A‖p. Therefore d

′(M,N) ≤
Wp(d)(M,N). �

Combining Lemma 5.11 and Propositions 5.13 and 5.14, we have the following.
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Theorem 5.15 (Universal characterization of Wp(d)). Wp(d) is the largest p-
subadditive metric on Aℓ that is bounded above by d on objects with local endomor-
phism rings and zero.

6. Algebra and persistence modules

In this section we will prove that W1(dµ◦dim) and dµ◦dim are equal for certain per-
sistence modules. Along the way, we will prove structure theorems for maps from an
interval module and maps to an interval module and show that both monomorphisms
and epimorphisms of persistence modules induce algebraic matchings of direct sum-
mands. Let P ⊆ R. Let µ be a measure on P such that for all intervals I in P ,
µ(I) = inf P>I − inf I, where P>I = {p ∈ P | ∀x ∈ I, x < p} and inf ∅ =∞.

Throughout this section (with the exception of Definition 6.1), we will restrict
VectK

P to the full subcategory, VectP
ds
, whose objects are isomorphic to direct sums

of interval modules. Recall that µ◦dim is a weight on the persistence modules whose
Hilbert functions are integrable. It restricts to a weight on VectP

ds
. We obtain a

corresponding path metric dµ◦dim on VectP
ds
.

6.1. Change of bases. In this section we give a change-of-basis lemma that is
a main technical ingredient in our proof of induced algebraic matchings and hence of
our W1 isometry theorem. To help with the arguments used in that proof, we give
two examples that use this lemma.

Definition 6.1. Consider M ∈ VectK
P. For each a ∈ P , let Ba be a basis for

M(a). Call {Ba}a∈P a set of coherent bases for M if for all a ≤ b ∈ P , M(a ≤ b)
restricts to a matching of Ba and Bb. That is, there is a subset S ⊆ Ba such that
M(a ≤ b)|S is one-to-one and has its image in Bb and M(a ≤ b)|Ba\S = 0.

We remark that a set of coherent bases for a persistence module is often visualized
as a set of intervals called a barcode.

Notation 6.2. Following [12, Definition 9], for intervals I, J ⊆ P or correspond-
ing interval modules say that I ≤ J if for all i ∈ I there exists j ∈ J such that i ≤ j

and if for all j ∈ J there exists i ∈ I such that i ≤ j.

Lemma 6.3 (Change of basis lemma). Let M = I ⊕ J , where I, J are interval
modules, I ≤ J and I ∩ J 6= ∅. Let {{ec}}c∈I and {{fc}}c∈J denote sets of coherent
bases for I and J , respectively. Consider kec+ℓfc, where c ∈ I∩J and k, ℓ ∈ K \{0}.
Then M has a set of coherent bases given by {{kec}}c∈I\J ∪ {{kec, kec + ℓfc}}c∈I∩J ∪
{{ℓfc}}c∈J\I .

Proof. It remains to show that the maps M(c ≤ d) : M(c) → M(d) restrict
to a matching of bases. If I \ J 6= ∅ then let x ∈ I \ J , let y ∈ I ∩ J , and if
J \ I 6= ∅ then let z ∈ J \ I. Then M(x ≤ y)(kex) = key, M(y ≤ z)(key) = 0, and
M(y ≤ z)(key + ℓfy) = ℓfz. �

Example 6.4. Consider f : M → N , where N = N1⊕N2, M,N1, N2 are interval
modules, N1 ≤ N2 ≤ M , and M ∩ N1 6= ∅. Let {ec}c∈M , {e′c}c∈N1

, and {e′′c}c∈N2
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be coherent sets of bases for M,N1, N2. Assume that f(ec) = ke′c + ℓe′′c for some
c ∈ M ∩N1 where k, ℓ 6= 0. It follows that f(ec) = ke′c + ℓe′′c for all c ∈ M ∩ N1 and
that f(ec) = ℓe′′c for all c ∈ N2 \N1.

Apply Lemma 6.3 to write N as the internal direct sum N1⊕N ′
2, where N

′
2 has a

set of coherent bases given by {ke′c+ℓe′′c}c∈N1∩N2
∪{ℓe′′c}c∈N2\N1

. Let p1, p
′
2 denote the

canonical maps to the direct summands in N1⊕N ′
2 and let i1, i

′
2 denote the canonical

maps from the direct summands to N1⊕N ′
2. Then f = i′2p

′
2f . Since i1p1+ i′2p

′
2 = 1N

and i1 is a monomorphism it follows that p1f = 0.

Example 6.5. Consider f : M → N where M = M1⊕M2, M1,M2, N are interval
modules N ≤M1 ≤M2 and N ∩M2 6= ∅. Let {ec}c∈N , {e

′
c}c∈M1

and {e′′c}c∈M2
be sets

of coherent bases for N,M1,M2. Assume that f(e′c) = kec for all c ∈M1 ∩N , where
k 6= 0 and f(e′′c ) = ℓec for all c ∈M2 ∩N , where ℓ 6= 0.

Apply Lemma 6.3 to write M as the internal direct sum M1 ⊕M ′
2, where M ′

2 has
a set of coherent bases given by {e′′c − ℓk−1e′c}c∈M1∩M2

∪ {e′′c}c∈M2\M1
. Then fi′2 = 0,

where i′2 : M
′
2 → M1 ⊕M ′

2 is the canonical map.

6.2. Structure theorems. In this section we give structure theorems for maps
out of and into an interval module.

Notation 6.6. Given two intervals I and J , write I ⋐ J if I ⊂ J and there exist
a, b ∈ J such that for all i ∈ I, a < i < b. We will also denote this by J ⋑ I.

Given a persistence module, M = N ⊕
⊕∞

j=1Mj , or M = N ⊕
⊕n

j=1Mj , let
iN : N → M , pN : M → N denote the canonical maps. Similarly, for all j, let
ij : Mj →M and pj : M →Mj denote the canonical maps. Recall Notations 6.2 and
6.6.

Theorem 6.7 (Structure theorem for maps from an interval module). Let M

be a direct sum of interval modules (with arbitrary indexing set) and let I be an
interval module. Given a nonzero map f : I → M , there exists an isomorphism
θ : M → N ⊕N ′ with

(1) N ′ =
⊕n

j=1Mj for some n ≥ 1, or

(2) N ′ =
⊕∞

j=1Mj,

such that pNθf = 0 and for all j, Mj is an interval module with Mj ≤ I, Mj ∩ I 6= ∅,
pjθf is nonzero, and the interval Mj ∩ I contains the interval Mj+1 ∩ I.

In the first case, M1 ⋑ M2 ⋑ · · · ⋑ Mn and if I does not have a lower bound
then n = 1. If inf I ∈ I then only the first case can occur. For the second case,
limn→∞(supMj) = inf I.

In both cases, ker f = I \M1. In the first case,

coker f = N ⊕ (Mn \ I)⊕
n−1
⊕

j=1

Mj \ ((Mj \Mj+1) ∩ I).

Proof. Assume M =
⊕

α∈A Mα where Mα is an interval module. If pαf is
nonzero for some α ∈ A then Mα ∩ I 6= ∅ and Mα ≤ I. Furthermore, there is a set of
coherent bases {{ec}}c∈I for I and a set of coherent bases {{fd}}d∈Mα

for Mα.
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For each c ∈ I, let Ac = {α ∈ A | pαf(ec) 6= 0}. By the definition of direct sum,
|Ac| < ∞. If c ≤ d then Ac ⊇ Ad. Let A′ =

⋃

c∈I Ac. Since A′ is a directed union of
finite sets, A′ is countable.

Since for all α ∈ A′, Mα ≤ I, for each α, β ∈ A′, Mα ∩Mβ 6= ∅. Order A′ by the
right ends of the intervals. That is, {Mα}α∈A′ = {Mj}

∞
j=1 or {Mα}α∈A′ = {Mj}

n
j=1

such that for all j, Mj ∩ I ⊃Mj+1 ∩ I.
For all j either Mj+1 ≤Mj or Mj+1 ⋐ Mj . In the case that {Mα}α∈A′ = {Mj}

n
j=1,

whenever Mj+1 ≤ Mj , we can apply Lemma 6.3 as in Example 6.4 so that we may
remove Mj+1 from our list. By induction, we have M1 ⋑ M2 ⋑ · · · ⋑ Mn′ .

If I does not have a lower bound then Mi ≤ I, Mj ≤ I and Mi ⋐ Mj leads to a
contradiction.

For each c ∈ I, by the definition of direct sum, pjθf(c) 6= 0 for only finitely many
j. It follows that if inf I ∈ I then one has the case of only finitely many Mj and that
if one has infinitely many Mj then limn→∞(supMj) = inf I.

Finally, I has a set of coherent bases {{ec}}c∈I and each Mj has a set of coherent
bases {{ej,c}}c∈Mj

such that for c ∈ (Mj ∩ I) \ (Mj+1 ∩ I), θf(ec) = e1,c + · · ·+ ej,c.
It follows that ker f and coker f are as claimed. �

Corollary 6.8. Given a short exact sequence 0→ I → M → N → 0 with I an
interval module and M a finite direct sum of interval modules, it follows that

W1(dµ◦dim)(M,N) ≤ µ(I).

Proof. Let f denote the given map I → M . Apply Theorem 6.7 with ker f = 0.
We have M ∼= N ′⊕

⊕n
j=1Mj , where each Mj is an interval module with Mj ≤ I, and

for all j, Mj ∩ I 6= ∅ and Mj ∩ I ⊃Mj+1 ∩ I. Furthermore,

N ∼= N ′ ⊕ (Mn \ I)⊕
n−1
⊕

j=1

Mj \ ((Mj \Mj+1) ∩ I).

It follows that

W1(dµ◦dim)(M,N) ≤ µ(Mn ∩ I) +

n−1
∑

j=1

µ((Mj \Mj+1) ∩ I) = µ(M1 ∩ I) = µ(I). �

In the dual case we have the following.

Theorem 6.9 (Structure theorem for maps to an interval module). Let M be
a direct sum of interval modules and let I be an interval module. Given a nonzero
map f : M → I, there exists an isomorphism θ : M → N ⊕

⊕

α∈A Mα such that
fθiN = 0 and for all α ∈ A, I ≤ Mα, Mα ∩ I 6= ∅, and fθiα is nonzero. It follows
that coker f = I \

⋃

α∈A Mα.
If A is finite then

⊕

α∈A Mα
∼=

⊕n

j=1Mj for some n ≥ 1, where M1 ⋑ M2 ⋑ · · · ⋑
Mn, and if I does not have an upper bound then n = 1. Furthermore coker f = I \M1

and

ker f = N ⊕ (Mn \ I)⊕
n−1
⊕

j=1

Mj \ ((Mj \Mj+1) ∩ I).
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Proof. Assume M =
⊕

α∈B Mα where Mα is an interval module. Let A = {α ∈
B | fiα is nonzero}. Let N =

⊕

α∈B\A Mα. For all α ∈ A, Mα ∩ I 6= ∅ and I ≤Mα.

Now assume that A is finite. Order the elements of {Mα}α∈A by their left ends.
That is, for some n ≥ 1, we have {Mj}

n
j=1 where M1 ∩ I ⊃ · · · ⊃ Mn ∩ I. For all

j either Mj ≤ Mj+1 or Mj ⋑ Mj+1. Whenever Mj ≤ Mj+1 apply Lemma 6.3 as in
Example 6.5 so that we may remove Mj+1 from our list. By induction, we obtain
M1 ⋑ M2 ⋑ · · · ⋑ Mn′ . If I does not have an upper bound then I ≤Mi, I ≤ Mj and
Mi ⋐ Mj leads to a contradiction. �

Corollary 6.10. Given a short exact sequence 0→ M → N → I → 0, where I

is an interval module and N is a finite direct sum of interval modules, it follows that
W1(dµ◦dim)(M,N) ≤ µ(I).

Proof. Let f denote the given mapN → I. Apply Theorem 6.9 with coker f = 0.
We have N ∼= N ′⊕

⊕n
j=1Mj , where each Mj is an interval module with I ≤Mj , and

M1 ⋑ M2 ⋑ · · · ⋑ Mn. Furthermore,

M ∼= N ′ ⊕ (Mn \ I)⊕
n−1
⊕

j=1

Mj \ ((Mj \Mj+1) ∩ I).

It follows that

W1(dµ◦dim)(M,N) ≤ µ(Mn ∩ I) +
n−1
∑

j=1

µ((Mj \Mj+1) ∩ I) = µ(M1 ∩ I) = µ(I). �

6.3. Induced algebraic matching. In this section we show that for monomor-
phisms and epimorphisms of persistence modules there is an induced algebraic match-
ing of interval modules.

Say that two intervals I and J have the same right end if sup I = sup J and
sup I ∈ I iff sup J ∈ J .

Theorem 6.11 (Induced algebraic matching for monomorphisms). Let f : M →
N be a monomorphism between persistence modules with direct-sum decompositions
into finitely many interval modules. Then there are internal direct sum decompositions
M =

⊕

a∈A Ma and N =
⊕

a∈A Na where each Ma is either an interval module or
zero and each Na is an interval module such that following hold. For all a ∈ A, if
Ma is nonzero then Ma and Na have the same right end, p′afia : Ma → Na is a
monomorphism, where ia : Ma → M and p′a : N → Na are the canonical maps, for
all other interval modules Nb with the same right end as Ma, p

′
bfia = 0 and for all

other interval modules Mb with the same right end as Na, p
′
afib = 0.

Proof. Let M =
⊕m

k=1Mk and N =
⊕n

j=1Nj . The map f determines and is
determined by the maps fj,k := p′jfik, where ik : Mk → M and p′j : N → Nj are
the canonical maps. Our proof is by a matrix reduction argument. Since f is a
monomorphism, for each Mk there exists an Nj with the same right end such that
Mk ⊆ Nj and fj,k is nonzero (see Lemma 4.9 and Lemma 4.10(1)).
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Partition the intervals in {Mk}
m
k=1 and {Nj}

n
j=1 into subsets with the same right

end. Use this partition to order the {Mk} and {Nj}. For the {Mk} and {Nj} with
the same right end, order them by reverse-inclusion and inclusion, respectively.

Consider one of the blocks {Mk}, {Nj} with the same right end. Choose k1 so that
Mk1 is a largest interval. Let Nj1 be a smallest one in the block with fj,k1 nonzero.
Apply Lemma 6.3 iteratively to Nj1 and the other Nj in the block for which fj,k1 is
nonzero (see Example 6.4). We obtain a basis for N such that fj1,k1 is nonzero and
fj,k1 is zero for the other Nj in the block. Reorder the Nj in the block so that Nj1

is first. Next, apply Lemma 6.3 iteratively to Mk1 and the other Mk in the block for
which fj1,k is nonzero (see Example 6.5). We obtain a basis for M such that fj1,k1 is
nonzero and fj1,k is zero for the other Mk in the block.

Now consider a next largest Mk2 in the block. Since f is a monomorphism, there
is a smallest Nj2 with j2 6= j1 such that fj2,k2 is nonzero. Again apply Lemma 6.3
iteratively to obtain a basis for N such that fj2,k2 is nonzero and fj,k2 is zero for the
Nj in the block with j 6= j2. Reorder the Nj in the block so that Nj2 is second. Also,
apply Lemma 6.3 iteratively to obtain a basis for M such that fj2,k2 is nonzero and
fj2,k is zero for the Mk in the block with k 6= k2. Continue in the same way for the
remainder of the Mk in the block. Repeat for each of the blocks.

For each Mk, let Nk be the corresponding direct summand of N obtained by the
above procedure. For the remaining Nj, let Mj = 0. �

Corollary 6.12. Let f : M → N be a monomorphism between persistence
modules with direct-sum decompositions into finitely many interval modules. Then
W1(dµ◦dim)(M,N) ≤

∫

P
dim(coker f) dµ.

Proof. By Theorem 6.11, M =
⊕

aMa and N =
⊕

a Na where each Ma is an
interval module or zero and each Na is an interval module, and fa := p′afia is a
monomorphism. Note that Ma and Na have the same right ends and that coker fa =
Na \ Ma. We remark that there may be b 6= a such that p′bfia is nonzero (see
Theorem 6.7).

By the rank-nullity theorem,
∫

P
dim(coker f) dµ =

∫

P
(dimN − dimM) dµ =

∑

a

∫

P
(dimNa − dimMa) dµ =

∑

a

∫

P
dim(Na \Ma) dµ =

∑

a

∫

P
dim(coker fa) dµ =

∑

a dµ◦dim(Ma, Na). Therefore W1(dµ◦dim)(M,N) ≤
∫

P
dim(coker f) dµ. �

The following is the Matlis dual [31, Section 2.5] of Theorem 6.11, and the result
follows by Matlis duality. However, we give an independent, elementary proof. Say
that two intervals I and J have the same left end if inf I = inf J and inf I ∈ I iff
inf J ∈ J .

Theorem 6.13 (Induced algebraic matching for epimorphisms). Let f : M → N

be an epimorphism between persistence modules with direct-sum decompositions into
finitely many interval modules. Then there are internal direct sum decompositions
M =

⊕

a∈A Ma and N =
⊕

a∈A Na where each Ma is an interval module and each
Na is either an interval module or zero such that the following hold. For all a ∈ A,
if Na is nonzero then Ma and Na have the same left end, p′afia : Ma → Na is an
epimorphism, where ia : Ma → M and p′a : N → Na are the canonical maps, for all
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other interval modules Mb with the same left end as Na, p
′
afib = 0 and for all other

interval modules Nb with the same left end as Ma, p
′
bfia = 0.

Proof. Let M =
⊕m

k=1Mk and N =
⊕n

j=1Nj . The map f determines and
is determined by the maps fj,k := p′jfik, where ik : Mk → M and p′j : N → Nj

are the canonical maps. Our proof is by a matrix reduction argument. Since f is
an epimorphism, for each Nj there exists an Mk with the same left end such that
Nj ⊆Mk and fj,k is nonzero (see Lemma 4.9 and Lemma 4.10(1)).

Partition the intervals in {Mk}
m
k=1 and {Nj}

n
j=1 into subsets with the same left

end. Use this partition to order the {Mk} and {Nj}. For the {Mk} and {Nj} with
the same left end, order them by inclusion and reverse-inclusion, respectively.

Consider one of the blocks {Mk}, {Nj} with the same left end. Choose j1 so that
Nj1 is a largest interval. Let Mk1 be a smallest interval in the block with fj1,k nonzero.
Apply Lemma 6.3 iteratively to Mk1 and the other Mk in the block for which fj1,k is
nonzero (see Example 6.5). We obtain a basis for M such that fj1,k1 is nonzero and
fj1,k is zero for the other Mk in the block. Reorder the Mk in the block so that Mk1

is first. Next, apply Lemma 6.3 iteratively to Nj1 and the other Nj in the block for
which fj,k1 is nonzero (see Example 6.4). We obtain a basis for N such that fj1,k1 is
nonzero and fj,k1 is zero for the other Nj in the block.

Now consider a next largest Nj2 in the block. Since f is an epimorphism, there
is a smallest Mk2 with k2 6= k1 such that fj2,k2 is nonzero. Again apply Lemma 6.3
iteratively to obtain a basis for M such that fj2,k2 is nonzero and fj2,k is zero for the
Mk in the block with k 6= k2. Reorder the Mk in the block so that Mk2 is second.
Also, apply Lemma 6.3 iteratively to obtain a basis for N such that fj2,k2 is nonzero
and fj,k2 is zero for the Nj in the block with j 6= j2. Continue in the same way for
the remainder of the Nj in the block. Repeat for each of the blocks.

For each Nj , let Mj be the corresponding direct summand of M obtained by the
above procedure. For the remaining Mk, let Nk = 0. �

Corollary 6.14. Let f : M → N be an epimorphism between persistence
modules with direct-sum decompositions into finitely many interval modules. Then
W1(dµ◦dim)(M,N) ≤

∫

P
dim(ker f) dµ.

Proof. By Theorem 6.13, M =
⊕

aMa and N =
⊕

a Na where each Ma is
an interval module and each Na is an interval module or zero, and fa := p′afia is an
epimorphism. Note thatMa andNa have the same left ends and that ker fa = Ma\Na.
We remark that there may be b 6= a such that p′afib is nonzero (see Theorem 6.9).

By the rank-nullity theorem,
∫

P
dim(ker f) dµ =

∫

P
(dimM−dimN) dµ =

∑

a

∫

P
(dimMa−

dimNa) dµ =
∑

a

∫

P
dim(Ma \ Na) dµ =

∑

a

∫

P
dim(ker fa) dµ =

∑

a dµ◦dim(Ma, Na).
Therefore W1(dµ◦dim)(M,N) ≤

∫

P
dim(ker f) dµ. �

6.4. The W1 isometry theorem. In this section we prove a W1 isometry the-
orem, first in the finite case and then in the general case. The main ingredients are
the induced algebraic matching theorems of the previous section.

Proposition 6.15. LetM,N ∈ VectP
ds
. Then dµ◦dim(M,N) ≤W1(dµ◦dim)(M,N).
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Proof. We need to show that dµ◦dim(M,N) ≤ inf ‖{dµ◦dim(Ma, Na)}a∈A‖1, where
the infimum is taken over all isomorphisms M ∼=

⊕

a∈A Ma and N ∼=
⊕

a∈A Na, where
each Ma and Na is either 0 or an interval module.

Let M ∼=
⊕

a∈A Ma and N ∼=
⊕

a∈A Na, where each Ma and Na is either 0 or
an interval module. For each a ∈ A, since Ma and Na are either zero or an interval
module, there is a zigzag γa of interval modules from Ma to Na of length at most two
with cost dµ◦dim(Ma, Na). Add identity maps to these zigzags so that they are all of
the form · → · ← · → · ← ·. By taking the direct sum of the maps in these zigzags,
we obtain a zigzag in VectP

ds
from M to N . Since the kernel and cokernel of a direct

sum is the direct sum of the kernels and cokernels, respectively, the cost of this zigzag
equals the sum of the costs of the zigzags γa. The result follows. �

Say that a persistence module M has finite total persistence if dim(M) is inte-
grable, that is

∫

P
dim(M) dµ <∞.

Remark 6.16. This condition can be weakened substantially using primary de-
composition [41, 32].

Theorem 6.17 (W1 isometry theorem). Let M,N ∈ VectP
ds

such that each has
finite total persistence. Then W1(dµ◦dim)(M,N) = dµ◦dim(M,N).

Proof. For simplicity, denote dµ◦dim by d. By Proposition 6.15, we have that
W1(d)(M,N)) ≥ d(M,N). So, it remains to show that W1(d)(M,N)) ≤ d(M,N).

Let ε > 0. By definition, there exists a zigzag γ from M to N given by

M = M0
f1
−→ M1

f2
←−M2

f3
−→ · · ·

fn
←−Mn = N

such that costµ◦dim(γ) < d(M,N) + ε
2
. It follows that d(Mi−1,Mi) < ∞ for all i =

1, . . . , n. If Mi−1 has finite total persistence and Mi does not then d(Mi−1,Mi) =∞.
Thus we may assume that each Mi has finite total persistence.

By the triangle inequality,

(6.18) W1(d)(M,N) ≤
n

∑

i=1

W1(d)(Mi−1,Mi).

Let 1 ≤ i ≤ n. By assumption, we have Mi
∼=

⊕∞
j=1 Ii,j, where Ii,j is an interval

module or zero. Since Mi has finite total persistence, we may choose Ni such that

(6.19) (µ ◦ dim)(
∞
⊕

j=Ni+1

Ii,j) <
ε

8n
.

Let M ′
i denote

⊕Ni

j=1 Ii,j and let M ′′
i denote

⊕∞
j=Ni+1 Ii,j . Let ιi : M ′

i → Mi and
πi : Mi →M ′

i denote the canonical inclusion and projection maps.
By the triangle inequality,

W1(d)(Mi−1,Mi) ≤W1(d)(Mi−1,M
′
i−1) +W1(d)(M

′
i−1,M

′
i) +W1(d)(M

′
i ,Mi)

< W1(d)(M
′
i−1,M

′
i) +

ε

4n
.

(6.20)
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Consider the case fi : Mi−1 →Mi. Let f
′
i : M

′
i−1 →M ′

i be given by f ′
i = πi ◦ fi ◦ ιi−1.

Since f ′
i factors through its image, by the triangle inequality and Corollaries 6.12 and

6.14,

(6.21) W1(d)(M
′
i−1,M

′
i) ≤ (µ ◦ dim)(ker f ′

i) + (µ ◦ dim)(coker f ′
i).

Now

(µ ◦ dim)(ker f ′
i) ≤ (µ ◦ dim)(ker(πi ◦ fi))

≤ (µ ◦ dim)(ker fi) + (µ ◦ dim)(M ′′
i )

(6.22)

and

(µ ◦ dim)(coker f ′
i) ≤ (µ ◦ dim)(coker(fi ◦ ιi−1))

≤ (µ ◦ dim)(coker fi) + (µ ◦ dim)(M ′′
i−1).

(6.23)

Combining (6.21), (6.22), (6.23), and (6.19) we have,

(6.24) W1(d)(M
′
i−1,M

′
i) < (µ ◦ dim)(ker fi) + (µ ◦ dim)(coker fi) +

ε

4n
.

The other case, fi : Mi →Mi−1 is similar and we obtain the same inequality as (6.24).
Combining (6.18), (6.20), and (6.24), we have

W1(d)(M,N) < costµ◦dim(γ) +
ε

2
< d(M,N) + ε.

Therefore W1(d)(M,N) ≤ d(M,N). �

7. Applications

We end by applying our distances to a few simple examples.

7.1. Multiparameter persistence modules. In this section we consider three
examples of two-parameter persistence modules and the distances between them.

Example 7.1. Consider the 1-dimensional simplicial complex K at the top of
Figure 1. Let P = {0, 1, 2, 3, 4}2 ⊂ Z2 with the usual coordinate-wise partial order
and the counting measure µ. Let X be the P -filtration of K given by the vertices
a, b, c appearing at (0, 2), (1, 1), (2, 0), respectively, and the edge e appearing at (3, 2)
and (2, 4) and the edge f appearing at (2, 3) and (4, 2). See the bottom left of
Figure 1. Let Y be the P -filtration of K given by the vertices a, b, c appearing at
(0, 2), (1, 1), (2, 0), respectively, and the edge e appearing at (2, 3) and (4, 2) and the
edge f appearing at (3, 2) and (2, 4). See the bottom right of Figure 1. Note that
the two-parameter persistence modules H0(X) and H0(Y ) have identical dimension
vectors.

Now consider Z := X ∩ Y and W := X ∪ Y . Z differs from X and Y in that it
has no edges at the indices highlighted in Figure 1. W differs from X and Y in that
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a

b

c
e f

Figure 1. A one dimensional simplicial complex K (top) and a pair of
two-parameter filtrations, X (bottom left) and Y (bottom right). The
differences between X and Y are highlighted.

it has both edges at the indices highlighted in Figure 1. The inclusions Z
i
−→ X

k
−→W

and Z
j
−→ Y

ℓ
−→W induce two zigzags from H0(X) to H0(Y ).

H0(Z)

H0(X) H0(Y )

H0(W )

H0(i) H0(j)

H0(k) H0(ℓ)

Let γ denote the top zigzag and let γ′ denote the bottom zigzag. We have costµ◦dim(γ) =
∑

P dim kerH0(i)+
∑

P dimkerH0(j) = 2+2 = 4 and costµ◦dim(γ
′) =

∑

P dimkerH0(k)+
∑

P dim kerH0(ℓ) = 2 + 2 = 4. In either case, we have dµ◦dim(H0(X), H0(Y )) ≤ 4.
Since H0(X) and H0(Y ) have identical dimension vectors, along any zigzag from

H0(X) to H0(Y ) any change in the dimension vector must be later undone. Thus,
dµ◦dim(H0(X), H0(Y )) is even. SinceH0(X) is not isomorphic toH0(Y ), dµ◦dim(H0(X), H0(Y )) 6=
0. It remains to show that dµ◦dim(H0(X), H0(Y )) 6= 2. Since H0(X) and H0(Y )
have identical dimension vectors, this can only happen if there exists a zigzag of
length two from H0(X) to H0(Y ) with middle vector space M where there exists
a unique p ∈ P where dimM(p) differs from dimH0(X)(p) = dim1(Y )(p) by one
and for all q ∈ P with q 6= p, dimM(q) = H0(X)(q) = dimH0(Y )(q). However,
because of the two highlighted indices in Figure 1, there is no such M . Therefore
dµ◦dim(H0(X), H0(Y )) = 4.

Example 7.2. Consider the simplicial complex K at the top of Figure 2. Let
P = [0, 5]2 ⊂ R2 with the usual coordinate-wise partial order and the Lebesgue
measure µ. Let t ∈ [0, 1]. Let Xt be the P -filtration of K given by the vertices a, b, c
appearing at (2, 0), (1, 1), (t, 2), respectively, and the edge e appearing at (4, 3) and
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the edge f appearing at (3, 4). For t < 1, see the bottom left of Figure 2, and for
t = 1, see the bottom right of Figure 2.

a

b

c
e f

a

b

c

e

f

a

b

c

e

f

Figure 2. A one dimensional simplicial complex K (top) and a pair
of two-parameter filtrations, Xt (bottom left) and X1 (bottom right).
The difference between Xt and X1 is highlighted.

Consider the two-parameter persistence modulesMt := H0(Xt) andM1 := H0(X1).
The inclusion i : X1 →֒ Xt induces a monomorphism H0(i) : M1 →֒ Mt. Thus, by
Definition 4.4, dµ◦dim(Mt,M1) ≤

∫

P
dim(cokerH0(i)) dµ = 3(1 − t). By (4.8), we

also have that dµ◦dim(Mt,M1) ≥
∫

P
(dimMt − dimM1) dµ = 3(1 − t). Therefore

dµ◦dim(Mt,M1) = 3(1 − t). Note that as t → 1, dµ◦dim(Mt,M1) → 0. So, in this
example the metric dµ◦dim behaves continuously, as we would like.

Now consider the metrics Wp(dµ◦dim), where 1 ≤ p ≤ ∞. Let [x] denote the
homology class represented by x. For t < 1, the persistence module Mt is indecom-
posable. However, M1

∼= A⊕B, where A is generated by [a] and [b] and B is generated
by [c] − [b]. By (4.8), we have that dµ◦dim(Mt, A) ≥

∫

P
dimMt dµ −

∫

P
dimAdµ ≥

39 − 29 = 10 and dµ◦dim(Mt, B) ≥
∫

P
dimMt dµ −

∫

P
dimB dµ ≥ 39 − 10 = 29. We

also have that dµ◦dim(0, A) =
∫

P
dimAdµ = 29, and dµ◦dim(0, B) =

∫

P
dimB dµ = 10.

Therefore for all 1 ≤ p ≤ ∞, Wp(dµ◦dim)(Mt,M1) ≥ ‖(10, 10)‖p ≥ 10, even as t→ 1.

Since indecomposability is unstable, the metrics Wp(dµ◦dim) are also unstable.
Thus the metric dµ◦dim seems to be a better choice for multiparameter persistence
modules then the metrics Wp(dµ◦dim).

Example 7.3. Consider the two-parameter persistence modules M , N , and Q

which are one-dimensional in the left, middle, and right subsets of the plane in
Figure 3, respectively, and are zero elsewhere. We have a short exact sequence
0 → M → N → Q → 0. Let µ denote the Lebesgue measure on R2. In the path
metric, dµ◦dim(M,N) equals the area of the triangle in the right of Figure 3. However
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Figure 3. Middle: a region in the plane whose boundary is a trape-
zoid. Left: a subset of this region obtained by removing the triangular
subregion on the right.

W1(dµ◦dim)(M,N) equals the area of the trapezoid in the middle of Figure 3. Thus,
M and N are close in the path metric and distant in the Wasserstein metric.

Which metric is more appropriate may depend on the application. For example,
let X = D2

1 ∐D2
2 be the disjoint union of two discs. Consider three bifiltrations on

X . In the first, the boundary of the first disc, ∂D2
1, appears on the solid lines in the

middle of Figure 3 and the remainder of X appears on the dashed line in middle of
Figure 3. Call this bifiltration X1. In the second, ∂D2

1 appears on the solid lines
in the left of Figure 3 and the remainder of X appears on the dashed line in left of
Figure 3. Call this bifiltration X2. In the third, ∂D2

1 appears on the left three solid
lines in the left of Figure 3, ∂D2

2 appears on the right three solid lines in the left
of Figure 3, and all of X appears on the dashed line in left of Figure 3. Call this
bifiltration X3. Then H1(X1) = N , H1(X2) = M , and H1(X3) = M . For X1 and X2,
dµ◦dim(M,N) seems to give a better answer for their proximity, but for X1 and X3,
W1(dµ◦dim) seems to give a better answer for their proximity.

7.2. Zigzag persistence modules. Zigzag persistence modules are linear se-
quences of vector spaces in which the maps are allowed to go in either direction (in a
specified pattern). For example, consider the three following three zigzag persistence
modules L, M , and N ,

L = K → K → K ← K ← K

M = K → K → K ← 0 ← 0
N = 0 → 0 → K ← K ← K

where in each case the maps are the identity if possible and are otherwise 0. These
may be viewed as representations of the following quiver,

(7.4) • → • → • ← • ← •

or modules over the corresponding path algebra, or functors from the category (7.4)
to the category of K-vector spaces. The zigzag persistence modules L, M , and N ,
are indecomposable. In fact, the indecomposable modules for such linear quivers are
exactly the interval modules [22]. However, we will show that our distances for this
quiver behave differently than for the corresponding ordered quiver • → • → • →
• → •.

As we did for persistence modules, we consider the set of objects in the indexing
category to be a subset of the integers with the counting measure µ. We then have
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the corresponding metrics dµ◦dim and Wp(dµ◦dim). However, unlike for persistence
modules, the metrics W1(dµ◦dim) and dµ◦dim are not equal. Indeed, there is a surjective
map M ⊕ N → L whose kernel has measure one and so dµ◦dim(M ⊕ N,L) = 1.
However, for W1(dµ◦dim) we need to match indecomposables (see Definition 5.1), so
W1(dµ◦dim)(M ⊕ N,L) = dµ◦dim(M,L) + dµ◦dim(N, 0) = 2 + 3 = 5. Which of these
metrics is most appropriate will depend on the application.
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