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DOMINANCE COMPLEXES AND VERTEX COVER NUMBERS OF

GRAPHS

TAKAHIRO MATSUSHITA

Abstract. The dominance complex D(G) of a simple graph G = (V,E) is the simplicial
complex consisting of the subsets of V whose complements are dominating. We show that
the connectivity of D(G) plus 2 is a lower bound for the vertex cover number τ (G) of G.

1. Introduction

For a simple graph G = (V,E), a subset S of V is dominating in G if every vertex v

in G is contained in S or adjacent to an element in S. The dominance complex D(G) is

the simplicial complex consisting of the subsets of V whose complements are dominating.

Dominance complex was considered in Ehrenborg and Hetyei [6], and has been studied by

several authors (see [13], [14], and [19]).

The goal of this paper is to establish a certain relationship between the domincance

complex D(G) and the vertex cover number τ(G) of a graph G. Recall that a vertex cover

of a simple graph G = (V,E) is a subset S of V such that every edge of G contains at

least one element of S. The vertex cover number τ(G) of G is the smallest cardinality of a

possible vertex cover of G, and is one of the most classical invariants in graph theory.

Before stating our main result, we review concrete examples of dominance complexes

whose homotopy types are determined. Ehrenborg and Hetyei [6] showed that the domi-

nance complex of a forest is homotopy equivalent to a sphere, and Marietti and Testa [13] in

fact showed Sτ(G)−1 ≃ D(G) when G is a forest. Taylan generalized this result by Marietti

and Testa to chordal graphs (see Theorem 5.4 of [19]). She also determined the homotopy

types of the P3-devoid complexes of cycles, which coincide with the dominance complexes

of cycles (see also Theorem 4.6 of [4]). More precisely, Taylan showed

D(C4t) ≃ S2t−1 ∨ S2t−1 ∨ S2t−1, D(C4t+i) ≃ S2t+i−2 (i = 1, 2, 3).

Note that the vertex cover number of Cn is ⌈n/2⌉.

These results seem to suggest that there is some relationship between the vertex cover

number τ(G) of G and the connectivity conn(D(G)) of the dominance complex D(G) of G.
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The goal of this note is to show that a certain homotopy invariant of D(G) related to the

connectivity provides a lower bound for τ(G).

Let Z2 denote the cyclic group of order 2. For a topological space X, let connZ2
(X) be

the largest number n such that i ≤ n implies H̃i(X;Z2) = 0, and call it the Z2-homological

connectivity of X. Note that the Hurewicz theorem (Theorem 4.32 [8]) and the universal

coefficient theorem (Theorem 3A.4 of [8]) imply the inequality conn(X) ≤ connZ2
(X). Then

our main result is formulated as follows:

Theorem 1. For every simple graph G, the following inequality holds:

connZ2
(D(G)) + 2 ≤ τ(G).

Corollary 2. For every simple graph G, the dominance complex D(G) is not contractible.

Note that in the examples of graphs mentioned above, the equality connZ2
(D(G)) + 2 =

τ(G) holds except for the case G = C4t+1. In this case, these numbers differ by 1.

In the proof of Theorem 1, we show that the suspension Σ(D(G)∨) of the combinatorial

Alexander dual of the dominance complex of a graph G is homotopy equivalent to the

independence complex I(G ⊲⊳) of a graph G ⊲⊳ defined in the next section. In that proof,

we see that the independence complex of a hypergraph provides a simple formulation of

a result by Nagel and Reiner [21] concerning independence complexes of bipartite graphs,

following Tsukuda [20].

The graph G ⊲⊳ has a natural involution, and I(G ⊲⊳) becomes a free Z2-complex. Recall

that the coindex of a Z2-space X is the largest integer n such that there exists a Z2-map

from Sn to X, which has several interesting applications in combinatorics (see Matoušek

[15]). By the definition of G ⊲⊳, it will be seen that a lower bound of the coindex of I(G ⊲⊳) is

provided by α(G) = |V | − τ(G), i.e., the size of a maximum independent set of G (Lemma

6). This observation is a key to the proof of Theorem 1.

2. Proofs

We first show that the suspension of the combinatorial Alexander dual of the dominance

complexD(G) is homotopy equivalent to an independence complex I(G ⊲⊳) of a certain graph

G ⊲⊳. To see this, we use a theorem by Nagel and Reiner (Theorem 3), which states that

for every simplicial complex K, there is a bipartite graph GK such that the independence

complex I(GK) of GK is homotopy equivalent to the suspension ΣK of K. We first see

that by using the independence complexes of hypergraphs, we can simply describe the

relationship between K and GK . Recall that the independence complex of a simple graph

was introduced in [2], and has been extensively studied (see [1], [3], [7], [9], [10], [11],

and [16]) in topological combinatorics. The independence complexes of hypergraphs are a

natural generalization of it, and has often appeared in the study of simplicial complexes

(see [5], [6], and [22] for example).
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Now we recall some concepts related to independence complexes of hypergraphs. A

hypergraph H = (X,H) is a pair consisting of a set X equipped with a multi-set H on X.

We consider that every hypergraph is finite, i.e., X and H are finite. A subset σ of X is

independent if there is no element of H contained in σ. Then the independent sets of H

form a simplicial complex I(H), and we call it the independence complex of H. Note that

every simplicial complex K is isomorphic to some independence complex of a hypergraph.

Indeed, if we define the hypergraph HK = (V (K),H) where H is the set of non-faces of K,

then I(HK) and K are isomorphic.

Next we recall the combinatorial Alexander dual of a simplicial complex. Let K be a

simplicial complex with underlying set X. Then the combinatorial Alexander dual K∨ is

the simplicial complex consisting of the subsets of X whose complement is a non-face of K.

Then a simplex of the Alexander dual I(H)∨ of the independence complex of a hypergraph

H = (X,H) is a subset σ of X such that σ ∩ τ = ∅ for some τ ∈ H. Recall that a subset

of X which intersects every hyperedge of H is said to be transversal. Thus I(H)∨ is the

simplicial complex consisting of non-transversal sets.

For a hypergraph H = (X,H), let BH denote the incidence graph of the hypergraph

H. Namely, the vertex set of BH is the disjoint union X ⊔H of X and H, X and H are

independent sets in BH, and v ∈ X and h ∈ H are adjacent if and only if v ∈ h.

For a simplicial complex K, Nagel and Reiner constructed a graph GK such that I(GK)

is homotopy equivalent to ΣK. Using the terminology of independence complexes of hy-

pergraphs, their construction of GK is simply described as follows (see Corollary 4.11 of

[20]):

Theorem 3 (Proposition 6.2 of [21], see also Theorem 3.8 of [3] and Theorem 3.2 of [9]).

For every hypergraph H, there is a following homotopy equivalence:

Σ
(
I(H)∨

)
≃ I(BH).

We consider the case of dominance complex. As Ehrenborg and Hetyei noted in [6], the

dominance complex D(G) of a simple graph G is simply described as the independence

complex of some hypergraph DG defined as follows: The underlying set of DG is the vertex

set V (G) of G, and the set of hyperedges of DG is the multi-set {N [v] | v ∈ V (G)}. Here

N [v] denotes the set {v} ∪ {w ∈ V | {v,w} ∈ E(G)}. Then it is easy to see D(G) = I(DG).

Next we describe the incidence graph of DG. Define the graph G ⊲⊳ as follows: The vertex

set of G ⊲⊳ is {+,−} × V (G), and the set of edges of G ⊲⊳ is

E(G ⊲⊳) =
{
{(+, v), (−, w)} | v ∈ N [w]

}
.

Note that (+, v) and (−, v) are adjacent in G ⊲⊳ for each vertex v of G. Clearly, G ⊲⊳ is

isomorphic to the incidence graph of DG, and Theorem 3 implies the following:
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Corollary 4. For every graph G, there is the following homotopy equivalence:

Σ
(
D(G)∨

)
≃ I(G ⊲⊳).

Note that G ⊲⊳ has a natural involution exchanging (+, v) and (−, v), and we write γ to

indicate the involution. Then γ provides a Z2-action of I(G ⊲⊳).

Lemma 5. For every graph G, the Z2-action of I(G ⊲⊳) is free.

Proof. Let σ be a simplex of I(G ⊲⊳). It suffices to show σ ∩ γσ = ∅. Suppose σ ∩ γσ 6= ∅

and let (ε, v) ∈ σ∩ γσ. This means (+, v), (−, v) ∈ σ. Since σ is an independent set in G ⊲⊳,

this is a contradiction. �

For a free Z2-space X, the coindex coind(X) of X is the largest integer n such that

there is a continuous Z2-map from Sn to X. Here we consider the involution of Sn as the

antipodal map. Recall that α(G) denotes the size of a maximum independent set of a simple

graph G.

Lemma 6. Let G be a graph. Then the complex I(G ⊲⊳) has a Z2-subcomplex which is

Z2-homeomorphic to Sα(G)−1. In particular, the inequality α(G)−1 ≤ coind(I(G ⊲⊳)) holds.

Proof. Let An be the boundary of (n + 1)-dimensional cross polytope. Namely, the vertex

set of An is {±1, · · · ,±(n+ 1)} and a subset σ of it is a simplex if and only if there is no i

satisfying {±i} ⊂ σ. Then |An| is homeomorphic to Sn.

Let σ = {v1, · · · , vα(G)} be a maximum independent set of G. Define the simplicial map

f : Aα(G)−1 → I(G ⊲⊳) by sending +i to (+, vi) and −i to (−, vi). This is clearly an inclusion

from Aα(G)−1 to I(G ⊲⊳) which is Z2-equivariant. This completes the proof. �

Next we observe that the coindex of a free Z2-space X gives a restriction of the homology

groups of X. Let h-dimZ2
(X) be the maximum integer n such that H̃n(X;Z2) 6= 0. Then

we have the following:

Lemma 7. For a finite free Z2-simplicial complex X, the following inequality holds:

coind(X) ≤ h-dimZ2
(X)

Proof. Suppose that n = coind(X) > h-dimF2
(X). Let X denote the orbit space of X and

w1(X) the 1st Stiefel-Whitney class of the double cover X
p
−→ X (see [11] or [18]). Since

there is a Z2-map Sn → X and w1(S
n)n 6= 0, the naturality of w1 implies 0 6= w1(X)n ∈

Hn(X ;Z2). By the Gysin sequence for the double cover (see Corollary 12.3 of [18]), we have

the following exact sequence:

Hk(X;Z2) → Hk(X ;Z2)
∪w1(X)
−−−−−→ Hk+1(X ;Z2)

Since h-dimZ2
(X) < n, we have that Hn(X;Z2) = 0 and hence the map Hn(X ;Z2)

∪w1(X)
−−−−−→

Hn+1(X ;Z2) is injective. Thus we have w1(X)n+1 6= 0. By induction, we have that 0 6=

w1(X)k ∈ Hk(X ;Z2) for every k > n. This is a contradiction sinceX is a finite complex. �
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We are now ready to complete the proof of Theorem 1. Set k = connZ2
(D(G)). The

combinatorial Alexander duality theorem (see [17]) implies h-dimZ2
(D(G)∨) = |V | − k− 4.

Thus we have

α(G) − 1 ≤ coind(I(G ⊲⊳)) ≤ h-dimZ2
(I(G ⊲⊳)) = h-dimZ2

(
Σ(D(G)∨)

)
= |V | − k − 3.

Here the first and second inequalities follow from Lemma 7 and Lemma 6, respectively.

Thus we have

connZ2

(
D(G)

)
+ 2 = k + 2 ≤ |V | − α(G) = τ(G)

This completes the proof.
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