
SYMMETRIC CONFIGURATION SPACES OF LINKAGES

David Blanc and Nir Shvalb

Abstract. A configuration of a linkage Γ is a possible positioning of

Γ in Rd, and the collection of all such forms the configuration space

C(Γ) of Γ. We here introduce the notion of the symmetric configuration
space of a linkage, in which we identify configurations which are geo-

metrically indistinguishable. We show that the symmetric configuration
space of a planar polygon has a regular cell structure, provide some prin-

ciples for calculating this structure, and give a complete description of the

symmetric configuration space of all quadrilaterals and of the equilateral
pentagon.

1. Introduction

The mathematical theory of robotics is based on the notion of a mechanism
consisting of links connected by flexible joints. More precisely, a linkage Γ is
a metric graph, with edges (of fixed lengths) corresponding to the links, and
vertices corresponding to the joints. See [Me, S, T] and [F2] for surveys of the
mechanical and topological aspects, respectively.

A central tool in studying such a linkage is its configuration space C(Γ),
a topological space whose points correspond to possible positionings of Γ in
the ambient Euclidean space Rd. These spaces are useful for understanding
actuations, motion planning, and singular configurations of the mechanisms
(see, e.g., [FG,KTe,KTs,MT,SSBB,SSB]); in recent years, the related notion of
topological complexity has been a topic of much research (see [F1] and [BGRT,
BR,BK,C,D,FP,MW]).

Observe that in the standard construction of C(Γ) we distinguish between
configurations which are functionally equivalent though formally distinct: thus
if Γ consists of a fixed platform with two identical free arms ABC and ADE,
the two positions shown in Figure 1 are considered distinct configurations, but
are functionally the same. Thus it makes sense to consider a version of the
configuration space in which they are identified.

For this purpose, we introduce the notion of the symmetric configuration
space of a linkage Γ, in which points of the usual configuration space C(Γ)
are identified if they differ by an automorphism of Γ – which we can think of
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2 D. BLANC AND N. SHVALB

Figure 1. Two arm mechanism

as a relabelling of vertices of Γ which does not change its geometric relations
(i.e., which vertices are connected by an edge, and the length of this edge).
One should note that there are two useful versions of the configuration space
of a linkage, fully reduced and reduced (depending on whether we divide the
set of embeddings by all Euclidean isometries of the ambient space Rd, or
only by the orientation-preserving ones – see §2.1 below). There are also two
corresponding types of symmetric configuration spaces.

Although to the best of our knowledge, the concept of the symmetric config-
uration space of a linkage has not appeared in the mathematical or engineering
literature, it has an obvious intuitive meaning: in real life, mechanisms do not
have natural labellings of their joints, and for practical purposes, the two arms
of Figure 1 are indistinguishable. Of course, if each arm is used to grasp a dif-
ferent object, the distinction is important, which is why the usual notion of a
configuration space is more generally applicable. However, for motion planning
for the two-arm mechanism from rest, the symmetric configuration space is the
more economical version to use.

Intuitively, each point in the symmetric configuration space can be thought
of as instructions for specifying a rigid configuration of a real-life linkage in the
ambient space Rd (d = 2, 3), without labelling links or joints which are
indistinguishable in the abstract mechanism Γ.

Another possible application is to molecules with structural symmetries,
whose reduced configuration space represents the mutual positions of their
constituent atoms in space (the fully reduced configuration space does not
distinguish between the two chiralities, if they exist). See, e.g., [HS, Ch. III].

Our main results in this paper are concerned with the planar configurations
of the closed chain with n links. On a theoretical level, we provide a systematic
approach to describing an equivariant cell structure on the configuration space
of a closed chain under action of the group Aut(Γ) of automorphisms of the
linkage:

Theorem A. The reduced configuration space of an n-gon in the plane has a
regular Aut(Γ)-equivariant cell structure, subordinate to the standard regular
cell structure, and similarly for the fully reduced configuration space.
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See Theorem 5.3 and Corollary 5.4 below. From the equivariant cell structure
for these two types of configuration space we can then derive directly an induced
(ordinary) cell structure for the two types of symmetric configuration space.

The symmetric cells of the configuration space – that is, those fixed under
various subgroups of H ≤ Aut(Γ) – play a central role in describing the cell
structure of two types of symmetric configuration spaces, and we show:

Theorem B. The fixed point set of the fully reduced configuration space of
a planar polygon Γ under a subgroup H of Aut(Γ) is a disjoint union of
components (indexed by the discrete set of configurations fixed under Aut(Γ)
itself), each of which fibers successively over intervals or tori.

See Propositions 6.1 and 6.4 and Theorem 6.8 for a more precise description.
The remainder of the paper is devoted to two specific calculations. We show:

Theorem C. The reduced symmetric configuration space of a planar quadri-
lateral is homeomorphic to a closed interval, a circle, a wedge of a circle and a
segment, or a circle with its diameter.

See Theorem 3.3 below, where the cases in which each value obtains are
described in full.

Proposition D. The fully reduced symmetric configuration space of the planar
equilateral pentagon is homeomorphic to a closed disc.

See Proposition 8.1 below.

1.1. Organization and main results

In Section 2 we review the main notions needed to define the various types of
configuration spaces of a mechanism, and introduce the corresponding versions
of symmetric configuration spaces. Simple examples of symmetric configuration
spaces are given in Section 3, including a full description of planar quadrilat-
erals (with the details appearing in Appendix A). In Section 4 we recall some
general facts about the configuration spaces of planar polygons in general, in-
cluding their cell structure. Section 5 is devoted to the automorphisms of
planar polygons Γ, culminating in Theorem 5.3. Section 6 discusses symmet-
ric configurations for planar polygons – that is, the fixed-point sets of the
configuration space under various subgroups H of Aut(Γ). Section 7 shows
how these general results may be applied to obtain an equivariant triangula-
tion of one non-equivariant cell, in the case where Γ is the equilateral hexagon.
Finally, Section 8 provides a full description of the fully reduced symmetric
configuration space of the equilateral pentagon.

2. Configuration spaces

We first recall some general background material on the construction and
basic properties of configuration spaces. This also serves to fix notation, which
is not always consistent in the literature.
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Definition. Consider an abstract graph TΓ with vertices V and edges E ⊆
V 2 (with no loops or parallel edges, but not necessarily connected). A linkage
(or mechanism) Γ of type TΓ is determined by a function ` : E → R+

specifying the length `i of each edge ei in E = {ei = (ui, vi)}ki=1 (subject

to the triangle inequality as needed). We write ~̀ := (`1, . . . , `k) ∈ RE for the
vector of lengths.

The configuration space of the linkage Γ is the metric subspace C(Γ) :=

λ−1(~̀) of (Rd)V (a real algebraic variety), where the map λ : (Rd)V → RE
is given by λ(ui, vi) := ‖ϕ(ui) − ϕ(vi)‖. A point x ∈ C(Γ) is called a

configuration of Γ. Note that C(Γ) is a subspace of the space Embd(TΓ) ⊆
(Rd)V of embeddings of V in Rd (without collisions).

2.1. Isometries of configuration spaces

The group Eucd of isometries of the Euclidean space Rd acts on the
space C(Γ). Taking this action into account allows us to reduce the dimension
of C(Γ) without losing any interesting information, as follows:

If we choose a fixed vertex v0 of Γ as its base-point, the action of the
translation subgroup T ∼= Rd of Eucd on x(v0) is free, so its action on
C(Γ) is free, too, and we might reduce the degrees of freedom of C(Γ) by
considering its quotient under this action.

However, such a choice will not fit in with our notion of symmetries, so for
our purposes it is more convenient to think of the coordinate frame with the
barycenter B(x) of a given configuration x ∈ C(Γ) at the origin. We
therefore define the pointed configuration space for Γ to be the quotient space
C∗(Γ) := C(Γ)/T under translations. Thus C(Γ) ∼= C∗(Γ)×Rd, and a pointed
configuration (i.e., an element of C∗(Γ)) is simply an ordinary configuration
expressed in terms of a coordinate frame for Rd with the barycenter at the
origin. Essentially, this means replacing the Euclidean ambient space Rd by
the corresponding affine space, equipped with a chosen direction for each axis.

If we divide C(Γ) by the action of the group Eucd+ of orientation-

preserving isometries of the ambient space Rd, we obtain the reduced configu-

ration space of Γ, denoted by Ĉ(Γ). When Γ has a rigid “base platform” P of

dimension ≥ d−1, the action of Eucd+ is free. For example, if d = 2, we may

fix a vertex v0 and a link ~v in Γ starting at v0, and let p : C∗(Γ)→ Sd−1

assign to a configuration V the direction of ~v. The fiber of p ~e1 ∈ Sd−1 is

Ĉ(Γ).

Dividing C(Γ) by the full group Eucd of all isometries of Rd we obtain

the fully reduced configuration space C̃(Γ) of Γ. Note that any configuration
whose image is contained in a line is fixed under reflections in that line, so the
action of Eucd may not be free. Thus C(Γ) is not generally isomorphic

to C̃(Γ)× Eucd. Nevertheless, C̃(Γ) is the most economical model for most
linkages Γ.
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2.2. Normalization

Note that the image of a configuration x ∈ C(Γ) is the same as the image
of x ◦ f for any automorphism f : V → V of the linkage Γ (that is, a
relabelling of the vertices preserving adjacency and edge length). This does
not mean that we have an isometry of Rd taking x to y := x ◦ f – e.g.,
when TΓ is a bouquet of circles (closed chains), we may reflect one of them,
leaving the rest in place (see also Figure 1).

However, when Γ has a rigid “base platform” P of dimension ≥ d − 1, as

above, we can identify C(Γ) with Ĉ(Γ)×Eucd+: that is, every configuration

x in C(Γ) can be normalized uniquely to a reduced configuration x̂ ∈ Ĉ(Γ),
by placing the platform in a standard direction and moving the barycenter of x
to the origin. This will be denoted by x̂ = N(x) = Tx(x), where the specific

transformation Tx ∈ Eucd+ used to normalize x may not depend continuously

on x, but N : C(Γ)→ Ĉ(Γ) is continuous, thus providing a canonical section

for the quotient map q : Ĉ(Γ)→ C(Γ).
Any polygon Γ in the plane always has such a rigid platform, so when Γ

is equilateral, a reduced configuration x̂ is completely determined by the ori-
entation (that is, a cyclic ordering of the vertices A1, . . . , An, A1) and the
sequence of angles (φ1, . . . , φn) at each vertex Ai, measured counter

clockwise from
−−−−→
AiAi+1 to

−−−−→
AiAi−1. The automorphism f is simply a

permutation σ on {1, . . . , n} preserving adjacency – that is, a cyclic
shift, with or without a reverse of orientation. If the orientation is preserved,
N(φ1, . . . , φn) = (φσ−1(1), . . . , φσ−1(n)), while if σ reverses orientation, then
N(φ1, . . . , φn) = (−φσ−1(1), . . . ,−φσ−1(n)), since the angles should now be
measured in the reverse direction.

Example 2.1. When Γ = Γop
k is an open chain of length k (see Figure 4

below), Ĉ(Γ) ∼= (Sd−1)k−1. If d = 2, Ĉ(Γop
k ) is a (k−1)-torus, parameterized

by (θ1, . . . , θk−1). The fully reduced configuration space C̃(Γop
k ) may be

identified with a subspace of Ĉ(Γop
k ) defined as follows:

For k = 2, C̃(Γop
2 ) = [0, π] ⊆ S1, and we write C̃(Γop

2 )′ = [π, 2π] for the
version of the fully reduced configuration space in which we require the first
edge not on the x-axis to point downwards.

We may then define C̃(Γop
k ) by induction on k ≥ 2 to be the subspace

of (S1)k−1 given by:

(0, π)× (S1)k−2 ∪ {0} × C̃(Γop
k−1) ∪ {π} × C̃(Γop

k−1)′ .

Thus for k = 3 we obtain a cylinder with each boundary component
omitting half a circle (opposite halves at either end).

Remark 2.2. The configuration spaces studied in this paper are mathemati-
cal models, which take into account only the locations of the vertices of Γ,
disregarding possible intersections of the edges. In the plane, there is some
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justification for this, since we can allow one link to slide over another. This is
why this model is commonly used (cf. [KM, F2]; but see [CDR]). However, in
R3 the model is not very realistic, since it disregards the fact that rigid rods
cannot pass through each other.

Note that Emb3(TΓ) has a dense open subspace U(TΓ) consisting of
those embeddings of V which induce an embedding of the full graph (including
its edges). Similarly, C(Γ) has a dense open subspace U(Γ) := Emb3(TΓ) ∩
U(TΓ). In a more realistic treatment of all configurations of Γ in R3, we must
cut open C(Γ) along the complement C(Γ)\U(Γ), consisting of configurations
with collisions. The precise description of a “realistic” configuration space
Conf(TΓ) is quite complicated, even at the combinatorial level, which is why

we work here with Embd(TΓ), C(Γ), and C∗(Γ) as defined in §2-2.1. We
observe that even such a model Conf(TΓ) is not completely realistic, in that
it disregards the thickness of the rigid rods. See [BS2] for a fuller treatment of
this issue.

2.3. Symmetric configurations

When a mechanism Γ has internal symmetries, the various flavors of config-
uration spaces described above may be unnecessarily complicated: if we take
into account the labelling of the vertices, the two configurations in Figure 1 are
not equivalent even in the fully reduced configuration space for such a linkage,
though they may be the same from a practical point of view. To overcome this
discrepancy, consider the following notions:

A graph TΓ as above has a discrete group Aut(TΓ) of graph automor-
phisms: the subgroup of the permutations f : V → V on the vertex set
V which preserve the (undirected) edge relation. A mechanism Γ with length
function ` : E → R+ has a linkage automorphism group Aut(Γ) ⊆ Aut(TΓ),
consisting of those graph automorphisms f : V → V which preserve lengths.
The group Aut(Γ) naturally acts on C(Γ) on the right by precomposition:
x 7→ x ◦ f (this means that we are simply relabelling the vertices of the given
geometric configuration x), and the quotient space SC(Γ) := C(Γ)/Aut(Γ) is
called the full symmetric configuration space of Γ. This action is not generally
free.

Since the action of Aut(Γ) preserves the barycenter B(x) of the con-
figuration, we define the pointed symmetric configuration space of Γ to be the
subspace SC∗(Γ) of SC(Γ) consisting of those equivalence classes [x] with
B(x) at the origin.

However, translating by B(x) yields a canonical isomorphism

(1) SC∗(Γ) ∼= C∗(Γ)/Aut(Γ) := Aut(Γ)op\C(Γ)/Rd .
(since the two actions commute). This suggests two further definitions:

The reduced symmetric configuration space of Γ is the quotient
(2)

ŜC(Γ) := Ĉ(Γ)/Aut(Γ) := Aut(Γ)op\C(Γ)/Eucd+
∼= Aut(Γ)op\C∗(Γ)/ SO(d) ,
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while the fully reduced symmetric configuration space of Γ is defined to be
(3)

S̃C(Γ) ; = C̃(Γ)/Aut(Γ) := Aut(Γ)op\C(Γ)/Eucd ∼= Aut(Γ)op\C∗(Γ)/O(d) ,

Neither is canonically describable as a subspace of SC(Γ).

2.4. Symmetries and normalization

As noted in §2.2 above, when Γ has a rigid base platform P , every configu-
ration x in C(Γ) can be normalized to a reduced configuration x̂ = N(x) =

Tx(x) in Ĉ(Γ); in particular, this is true when Γ is an equilateral polygon in
the plane.

Under these assumptions, Aut(Γ) acts not only on C(Γ), but also on

Ĉ(Γ), by sending x̂ to N(x̂ ◦ f), where we think of Ĉ(Γ) as a subspace of

C(Γ) (but precomposition with f ∈ Aut(Γ) may take us out of Ĉ(Γ)). We
then have

(4) SC(Γ) ∼= ŜC(Γ)× Eucd+ := (Ĉ(Γ)/Aut(Γ))× Eucd+

(see (2)), so that

(5) SC∗(Γ) ∼= ŜC(Γ)× SO(d) := (Ĉ(Γ)/Aut(Γ))× SO(d) .

(see (1)).

Remark 2.3. Assume that the linkage Γ has a rigid base platform P of di-
mension ≥ d − 1 as above. If no configuration x of Γ has its image fully
contained in an affine subspace of Rd of dimension d − 1, we can always
choose the normalization x̂ of x to be “positively oriented”. This means that

we have a canonical section C̃(Γ)→ C(Γ), so C(Γ) ∼= C̃(Γ)× Eucd and thus

SC(Γ) ∼= S̃C(Γ)× Eucd.
This will happen, for instance, if d = 2 and Γ = Γeq

2k+1 is an equilateral
polygon with an odd number of links.

3. Examples of symmetric configuration spaces

We now describe a few simple examples of symmetric configuration spaces.
First, note the following:

Remark 3.1. When the graph TΓ is a chain (either open or closed), any linkage

Γ of type TΓ is determined by the sequence ~̀ := (`1, . . . , `k) of lengths of
the consecutive links, and a pointed configuration x for Γ is thus completely
determined by a sequence of vectors (~v1, . . . , ~vk) in Rd (with ‖~vi‖ = `i
for i = 1, . . . , k), subject to the additional constraint that

∑k
i=1 ~vi = ~0 in

the case of a closed chain (see [F2, §1.3]).

We thus see that if we re-order the sequence ~̀ := (`1, . . . , `k), the new
mechanism Γ′ will have a canonically isomorphic configuration space. How-
ever, the automorphisms of Γ need have no direct relations with those of Γ′,
so the resulting symmetric configuration spaces may differ.



8 D. BLANC AND N. SHVALB

3.1. Open chains

When TΓ is an open chain of length k, there can be at most one non-trivial
automorphism of the corresponding linkage Γ – namely, the inversion – if
~̀ := (`1, . . . , `k) is symmetric (i.e., `i = `k+1−i for all 1 ≤ i ≤ k).

(i) If k = d = 2, with vertices A,B,C, the reduced configuration space

Ĉ(Γ) is S1, with parameter α equal to the angle from ~BA to ~BC,
taken in the positive direction (and the fully reduced configuration

space C̃(Γ) is a half circle). The C2 -action (for symmetric ~̀)
switches A and C, and therefore takes α to 2π − α. Thus we have

two fixed points (α = 0, π), and ŜC(Γ) is an arc (with endpoints
corresponding to the two fixed points).

(ii) If k = 3 and d = 2, with vertices A,B,C,D, then Ĉ(Γ) is a torus
S1×S1 with parameters θ = ∠ABC and φ = ∠BCD measured as

above. For symmetric ~̀, the C2-action takes (θ, φ) to (2π−φ, 2π−θ),
with fixed points on the anti-diagonal ∆ := {(θ, φ) | φ+θ = 2π}. Since

the action is generated by reflection in ∆, if we think of Ĉ(Γ) as usual

as a square with opposite sides identified, in ŜC(Γ) we first reflect
in ∆ to obtain a triangle 4PQR (with PR corresponding to ∆),

and then identify ~PQ with ~QR to obtain a projective plane with

a disc removed along PR – that is, ŜC(Γ) is a Möbius band.

(iii) As noted in §2.1, in general Ĉ(Γ) ∼= (Sd−1)k−1. When k = 2m + 2

and d = 2, Ĉ(Γ) is parameterized by (θ1, . . . , θm, α, φm, . . . , φ1).
In the symmetric case, the C2-action sends this to (2π−φ1, . . . , 2π−
φm, 2π − α, 2π − θm, . . . , 2π − θ1), so the fixed points constitute an
m-dimensional subspace with α = 0, π. When k is odd, we have no
central parameter α.

3.2. Triangles

When TΓ is a closed chain of length 3, there is only one embedding x of
any triangle Γ in R2, up to isometry, so C(Γ) ∼= Euc2.

(i) When Γ is scalene, Aut(Γ) is trivial, so SC(Γ) = C(Γ).
(ii) When Γ is an isosceles triangle, Aut(Γ) = C2, and its action on an

embedding x : Γ→ R2 is equivalent to reflection in the median, so

SC(Γ) = Euc2 /C2
∼= Euc2

+ = R2 n S1

and thus SC∗(Γ) ∼= S1 and ŜC(Γ) is a single point.
(iii) When Γ = Γeq

3 is equilateral, Aut(Γ) = S3 is the full symmetric
group, so after dividing out by the reflection we have Aut(Γ)/{±1} =
A3 (a cyclic group of order 3), and thus SC(Γ) = R2n (S1/A3), with
SC∗(Γ) ∼= S1 again.
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3.3. Quadrilaterals

The usual configuration spaces of planar quadrilaterals are easy to analyze

in terms of the length vector ~̀ = (`1, `2, `3, `4). Note that ~̀ must satisfy
certain inequalities in order to have a non-empty (or non-trivial) configuration
space – e.g., if `1 > `2, we must have `1 − `2 < `3 + `4 (see [F2, Lemma
1.4])

It is easy to see that Aut(Γ) is non-trivial exactly in the following four
cases:

(1) An equilateral quadrilateral Γ = Γeq
4 with `1 = `2 = `3 = `4, – in

which case Aut(Γ) = D4 (the dihedral group of order 8).
(2) Two pairs of adjacent links have equal lengths: `1 = `2 > `3 = `4, –

in which case Aut(Γ) = C2, generated by the reflection exchanging
the equal links.

(3) Each pair of opposing links has equal lengths (distinct from each other)
– in which case Aut(Γ) = C2×C2, generated by the two interchanges
of opposites.

(4) Two opposite links are equal (but not all four) – in which case
Aut(Γ) = C2, generated by the reflection exchanging the equal links.

3.4. Parameterizing the configuration space of a quadrilateral

When Γ = ABCD is a quadrilateral in the plane, for generic (non-

equilateral) ~̀, any reduced configuration x̂ of Γ is determined by the angle

φ = ∠BAD (measured counter clockwise from ~AD to ~AB), together
with the “elbow up”-“elbow down” position ε of BCD – that is, whether

the β = ∠BCD (measured counter clockwise from ~CB to ~CD) satisfies
0 < β < π, in which case ε := +1, or π < β < 2π, in which case ε := −1.
If β = 0 or α = π, we say ABC is aligned and set ε := 0. Note that
this last case is completely determined by the value of φ (but may never occur,

depending on the length vector ~̀.
In the equilateral case, when φ = 0 = α (that is, the edge AB coincides

with AD and CB coincides with CD), we need an additional parameter,
namely, the angle θ between these two collapsed intervals. This suggests that

the correct way to parameterize Ĉ(Γ) (for any planar n-polygon) is to embed
it into the n-torus Tn = (S1)n by keeping track of the angles (oriented
as above) at each vertex. In this situation C(Γ) is the subspace of Tn
determined by the requirement that the open chain reduced configuration x̂
defined by any n − 1 successive vertex angles close up and the new angle
formed is equal to the remaining vertex angle parameter. This description is
more wasteful than the above, but is better suited to discussing symmetries.
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3.5. The reduced configuration space of a quadrilateral

By Remark 3.1, for the ordinary reduced configuration space Ĉ(Γ) of a
quadrilateral, we may assume `1 ≥ `2 ≥ `3 ≥ `4.

Using the method of [MT], we have the following six cases, with the reduced

configuration space Ĉ(Γ) given in [F2, §1.3]:

(i) `2 < `1 < `2 + `3 + `4 and `2 + `3 < `1 + `4, with C(Γ) ∼= S1.
Here Aut(Γ) 6= {1} if and only if `2 = `3 or `3 = `4 (opposing)

or any linkage for which `1 > `2 = `3 = `4.
(ii) `2 < `1 < `2 + `3 + `4 and `2 + `3 = `1 + `4, with C(Γ) ∼= S1 ∨ S1.

Here Aut(Γ) 6= {1} if and only if `2 = `3 (opposing).
(iii) `1 > `2 and `2 + `3 > `1 + `4, with C(Γ) ∼= S1 q S1.

Again Aut(Γ) 6= {1} if and only if `2 = `3 (opposing).
(iv) `1 = `2 ≥ `3 > `4, with C(Γ) ∼= S1 q S1.

Here Aut(Γ) 6= {1} if and only if `1 is opposite `2.

(v) `1 = `2 > `3 = `4, with Ĉ(Γ) as in Figure 27.
Here Aut(Γ) = C2 or C2 × C2 in cases (2) or (3) respectively.

(vi) `1 = `2 = `3 = `4, with C(Γ) ∼= S1∨S1∨S1∨S1 and Aut(Γ) = D4.

Notation 3.2. For a quadrilateral Γ = 2ABCD we write p := AB,

q := BC, r := CD, and s := DA for the four values of ~̀ in order, and
assume without loss of generality that s = `1 is the longest.

Theorem 3.3. In the notation of §3.2, the symmetric configuration space

ŜC(Γ) of any quadrilateral Γ is:

(i) A closed interval, if s > p, q, r, p = r, s < p+q+r, and s+q > 2p;
(ii) A circle, if s > p, q, r, p = r, s < p+ q+ r, and s+ q ≤ 2p, or if

s = q ≥ p > r.
(iii) A wedge of a circle and a segment, if s = q > p = r (a parallelogram).
(iv) A circle with its diameter, if s = p > q = r (a deltoid).
(v) A closed interval, if s = p = q = r (an equilateral quadrilateral).

Since the proof of Theorem 3.3 requires checking many special cases, it is
relegated to Appendix A.

Remark 3.4. The fully reduced symmetric configuration space S̃C(Γ) is

generally different from ŜC(Γ). However, for the equilateral quadrilateral
Γ = Γeq

4 , they are the identical, in fact. This is because the fully reduced

configuration space C̃(Γ) is the upper half of the reduced configuration space

Ĉ(Γ) (see Figure 29), and S̃C(Γ) is then obtained from C̃(Γ) by further
identifying the right and left hand sides.

Intuitively, this is because an abstract (i.e., unlabelled) configuration for
a rhombus has no distinguished orientation (unlike a scalene quadrilateral,
where all four angles are generally distinct, so can be oriented in the positive
direction).
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4. General planar polygons

When TΓ is a polygon with more than four edges, the analysis we made
above (and in Appendix A) becomes more complicated, and the number of
cases too large for a full description to be useful. However, it may still be
possible to say something about the cell structure of the configuration space
C(Γ) for the various mechanisms Γ of type TΓ. Moreover, the diffeomorphism
type of C(Γ) (as a manifold with singularities) depends generically only on

inequalities among sums of subsets of ~̀ (see [HR, Theorem 1.1]).
In this section, we recall a classical approach to such cell structures.

4.1. Arrow diagrams

The pointed configuration space C∗(Γ) of a closed n-chain Γ = Γcl
n in

R2, with length vector ~̀, may be parameterized by points ~θ in the n-torus

Tn = (S1)n, where for a configuration x ∈ C̃(Γ) ⊂ C∗(Γ), ~θ(x) = (θ1, . . . , θn)
is the vector of angles θi between x(ei) and the positive x-axis. This encodes
the one-to-one correspondence between a configuration x of Γ and the arrow
diagram obtained by moving all vectors x(ei) to the origin. See Figure 2,
where (a) is a configuration of a pentagon, and (b) is the corresponding arrow
diagram.

Figure 2. Arrow diagram

Of course, not every value of ~θ ∈ (S1)n is allowed – we have two
constraints,

(6)

n∑
i=1

`i cos θi = 0 and

n∑
i=1

`i sin θi = 0 ,

to ensure that the chain is closed.
The reduced configuration space is then Ĉ(Γ) = C∗(Γ)/ SO(2), with the

circle SO(2) acting by rotating a configuration about the origin (as in §2.1).

It may be parameterized by ~θ ∈ Tn−1, since we fix θ1 = 0. In order for x to
be fully reduced, we also require that the first θi (i ≥ 2) which is not 0 or
π must be < π.
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4.2. Cells in the torus

The torus Tn is decomposed into n-dimensional cells by (the images of)
the hyperplanes in Rn given by conditions of the form θi = θi+1 or
θi = θi+1 + π for 1 ≤ i ≤ n. In any connected component E of the
complement of these hyperplanes, we may use any consecutive n − 3 of the

parameters (θ1, . . . , θn) as local coordinates for Ĉ(Γ) (cf. [F2, Theorem

1.3]). However, we have no control over the intersection of E with Ĉ(Γ), which
may no longer be connected, for example, so we follow the approach of [KM],

in the formulation of [P], to describe a regular cell structure on Ĉ(Γ).

For this purpose it is convenient to use the homeomorphism φ : S1 → R̂
given by φ(θ) = tan(θ/2), where R̂ := PR1 ∼= R ∪∞ is the real projective

line. This defines a coordinate-wise identification Φ : Tn → R̂n (the n-fold
product), with

(7) ~t = (t1, . . . , tn) = Φ(~θ) := (φ(θ1), . . . , φ(θn)) .

Moreover, since φ(0) = 0, the image of Ĉ(Γ) ⊆ C∗(Γ) ⊆ Tn under Φ is

contained in {0} × R̂n−1.
Note that the projective special linear group PSL2(R) acts by Möbius

transformations on R̂, and thus diagonally on R̂n. It turns out that the orbit

space R̂n/PSL2(R) is isomorphic to Ĉ(Γ) by [KM, Theorem 4] (which
is stated in terms of stable measures on S1, allowing one to conformally

transform any arrow diagram ~θ into one with vector sum at the origin).

4.3. Cells for the configuration space of a polygon

As in [P, §1], we first note that for Γ = Γcl
n an n-polygon (in R2), with

length vector ~̀, we have a dense open subset Co∗(Γ) of C∗(Γ) consisting of

those arrow diagrams ~θ with all angles distinct. To each such ~θ we associate a

cyclic ordering α(~θ) of the arrows, labelled by {1, . . . , n}, on the circle: that
is, a coset of the symmetric group Sn modulo the left action of the subgroup
Cn generated by the cyclic permutation (2, 3, . . . , n, 1). This coset is obtained
from the given labelling of the arrows by the edges (e1, . . . , en) of Γcl

n by
selecting an arbitrary starting point, and the action of Cn corresponds to
choosing a new starting point. See (c) in Figure 2.

Since this process respects the SO(2)-action on a pointed configuration

x ∈ C∗(Γ), and thus on ~θ(x), the map α : Co∗(Γ) → Sn/Cn descends to

α̂ : Ĉo(Γ)→ Sn/Cn, where Ĉo(Γ) is the corresponding dense open subset of

the reduced configuration space Ĉ(Γ).

The preimage under α̂ of each coset [σ] ∈ Sn/Cn is an open cell Êσ
in Ĉ(Γ). Any two such cells are homeomorphic under a relabelling of the

arrows, so we may concentrate on the cell ÊId corresponding to the identity
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permutation: thus ÊId consists of strictly convex configurations of Γ (in the
upper half plane).

To see that ÊId is in fact a regular cell (that is, homeomorphic to a
ball, with a regular cell structure on its boundary), we proceed as follows (see
[P, Lemma 1.2]):

Note that Φ : Tn → R̂n preserves the cyclic order of the coordinates: i.e.,

θi ≺ θj ≺ θk in the positive direction on S1 if and only if ti ≺ tj ≺ tk in R̂,

and this cyclic order on R̂ is preserved by Möbius transformations. Moreover,

if Ê = Êσ is any open cell in Ĉ(Γ) ⊆ Tn, any ~θ ∈ Ê has pairwise distinct

coordinates, so the same is true of the set Ê′ := Φ(Ê). By standard facts

about Möbius transformations, for each ~t = Φ(~θ) ∈ Ê′ there is a unique
P~t ∈ PSL2(R) such that P~t(t1) = ∞, P~t(t2) = 0, and P~t(tn) = 1. It is
given by:

(8) w = P(t) :=
t− t2
t− t1

· tn − t1
tn − t2

,

which simplifies when t1 = 0 to P(t) := tn(t−t2)
t(tn−t2) , with inverse

(9) t = P−1(w) :=
t2tn

(t2 − tn)w + tn
.

Moreover, the correspondence t 7→ P~t is continuous and one-to-one.

Thus we have a map P : Ê′ → R̂n, defined by

(10) P(~t) = (∞, 0,P~t(t3), . . . ,P~t(tn−1), 1)

which is a bijection onto its image Ê′′. Because P~t preserves the ordering

of the coordinates in R̂, we see that for Ê = ÊId, Ê′′ is isomorphic to the
affine cell

(11) {~s = (s3, . . . , sn−1) ∈ Rn−3 | 0 < s3 < s4 < . . . < sn−1 < 1 } .

Since for any cyclic permutation σ, Êσ is isomorphic to ÊId, it is also an
affine cell under the appropriate identifications.

The top cells in ∂Ê correspond to the various cases where two adjacent

arrows in ~θ coincide, in which case the corresponding configuration x = x(~θ)
is a strictly convex configuration for a closed polygon with n− 1 edges, and

with length vector ~̀′ such that `′i = `i for 1 ≤ i0, `′i0 = `i0 + `i0+1 and
`′i = `i+1 for i0 < i < n. Similarly by recursion for the remaining cells in

∂Ê′′.
In almost all cases these top cells correspond to the analogous boundary

cells of Ê′′ with equalities in (11). The cases where θ1 = θ2, say, are

treated by changing our choice of which coordinates of ~t are sent to (∞, 0, 1)
in (10).
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4.4. Cells for the fully reduced configuration space

For the fully reduced case, note that in Co∗(Γ) we can also associate to an

arrow diagram ~θ a coset β(~θ) of the symmetric group Sn modulo the left
action of the dihedral subgroup Dn, which acts on a labelling of the arrows

in ~θ by varying both the starting point and the direction in which we proceed.
Since Cn < Dn, we have a surjection π : Sn/Dn → Sn/Cn, with α = π ◦ β.

We call β(~θ) the dihedral ordering associated to ~θ.
Again, this process respects the O(2)-action on a pointed configuration

x ∈ C∗(Γ), and thus on ~θ(x), so β : Co∗(Γ)→ Sn/Dn induces β̂ : C̃o(Γ)→
Sn/Cn, where C̃o(Γ) is the corresponding dense open subset of the fully

reduced configuration space C̃(Γ).

Note that we have a trivial double covering map δo : Ĉo(Γ) → C̃o(Γ),

although the corresponding map δ : Ĉ(Γ)→ C̃(Γ) has branch points at fully
aligned configurations of Γ (if they exist, as for even equilateral polygons).

Thus the preimage under β̂ of each coset [σ] ∈ Sn/Dn is again an open cell

Ẽσ in C̃(Γ), doubly covered by Êσ′q Êσ′′ , where {[σ′], [σ′′]} = π−1[σ]. We

must be more careful in analyzing the boundary ∂Ẽσ, since δ : Ĉ(Γ)→ C̃(Γ)
may have branch points there.

5. Automorphisms of planar polygons

In Section 4 we summarized briefly the standard approach to describing the
cell structure of the (fully) reduced configuration spaces of polygons in the
plane. We now turn to a finer cell structure needed to analyze the symmetric
configuration spaces. First, we note a straightforward result about Aut(Γ),
for closed chains Γ:

Definition. Let ̂̀be the cyclic word in n positive real numbers corresponding

to the (ordered) length vector ~̀. The maximal number k ≥ 1 of repeating

segments I into which ̂̀ can be divided will be called the order of ~̀ (so k|n).

If ̂̀ is symmetric (with respect to reversing the order from a certain starting

point), we call ~̀ palindromic. More generally, if after possibly omitting a single

length `i from ̂̀ it becomes palindromic, we say that ~̀ is reflective. Thuŝ̀= (1, 2, 3, 2, 1) is palindromic, while (1, 2, 3, 2, 1, 4) is reflective.

Lemma 5.1. Given a length vector ~̀ a closed chain Γ = Γcl
n of length n, the

automorphism group of the linkage Γ is

Aut(Γ) ∼=

{
Dk if ~̀ is reflective

Ck if ~̀ is not reflective,

where Dn, the dihedral group of order 2n, is the group of symmetries of the
equilateral n-gon Γeq

n , so in particular D2 := C2 and C1 = {1}.
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Proof. If k ≥ 2 and ~̀ is non-reflective, rotation along the repeated segment
I generates Aut(Γ) = Ck.

If ~̀ is reflective, we have in addition a reflection in an axis which either

connects two opposite vertices u and v (if n is even and ~̀ is palindromic starting

at u); connects a vertex to the midpoint of an edge (if n is odd and ~̀ is
palindromic); or connects the midpoints of two opposite edges e and f (if n is

even and ~̀ is palindromic after dropping e, say). If also k ≥ 2, we have a
total of k possible reflections of this form. �

5.1. Aut(Γ)-cells

The key to understanding the symmetric configuration space is using appro-

priate cells for the description of the reduced configuration space Ĉ(Γ), and

its fully reduced version C̃(Γ), which take into account the Aut(Γ)-action.

More precisely, we decompose Ĉ(Γ)) (or C̃(Γ)) into open free H-cells for
each subgroup H of Aut(Γ) – that is, open cells of the form en ×H, with
the H acting on the second coordinate (see [Ma]).

The highest dimensional cells in this decomposition (with dim(CX ) = n−3)
will be those for which the action of Aut(Γ) is free (in the interior). This
simply reflects the fact that generic configurations have no symmetries, if n ≥ 5
(which fails for the equilateral quadrilateral, as we see in Lemma A.7). Note,

however, that the action may take an open cell Êσ to itself; to avoid this, we
must subdivide it into finer (open) cells which are permuted among themselves
by Aut(Γ) (acting under relabelling combined with normalization back to
the reduced form).

These fine cells are determined by “breaking the symmetry” of the corre-
sponding arrow diagram – that is, imposing an additional (open) condition
which determines a unique “canonical” labelling of the vertices.

Remark 5.2. The subgroup lattice of Aut(Γ) plays a central role in our anal-
ysis of the equivariant cell structure. Note, however, that for certain subgroups
H of Aut(Γ), any configuration stabilized by H are in fact invariant under a
larger subgroup. Thus for example when Γ = Γeq

6 is the equilateral hexagon,
the three subgroups shaded in the lattice of subgroups of Aut(Γ) = D12 in
Figure 3 will never appear as stabilizers.

Definition. Consider an open cell Ẽσ for C̃(Γ) corresponding to a cyclic
(or dihedral) ordering [σ] in Sn/Cn (or Sn/Dn) – see §4.4.

It is convenient to think of our geometric representation of the abstract cyclic
(or dihedral) ordering [σ] ∈ Sn/Dn as a certain (fully) reduced configuration
of a mechanism ∆n consisting of n unit vectors emanating from the same
point in the plane. Since we are only interested in the cyclic ordering, we

choose a normalized representative cσ in Ĉ(∆n) (respectively, C̃(∆n))

for [σ] in which the arrow heads lie at the cyclotomic points ck = 2(k−1)π
n

(k = 1, . . . , n), suitably labelled, with σ(1) = 1.
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Figure 3. Subgroup lattice of D12

The action of ψ ∈ Aut(Γ) ⊆ Dn is by changing the labelling σ(k) of ck
to ψ(σ(k)), and then renormalizing by applying a cyclic shift to ψ ◦ σ to
obtain a new permutation σ′ with σ′(1) = 1 (the label of c1), for a cyclic
ordering.

In the case of a dihedral ordering, we further normalize by requiring that
σ′(2) appear as the label of a cyclotomic point in the upper half-plane (unless
it is at cn/2 = π, , in which case σ′(3) must be in the upper half-plane).

We denote the subgroup of Aut(Γ) fixing a given cyclic (or dihedral)
ordering [σ] by Aut([σ]). Thus ψ ∈ Aut([σ]) if and only if σ′ = σ.

5.2. Fine cells

Note that Aut(Γ) acts freely on the dense open subspace C̃o(Γ), but

Aut([σ]) takes the open cell Ẽσ to itself. Thus the cardinality N of

Aut([σ]) is the number of fine cells into which we must divide Ẽσ.
To specify such a fine cell, we think of Aut([σ]) as a subgroup of the

cyclic group Cn (or the dihedral group Dn, in the fully reduced case), now
acting in the standard way on the regular n-gon (or the cyclotomic points on

the circle). Each orbit under this action imposes a (different) partition of Ẽσ
into fine cells, defined as follows:

(a) If Aut([σ]) is cyclic of order N , generated by

ψ ∈ Aut([σ]) ⊆ Aut(Γ) ⊆ D2n ⊆ Aut(∆n) = Sn

(which is always true for the reduced configuration space), then ψ acts
on (the labelling of) the cyclotomic points (ck)nk=1 as a rotation by
an angle of 2π

N , so the orbit of c` under this action is α = (cik)Nk=1,
where ik = `+ (k − 1)N (mod n).

For each such orbit α, we define one (open) fine cell F̂σ(ik, ik+1)

of Êσ for each element cik in the orbit: this consists of those
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configurations (angle sets) ~θ ∈ Êσ for which the angle |θik − θik+1|
is strictly smaller than |θij − θij+1| for all 1 ≤ j 6= k ≤ N .

The same rule applies for the subdivision of Ẽσ in C̃o(Γ) into

fine cells F̃σ(ik, ik+1).
(b) If Aut([σ]) is dihedral of order N = 2M (necessarily in the fully

reduced case), we distinguish three cases:
(i) If we have an orbit with three neighboring cyclotomic points, it

necessarily includes all the cyclotomic points – in other words,

σ is the identity permutation, and the open cell Ẽσ is divided
into N fine cells. These may be distinguished by specifying for
which 1 ≤ k ≤ N the angle θk − θk + 1 is smallest, and
then further dividing this set into two subcells by the two possible
orderings of |θk+1− θk+2| and |θk−1− θk|. This will determine

a canonical labelling of each configuration x ∈ Ẽσ in the fine

cell F̃σ(ik, ik−1), starting at the ik-th vertex in the direction

ik 7→ ik−1); similarly F̃σ(ik, ik+1) for the other.
(ii) If we have an orbit with exactly two neighboring cyclotomic points

– so the whole orbit consists of such pairs (ik, ik + 1) (k =

1, . . .M) – we may again name a fine cell F̃σ(ik, ik − 1), say,
by specifying which ik has the smallest angle difference between
θik and its cyclotomic neighbor θik±1 which is not in the orbit.

(iii) If we have an orbit with no neighboring cyclotomic points, we may

name a fine cell F̃σ(ik, ik − 1) or F̃σ(ik, ik + 1) by specifying
which ik has the smallest angle |θik − θik±1|, as in (i).

Definition. For each open cell Êσ of Ĉ(Γ) corresponding to a cyclic

ordering [σ] as above, the membrane separating two fine cells F̂σ(ik, ik + 1)

and F̂σ(jm, jm + 1) is the subset M = F̂σ(ik, ik + 1) ∩ F̂σ(jm, jm + 1)
determined by the condition

(12) |θik − θik+1| = |θjm − θjm+1| .

Similarly, for each open cell Ẽσ of C̃(Γ) corresponding to a dihe-

dral ordering [σ], the membrane separating two fine cells F̃σ(ik, ik′) and

F̃σ(jm, jm′) is the subset M = F̃σ(ik, ik′) ∩ F̃σ(jm, jm′) determined by one
of two conditions:

(a) If ik = jm, necessarily k′ 6= m′ – say, k′ = k− 1 and m′ = m+ 2
– and M is then determined by the condition

(13) |θik − θik−1| = |θjm+1 − θjm+2| .

(b) If ik 6= jm, M is determined by the condition

(14) |θik − θik+1| = |θjm − θjm+1| .
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Theorem 5.3. If Γ = Γcl
n is a closed n-chain with length vector ~̀, its reduced

configuration space Ĉ(Γ) has a regular Aut(Γ)-equivariant cell structure,
subordinate to the fine cell decomposition of §5.2, and thus to the regular cell
structure of [P].

Proof. Since the membranes are (codimension 1) subspaces of the open cells

Ê = Êσ in the dense open set Ĉo(Γ) ⊆ Ĉ(Γ), we may use the identifications

Ê
Φ−→ Ê′

P−→ Ê′′ to try to describe the membrane M using the chosen affine

coordinates for Ê′′.
Since ~t = (t1, . . . , tn) = Φ(~θ) for ti = tan θi

2 , using the formula

tan(α− β) =
tan(α)− tan(β)

1 + tan(α) · tan(β)
,

we see that (12) takes the form:

(15)
tik − tik+1

1 + tik · tik+1
=

tjm − tjm+1

1 + tjm · tjm+1

(assuming for the moment that θik > θik+1 and θjm > θjm+1).
For simplicity, let ik = i1 = 1 (so t1 = 0): writing i = ik + 1, j = jm,

and k = jm + 1, (15) simplifies to:

(16) ti · tj · tk = tk − tj − ti .

If we further assume that {i, j, k} ∩ {1, 2, n} = ∅ (after identifying Ẽσ
with ẼId under an appropriate relabelling of the arrows), then θi, θj , and
θk are taken under P to the corresponding coordinates (si, sj , sk) in the

affine cell Ẽ′′, as in (11).
Substituting the values for (9) into (16) yields:

t32t
3
n

((t2 − tn)si + tn) · ((t2 − tn)sj + tn) · ((t2 − tn)sk + tn)

=
t2tn

(t2 − tn)sk + tn
− t2tn

(t2 − tn)sj + tn
− t2tn

(t2 − tn)si + tn
,

(17)

or, after cross-multiplying:

t22t
2
n = ((t2 − tn)si + tn) · ((t2 − tn)sj + tn)

− ((t2 − tn)si + tn) · ((t2 − tn)sk + tn)

− ((t2 − tn)sj + tn) · ((t2 − tn)sk + tn)

(18)

Note that if t = tan(θ/2) then (by the usual rational parametrization of
S1):

(19) cos θ =
1− t2

1 + t2
and sin θ =

2t

1 + t2
,
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so (6) becomes:

(20)

n∑
i=1

`i ·
1− t2i
1 + t2i

= 0 and

n∑
i=1

`i ·
2ti

1 + t2i
= 0 .

Setting t1 = 0, and substituting:

(21) ti =
t2tn

(t2 − tn)si + tn
.

from (9) into (20) for i = 3, . . . , n− 1, we obtain two equations involving
{t1 = 0, t2, s3, . . . , sn−1, tn}. We can solve these for t2 and tn, obtaining an
algebraic equation for the membrane in the variables ~s = (s3, . . . , sn−1) from
(17). The fine cells bounded by this membrane are therefore semi-algebraic
sets inside the affine sets (thought of as open subsets of the standard affine
space Rn−3), in which the equalities (12), (13), and (14), are replaced by
inequalities.

We may now use Hironaka’s result on triangulating real semi-algebraic sets
(see [Hi]) to obtain the required triangulation, which can be made compatible
with that of the boundaries by [L]. We do so by induction on the dimension
of the naive cells: the main point to keep in mind is that once we choose a
triangulation for one of the fine cells, on one side of a membrane, we may
reproduce it for all the others using the free action of Aut(Γ) on the interior
(and the fact that this action is compatible with that on the boundary of the
fine cell, which may not be free). �

Corollary 5.4. For Γ = Γcl
n as above, the fully reduced configuration space

C̃(Γ) also has a regular Aut(Γ)-equivariant cell structure, compatible with

that of Ĉ(Γ) in Theorem 5.3.

Proof. The C2-action on Ĉ(Γ) by reflections in the x-axis generally switches
two distinct cells in the regular cell structure of Section 4, thus form a double

cover of a single cell in C̃(Γ). The only cells fixed by the C2-action are vertices
corresponding to linear configurations (with all adjacent angles 0 or π), and
these can be dealt with as in [P, §4] (see also [GP]). �

6. Symmetric configurations for planar polygons

In Section 5 we described a process for producing an equivariant cell struc-
ture for the (fully) reduced configuration space of a planar polygon, based on
a refinement of the non-equivariant regular cell structure described in Section
4. When the Aut(Γ)-action on the fine cells is free, the orbit yields a single

cell in the associated symmetric configuration space S̃C(Γ). As noted above,
this will happen in the interior of the top dimensional cells. However, in the
lower dimensional cells, occurring in the boundary of those with free action, we
may have fixed points. From the proof of Theorem 5.3 we see that in fact we
must start from the lowest dimensional cells in constructing our equivariant cell
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structure. Thus, we need to understand the symmetric configurations: those
fixed under a subgroup H of Aut(Γ)). In particular, these will be needed in

order to obtain a compatible decomposition of S̃C(Γ).
By Lemma 5.1, for any n-polygon Γ the automorphism group Aut(Γ) is

either cyclic or dihedral, so the same is true for any subgroup H ≤ Aut(Γ).
We must consider three cases:

Case I. Cyclic subgroup of Aut(Γ) generated by a reflection:

Assume first that the subgroup H is generated by a reflection ρ ∈ Aut(Γ),
in an axis of symmetry λ for the labels (A1, . . . , An) of Γ. As noted in the
proof of Lemma 5.1, this can have three forms:

(1) If n = 2k + 1 is odd, ρ is a reflection in a median connecting
Ak+1 with the midpoint of AnA1, say, so ρ(Ai) = An+1−i (i =
1, . . . , k + 1).

(2) If n = 2k is even, ρ may be a reflection in
(i) a diagonal, connecting A1 with Ak+1, say, so ρ(Ai) = An+2−i

(indices taken modulo n).
(ii) a midsegment, connecting the midpoint of AnA1 with that of

AkAk+1, say, so ρ(Ai) = An+1−i.

Proposition 6.1. Let Γ = Γcl
n be a planar n-polygon, with H = C2 ≤ Aut(Γ)

generated by a reflection in the axis λ. We then have a map φ : C̃(Γ)H →
C̃(Γop

k ) from the fixed-point set, where:

(1) If n = 2k + 1 and λ is a median to AB, Γop
k is either half of

Γ′ = Γ \ (AB), and φ is one-to-one.
(2) If n = 2k and λ is a diagonal, Γop

k is either half of Γ, and φ is

one-to-one except over Γcl
k (the subspace of chains which close up),

where the fiber is PR1.
(3) If n = 2k + 2 is even and λ is a midsegment from AB to CD,

Γop
k is either half of Γ′ = Γ \ (AB), (CD), and φ is a double cover.

Proof. In each case, by reflecting a given configuration for the open chain Γop
k

about the geometric axis of symmetry L, we obtain a unique symmetric con-
figuration for Γ.

(1) When λ is a median, L is the y-axis (the perpendicular bisector of AB)
in the fully reduced case. We may then rotate any configuration for
Γop
k about B until it touches L.

(2) When λ is a diagonal AD, say, for any configuration x of the open
chain Γop

k we let L be the line from x(A) to x(D); however, when
these two coincide we may choose L at will from PR1.

(3) When λ is a midsegment from AB to CD, L is the perpendicular
bisector of AB; let L′ and L′′ be the two parallels to L at distance
1
2d(C,D), and then rotate any configuration for Γop

k about B until
it touches L′ or L′′.
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See Figure 4 for the third case. �

Figure 4. Midsegment reflection

Remark 6.2. In principle, we would like to relate the analysis of the symmetric

configurations in Ĉ(Γ) or C̃(Γ) with the fine cell structure introduced
in Section 5. This would require a better understanding of the triangulation
described in Theorem 5.3. However, it is possible to use Proposition 6.1 to
study the action of Aut(Γ) on the open cell E = EId of (strictly) convex
configurations, under a single reflection ρ ∈ Aut(Γ) in an axis of symmetry
λ for the labels (A1, . . . , An) of Γ.

The set D of convex configurations x ∈ E which are fixed under ρ must
also be symmetric in the geometric sense, with axis of symmetry L realizing
λ. Such a configuration is completely described by the half on one side of L,
which is simply a fully reduced convex configuration y for an open chain of

length k ≈ n
2 . As in §2.1, we parameterize such a y by ~θ(y) = (θ1, . . . , θk),

(see §4.1), with

0 = θ1 < θ2 < . . . < θk < π .

Switching to the parametrization (7), we have:

Lemma 6.3. The set of strictly convex fully reduced configurations of a closed
chain Γ = Γcl

n symmetric with respect to a reflection in L as above are
parameterized by

(22) ~t = (t1, . . . , tk) = (tan(θ1/2), . . . , tan(θk/2)) .

with 0 = t1 < t2 < . . . < tk <∞.

The precise value of k will appear in the proof.

Proof. As in (20), we may calculate the vector sum of the arrow diagram ~θ,

using the length vector ~̀ for Γ, by

(23) ~v :=

(
k∑
i=1

`i ·
1− t2i
1 + t2i

,

k∑
i=1

`i ·
2ti

1 + t2i

)
= (a, b) = µ(cos θ, sin θ) ,

where µ =
√
a2 + b2 and θ = arctan(b/a).

We distinguish three cases in calculating the slope τ of L from ~t:



22 D. BLANC AND N. SHVALB

(1) If n = 2k + 1 and L is the perpendicular from y(Ak) = ~v to
the midpoint of y(en) (because of the symmetry of y), which has
length `n and forms an (unknown) angle of θn with the positive x
axis, so L forms an angle of θn − π/2. Since L, ~v, and y(en) form
a right triangle with hypotenuse µ and edge `n/2 facing the angle

α = π/2 + θ − θn, with sinα = `n/2
µ . This allows us to recover α,

and thus θn and find the slope of L, from which we can recover the
remaining angles θk+1, . . . , θn−1.

(2) If n = 2k and L is a diagonal, its direction is the vector ~v of (23),
from which we can calculate θk+1, . . . , θn by reflecting θ1, . . . , θk in
L.

(3) If n = 2(k+ 1) and L is the perpendicular bisector of y(ek+1) and

y(en), it forms an angle α with ~v, with sinα = |`n/2−`k+1/2|
µ , from

which we can calculate α, and thus the remaining angles θk+1, . . . , θn.

�

Case II. Cyclic subgroup of Aut(Γ) generated by a rotation:

In the case where the cyclic subgroup H ≤ Aut(Γ) is generated by a
rotation we have:

Proposition 6.4. Let Γ be a planar n-polygon and H = Cd a rotation
subgroup of Aut(Γ), which we identify with a subgroup of D2d for d|n, and

let k := n/d. The fixed-point set C̃(Γ)H is isomorphic to a disjoint union,

indexed by the discrete set C̃(Γeq
d )H , of copies of Ĉ(Γop

k ), unless z̃ ∈ C̃(Γeq
d )H

is collinear, in which case we replace Ĉ(Γop
k ) by C̃(Γop

k ).

Proof. Note that H is of index 2 in D2d, which we identify with the automor-
phism group of the equilateral polygon Γeq

d with d edges of length L (unless
d = 2, in which case H = D2d).

Any fully reduced configuration x̃ ∈ C̃(Γ) is determined by its restriction to
an open subchain ∆ of Γ with k = n/d edges, yielding a reduced configuration
ŷ for ∆, together with a fully reduced configuration z̃ for Γeq

d , with L equal
to the distance between the start and end points of ŷ. Here z̃ must be fixed
under all (geometric) rotations of Γeq

d , and thus under the full automorphism
group Aut(Γeq

d ) = D2d, since the angles at all vertices of the polygon must be
equal.

The fact that ŷ need not be fully reduced means that we will generally
have two fully reduced configurations ±ỹ attached to each fully symmetric
configuration of Γeq

d .
Thus for the icosagon Γeq

20, we have four configurations fixed under C5

for a given (non-collinear) fully reduced open chain configuration ỹ of length
4, ‘attached” to the regular pentagon and pentagram on either side, as shown
in Figure 5, where each of the two pairs (a)-(b) and (c)-(d) correspond to the
reduced configurations ±ỹ.
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Figure 5. Symmetric configurations for the icosagon and
decagon

On the other hand, the (fully reduced) C2-configuration for the decagon
shown in Figure 5(e) is the same for ±ỹ, so it requires only the fully reduced
open loop ỹ.

Note that even when L = 0 (that is, ŷ is actually a closed loop), we still
have distinct configurations ẑ corresponding to different reduced symmetric
configurations ẑ: e.g., when d = 5, , the convex pentagon and the pentagram
of Figure 12 correspond to two different cyclic arrangements of the petals of
the bouquet of five such loops. It might be useful to think of the common
endpoints of all the closed loops as an infinitesimal reduced symmetric config-
uration, in order to keep track of the orientations of the various loops. This
is illustrated by the five closed-loop configurations shown in Figure 6, corre-
sponding respectively to those of Figure 5, with the inner dashed symmetric
configuration reduced to a point.

Figure 6. Closed loop configurations for the icosagon and
decagon

�

Example 6.5. When d = 6, the three possible configurations of the equi-
lateral hexagon Γeq

6 which are invariant under the full automorphism group
D12 = Aut(Γeq

6 ) are the first three in the top row of Figure 10 (see Remark
7.1).

Corollary 6.6. For Γ, H = Cd and k = n/d as above, the interior of

C̃(Γ)H has the same local parametrization as C̃(Γop
k ) (see §2.1).

The case where the cyclic subgroup H ≤ Aut(Γ) is generated by a rotation

is in fact the only one relevant to the reduced configuration space Ĉ(Γ), where
we have the following somewhat simpler result:
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Proposition 6.7. If Γ is a planar n-polygon and H = Cd is a rotation

subgroup of Aut(Γ), the fixed-point set Ĉ(Γ)H is isomorphic to a disjoint

union, indexed by the discrete set C̃(Γeq
d )H , of copies of Ĉ(Γop

k ).

Case III. Dihedral subgroups:

Let Γ be a planar n-polygon, H ∼= D2d a dihedral subgroup of Aut(Γ) ⊆
D2n, with d|n. Choose two generators ρ and σ for H, which we may identify
with reflections in axes k and m, respectively, in a regular n-gon Γn. Here we
identify H with a subgroup of D2n, even though Γ need not be equilateral, in
order to have a consistent description of its automorphisms (acting on a fully
reduced configuration by relabelling).

If n is odd, each axis is necessarily a median (connecting a vertex of Γ to the
midpoint of the opposite edge). If n is even, the axis could be a midpoint inter-
val (connecting the midpoints of two opposite edges) or a diagonal connecting
two opposite vertices.

The generator ρ has a “basic subchain” ∆ of Γ on which it acts by reflection
in k (under relabelling): this is depicted in the blue segment AB . . . B′A′ in
either of the two diagrams of Figure 7.

When k ends in a vertex (e.g., C on the right in Figure 7), we have a
“fundamental subchain” ∆′ ( ABC in our example), reflected under ρ to
∆′′ (i.e., A′B′C), with ∆ the union of ∆′ and ∆′′.

When k ends in the midpoint of ∆ of an edge CC ′ of Γ (e.g., N0 on the
left in Figure 7), the “fundamental subchain” ∆′ ends in C (so ∆′ = ABC
in our example), and ∆ is the union of ∆′, its reflection ∆′′, and the middle
segment CC ′.

Similarly, the generator σ has a “basic subchain” Θ with “fundamental sub-
chain” Θ′ (given by AZY X in both diagrams of Figure 7).

Theorem 6.8. Let Γ be a planar n-polygon and H ∼= D2d is a dihedral
subgroup of Aut(Γ), generated by reflections in axes k and m in a regular

n-gon Γn. The fixed-point set C̃ = C̃(Γ)H splits as a disjoint union indexed

by C̃(Γeq
d )H . For each z̃ ∈ C̃(Γeq

d )H , the corresponding component C̃z̃ of

C̃ fibers over an interval [0, L0]. The fiber over a value L (the length of all
edges of z̃) further fibers over a closed interval I = IL in the RP 1 ∼= S1

(the space of lines in the plane through the barycenter z̃(O)). Finally, given
a line x̃(k) in I, let x̃(m) denote its rotation by an angle of π/d about

z̃(O); the fiber of C̃ over x̃(k) is then isomorphic to Yx̃(k) × Y ′x̃(m).

Corollary 6.9. For Γ, H = D2d, and the two open chains ∆′ and Θ′ as

above, the interior of C̃(Γ)H has a local parametrization given by (0, L0)×
I × Ĉ(∆′)× Ĉ(Θ′).

Proof. Given any L > 0, let Γeq
d be an equilateral d-gon with edge length

L and let z̃ ∈ C̃(Γeq
d )H be a fully reduced fully symmetric configuration
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for Γeq
d . Let A′ and A′′ be the first two vertices of the d-gon (so

z̃(A′) is at the origin, z̃(A′′) is in the positive direction of the x axis, and
d(z̃(A′), z̃(A′′) = L).

In order to determine a fully reduced symmetric configuration x̃ for Γ (in-
variant under relabelling in the given subgroup H), we must choose a line x̃(k)
through the barycenter z̃(O) of z̃, which will serve as the axis of the geometric
reflection realizing the action of ρ by reflecting the labels in the “combinatorial
axis” k.

We let x̃(m) be the line through z̃(O) forming an angle of π/d with
x̃(k) (realizing geometrically the reflection σ in m), and let x̃(A) be the
reflection of the origin (which is z̃(A′)) in the geometric axis x̃(k).

Note that z̃(O) is the center of the circle γ circumscribing the regular d-gon
z̃ and x̃(k) bisects ∠z̃(A′)z̃(O)z̃(A), so x̃(m) bisects ∠z̃(A′′)z̃(O)z̃(A).
Since d(z̃(O), x̃(A)) = d(z̃(O), z̃(A′)), x̃(A) is also on γ, so x̃(A) is also
the reflection of z̃(A′′) in x̃(m).

Figure 7. Symmetric configurations under double reflections

In this situation, a pair of reduced configurations (û, v̂) for the open
chains ∆′ and Θ′, respectively, generally will determine (up to) four reduced
configurations ŷ for the chain ∆∪Θ (the blue and yellow in Figure 7), with
endpoints ŷ(A′) and ŷ(A′′) (such that d(ŷ(A′), ŷ(A′′) = L).

To see how, we must distinguish two basic cases:

(a) If the original axis k (for the reflection ρ) ends in a vertex D, as on
the right-hand side of in Figure 7, the fundamental open subchain ∆′

of Γ is (A, . . . , C), say. Let λ(û) = d(û(A), û(C)) be the length
of a reduced configuration û for ∆′ (a smooth function on the torus

Ĉ(∆′)). The circle γû of radius û(λ) about x̃(A) generally
intersects x̃(k) in two points x̃′(C) and x̃′′(C) (which coincide
if d(x̃(A), x̃(k)) = λ(û)). If this happens, we say that the reduced
configuration û of ∆′ is allowable with respect to (z̃, x̃(k)).
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Allowable configurations v̂ of Θ′ are defined similarly if the axis
m for σ ends in a vertex of Γ, when the circle γv̂ of radius µ(v̂)
about x̃(A) intersects x̃(m).

(b) If k ends in the midpoint N0 of an edge of Γ (of length `i, say), as
on the left hand side of in Figure 7, let x̃(k′) be the line parallel to
x̃(k) at a distance of `i/2 on the same side as x̃(A). In this case,
a reduced configuration û of ∆′ of distance λ(û) = d(û(A), û(D))
will be allowable with respect to (z̃, x̃(k)) if the circle γû intersects
x̃(k′). Similarly for Θ′ if the axis m ends in a midpoint.

A pair of allowable reduced configurations (û, v̂) for the open chains ∆′

and Θ′, determines a reduced configuration ŷ for the chain ∆∪Θ, by letting
ŷ(C) be one of the two intersections of the circle γû with x̃(k), and
similarly for the endpoint of Θ′.

When L = 0, we think of z̃ as the unique infinitesimal fully symmetric
configuration for Γeq

d . We may then take x̃(k) to be the x-axis, say. This
determines x̃(m), and of course, x̃(A) will remain at the origin.

Each reduced configuration ŷ for the chain ∆ ∪ Θ yields a unique fully

reduced configuration x̃ in the fixed-point set C̃(Γ)H , by rotating ŷ about z̃,
since by comparing angles, we see that the continuation of x̃(k) beyond z̃(O)
is a rotation of x̃(m), and conversely. See Figure 8.

Figure 8. Fully symmetric configurations under double re-
flections

Let Γeq
d be an equilateral d-gon with edge length L and let z̃ ∈ C̃(Γeq

d )H

be a fully reduced fully symmetric configuration for Γeq
d , as above.

Each line x̃(k) through z̃(O) determines a subspace Yx̃(k) of the
pointed configuration space C∗(∆

′) (a torus), consisting of all configurations
u for ∆′ (starting at the origin) whose end-point u(C) lies on{

x̃(k) when ∆′ has an even number of edges

x̃(k′′) when ∆′ has an odd number of edges

See the right and left diagrams in Figure 7, respectively.
We let x̃(m) be the line through z̃(O) forming an angle of π/d with

x̃(k), and the subspace Y ′x̃(m) of C∗(Θ
′) is defined analogously, with x̃(m)

replacing x̃(k).



SYMMETRIC CONFIGURATION SPACES OF LINKAGES 27

To identify these subspaces, let µ = µ(x̃(k)) denote the distance of the

origin z̃(A′) from x̃(k), and let µ~̀ := `1 + . . .+ `j , where ~̀= (`1, . . . , `j)
be the length vector of ∆′:

(i) If µ > µ~̀, clearly Yx̃(k) = ∅.
(ii) µ = µ~̀, then Yx̃(k) consists of a single point: the fully stretched

configuration.
(iii) If 0 < µ < µ~̀, we see that Yx̃(k) is isomorphic to the disjoint

union of two copies of the reduced configuration space Ĉ(∆̂′), where

∆̂′ is the closed chain having length vector ~̀̂ = (`1, . . . , `j , µ): this

is because for each reduced configuration ŵ ∈ Ĉ(∆̂′), we obtain two

reduced configurations û1, û2 ∈ Ĉ(∆̂′) by rotating ŵ about the origin
so that the endpoint ŵ(C) of ∆′ lies at one of the two intersections
of the circle of radius µ about the origin with x̃(k).

(iv) If µ = 0 – that is, x̃(k) passes through the origin – Yx̃(k)

decomposes into two complementary subspaces:
1. Y0, consisting of those configurations û ∈ C∗(∆

′) for which
u(C) is at the origin. This may be identified with pointed con-

figurations for the closed chain Γcl
j with length vector ~̀, so

Y0
∼= C̃(Γcl

j ) × S1, where the parameter φ ∈ S1 determines

the rotation of the reduced configuration û ∈ C̃(Γcl
j ) about the

origin (see §4.1).
2. Y1, consisting of pointed configurations û ∈ C∗(∆

′) not ending
at the origin. These are again determined by rotating any reduced
configuration û for ∆′ about the origin, till its endpoint lies on
one of the two intersections of the circle of radius λ(û) about
the origin with the line x̃(k).

Note that C∗(∆
′) is canonically isomorphic to C̃(∆′) × S1 (see

§2.1), which explains how both Y0 and Y1 embed in C∗(∆
′).

We see that given (z̃, L) as above, the pair of configurations (û, v̂) for
∆′ and Θ′, respectively, is allowable if and only if û ∈ Yx̃(k) and v̂ ∈
Y ′x̃(m). Note that the maximal value of L for which such allowable pairs exist

is L = L0 := 2µ~̀ + 2µ′~̀′ + ν, where ν is the sum of the lengths of the middle

edges of ∆ and Θ (if these have an odd number of edges, as in the right picture
in Figure 8). In this case, there is a unique allowable pair, yielding a fully
stretched configuration for ∆ ∪Θ. �

7. Triangulating a cell for the hexagon

As noted in Remark 6.2, a full Aut(Γ)-equivariant cell structure for the fully

reduced configuration space C̃(Γ) of a polygon Γ requires a refinement of the
regular cell structure of Section 5. We illustrate some of the issues involved by
considering a single regular cell E = EId of strictly convex configurations for
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the equilateral hexagon Γ = Γeq
6 . Note that E itself is a bipyramid with six

triangular facets, as in Figure 9 (in which the outer edges are to be identified
pairwise as indicated).

Figure 9. Bipyramid for the equilateral hexagon

Remark 7.1. The vertices of C̃(Γ) are determined by a combination of sym-
metries and straightenings or foldings, which suffice to determine a rigid con-
figuration. The full list of all vertices for the equilateral hexagon in the regular
cell structure of Section 5 are of eleven types, depicted in Figure 10 (although,
as we see in Figure 9, the same type may appear with different labellings).

Figure 10. The vertex types of C̃(Γ) for the equilateral
hexagon
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7.1. The subdivided bipyramid

The bipyramid E = EId of (strictly) convex configurations for the equi-
lateral hexagon Γ = Γeq

6 , should be subdivided into twelve tetrahedra, which
are permuted among themselves by action of Aut(Γ) on the labels. In accor-
dance with the principles of §5.2, each tetrahedron is determined by specifying
the largest of the six angles of Γ, and then choosing which of the two angles
adjacent to it should be smaller.

This in Figure 11 (on the left) we have required that the angle θB (labelled
by B) should be the greatest, and that θA < θC . One can then determine the
induced inequalities θA < θD < θF , and θC < θE , θF , as indicated in the
lower left corner of Figure 11.

Figure 11. Fine 3-cell for the equilateral hexagon Γ = Γeq
6

(one of twelve)

The boundary of the tetrahedron abpq consist of four triangular facets:

(a) The boundary triangle 4abp is determined by the requirement that
θB = π (a straightening, which we abbreviate to B = π in the
figure), so it is an open cell of the fully-reduced configuration space of

the pentagon with length vector ~̀= (2, 1, 1, 1, 1). In turn its boundary
consists of:

i. The edge ab, corresponding to the further straightening F =
π, yields a deltoid of sides {2, 1} and symmetry group C2

(corresponding to the subgroup D1,2
2 of Aut(Γ) = D12 in

Figure 3, generated by the reflection in the diagonal BE of the
hexagon).
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ii. The edge ap, corresponding to the straightening E = π yields
a parallelogram of sides {2, 1} and symmetry group C2 (cor-
responding to the subgroup C2 < D12 generated by the rotation
by 180o).

iii. The edge bp, corresponding to the symmetric version of the
(2, 1, 1, 1, 1)-pentagon, with C1-symmetry corresponding to D1,1

2 <
D12.

(b) The central triangle 4bpq in Figure 11 is determined by requiring

invariance under the subgroup D1,1
2 mentioned above.

(c) The upper right triangle 4abq is invariant under the subgroup D1,2
2

(generated by reflection in the diagonal AD), so the common edge
with the central triangle has symmetry group D1

6 (generated by the
two reflections and thus including the rotation by 120o).

(d) The bottom triangle 4apq is invariant under the subgroup C2 (gen-
erated by the 180o rotation. The edge pq consists of configurations
invariant under the subgroup D1

6 of D12 generated by the reflections
in BF and the median connecting the midpoints of AF and CD.

Remark 7.2. As noted above, the tetrahedron on the left of Figure 11 appears
as one of twelve subcells in the bipyramid of Figure 9, obtained by a barycentric
subdivision as on the right in Figure 11: specifically, the upper left facet labelled
B = π in Figure 11 is one half of the upper left facet of Figure 9, ending at the
center of the lower edge of the latter (the vertex corresponding to the rectangle
marked B = π and D1

4 in the former). The vertex marked D12 in the
tetrahedron is the barycenter q of the bipyramid in Figure 11, corresponding
to the regular hexagon configuration. Observe that all other facets of the
tetrahedron are symmetric – that is, fixed under an appropriate subgroup of
Aut(Γ), as indicated in Figure 11 – and are thus internal membranes of the
bipyramid, in the language of §5.2.

8. The equilateral pentagon

We now analyze in detail the case of the equilateral pentagon Γeq
5 . Recall

that [Hav, §2.4] identifies the reduced configuration space of Γeq
5 (that is,

Ĉ(Γeq
5 ) modulo orientation-preserving isometries) as a genus 4 oriented surface

(see also [KM]), while [K] shows that the fully reduced configuration space

C̃(Γeq
5 ) of §2.1 is the connected sum of five projective planes. Note that

Remark 2.3 applies in this case.

8.1. Cells for the pentagon

An analysis of the possible arrow diagrams for an equilateral pentagon shows
that there are only four dihedral types: the first, third, fourth, and fifth in Fig-
ure 12. Note that the first and second have the same dihedral type, but different
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cyclic types (with reversed orientations), as we see from the corresponding con-

figurations (which are equivalent in the fully reduced configuration space C̃(Γ),

but not in Ĉ(Γ)). The fourth and sixth also have the same dihedral types,
but distinct cyclic types.

In order to get a better grasp of the fine cell structure, it is convenient to
use here a slightly different labelling system, corresponding to open intervals
of allowable values for each of the five angles between consecutive edges (as in
§3.1). We indicate the range 0 < θ < π by −, and π < θ < 2π by +
(using the convention of §3.4). Each sequence of the form (+ + − − −), for
example, defines a unique cell, except for (− − − − −), which corresponds
to two distinct cells as indicated in Figure 12 (where all five types are shown).
The cell marked (−−−−−) has smallest angle ≥ 2 arcsin(0.25) ≈ 0.5053,
while the cell marked (− − − − −)′ has largest angle ≤ π/3 (with dual
conditions for (+ + + + +) and (+ + + + +)′).

Figure 12. Cells for pentagon

Note that switching all signs corresponds to reversing the cyclic order, while
a cyclic shift in the sequence corresponds to a cyclic shift in the labelling. Thus
(in the order in which the appear from left to right in Figure 12) we have:

I. One (pentagonal-shaped) cell for the convex pentagon (−−−−−) (as in
Figure 14 below);
I’. An analogous (pentagonal-shaped) cell for the convex pentagon (+++++);
II. One (pentagonal-shaped) cell for each of the pentagrams (−−−−−)′ and
(+ + + + +)′,
III. Five (hexagonal-shaped) cells: (+ +−−−), (+ +−−−), (−+ +−−),
(−−+ +−), and (−−−+ +), for the middle type, as in Figure 16 below).

Similarly, we have five (hexagonal-shaped) cells for the reverse order (which
looks identical if we disregard the direction in which the angles are measured).
IV. Five (hexagon-shaped) cells of type (+−−−−), et cetera (see Figure 13)
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V. Five triangular cells of type (+ +−+−), et cetera (see Figure 17 below).

Figure 13. Cell (−−+−−)

8.2. Boundaries of the cells

As noted above, one should think of the 32 cells constituting the reduced
configuration space for the equilateral pentagon as polygonal cells (triangles,
pentagons, or hexagons), identified along common edges. The edges of each
such polygonal cell are obtained by a collineation: either straightening one of
the angles to π, or folding it to 0 (if it was a −) or 2π (if it was a +). Each
vertex P of a cell is obtained by a double collineation, corresponding to the
two edges meeting at P .

It is possible to describe explicitly the rules for the allowable collineations
and double collineations (for example, one cannot have two adjacent straight-
enings), but as these are particular to the case n = 5, we leave them to the
reader, illustrating them in Figures 13, 17, 16, and 14.

8.3. Symmetries of the equilateral pentagon

Each of the five types of cells corresponding to the configurations in Figure 12
are exchanged among themselves by the obvious cyclic rotations or reflections
of the vertices, so only one of each type is needed for the fundamental domain of
the symmetric configuration space. However, there are also symmetries acting
on each cell. For example, the dashed line across the hexagon in Figure 13
represents an axis of symmetry, and indeed the two halves of the hexagon are
exchanged under the reflection fixing C, with A ↔ E and B ↔ D. The
upper left half of the hexagon corresponds to the linear ordering of the angles
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γ > α > ε > δ > β, while the lower right half corresponds to γ > α > ε >
β > δ,

The cell for (−−−−−) is a pentagon, but in this case there is a tenfold
symmetry – as shown in Figure 14. Here each triangular slice of the pentagonal
cell corresponds to a certain linear ordering of the angles of our equilateral
pentagon Γ = Γeq

5 (shown on the right of Figure 14). Each triangular section
has one vertex at the center of the cell (the regular pentagon configuration),
one at a vertex of cell (corresponding to two collineations), and one at the
unique (isosceles) trapezoid configuration with one collineation, which is the
midpoint of an edge. The dashed sides of each slice are obtained by changing
one inequality to an equality. Compare to the subdivided bipyramid on the
right in Figure 11.

Figure 14. Symmetries of the cell for (−−−−−)

The cell for (− − − − −)′ (second from the left in Figure 12) is also a
pentagon, similarly divided into 10 triangular regions, as shown in Figure 15.

The cell for (+ +−−−) (third from the left) is pentagonal, divided into
two halves (see Figure 16), but with the bisector connecting a vertex to the
midpoint of the edge opposite.

The cell for (+ +−+−) (on the right) is a triangle, similarly subdivided
into two halves, as in Figure 17.

8.4. The symmetric configuration space of the pentagon

From the above discussion we see that a fundamental domain F for the
action of Aut(Γ5) on the reduced configuration space Ĉ(Γ5) , depicted in
Figure 18, is the union of:
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Figure 15. The cell for (−−−−−)′

Figure 16. The cell for (−−+ +−)

(i) One half of the hexagonal cell for (−−+−−) of Figure 13, marked
IV.

(ii) Attached to it along a half-edge we have one tenth of the pentagonal
cell for (−−−−−) of Figure 14, marked I.

(iii) Along the opposite half-edge we have another tenth of the analogous
pentagonal cell for (−−−−−)′, marked II.
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Figure 17. The cell for (−+ +−+)

Figure 18. Fundamental domain for pentagon

(iv) One full edge of the cell IV is glued to an edge of the half-pentagonal
cell III for (−+ +−−) of Figure 16.

(v) Finally, the half-cell III for (− + + − −) is glued along a half-edge
to one half V of the triangle for (−+ +−+) of Figure 17.
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The boundary of the fundamental domain F consists of two types of seg-
ments

a. The two copies of each of the solid edges h and k are identified pairwise
under appropriate symmetries. The point marked H is fixed under the
symmetries.

b. Each of the dashed lines m, n, p, q, r, s and t is an original axis of
symmetry in Figures 13, 17, 16, and 14, respectively, so they are also
fixed under the corresponding symmetries, with points on the other
side (in the full cell) reflected back into F .

Thus we may summarize the results of this section in:

Proposition 8.1. The fully reduced symmetric configuration space S̃C(Γeq
5 )

of the equilateral pentagon in the plane is homeomorphic to a closed disc.

Proof. The fundamental domain X in Figure 18 is a subspace of the fully

reduced configuration space C̃(Γeq
5 ), with i : X → C̃(Γeq

5 ) the inclusion. If

p : C̃(Γeq
5 )→ S̃C(Γeq

5 ) is the quotient map, we see that p◦i : X → S̃C(Γeq
5 ) is

surjective, and one-to-one except along the intervals marked h and k in Figure

18. Thus if r : X → X̂ is the quotient map identifying the two copies of h and

k respectively, we see that p◦ i induces a homoeomorphism ϕ : X̂ → S̃C(Γeq
5 )

(since the closed disc X̂ is compact). �

Appendix A. Configuration spaces for quadrilaterals

As noted above, the usual configuration spaces of planar quadrilaterals are
well known (see, e.g., [F2, §1]). However, we need their detailed description in
order to analyze the symmetric configuration spaces. Thus, in this Appendix
we prove Theorem 3.3 by considering separately the six cases of §3.5:

I. The isosceles quadrilateral case:
When Γ = ABCD is a quadrilateral in the plane with opposite edges AB

and CD of equal length, we may parameterize the configurations x of Γ as in
§3.4 by a subset of the angles at the four vertices, by choosing ∠BAD (from
~AD to ~AB), and ∠CDA (from ~DC to ~DA, both measured counter

clockwise). We think of φ := ∠BAD as the basic continuous parameter, and
note that to each value of φ we associate two values of ∠CDA, corresponding
to the elbow up/down position of C ε = ±1( in §3.4) – see Figure 19. Note
that the precise rule for calculating φ′ and φ′′ from φ is complicated to
state.

We need to understand the action of the C2-symmetry of TΓ (generated
by the graph automorphism f : TΓ → TΓ given by A ↔ D and B ↔ C

on a configuration x ∈ Ĉ(Γ)). In the language of §2.4, our permutation σ is
given by

(
1234
4321

)
, which reverses cyclic orientation, so x = (φ, α, β, φ′) maps

under f to y = N(x̂◦f) = (2π−φ′, 2π−β, 2π−α, 2π−φ) (where α and β are
extraneous to determining the configuration, and may therefore be dropped).
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Figure 19. Parameterizing a quadrilateral

Thus the action of C2 = Aut(Γ) on Ĉ(Γ) takes (φ, φ′), to (2π−φ′, 2π−φ)
as in Figure 20, with fixed points when φ+ φ′ = 2π.

Figure 20. Action of C2 on Figure 19

Case 3.5(i) when Γ is isosceles then may be described as follows:

Lemma A.1. In the notation of §3.2, assume that s > p, q, r, p = r,

s < p + q + r, and s + q > 2p. Then Ĉ(Γ) is a circle, the C2-action

is the reflection in the diameter (with two fixed points), and thus ŜC(Γ) is
homeomorphic to a closed interval.

Proof. Consider the circle γB of radius p = r about a fixed point A in
the plane, and another circle γC of the same radius about a fixed point D at
distance `1 from A. These are the loci of allowable locations for B and C,
respectively, if we disregard the requirement that the distance between them is
q. By the analysis of [MT] (see also [F2, §1]), the reduced configuration space

Ĉ(Γ) can be described as follows in our case:
There is an arc ζ of the circle γB defined as the intersection of γB with

an annulus T about D, where T consists of the allowable locations for B with
respect to γC . Thus the points of ζ are precisely the possible locations for B
satisfying all our constraints.

For each point B of ζ, the circle δ of radius q about B generically intersects
γC in two points C ′ and C ′′, corresponding to the elbow up and elbow
down positions of ∠BCD (except for the two endpoints B+ and B− of
ζ, for which C ′ = C ′′ and β = ∠BCD is flat). The angle ∠BAD is our
parameter φ, with φ′ = ∠C ′DA and φ′′ = ∠C ′′DA.
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By the previous discussion, the fixed points of the action of Aut(Γ) = C2

on Ĉ(Γ) occur when φ+ φ′ or φ+ φ′′ equals 2π. In the case illustrated
in Figure 21, this happens for C ′ with its angle φ′, and the resulting
quadrilateral ABC ′D is not convex (on the right in Figure 19). Here C ′ is
taken to be the upper intersection point of δ with γC , and C ′′ is the lower
point. Note that the two circles γB and γC may in fact intersect under our
hypotheses as in Figure 22 (if q < 2p), but this does not affect the argument.

Figure 21. Configuration space for isosceles quadrilateral in
case (i)

The constraints on p, q, r, and s ensure that there is a unique parallelogram
ABDC ′′ with opposite sides p = r and diagonals q and s. The angles
φ = ∠BAD and 2π − φ′′ = ∠ADC ′′ are then equal, and the non-convex
quadrilateral ABC ′′D is then an allowable configuration for Γ. Since the
same argument works replacing C ′ by C ′′, we have exactly two fixed points

for the action of C2 on Ĉ(Γ).
The single configuration associated to the end B+ of ζ is the triangle

AB+D with B+CD aligned (of length q + r). From Figure 20 we see
that the C2-action takes it to the triangle AC−D with ABnewC

− aligned,
where C− is the lower edge of the arc on γC corresponding to ζ (not shown
in Figure 21), and the point Bnew is on the lower half of ζ. As B moves
down from B+ along ζ, the point C ′′ (the lower of the two intersections of
δ with γC) moves down, until it reaches the x axis AD (creating the point
O on the right in Figure 19). We see that at this instance Bnew is on the x
axis, and thereafter Bnew will be in the upper half of ζ.

Since Ĉ(Γ) is a simple closed curve in the torus S1 × S1, and the C2-
action is topologically equivalent to the reflection of the circle in a transverse

line, we deduce that ŜC(Γ) is topologically a closed interval. �

II. Case 3.5(ii) is essentially a special case of the above:

Lemma A.2. In the notation of §3.2, assume that s > p, q, r, p = r,

s < p + q + r, and s + q = 2p. Then Ĉ(Γ) is a wedge of two circles, the
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C2-action switches the two circles between them (fixing the common point), and

thus ŜC(Γ) is homeomorphic to a circle.

Figure 22. Configuration space for isosceles quadrilateral in
case (ii)

Proof. In Figure 22 the circle δ of radius q about the midpoint B0 of the arc
ζ now intersects γC in a single point C0 (which also holds for its endpoints
B+ and B−, as before). The fully aligned degenerate trapezoid AB0C0D is
fixed by the C2-action. Moreover, we see that the non-convex parallelograms
corresponding to the fixed points described in the proof of Lemma A.1 are both
identified with this degenerate trapezoid, since we have AO = s

2 and BO = q
2

on the right in Figure 19, and their sum equals AB = p by our assumption.
The argument in the proof of Lemma A.1 shows that the two circles corre-

sponding to the sub-arcs B+B0 and B−B0 of ζ are exchanged under the
C2-action. �

III. Case 3.5(iii) becomes:

Lemma A.3. In the notation of §3.2, assume that s > p, q, r, p = r,

s < p + q + r, and s + q < 2p. Then Ĉ(Γ) is a disjoint union of two

circles, the C2-action switches the two circles between them, and thus ŜC(Γ)
is homeomorphic to a circle.

Proof. In this case the ζ of Figures 21-22 splits into two disjoint arcs ζ+ =
B+B+

0 and ζ− = B−B−0 , as in Figure 23, and the proof of Lemma A.2 shows
that the non-convex parallelogram corresponding to a possible fixed point of
the C2-action cannot exist. This action simply switches the two disjoint circles

of Ĉ(Γ) between them, as before. �

IV. Case 3.5(iv) is similar:

Lemma A.4. If s = q ≥ p > r in the notation of §3.2, Ĉ(Γ) is a disjoint

union of two circles, the C2-action switches them, and ŜC(Γ) is again a
circle.
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Figure 23. Configuration space for isosceles quadrilateral in
case (iii)

Figure 24. Configuration space for isosceles quadrilateral in
case (iv)

Proof. In Figure 24 we choose to draw the two congruent circles γC and
γD about A and B, so that ζ again splits into two disjoint arcs ζ+ = D+D+

0

and ζ− = D−D−0 , as in Figure 23, and once more a non-convex parallelogram
corresponding to a possible fixed point of the C2-action cannot exist. This

action again switches the two disjoint circles of Ĉ(Γ) between them. �

V. The case of a parallelogram:
When Γ = ABCD is a parallelogram, the description of IV should be

modified as follows: specializing the description of Figure 19 as in Figure 25

Figure 25. Parameterizing a parallelogram

we now a C
(1)
2 × C(2)

2 -symmetry generated by two graph automorphisms:
the first C2-action is given by A ↔ D and B ↔ C, and the second by
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A ↔ B and C ↔ D. It turns out that the first two coincide on the left
(convex) configuration of Figure 25, yielding the left hand side of Figure 26.
On the other hand, the first C2-action on the right (non-convex) configuration
in Figure 25 yields the upper right hand in Figure 26, while the second yields
the lower right hand quadrilateral there.

Figure 26. Action of C2 × C2 on Figure 25

Lemma A.5. If in the notation of §3.2 s = q > p = r (a parallelogram),

then Ĉ(Γ) is a union of four arcs x, y, z, and w with ends glued at G and H,
respectively, as depicted in Figure 27. The first C2-action sends z antipodally
to w, while the second C2-action reflects the left half x1 of x to the right
half x2 (with a fixed point at their common end J), and reflects the left half
y1 of y to the right half y2 (with a fixed point at their common end K),

thus identifying G with H. As a result, ŜC(Γ) is a wedge of the circle w ∼ z
and a segment.

Figure 27. Configuration space for the parallelogram of case
(v)

Proof. In Figure 21 we see that ζ equals the whole circle γB , and at the two
points of intersection of ζ with the x-axis (corresponding to G and H in Figure

27) we have C ′ = C ′′, which yields the description of Ĉ(Γ). The actions of

the two cyclic groups C
(1)
2 and C

(2)
2 follow from the description in Case

V. �
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Lemma A.6. If in the notation of §3.2 s = p > q = r (a deltoid) then Ĉ(Γ)
is a union of four arcs x, y, z, and w with ends glued at G and H, respectively,
as depicted in Figure 28, with the Aut(Γ) = C2-action fixing the arcs x and
y pointwise and reflecting the arc z and w to each other in the diameter GH.

Thus ŜC(Γ) consists of three arcs with left endpoints glued at H and the right
endpoints glued at G.

Figure 28. Configuration space for the parallelogram of case
(v)

Proof. The analysis of Lemma A.1 shows that we have an arc ζ of the circle
γB with a single corresponding point C ′ = C ′′ on γC for its two endpoints
B+ and B−, and otherwise two distinct values. These yield the two arcs w
and z with the C2-action as described. However, the fact that s = p implies
that ζ passes through D, at which point the edges AB and AD coincide,
so BC and CD coincide, too, and this common edge is free to rotate about
D, yielding the arcs x and y. �

VI. The square:
Recall that if Γ = Γeq

4 is an equilateral quadrilateral, the automorphism
group Aut(Γ) is the dihedral group D4 generated by the rotation R (given
by A 7→ B, B 7→ C, C 7→ D, and D 7→ A), of order 4, and the reflection
T (given by A↔ C with B and D fixed).

Lemma A.7. In the equilateral case (s = p = q = r), Ĉ(Γ) is a union of
three circles of four arcs x, y, z, and w with ends glued at G, H, and L, as
depicted in Figure 29. The reflection T sends x to y, x′ to y′, u to v, and
fixes z and w pointwise. The rotation R sends x to x′, y to y′, u to z, z

to v, v to w and w to y, and fixes J , K and L. Thus ŜC(Γ) consists of two
arcs corresponding to x and z, glued at their common endpoint H.

Proof. The analysis of Lemma A.1 shows that we have two circles γB and
γC with the same radius ` about A and D respectively, with |AD| = `. To
a point B on γB (with ∠DAB = φ as parameter) there correspond two
points on γC : one being A itself (so forming a degenerate quadrilateral) and
the other, C, forming a parallelogram, so ∠ADC = φ′ satisfies φ+ φ′ = π).
The parallelogram case corresponds to the circle xx′yy′ in Figure 29, with
H at (φ, φ′) = (π, 0) and G at (φ, φ′) = (0, π)). The degenerate case with
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Figure 29. Configuration space for the rhombus

φ′ = 0 corresponds to the circle zw, with L at (φ, φ′) = (0, 0), while the
case φ = 0 corresponds to the circle uv.

The reflection T takes (φ, φ′) to (−φ′,−φ), while the rotation R takes
(φ, φ′) to (φ′, φ), unless φ′ = 0 in which case (φ, 0) 7→ (0,−φ). Note that
the two rules are consistent at H and L. �
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