
HAL Id: hal-04083524
https://hal.science/hal-04083524

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

The reach of subsets of manifolds
Jean-Daniel Boissonnat, Mathijs Wintraecken

To cite this version:
Jean-Daniel Boissonnat, Mathijs Wintraecken. The reach of subsets of manifolds. Journal of Applied
and Computational Topology, 2023, �10.1007/s41468-023-00116-x�. �hal-04083524�

https://hal.science/hal-04083524
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

The reach of subsets of manifolds

Jean-Daniel Boissonnat1 and Mathijs Wintraecken1,2
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Abstract
Kleinjohann [1] and Bangert [2] extended the reach rch(S) from subsets
S of Euclidean space to the reach rchM(S) of subsets S of Rieman-
nian manifolds M, where M is smooth (we’ll assume at least C3).
Bangert showed that sets of positive reach in Euclidean space and Rie-
mannian manifolds are very similar. In this paper we introduce a slight
variant of Kleinjohann’s and Bangert’s extension and quantify the simi-
larity between sets of positive reach in Euclidean space and Riemannian
manifolds in a new way: Given p ∈ M and q ∈ S, we bound the
local feature size (a local version of the reach) of its lifting to the tan-
gent space via the inverse exponential map (exp−1

p (S)) at q, assuming
that rchM(S) and the geodesic distance dM(p, q) are bounded.
These bounds are motivated by the importance of the
reach and local feature size to manifold learning, topologi-
cal inference, and triangulating manifolds and the fact that
intrinsic approaches circumvent the curse of dimensionality.

Keywords: Reach, Manifolds, surfaces, comparison theory

MSC Classification: 53-08 , 53A99 , 68U05 , 65D18

1 Introduction
Motivation. The reach of subsets of Euclidean space was introduced by Fed-
erer [3] and can be defined from the medial axis introduced later by Blum [4]
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2 The reach of subsets of manifolds

(although it has also been studied by Federer). The medial axis of a set S
in Euclidean space consists of the points for which there is no unique closest
point on S. The reach of S, denoted rch(S), is defined as the distance between
the medial axis and the original set. It is therefore the largest distance such
that if a point p ∈ Rd is moved at most this distance from S, then there exists
a unique closest point on πS(p) ∈ S. Here we write πS for the closest point
projection onto S.

The reach is used to quantify the complexity of geometric sets of Rd. In
particular, from the reach, one can infer bounds on the local curvature [5] of
submanifolds. The reach also provides more global information, such as how
close different parts of a set S lie to one another. It has been extensively used
to define sampling conditions on submanifolds of Rd, to quantify how difficult
it is to infer their topology (see for example [6–10]), to triangulate them (see
for example [6, 11–14]), or learn them (see for example [15–19]).

Due to its importance and ubiquity, the reach has been redefined several
times and appears under various names in the literature. It was called the
condition number by Niyogi, Smale and Weinberger [20]. A local version of
the reach, named the local feature size, was introduced in the computational
geometry community by Amenta and Bern in their seminal work on surface
reconstruction [21]. It is the distance of a point to the medial axis and was
denoted reach(S, p) by Federer [3, Definition 4.1].

Extending the notion of reach to subsets S of Riemannian manifolds M
is a question that immediately shows up when one considers triangulating
manifolds with boundary, submanifolds of Riemannian manifolds, or stratified
manifolds, as required in dynamical systems, physics, and chemistry. Exam-
ples of stratified manifolds are the invariant sets that appear in dynamical
systems [22] and the conformation spaces of molecules [23].

One particular motivation is the search for anisotropic triangulations for
numerical partial differential equations, see e.g. [24–31], based on Riemannian
metrics as in [32] but with interfaces or boundaries. To triangulate these com-
plicated spaces one needs to understand the geometry of the interfaces and
boundaries with respect to the Riemannian metric.

Another motivation comes from the reconstruction of submanifolds with
boundary embedded in high dimensional Euclidean space. Working with such
data one generally faces the curse of dimensionality, which could be avoided
by ignoring the embedding completely and only working with the intrinsic
geometry.

Contributions. In the early 1980s Kleinjohann [1] and Bangert [2] extended
the definition of the reach to subsets S of Riemannian manifolds M, see also
[33]. The reach of a submanifold of a Riemannian manifold is similar to the
definition in Euclidean space, which is roughly the distance to the medial axis,
i.e. the set of points of M that have more than one closest point on S. Klein-
johann was interested in (locally) convex subsets of Riemannian manifolds
and their differential geometric properties, and Bangert studied the relation
between the convex functions and (locally) convex sets. Their definition of the
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reach is not fully satisfactory for the applications mentionned above. Indeed,
consider the cylinder S1 ×R = M and the submanifold S1 × {0} = S. Accord-
ing to the definition of Kleinjohann and Bangert, the reach of S1 × {0} is
infinite. However, at scales larger than 2π the ‘balls’ tangent to S1 ×{0} are no
longer topological balls, which is very inconvenient for practical applications.

We will introduce a slight variant of the reach for submanifolds of arbi-
trary smooth Riemannian manifolds. We add the condition that we look at
neighbourhoods smaller than the (global) injectivity radius.1 This assumption
makes comparison results from both Riemannian geometry and computational
geometry more straightforward to apply.

Our main result, Theorem 4.11, allows one to lift via the exponential map
the results known on the reach of subsets of Rd to submanifolds of Riemannian
manifolds. More specifically, given p ∈ M and q ∈ S, we give explicit bounds
on the local feature size (local reach) of its lifting to the tangent space via
the inverse exponential map (exp−1

p (S)) at q, assuming that rchM(S) and the
geodesic distance dM(p, q) are bounded. We stress that the explicit bounds
are of key importance, the fact that the local feature size is non-zero is easy
to see, i.e. it is a direct consequence of smoothness. This quantified approach
to the problem also distinguishes us from previous results in the literature
[1, 2, 33] where the focus was on existence. Even though the expression for our
bound remains non-trivial we provide closed expressions for the bounds. The
computation of our bounds rests on two pillars: Comparison theory in partic-
ular the Rauch comparison theorem and the Kaul’s bounds (see Section 4.2)
and Federer’s result on the behavior of the reach under an ambient diffeomor-
phism (Theorem 4.9). We note that our bounds could be improved (by using
Kaul’s bounds directly instead of a simplified version, see Section 4.2).

We see our bounds as a first major step in the long term quest of efficient
algorithms to triangulate stratified Riemanniann manifolds. This will allow
to extend the work in [14] by locally lifting a submanifold of a Riemannian
manifold M to the tangent space of M using the exponential map, see Future
work in Section 5. A similar but more complicated approach can be used for
manifolds with boundary and stratifolds. The reach of S and exp−1(S) will
be used to quantify the conditions under which we obtain a triangulation.

2 The reach
Similar to the definition for manifolds embedded in Euclidean space we define
the reach for compact subsets S ⊂ M, that is we make the global assumption
that S is compact.

Definition 2.1 (The reach) We let the medial axis axM(S) be the set of points in M
that do not have a unique closest point on S, with respect to the Riemannian metric.
We denote the projection of a point x in M on the closest point on S by πS(x). If

1Recall that the injectivity radius is the largest radius such that the exponential map restricted
to a ball of this radius is still a homeomorphism onto its image. The exponential map expp :
TpM → M sends vectors to geodesics through p while preserving lengths and angles at p.
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x lies in the medial axis this map is set valued. The pre-reach prchM(S) is then the
shortest distance between axM(S) and S. We now define the reach rchM(S) to be

min{prchM(S), ιM}, (1)
where ιM is the injectivity radius of M.

The injectivity radius is the largest radius r such that for any x, expx

restricted to the open ball centred at x with radius r in TxM is a diffeo-
morphism onto its image. Adding this bound to our definition of the reach is
essential, because we would like to have that a tangent ball to S is indeed a
topological ball.

We can also define a local version of the reach we call local feature size in
accordance with the terminology used for subsets of Euclidean space [21]. For
a point y ∈ S, it is defined as the minimum of the injectivity radius at y and
of the distance of y to axM(S).

Remark 2.2 In the mathematics literature, the closure of the medial axis is some-
times called the cut locus in the context of Riemannian manifolds, see [34, Section
2] or [35] (often the cut locus only refers to the medial axis of a single point in a
Riemannian manifold). We have chosen to use the terminology and concept most
common in the computational geometry community in view of future applications.
Bangert [2] referred to what is here called the pre-reach as the reach. Kleinjohann
seems to have been unaware of the work of Federer when writing [1].

Throughout this paper we’ll assume that M is smooth, by which
we mean at least C3. This is essential because we rely on the result of Kaul
[36], see Section 4.2 below, which is based on bounds on the derivative of the
Riemann curvature tensor. Because the Riemann curvature tensor involves
second order derivatives the manifold has to be C3. However, we conjecture
that most of the results go through (with some minor adjustments) for C2,1

manifolds, that is manifolds whose second order derivative is Lipschitz.

3 Smooth submanifolds have positive reach
In this section we restrict ourselves to a smooth submanifold S of
a Riemannian manifold M. It suffices for the submanifold S to be C2, in
this section. In Corollary 4.13 we’ll see (by reduction to the Euclidean case)
that this can be weakened to C1,1, however this is far from trivial. We shall
denote the normal space of S at a point x by NxS, and the bundle by NS.

We now first need a counterpart of Theorem 4.8.8 of Federer [3] in the
setting of smooth submanifolds S of Riemannian manifolds:

Theorem 3.1 (Tubular neighbourhood) Let BNpS(r), be the ball of radius r centred
at p in the normal space NpS ⊂ TpM of a C2 manifold with reach rchM(S), where
r < rchM(S). For every point x ∈ expp(BNpS(r)), we have πS(x) = p.
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Variants of this result are well known in differential topology and Rie-
mannian geometry, but a proof is included for completeness. Kleinjohann [33,
Section 3] proves related statements, but uses a somewhat different definition
of normal. The proof of Theorem 3.1 is not so difficult and mainly follows
Hirsch [37, Section 4.5] and Spivak [38, Appendix I of Chapter 9] with some
variations.

We start with [38, Lemma 19 of Chapter 9]:

Lemma 3.2 Let X be a compact metric space and X0 ⊂ X a closed subset. Let
f : X → Y be a local homeomorphism such that f |X0 is injective. Then there exists
a neighbourhood U of X0 such that f |U is injective.

With this lemma we can prove an embedding result, for which we have to
make the following definition:

Definition 3.3 Let NBϵ denote the ϵ-neighbourhood in NS of S, that is the neigh-
bourhood of all points closer than ϵ to S, where we identify S ⊂ NS via the zero
section. Moreover write f : NBϵ → M, for the map defined by sending S ⊂ NS to
S and fiberwise sending NpS to expp(NpS).

Lemma 3.4 There exists an ϵ > 0 such that f : NBϵ → M is a (global)
homeomorphism onto its image, that is an embedding.

The proof combines arguments from Section 4.5 of [37] with Appendix I of
Chapter 9 of [38], where small variations of this statement can be found.

Proof of Lemma 3.4 We first note that the fiberwise restriction of f to BNpS(r) is
a diffeomorphism for each r < ιM. Because M is smooth, f is smooth and we can
consider the derivative T(p,0)f at a point (p, 0) ∈ NS. The tangent space splits as
follows T(p,0)NS = TpS ⊕ NpS. T(p,0)f is the identity if restricted to the tangent
space of M as well as to a fiber. This gives that f is an immersion and in particular a
local homeomorphism on its image because the codimension is zero. Due to Lemma
3.2, f : NBϵ → M is injective for some sufficiently small ϵ > 0. □

Note that in the proof of Lemma 3.4, we used the fact that S is C2 because
we considered the derivative of the normal (note that the tangent space is
found by taking first derivatives and therefore the derivative of the normal
involves second order differentiation).

We now define NS(r) fiberwise as those points in NpS that are at a distance
r from p. We refer to r as the radius of the tubular neighbourhood. For any
smooth manifold S embedded in M and x ∈ M, we know that the minimizing
geodesic from x to πS(x) is normal to S at πS(x), as a direct consequence
of the Gauss lemma (the Gauss lemma that refers to the exponential map).
It follows that, for all ϵ such that f : NBϵ → M is a homeomorphism, each
point in f(NS(r)) is a distance r from S, for all 0 < r < ϵ.
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Because S is compact, so is NS(r) as is the closed r-neighbourhood NBr.
Clearly f is continuous. In general, a continuous bijection from a compact to
a Hausdorff space is a homeomorphism. This means that the map f from both
NS(r) and the closed r-neighbourhood NBr to their images are homeomor-
phisms, that is embeddings, if and only if f from both NS(r) and NBr are
injective.

We define the reach rchM(S) of the submanifold S ⊂ M to be the infimum
of all radii r such that f from both NS(r) and NBr are no longer injective.
We have that rchM(S) ≥ ϵ > 0. By the same argument as above, the distance
from a point in NS(r) to S is r for all r such that f restricted to NS(r)
is injective. Or equivalently, the distance from a point in f(NS(r)) to S is
r, for all r < rchM(S). Because the distance function to any closed set is
continuous (it is even Lipschitz, see [3, Theorem 4.8(1)]), this in fact holds
also for r = rchM(S).

In summary we have,

Lemma 3.5 The reach rchM(S) is equal to the infimum over all radii r, with r ≤
ιM, such that f restricted to NS(r) and NBr are no longer homeomorphisms to
their images. For all r ≤ rchM(S), all points in f(NS(r)) are a distance r from S.

In particular we have proven Theorem 3.1.
Here and in the following section we’ll often speaking about (open or

closed) ball B being tangent to a submanifold S ⊂ M. By this we mean that
∂B and S have a point p in common such that the tangent spaces TpS ⊂ TpM
and Tp∂B ⊂ TpM satisfy TpS ⊂ Tp∂B. Note that Theorem 3.1 immediately
yields,

Corollary 3.6 The interior of any ball B ⊂ M that is tangent to S at p∈ S and
whose radius r satisfies r ≤ rchM(S) does not intersect S.

Proof Let r < rchM(S). Suppose that the intersection of S and the interior of
the ball is not empty, then πS(c) ̸= p, contradicting Theorem 3.1. The result for
r = rchM(S) now follows by taking the limit. □

4 Main result: Bounds on the local feature size
Our main result is to link our definition of the reach with the local feature
size of submanifolds of Euclidean space in an explicit and quantified manner.
Namely given a set of positive reach S in a Riemannian manifold M, p ∈ M
and q ∈ S, we bound the (Euclidean) local feature size of exp−1

p (S) ⊂ TpM at
q, assuming that the geodesic distance dM(p, q), the curvature and derivatives
of the curvature are bounded.

As a nice byproduct of the main result of this paper and [39], see also
[40, 41], we see that a topologically embedded submanifold (with boundary)
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of a Riemannian manifold has positive reach (and a positive reach boundary)
if and only if it is C1,1 (with a C1,1 boundary). Lytchak’s results [40, 41]
do include the Riemannian case, but the work by Lytchak [40, 41] relies in
an essential manner on results from CAT(k)-theory, while the reduction in
this paper requires only some minimal bounds on Christoffel symbols and is
quantified.

4.1 Approach
The lower bounds on the reach of exp−1

p (S), in terms of the reach of S and
geometric properties of the manifold, follow by considering tangent balls to
S that do not contain points of S, from various viewpoints, namely from the
manifold and from various tangent spaces. The argument will be explained in
detail using Figure 1.

MS

c

q

TcM TpM

exp−1pexp−1c

exp−1p ◦ expc
c

exp−1
c (q)

exp−1c (S)

p

exp−1
c (p)

exp−1p (S)

exp−1p ◦ expc(Bc)

exp−1p (q)

B

Bc = exp−1c (B)

Fig. 1 An overview of the approach.

Let B be a geodesic ball in M centered at c, tangent to S at a point q and
with radius the reach of S. As in Euclidean space and by Corollary 3.6, B has
an empty intersection with S. B is indicated in red in the top of Figure 1.

The exponential map expc gives coordinates on a neighbourhood of the
manifold, as does expp. We will use the inverse of the exponential maps expc
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and expp, and write Bc = exp−1
c B and Bp = exp−1

p B for the images (in
TcM and in TpM respectively) of the geodesic ball B. Note that Bc is an
Euclidean ball which implies that its reach is equal to its radius, which is also
the (geodesic) radius of B. See bottom left part of Figure 1. Note also that Bc

is tangent to Sc = exp−1
c (S) and that Bp is tangent to Sp = exp−1

p (S). The
composition exp−1

p ◦ expc gives a transformation between the two coordinate
neighbourhoods, as indicated by the arrow from the bottom left to right in
Figure 1.

We stress that we follow this convention for the notation of balls: geodesic
balls on the manifold are denoted by calligraphic capital letter B without
subscript. The image of a set under the inverse exponential map to a tangent
space are denoted in the same way as the original set, but with an extra
subscript indicating the point where the tangent space is taken. Euclidean
balls in the tangent space will be denoted by lower case bold letters bp, with
a subscript indicating the point where we take the tangent space. These balls
are (except in very particular cases) not the image of a geodesic ball. The one
exception to this rule is the ball Bc, which is both the image of a geodesic
ball and a Euclidean ball and therefore is denoted by a capital letter, like the
goedesic balls, but bold like the Euclidean balls. All balls can be assumed to
be open.

Thanks to the Toponogov or Rauch comparison theorem and a higher
order variant (namely Kaul’s bounds on the Christoffel symbols, see Section
4.2 below), we have bounds on the metric as well as on the derivatives of the
metric, both expressed in the coordinates induced by the exponential maps
expp and expc. The bounds on the metric and its derivatives can then be used
to give bounds on the first and second order derivatives of the transformation
exp−1

p ◦ expc. Thanks to a result by Federer [3] one can find a bound on the
reach after the transformation, based on the reach of the original. This gives
bounds on the reach (in TpM) of Bp, that is on the reach of exp−1

p ◦ expc(Bc).
Consider the Euclidean ball bp ⊆ Bp ⊂ TpM with radius rch(Bp) that is

tangent to ∂Bp at exp−1
p (q), where ∂ indicates the boundary.2 The Euclidean

ball bp is indicated in the bottom right of Figure 1, by the green Euclidean
ball inside the red deformed ball. The Euclidean ball bp is also tangent to
Sp at exp−1

p (q) and, since the interior of B does not intersect S, Bp does not
intersect Sp either nor does bp.

The reach of Sp is lower bounded by the minimum radius of any such
Euclidean ball bp, that is

rch(Sp) ≥ min
q∈S

min
B

rch(Bp) = min
q∈S

min
B

radius(bp),

where the minimum over B is a minimum over geodesic balls in M of radius
rchM(S) that are tangent to S at q. For the local feature size one takes q fixed
instead of minimizing over S.

2By boundary we mean the set minus its interior for a closed set, and the closure of the set
minus the interior of the closure for an open set.
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Outline. This section is subdivided as follows:
• In Section 4.2 we focus on Riemann normal coordinate systems. Thanks to

standard comparison theorems such as the Toponogov or Rauch compari-
son theorem [42, 43], we are able to give bounds on the metric in Riemann
normal coordinates. The Riemann normal coordinates of a neighbourhood
of p are those coordinates that are found by lifting the metric to the tan-
gent space at p via the exponential map. The work by Kaul [36] provides
us bounds on the Christoffel symbols in the Riemann normal coordinate
neighbourhood, and thus indirectly bounds on the derivative of the metric.

• In Section 4.3 we’ll study the coordinates transformation exp−1
c ◦ exp−1

p , the
bottom arrow in Figure 1. In Section 4.3.1, we first see how we can go from
bounds on the metric in the Riemann normal coordinates to bounds on the
coordinate transformation exp−1

c ◦ exp−1
p . In Section 4.3.2, we’ll be applying

a result by Federer [3] that will yield the reach.

4.2 Bounds on the metric and Kaul’s bound on the
Christoffel symbols

In this section we review the bounds on the metric and Kaul’s bounds on
the Christoffel symbols, see [36]. The expressions for these bounds have been
simplified by Von Deylen [44, Section 6], at the cost of weakening the bounds.
We shall make use of his simplification.

As is standard in Riemannian geometry, the (coordinates of) vectors (ele-
ments of the tangent space or bundle) are indicated by vi (so that the vector
v with coordinates vi is given by v =

∑
i vi∂i) and the (coordinates of) covec-

tors (elements of the cotangent space or bundle) by ωi (so that ω =
∑

i ωidxi).
Similarly we follow the standard convention for all tensors, e.g. the (covariant)
metric is denoted by gij (even though in some sense it would be better to only
refer to g =

∑
ij gijdxi ⊗ dxj as the metric). Writing g =

∑
ij gijdxi ⊗ dxj is

compatible with the fact that the metric at a point is a bilinear form on the
tangent space of that point. The inverse metric tensor or contravariant met-
ric tensor is denoted by gij , so that

∑
j gijgjk = δk

j . If we want to emphasize
the point where to consider the (inverse) metric we write gij(x) and gij(x)
respectively. We employ similar notation for all other tensors. The standard
Euclidean metric is given by δij . Informally one can think of tensors as gener-
alizations of matrices (multi-linear maps), however in General Relativity and
most of Riemannian geometry (covariant or contravariant) tensors also behave
in a very specific way under coordinate transformations (using the Jacobian of
the coordinate transformation and/or its inverse). We will encounter a num-
ber of multi-linear maps below, such as the Christoffel symbols, which are not
tensors.

The norm with respect to the Riemannian metric is denoted by | · |g while
the norm with respect to the Euclidean metric is denoted by | · |E. Distances
on M will be denoted by dM. As before, ιM is the injectivity radius.
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The Christoffel symbols are

Γκ
µν(x) =

∑
λ

1
2gκλ(x)(∂µgλν(x) + ∂νgλµ(x) − ∂λgµν(x))

where ∂µ denotes the partial derivative with respect to the coordinate xµ.
As mentioned, Christoffel symbols are themselves not tensors. The Christoffel
symbols are used to express the covariant derivative of a vector field vκ in
local coordinates,

∇νvκ = ∂νvκ +
∑

µ

Γκ
µν(x)vµ.

The Riemann curvature tensor in local coordinates will be denoted by Rσ
µνλ(x).

We refer to Do Carmo [45] and Spivak [38], as some of the standard texts
introducing these concepts.

We now consider the Riemann normal coordinates around p:

x : (x1, . . . , xd) 7→ expp(xiEi)

for some orthonormal basis Ei of TM.
We shall now assume that the curvature and its derivative are bounded,

that is in any normal coordinate system,

|Rσ
µνλ(x)| ≤ Rmax (2)

|∇κRσ
µνλ(x)| ≤ R∇

max. (3)

We will use the following version of the Toponogov or Rauch comparison
theorem.

Lemma 4.1 (Weak Rauch theorem, Lemma 6.8 of [44]) If dM(p, x) ≤ r, with
Rmaxr2 ≤ π2

4 and r ≤ ιM
2 , then |gij(x) − δij | ≤ Rmaxr2 in Riemann normal

coordinates around p.

Usually the Rauch comparison theorem is stated in terms of the sectional
curvature, however for our setting reformulating the statement in terms of
bounds on the Riemann curvature is more convenient. Moreover the bounds
of Kaul [36] can be simplified (at the cost of weakening) to:

Lemma 4.2 (Weak Kaul lemma, Lemma 6.9 of [44]) If dM(p, x) ≤ r, with Rmaxr2 ≤
π2

4 and r ≤ ιM
2 , then∣∣∣∣∣∣
∑

κ,λ,µ,ν

gκλ(x)Γκ
µν(x)vµwνuλ

∣∣∣∣∣∣ ≤ 10Rmaxr + 5R∇
maxr2,
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for all v, u, w ∈ TxM such that |u|g = |v|g = |w|g = 1 and using Riemann normal
coordinates around p.

We now note that thanks to Lemma 4.1, we have that

||v|2g − |v|2E| =

∣∣∣∣∣∣
∑
i,j

gij(x)vivj − δijvivj

∣∣∣∣∣∣
≤
∑

ij

|gij(x) − δij ||vivj |

≤
∑

ij

Rmaxr2|vi||vj |

= Rmaxr2

(∑
i

1|vi|
)2

≤ Rmaxr2

(∑
i

1
)(∑

i

|vi|2
)

,

= dRmaxr2|v|2E,

where we used the Cauchy-Schwartz inequality. Combining this with Lemma
4.2, we see that ∣∣∣∣∣∑

κ

gκλ(x)Γκ
µν(x)

∣∣∣∣∣ ≤ 10Rmaxr + 5R∇
maxr2

(1 − Rmaxd r2)3/2 .

Using that
∂νgκµ(x) =

∑
λgκλ(x)Γλ

µν + gµλ(x)Γλ
κν

and taking absolute values, we find the following corollary

Corollary 4.3 If dM(p, x) ≤ r, with Rmaxr2 ≤ π2

4 and r ≤ ιM
2 , then

|∂νgκµ(x)| ≤ 20Rmaxr + 10R∇
maxr2

(1 − Rmaxd r2)3/2 ,

using Riemann normal coordinates around p.

We now recall two results from linear algebra:
• Let E be a d × d-matrix, then (see for example (2.3.8) of [46])

max
ij

|Eij | ≤ ∥E∥2 ≤ d max
ij

|Eij | (4)
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• If G = I + E, where G and E are d × d-matrices, I denotes the identity
matrix and ∥E∥2 ≤ 1, then (see for example [47, Section 5.8])

∥I − G−1∥2 ≤ ∥E∥2

1 − ∥E∥2
,

If now, |Eij | ≤ c, with dc < 1, then

max
i,j

|(I − G−1)ij | ≤ dc

1 − dc
.

With this result and Lemma 4.1, in particular setting gij(x) = G and
recognizing that |Eij | = |gij(x) − δij | ≤ Rmaxr2, we have the following

Corollary 4.4 If dM(p, x) ≤ r, with dRmaxr2 ≤ 1 and r ≤ ιM
2 , then

|gij(x) − δij | ≤ dRmaxr2

1 − dRmaxr2 ,

using Riemann normal coordinates around p.

We’ll also make use of the following result [47, Corollary 6.3.4], which we’ll
formulate as a lemma,

Lemma 4.5 Let E be a d × d-matrix, and G = I + E, with I the identity matrix. If
λ is an eigenvalue of G, then |λ − 1| ≤ ∥E∥2.

Using (4) again now gives,

Corollary 4.6 If dM(p, x) ≤ r, with Rmaxr2 ≤ π2

4 and r ≤ ιM
2 , any eigenvalue λ

of gij(x) now satisfies
|λ − 1| ≤ dRmaxr2,

using Riemann normal coordinates around p.

4.3 From bounds on the metrics to bounds on the
coordinate transformations

The starting point of this section is the following: We are given a metric in
Riemann normal coordinates at two different points. We want to study the
coordinate transformation between these coordinates systems, based on our
knowledge of the metric in these two coordinate systems.

In fact, we assume we have bounds on the first and second order deriva-
tives of the metric in both coordinate systems. These bounds yield bounds on
the first and second derivatives of the coordinates transformation. This can
be understood by considering the limit case: Suppose both metrics are the
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Euclidean metric, then the transformation from one coordinate system to the
other is a combination of a rotation and translation.

From bounds on the coordinate transformation, a result of Federer [3] gives
bounds on the reach of exp−1

p (B) where B is a geodesic ball centred at c with
radius r, assuming that p and c are not too far from each other. Here we
emphasize (as we noted before) that the radius of the ball B equals the radius
of exp−1

c (B).
We will consider a coordinate transformation from a coordinate system x to

a coordinate system y. Because the emphasis is on coordinate transformations
we’ll follow a different convention in this section, and only this section, and
use Latin indices. We’ll use the indices a, b, c, e, f for y-coordinate system and
the indices i, j, k, l, m for x and write

ya =
∑

i

T a
i xi +

∑
i,j

Qa
ijxixj + O(x3).

Here we assumed that the coordinate systems are chosen such that the origins
are mapped to one another, which can be done without loss of generality. Qa

ij

is symmetric in i and j.
Here and in Subsection 4.3.1 all tensors (gij, its inverse, its deriva-

tives, etc.) will be evaluated at the origin (0) of the coordinate
system unless specifically stated otherwise.

We have

gij(x) =
∑
a,b

gab(y(x))∂ya

∂xi

∂yb

∂xj

gij(x) = gij +
∑

k

(∂kgij)xk + O(x2)

gab(y) = gab +
∑

c

(∂cgab)yc + O(y)2

yc =
∑
m

T c
mxm + O(x2)

∂ya

∂xi
=
∑

k

T a
i + Qa

ikxk + O(x2).

Combining these gives

gij =
∑
i,j

gabT a
i T b

j , (5)

∂kgij =
∑
a,b,c

∂cgabT c
k T a

i T b
j +

∑
a,b

gab(Qa
ikT b

j + T a
i Qb

jk).
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4.3.1 Bounds on the transformations
With the concepts and notations developed in the previous section, we can
give bounds on the transformation in terms of bounds on the metric and its
derivatives. We find the following.

Lemma 4.7 Let x and y be two (smooth) coordinates systems for the same point on
the manifold. By the smoothness assumption the metric and its derivatives in these
coordinates systems are as follows

gij(x) = gij +
∑

k

(∂kgij)xk + O(x2)

gab(y) = gab +
∑

c

(∂cgab)yc + O(y2).

We assume further that:

• Any eigenvalue λ of gij is bounded by |λ − 1| ≤ A.
• Any eigenvalue λ̃ of gab is bounded by |λ̃ − 1| ≤ B.
• The entries of gef are bounded from above by 1 + C.
• For all i, j, k we also have that |∂kgij | ≤ ∂gmax,x, and for all a, b, c, that

|∂agbc| ≤ ∂gmax,y.

Now we have that the coordinate transformation between x and y,

ya =
∑

i

T a
i xi +

∑
i,j

Qa
ijxixj + O(x3),

satisfies the following constraints:

• The Lipschitz constants, or the metric distortion of the linear approximation
T , are bounded by

√
1 + A/

√
1 − B and the Lipschitz constant of its inverse

T −1 by
√

1 + B/
√

1 − A.
• For all i, j, a, we have

|Qa
ij | ≤ 3d2∂gmax,x

(1 + C)
√

1 + B√
1 − A

+ d3∂gmax,y
(1 + A)(1 + C)

1 − B
.

We do not assume we are using Riemann normal coordinates in the state-
ment of the lemma, but the notation is chosen to be compatible with this. The
metric is close to Euclidean metric whose metric (δij) is often denoted by the
identity matrix, but formally is a (covariant) two tensor. The derivatives of
the metric (gmax,x, gmax,y) have been bounded in Riemann normal coordinate
neighbourhoods in Corollary 4.3.

Proof of Lemma 4.7 We write G for the matrix gij(0), and we assume that the eigen-
values λi, are not far from 1, that is |λi − 1| ≤ A for all i and some A ≥ 0. Similarly,
we write G̃ for gab, and assume that its eigenvalues λ̃i are bounded by |λ̃i−1| ≤ B for
some B ≥ 0. We’ll also write G = ot

ADAoA with oA the orthogonal matrix that diag-
onalizes G and DA the diagonal matrix with the eigenvalues of G on the diagonal,
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that is diag(λi). We let SA denote the matrix with square roots
√

λi on the diagonal,
that is SA = diag(

√
λi). And similarly, G̃ = ot

BDBoB and SB = diag(
√

λ̃i).
Now (5) gives

G = T tG̃T

ot
ASA SAoA = T tot

BSB SBoBT

ot
ASt

A SAoA = T tot
BSt

B SBoBT

I = S−t
A oAT tot

BSt
B SBoBT ot

AS−1
A

I = ot o,

that is SBoBT ot
AS−1

A = o, with o an orthogonal transformation.
This in turn implies that T = ot

BS−1
B oSAoA is close to an orthogonal transfor-

mation if A and B are close to zero. The Lipschitz constant of a composition of
function is the product of the Lipschitz constants and thus the Lipschitz constant of
T is bounded by (1 − A)(1 − B) and (1 + A)(1 + B) respectively. Because we have
that for any vector |vµ| ≤ |v|, where the first | · | should be read as an absolute value
and the second as the norm, and Aij = et

iAej , where the ei denote basis vectors, the
entries of T are bounded by from above by

√
1 + A/

√
1 − B. By the same argument

we have that the entries of T −1 are bounded by
√

1 + B/
√

1 − A.
We shall now consider the quadratic term. We start with

∂kgij =
∑
a,b,c

∂cgabT c
kT a

i T b
j +

∑
a,b

gab(Qa
ikT b

j + T a
i Qb

jk).

Reshuffling and permuting the indices and changing the sign for the last equation
gives

∂kgij −
∑
a,b,c

∂cgabT c
kT a

i T b
j =

∑
a,b

gabQa
ikT b

j +
∑
a,b

gabT a
i Qb

jk

∂igjk −
∑
a,b,c

∂cgabT c
i T a

j T b
k =

∑
a,b

gabQa
jiT

b
k +

∑
a,b

gabT a
j Qb

ki

−∂jgki +
∑
a,b,c

∂cgabT c
j T a

k T b
i = −

∑
a,b

gabQa
kjT b

i −
∑
a,b

gabT a
k Qb

ij .

Adding the terms yields

∂kgij + ∂igjk − ∂jgki −
∑
a,b,c

∂cgabT c
kT a

i T b
j −

∑
a,b,c

∂cgabT c
i T a

j T b
k +

∑
a,b,c

∂cgabT c
j T a

k T b
i

=
∑
a,b

gabQa
ikT b

j +
∑
a,b

gabT a
i Qb

jk +
∑
a,b

gabQa
jiT

b
k +

∑
a,b

gabT a
j Qb

ki

−
∑
a,b

gabQa
kjT b

i −
∑
a,b

gabT a
k Qb

ij

= 2
∑
a,b

gabQa
ikT b

j ,

and thus∑
j,e

(
∂kgij + ∂igjk − ∂jgki

)
(T −1)j

egef
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−
∑
a,c,e

∂cgaeT c
kT a

i gef −
∑
b,c,e

∂cgebT c
i T b

kgef +
∑
a,b,e

∂egabT a
k T b

i gef

=
∑
j,e

(
∂kgij + ∂igjk − ∂jgki

−
∑
a,b,c

∂cgabT c
kT a

i T b
j −

∑
a,b,c

∂cgabT c
i T a

j T b
k +

∑
a,b,c

∂cgabT c
j T a

k T b
i

)
(T −1)j

egef

=2
∑

a,b,e,j

gabQa
ikT b

j (T −1)j
egef

=Qf
ik,

The idea now is the following: If we assume that the left hand side of the previous
equation is close to zero (this is in line with Corollary 4.3 because we assume that
the derivatives of the metric are not too large if the neighbourhood is not too big),
gab is close to δab, and T b

j is close to a rotation, all entries of Qa
ij have to be close to

zero too.
Let us now assume that for all k, i, j we have that

|∂kgij | ≤ ∂gmax,x,

and for all a, b, c, that

|∂agbc| ≤ ∂gmax,y.

We’ll also assume that entries of gef are bounded in absolute value by 1 + C. We
will use that for a tensor Uµν , with |Uµν | ≤ Umax, and the coordinates of vectors
vµ, wµ are bounded by |vµ| ≤ vmax and |wµ| ≤ wmax, we have that∣∣∣∣∣∑

µ,ν

Tµνvµwν

∣∣∣∣∣ ≤
∑
µ,ν

Tmaxvmaxwmax = d2Tmaxvmaxwmax, (6)

as well as its obvious generalization.
Thanks to the triangle inequality we now have

|Qf
ik| =

∣∣∣∣∑
j,e

(
∂kgij + ∂igjk − ∂jgki

)
(T −1)j

egef

−
∑
a,c,e

∂cgaeT c
kT a

i gef −
∑
b,c,e

∂cgebT c
i T b

kgef +
∑
a,b,e

∂egabT a
k T b

i gef

∣∣∣∣
≤
∣∣∣∣∑

j,e

(
∂kgij + ∂igjk − ∂jgki

)
(T −1)j

egef

∣∣∣∣+

∣∣∣∣∣∑
a,c,e

∂cgaeT c
kT a

i gef

∣∣∣∣∣
+

∣∣∣∣∣∣
∑
b,c,e

∂cgebT c
i T b

kgef

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
a,b,e

∂egabT a
k T b

i gef

∣∣∣∣∣∣
≤3d2∂gmax,x

(1 + C)
√

1 + B√
1 − A

+ d3∂gmax,y
(1 + A)(1 + C)

1 − B

□
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Remark 4.8 In the previous lemma we have given a bound on the metric distortion
(on the coordinates) of the coordinate transformation from x to y, as well as on
the Lipschitz constant of the derivative of the transformation. In the formulation of
the lemma we have chosen the coordinate systems such that the coordinates map the
origin to the origin to keep the expressions short and relatively simple. However we
could have chosen the map to go from an arbitrary x0 to y0. In other words, this
choice of coordinates is not canonical, unlike the origin in Riemann normal coordinate
systems which is canonical.

4.3.2 Using Federer’s estimates: from bounds on the
coordinate transformation to bounds on the reach

In this section, we are finally able to give bounds on the reach by applying
Theorem 4.19 of Federer [3]:

Theorem 4.9 (Federer) Let S be a subset of Rd with rch(S) > t > 0, and s > 0. If
f̃ : {x | d(x, S) < s} → Rd

is a C2 diffeomorphism such that
|Df̃ | ≤ M |Df̃−1| ≤ N |D2f̃ | ≤ P,

where D denotes the derivative, then
rch(f̃(S)) ≥ min{sN−1, (Mt−1 + P )−1N−2}.

We can now combine this result with the estimates of the previous sections.
We want to investigate how an empty tangent ball to S transforms under
the exponential map. Because a geodesic ball is also an Euclidean ball in the
tangent space of its centre (lifted via the exponential map), this is equivalent
to giving bounds on the reach of this ball under the map exp−1

p ◦ expc.
The bounds on the reach under the map exp−1

p ◦ expc use almost all pre-
vious results in this paper: In particular the bounds on the metric and its
derivatives are given in Lemma 4.1, and Corollaries 4.3, 4.4, and 4.6, while
Lemma 4.7 tells us how to go from bounds on the metric to bounds on the
coordinate transformation. Federer’s result now gives us the reach after the
transformation.

We can now give the two main results of the paper. The first gives a bound
on the reach of a lifted (via the exponential map at a nearby point) geodesic
sphere. The second uses this result to give a lower bound on the local feature
size on the lifting of any set of positive reach.

Theorem 4.10 Let M be a smooth d-dimensional Riemannian manifold whose
curvatures are bounded as follows:

|Rσ
µνλ| ≤ Rmax (2)

|∇κRσ
µνλ| ≤ R∇

max. (3)
Suppose that rp and rc are the radii of geodesic balls centred at p and c respectively
such that
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• B(c, 2rc) ⊂ B(p, rp), where we have made the centres and radii explicit,
•

√
dRmaxr2

p ≤ 1 and rp ≤ ιM
2 .

Then the reach of exp−1
p (∂B(c, rc)) ⊂ TpM is lower bounded. Specifically,

rch(exp−1
p (∂B(c, rc))) ≥ min{rcN−1, (Mr−1

c + P )−1N−2},

where

M =
√

1 + A√
1 − B

N =
√

1 + B√
1 − A

P = 12∂gmax,x
(1 + C)

√
1 + B√

1 − A
+ 8∂gmax,y

(1 + A)(1 + C)
1 − B

,

with

A = dRmaxr2
c B = dRmaxr2

p. C =
dRmaxr2

p

1 − dRmaxr2
p

,

and ∂gmax,x = ∂gmax(rc), ∂gmax,y = ∂gmax(rp), with

∂gmax(r) =20Rmaxr + 10R∇
maxr2

(1 − Rmaxd r2)3/2 .

We now also find that

Theorem 4.11 Suppose that M satisfies the same conditions as in Theorem 4.10
and let S be a subset of M of positive reach rch(S). Let q ∈ S and let B(p, rp) be a
geodesic ball, whose radius satisfies

• 10 ρ < rp for some ρ ≤ rch(S),
• d(q, p) <

rp

2 ,
•

√
dRmaxr2

p ≤ 1 and rp ≤ ιM
2 (similarly to Proposition 4.10).

Let A, B, C, M, N, P, ∂gmax,x, ∂gmax,y be as in Theorem 4.10, but with rc replaced by
ρ. The local feature size of Sp = exp−1

p (S) then satisfies lfsexp−1
p (q)(Sp) ≥ L where

L = min{rch(S)N−1, (M rch(S)−1 + P )−1N−2}.

Proof The proof is more complicated than first appears because for general sets of
positive reach we cannot directly work with the (classical) normal space.3 To derive
a contradiction assume that for some L > ϵ > 0 there is a p′ ∈ BE(q, ϵ) ⊂ TpM, such
that πexp−1

p (S)(p
′) consists of multiple points. The latter statement is equivalent to:

there is a L > r′ > 0 such that B′ ∩ Sp = ∂B′ ∩ Sp contains more than one point,
where B′ = BE(p′, r′)⊂ TpM. Let q′ be such a point and consider Tq′ ∂B′. We stress

3Even in Euclidean space, the normal spaces of sets of positive reach are not necessarily vector
spaces. We’ll see in Remark 4.14, that normal cones in the sense of Federer [3] are well defined,
also for subsets of Riemannian manifolds.
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that here ∂B′ is seen as a submanifold of TpM, which is (isometric to) a Euclidean
space, and thus Tq′ ∂B′ ⊂ TpM.

Because the manifold M is smooth (C3) and we work in a neighbourhood that
is smaller than the injectivity radius expp is a smooth map whose differential maps
Tq′ ∂B′ ⊂ TpM to a subspace STq′ B of Texpp(q′)M. Moreover, for the same reason,
expp ∂B′ is a C2 manifold and therefore has positive reach by Theorem 3.1. It also
has an interior and an exterior by the Jordan-Brouwer theorem, see for example
[48] for a pedagogical proof of the Jordan-Brouwer theorem. We note that STq′ B is
tangent to expp ∂B′ and the interior of expp B′ has an empty intersection with S.
Write ν for the interior unit normal vector of expp ∂B′ and STq′ B at expp(q′).

Let γν(t) be the geodesic, parametrized by arc length, that starts at expp(q′) and
goes in the direction of ν. Using Theorem 3.1 once more, we see that for sufficiently
small ϵ′ > 0 we have πexpp ∂B′ (γν(t)) = πS(γν(t)), for all t′ ≤ ϵ′. Thanks to Kleinjo-
hann [33, Satz 3.2 and 3.3], we have that this minimizing geodesic of length ϵ′ can be
extended to a geodesic of length rch(S), which is larger than ρ by assumption. There-
fore, for each rc < rch(S), the geodesic ball Bc = B(γν(rc), rc) intersects S only in
expp(q′) and its boundary is tangent to STq′ B at expp(q′). We note that exp−1

p (∂Bc)
is tangent to Tq′ ∂B′ in the point q′. We can now use Theorem 4.10 to see that the
reach of exp−1

p (∂Bc) is lower bounded by Lc := min{rcN−1, (M r−1
c + P )−1N−2},

using the notation as defined in Theorem 4.10. If r′ < Lc for all rc < ρ, then we have
reached a contradiction, because B′ ∩ Sp = ∂B′ ∩ Sp was supposed to contain more
than one point.

We note that r′ < Lc for all rc < ρ is equivalent to r′ < L. The result now
follows. □

Remark 4.12 We have formulated Theorem 4.11 in terms of the local feature size,
because we did not want to exclude subsets whose size is larger than the injectivity
radius and therefore would not fit in its entirety in a single coordinate chart given by
the exponential map.

Because we know that a topologically embedded submanifold of Rd has
positive reach if and only if it is C1,1 embedded, see [39], we immediately have
the following corollary:

Corollary 4.13 A topologically embedded submanifold S of a C3 manifolds M has
positive reach if and only if S is C1,1 embedded.

As mentioned in the introduction of Section 4 this result was known to
Lytchak [40, 41], but his work heavily relies on the theory of CAT(k) spaces,
while [39] is more elementary.

We further notice

Remark 4.14 In [3, Definitions 4.3 and 4.4 and Theorem 4.8] Federer shows that
the generalized tangent space Tan and generalized normal space Nor of a set of positive
reach or positive local feature size are convex cones. Theorem 4.11 says that the lifting
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(via expp) set of positive reach has positive local feature size. Combining these two
observations makes the following definition sensible

Tan(p, S) := Tan(p, exp−1
p S) Nor(p, S) := Nor(p, exp−1

p S).
These spaces are convex cones (by definition), which is not obvious from [33].

5 Future work
As we mentioned in the introduction the main motivation of this work (at
least for the authors) is the triangulation of stratified Riemannian manifolds.
To make the importance of the bounds of the paper clear in this context we
will discuss the approach for a Riemannian manifold with a submanifold inside
(the simplest example of a stratified Riemannian manifold).

We are able to Delaunay triangulate the Riemannian manifold using
intrinsic simplices [49]. If the intersection of the submanifold with every
top dimensional intrinsic simplex in the Delaunay triangulation is nice, i.e.
if the intersection after lifting the tangent space of a nearby point is a
slightly deformed polytope, we can triangulate relatively straightforwardly
using barycentric subdivision, in generalization of Whitney’s approach [14, 50].
In the Euclidean setting one established this property by perturbing the tri-
angulation in such a way that the (sub)manifold stays sufficiently far away
from the d − n − 1-skeleton of the ambient triangulation, where sufficiently far
is a bound in terms of the reach. In the Riemannian setting one would like
to apply (a variant of) this method after (locally) lifting to the tangent space
(at a nearby point) of the Riemannian manifold. For this one needs two sup-
porting results, namely to bound the reach of the lifted submanifold (which
we discussed in this paper) and to understand the geometry of the faces of the
Riemannian simplices in the ambient triangulation.
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Ramsay Dyer, André Lieutier, and Alef Sterk for discussion and Pierre Pansu
for encouragement. We further acknowledge the anonymous reviewers whose
comments helped improve the exposition.

Funding
The research leading to these results has received funding from the European
Research Council (ERC) under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement No. 339025 GUDHI
(Algorithmic Foundations of Geometry Understanding in Higher Dimensions).

The first author is further supported by the French government, through
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