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Abstract. We introduce a notion of harmonic chain for chain complexes over fields of positive

characteristic. A list of conditions for when a Hodge decomposition theorem holds in this setting is

given and we apply this theory to finite CW complexes. An explicit construction of the harmonic
chain within a homology class is described when applicable. We show how the coefficients of usual

discrete harmonic chains due to Eckmann can be reduced to localizations of the integers, allowing

us to compare classical harmonicity with the notion introduced here. We focus on applications
throughout, including CW decompositions of orientable surfaces and examples of spaces arising

from sampled data sets.

1. Introduction

The classical Hodge decomposition theorem [14, 28] states that the set of all differential k-forms
on a smooth, compact, Riemannian manifold M decomposes as a direct sum

Ωk(M) ∼= Hk(M)⊕Hk(M)⊥(1)

∼= Hk(M)⊕ im(d)⊕ im(d∗) ,

where we identify Hk(M) with the space of harmonic k-forms, and d is the exterior derivative, so
that im(d) is the space of exact k-forms and im(d∗) is the space of co-exact k-forms. We can further
identify Hk(M) with ker(d)∩ ker(d∗), as well as with the kernel of the Laplacian L = dd∗ + d∗d. The
various guises of harmonic forms have created unifying bridges between disparate areas of mathematics.
Applications of harmonicity vary from studying heat flow [23, 28] to analyzing random walks [29, 19]
and more generally spectral geometry [16, 8], to name a few.

In the 1940s, Eckmann generalized the classical story by replacing the manifold M with a simplicial
complex X, the k-forms with the simplicial k-chains, and the Laplacian with an analogously defined
discrete Laplacian [11]. In this discrete setting, Eckmann found that a theorem analogous to the
Hodge decomposition, sometimes called the discrete Hodge decomposition, still holds. That is, the
space of k-chains can be written as an direct sum

(2) Ck(X;C) ∼= ker(Lk)⊕ im(∂)⊕ im(∂∗) ,

where Lk here is the discrete Laplacian Lk = ∂∂∗+∂∗∂. Besides its theoretical significance, this result
furnishes many practical applications of harmonicity including voting and ranking theory [9, 25, 15],
network theory [1, 2] and spectral graph theory [18].

One particular use of the Hodge decomposition is the following. Every chain in ker(Lk) is a
cycle, and the natural map ker(Lk) → Hk(X;C) sending each cycle to its homology class is an
isomorphism. Inverting this isomorphism lets us select a canonical representative of each homology
class. In other words, the Hodge decomposition implies that every homology class has a unique
harmonic representative. Among other implications, this result lets allows us to perform homology
computations in a subspace instead of a quotient space, the latter being tricky to implement in
practice.

The story we have laid out so far holds just as well if we replace C with any field of characteristic
0. However, we are often interested in homology and cohomology over more general coefficient rings,
including fields of positive characteristic. This is especially true in applications; computations over
finite fields, especially F2, can be performed more quickly than over Q, and with perfect precision. One
example is the software library Ripser, which is a popular choice for computing persistent (co)homology

1

ar
X

iv
:2

11
0.

10
88

5v
1 

 [
m

at
h.

A
T

] 
 2

1 
O

ct
 2

02
1



2 MICHAEL J. CATANZARO AND BRANTLEY VOSE

[4]. Once we learn of the practical uses of the Hodge decomposition and harmonic representatives, it
is natural to ask whether similar results hold over other fields. This leads us to the driving questions
of this paper.

(Q1) Does an analog of the discrete Hodge decomposition exist when we replace C with a finite
field, or more generally with an arbitrary field F?

(Q2) If not, when does every homology class have a unique harmonic representative?

The first of our primary results, Theorem A, provides a list of necessary and sufficient conditions
for every homology class in Hk(X;F) to have a unique harmonic representative, addressing (Q2).
Subsequently, Theorem B gives stronger necessary and sufficient conditions for the existence of a
Hodge decomposition analogous to Eq. (1), namely, if and only if every homology class and every
cohomology class have a unique harmonic representative. This answers question (Q1). Sections 3
and 4 are spent proving these results and developing methods for computing these unique harmonic
representatives. While our motivating examples arise from CW complexes with finitely many cells in
each dimension, in these sections we work in the more general setting of chain complexes of finite-
dimensional spaces equipped with standard bases. For this reason, our results can be applies just
as well to the dual chain complex to derive results about cohomology that are “dual” to our results
about homology.

We then move on to consider (Q1) and (Q2) from a different perspective. Given a fixed CW
complex X with finitely many cells in each dimension, in Section 5 we explore for which primes
p the cellular homology of X over Fp satisfies the statements of Theorem A. That is, given X, we
provide sufficient conditions for p under which every cellular homology class of X over Fp has a unique
harmonic representative. We accomplish this by leveraging the cleaner rational case and descending
to the finite field. This method is thwarted if Hk(X) has p-torsion, or if p is one of finitely many
primes determined by the combinatorial structure of X. Theorem D determines this list of problematic
primes in terms of an integer that we call Υ which depends on the combinatorial structure of X.

In the special case that X is a CW structure on an orientable surface, the statements of Section 5
can be simplified. In Section 6 we show that, in this special case, Theorem C has a simpler statement
in terms of the discrete Laplacian, giving us a tidy condition in Theorem 6.9 to ensure the existence
and uniqueness of all harmonic representatives on X over Fp.

Ultimately the difference between harmonicity in positive and zero characteristic stems from the
fact that vector spaces over fields of positive characteristic cannot be equipped with norms or in-
ner products, since fields of positive characteristic cannot be ordered. The best replacement is a
nondegenerate bilinear form, for which there can exist degenerate subspaces. Degenerate subspaces
have nontrivial intersection with their ‘orthogonal complement’, so a direct sum decomposition as in
Eq. (1) is generally not possible. Over a field of characteristic 0, ker(Lk) = ker(∂)∩ker(∂∗). However,
this fact depends on the assumption that every subspace is nondegenerate. Over a field of positive
characteristic, we instead have ker(Lk) ⊇ ker(∂) ∩ ker(∂∗), often with strict containment. Indeed,
over a general field, an element of ker(Lk) need not even be a cycle (see Example 3.2). Since this
paper is interested in harmonic representatives of (co)homology classes, we make the choice to define
the harmonic chains to be the space ker(∂) ∩ ker(∂∗), i.e. the space of chains that are both cycles
and cocycles. We emphasize that, over characteristic 0, this is equivalent to the usual definition that
instead chooses ker(Lk), but in general the two spaces are distinct.

1.1. Related Work. In [10], Ebli and Spreemann utilize the discrete laplacian over R to develop a
homology-sensitive method to cluster the simplices of a simplicial complex. Among other uses, this
process produces visualizations of homology classes similar to those in Section 7. A generalization of
the discrete Laplacian designed for the setting of persistent homology is introduced and explored in
[27] and [20]. In the recent preprint [3], Basu and Cox apply the theory of harmonic representatives
to persistent homology to associate concrete subspaces of chain spaces to each bar of the persistence
barcode in a stable way. Kalǐsnik et. al. [17] explore related methods for creating a homologically
persistent skeleton using higher spanning trees, and encode important topological features of data
using these subcomplexes.
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2. Background and Main Results

In this section, we briefly recall some facts regarding linear algebra over arbitrary fields, homology,
cohomology, and CW complexes that will be used throughout. With this background in place, we
then state our main results.

Linear algebra over arbitrary fields. We remind the reader of some basic facts about vector
spaces over fields of positive characteristic. A standard reference for this material is given in [24].

A symmetric bilinear form on a vector space V over a field F is a map b : V × V → F such that

b(v, w) = b(w, v) ,

b(u+ v, w) = b(u,w) + b(v, w) , and

b(λv,w) = λb(v, w) ,

for any u, v, w ∈ V and λ ∈ F. Given a symmetric bilinear form b on V and a subset U ⊆ V , we define
the orthogonal complement of U by

U⊥ = {v ∈ V | b(u, v) = 0 for all u ∈ U} .

The symmetric bilinear form b is said to be non-degenerate if V ⊥ = 0. If U is a subspace of V , then
b|U : U × U → F is again a symmetric bilinear form. A subspace U is non-degenerate if b|U×U is
non-degenerate, i.e., U ∩ U⊥ = 0.

Example 2.1. Let V be an n-dimensional vector space over the real numbers F = R with basis
{e1, e2, . . . , en}. Then b(ei, ej) = δij , given by the Kronecker delta function, defines a non-degenerate
symmetric bilinear form, the standard inner product. Every subspace of V is non-degenerate.

Let W be an m-dimensional vector space over the field with p elements F = Fp with basis
{f1, f2, . . . , fm}. Then b(fi, fj) = δij defines a non-degenerate symmetric bilinear form. In this
case, b does not define an inner product and there are numerous degenerate subspaces of W , e.g., the
one-dimensional subspace spanned by f1 + · · ·+ fp for p ≤ m.

2.1. Homology and Cohomology. Let R be a ring. A chain complex C• over R is a sequence of
R-modules {Ck}k∈Z called the chain modules, along with homomorphisms ∂k : Ck → Ck−1, called the
differentials, satisfying ∂k−1∂k = 0. The k-cycles Zk ⊆ Ck are given by the kernels of the differentials
Zk = ker ∂k . The k-boundaries Bk ⊆ Ck are given by the images of the differentials Bk = im ∂k+1 .
Finally, since the condition ∂k−1∂k = 0 implies Bk ⊆ Zk, we can define the homology of the chain
complex in degree k to be the quotient Hk = Zk/Bk . We use the notation [z] ∈ Hk to denote the
equivalence class of z ∈ Zk, and say that z is a representative of [z].

The associated cochain complex is the R-linear dual of the chain complex. Precisely it is the
sequence of R-modules Ck := HomR(Ck, R), the R-linear dual of Ck, together with codifferentials
given by the duals of the original differentials ∂∗k : Ck−1 → Ck. The condition ∂k−1∂k = 0 implies
∂∗k∂

∗
k−1 = 0. Analogous to cycles and boundaries, the k-cocycles Zk ⊆ Ck are the cochains in the

kernel of the codifferential Zk = ker(∂∗k+1), the k-coboundaries Bk ⊆ Ck are those in the images

Bk = im(∂∗k). and the cohomology of the cochain complex is given by the quotient Hk = Zk/Bk.

Remark 2.2. We are interested in the case where the underlying ring of the chain complex is a field
F, and each chain module Ck is a finite-dimensional vector space with a chosen basis. This is the
case when C• arises as a simplicial or cellular chain complex as discussed below in section 2.1 The
chosen basis, say {αi} on Ck, defines a symmetric bilinear form bk on Ck by setting bk(αi, αj) = δij ,
the Kronecker pairing. The form bk gives rise to a canonical isomorphism between Ck and its dual
Ck, letting us identify the two and blur the distinction between a chain c and its dual c∗. This
identification is common in the literature, allowing one to think of the codifferentials ∂∗k as linear
maps Ck−1 → Ck, and think of Zk and Bk as subspaces of Ck.

Given the identification in Remark 2.2, we state our notion of F-harmonicity.
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Definition 2.3. A chain c ∈ Ck is called F-harmonic if ∂kc = ∂∗k+1c = 0. Equivalently, a chain is

F-harmonic if it lies in Zk ∩Zk. When the underlying field is clear, we may simply say c is harmonic.

Oftentimes, authors working over fields of characteristic 0 will define a chain to be harmonic if it
falls within the kernel of the Laplacian Lk := ∂k+1∂

∗
k+1 + ∂∗k∂k. Over such a field, this definition is

equivalent to Definition 2.3, though the two may diverge over a field of positive characteristic. In
general, kerLk ⊇ Zk ∩ Zk (see Example 3.2).

CW Complexes. Let X denote a CW complex. We denote the k-skeleton of X by X(k) and the set
of k-cells is denoted Xk. Recall that a CW complex is given by iteratively attaching k-cells ekα as α
varies, where each ekα is homeomorphic to an open Euclidean k-disk. Inducting on the degree k, the
k-skeleton is formed from the (k − 1)-skeleton via the attaching maps for each k-cell. The attaching
map of a cell ekα is of the form

ϕα : Sk−1α → X(k−1) ,

where δekα = Sk−1α denotes the boundary of ekα. Additionally, we call a CW complex degree-wise finite
if it has finitely many cells of each dimension.

All of the topological spaces we are interested in, e.g., simplicial and cubical complexes, admit the
structure of a CW complex, including topological graphs.

Cellular Homology. Given a CW complex X and a ring R, there is a chain complex C•(X;R)
called the cellular chain complex. Each chain module Ck(X;R) is a free R-module with generating
set given by the set of k-cells of X, so a typical k-chain is given by an R-linear combination of k-cells.
The differentials are determined by the attaching maps of the cell complex via

∂k+1(α) =
∑
a∈Xk

〈δα, a〉a ,

for each (k + 1)-cell α, where 〈−,−〉 denotes incidence number.
In the case that R is a field and X is degree-wise finite, each cellular chain space Ck(X;R) is finite

dimensional with a canonical basis given by the k-dimensional cells of X. This case is our motivating
example.

Main Results. We state the first of our main theorems in the general setting of chain complexes
of finite dimensional vector spaces over an arbitrary field with chosen bases, though our motivating
example is that of a cellular chain complex C•(X;F) of a degree-wise finite CW complex X.

Theorem A. Let C• be a chain complex of finite dimensional vector spaces over a field F, where
each Ck is equipped with a chosen basis and the induced symmetric bilinear form. The following are
equivalent.

(1) (Existence and uniqueness of harmonic representatives) Every homology class in Hk has a
unique harmonic representative.

(2) (Uniqueness of harmonic representatives) For every homology class in Hk with a harmonic
representative, that representative is unique.

(3) The only harmonic representative of the trivial homology class [0] ∈ Hk is 0.
(4) Zk ∩ Zk ∼= Hk via the quotient map z 7→ [z].
(5) Bk ∩ Zk = 0.
(6) Bk ⊕ Zk = Ck.
(7) ker(∂∗k∂k) = ker(∂k).
(8) im(∂∗k+1∂k+1) = im(∂∗k+1).

(9) The Moore-Penrose pseudoinverse π† of the projection map π : Ck → Ck/Bk exists.

Furthermore, if these statements hold, then the pseudoinverse π† of (9) takes every homology class to
its unique harmonic representative.
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Theorem A provides several possible answers to (Q2).
We highlight some notable aspects of Theorem A. Statements (1) through (3) regard existence and

uniqueness of harmonic representatives. While uniqueness of harmonic representatives does imply
existence, the converse does not hold, as Example 3.2 will demonstrate. Statements (5) and (6) relate
to the linear algebraic properties of the chain complex. Note that B⊥k = ker(∂k) = im(∂∗k) = Zk,
so Bk and Zk are orthogonal complements. If the underlying field has characteristic 0, these spaces
are indeed linear complements and statement (5) always holds. Hence the statements of Theorem A
hold over any characteristic 0 field. Finally, statement (9) provides an explicit method for computing
the unique harmonic representative of a homology class. This is our primary method of computing
representatives. These computations, as well as pseudoinverses over arbitrary fields, are discussed in
Section 4.

One advantage of stating Theorem A at the level of chain complexes is that it can be applied just
as well to a cochain complex, such as the dual complex C•, so long as we take care with the indexing.
Recall that a cochain complex is roughly the same as a chain complex, except that the indexing
increases as we apply the boundary map instead of decreasing. Since the indexing is completely
incidental to the above statements, we can apply Theorem A to C• and get a “dual” theorem. For
example, when Theorem A is applied to a cochain complex, statement (5) becomes “Bk ∩ Zk = 0,”
and statements (1) through (4) become statements about harmonic representatives of cohomology
classes. When the statements of Theorem A apply to both a chain complex C• and its dual complex
C•, these statements will give us that the harmonic forms are exactly kerL, as in the classical case.

Definition 2.4. If the statements of Theorem A hold for a cochain complex C• at degree k, we say
that C• is homologically harmonic in degree k. If the statements of Theorem A hold for a cochain
complex C• at degree k, we say that C• is cohomologically harmonic. We say a degree-wise finite CW
complex X is homologically harmonic in degree k over F when the cellular chain complex C•(X;F)
is homologically harmonic, and we say X is cohomologically harmonic in degree k over F if the dual
complex C• is cohomologically harmonic.

Theorem B (Hodge Decomposition over Arbitrary Fields). Let C• be a chain complex of finite-
dimensional vector spaces with chosen bases, and let Lk : Ck → Ck be the discrete Laplacian ∂∂∗+∂∗∂.
The vector space Ck decomposes into a direct sum of subspaces

Ck = kerLk ⊕Bk ⊕Bk

if and only if both C• is homologically harmonic in degree k, and the dual complex C• is cohomologically
harmonic in degree k.

In this case, the subspaces in the decomposition are orthogonal with respect to the symmetric bilinear
form, and the component kerLk is equal to Zk ∩ Zk . Furthermore, kerLk is isomorphic to both Hk

and Hk through the natural maps sending (co)cycles to their respective (co)homology classes.

While Theorem B provides an answer to (Q1) in the general setting of chain complexes, we are
most interested in the case when C• = C•(X;F) arises from some degree-wise finite CW complex X.
In this case, Theorem B provides necessary and sufficient conditions for a decomposition

Ck(X;F) = ker(Lk)⊕Bk(X;F)⊕Bk(X;F).

In Section 5, we focus on the special case of cellular homology of a degree-wise finite CW complex X
over finite fields. In this special case, we can ask for which primes p the complex X is homologically
harmonic over Fp. Our approach is to take the matrix sending each rational cycle to its unique
harmonic representative and use it to construct a similar map over a finite field Fp. Since rational
homology cannot detect torsion, this approach requires that Hk(X) have no p-torsion. The feasibility
of this construction also depends on the entries of the matrix, which we show fall within a certain
subring of Q determined by the combinatorial structure of X. In the process we prove the following
result, which we believe to be of independent interest. For an integer N , let Z[N−1] denote the
localization S−1Z, where S = {1, N,N2, N3, . . .}.
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ba E

Figure 1. A CW complex that fails both existence and uniqueness of F2-harmonic representatives.

Theorem C. For a finite CW complex X, there exists an integer Υ = Υ(X, k) depending on the
combinatorial structure of X so that, for any integral homology class in degree k, its rational harmonic
representative has coefficients in Z[Υ−1].

This result is justified by Theorem 5.8, which is stated after we give a rigorous definition of Υ in
Definition 5.4. The primary result of Sections 5 and 6 is the following sufficient condition for the
homological harmonicity of X.

Theorem D. If p - Υ(X, k), and Hk(X) has no p-torsion, then X is homologically harmonic over
Fp in degree k. That is, every homology class in Hk(X;Fp) has a unique harmonic representative.

Furthermore, if k = 1 and X is a CW structure on a connected orientable surface, Υ is given by

Υ = det L̂1/|X2| ,

where L̂1 = L1|B1(X) : B1(X;Fp)
∼=−→ B1(X;Fp) is the Laplacian restricted to the 1-boundaries.

Since only finitely many primes divide Υ, and Hk(X) has nontrivial p-torsion for only finitely many
primes p, we get the following corollary.

Corollary 2.5. Given a degree-wise finite CW complex X and k ≥ 0, X is homologically harmonic
in degree k over Fp for all but finitely many primes p.

Finally, in Section 7, we put the above theorems to work by computing and plotting some examples
of harmonic representatives over various fields. Our experiments will include examples on orientable
surfaces and Vietoris Rips complexes.

3. Existence and Uniqueness of Harmonic Representatives

In this section, we explore the properties of a chain complex that affect the existence and uniqueness
of harmonic representatives. For a fixed CW complex, a given homology class may have multiple
harmonic representatives or none at all depending on the characteristic of the coefficient field. More
generally, a homology class of a chain complex may fail to exhibit a harmonic representative, or have
many. We begin by considering examples that demonstrate failures of existence and uniqueness.

Example 3.1. Consider a CW complex X with a single 0-cell, two 1-cells denoted a and b, and a
single 2-cell denoted E with an attaching map that travels once around a, then once around b. The
resulting CW complex, depicted in Figure 1, can be thought of as a cylinder in which a longitudinal
line segment has been collapsed. We will consider the homology of this complex with F2 coefficients.

Since X is homotopy equivalent to a circle, it has exactly one nontrivial homology class in degree
1, namely the class [a] = {a, b}. However, neither a nor b is a cocycle, since ∂∗2(a) = ∂∗2 (b) = E.
Therefore the homology class [a] has no F2-harmonic representative.

In addition, both cycles in the trivial homology class [0] = {0, a+ b} are cocycles since ∂∗2(a+ b) =
2E = 0, so [0] has two F2-harmonic representatives.
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b

b′

a

a′

e

G

H

Figure 2. A CW complex which fails uniqueness but not existence; every homology
class has a non-unique F2-harmonic representative.

Example 3.2. Take the CW complex X from Example 3.1 and subdivide the 2-cell E with an edge
e into a pair of 2-cells G and H as pictured in Figure 2; call this new complex X ′. We will again
consider the homology of X ′ with F2 coefficients. As before, X ′ has one nontrivial homology class in
degree one. There are four cycles in the homology class of b + b′, and computing the coboundary of
each representative reveals that

∂∗2(a+ a′) = ∂∗2(b+ b′) = G+H , and

∂∗2 (a+ b′ + e) = ∂∗2(a′ + b+ e) = 0.

Hence the class of b+ b′ has two F2-harmonic representatives, namely a+ b′ + e and a′ + b+ e.
We can perform a similar computation beginning with the trivial cycle 0. In this case, we find that

the class of 0 also has two F2-harmonic representatives, given by 0 and a+ a′ + b+ b′. Additionally,
the 1-chain e lies in the kernel of the laplacian L1, since ∂2∂

∗
2e = ∂∗1∂1e = a + b + a′ + b′. This

further demonstrates that in general elements of kerLk need not be cycles, and that the containment
Zk ∩ Zk ⊆ Lk can be strict.

3.1. Uniqueness. Given an F-harmonic representative for a homology class, we can measure its
failure to be unique by characterizing the set of all F-harmonic representatives for its homology class.
Suppresing the field F from the notation, let Har(z) be the set of all F-harmonic representatives of
z ∈ Hk.

Proposition 3.3. When Har(z) is non-empty, it forms an additive torsor over Bk∩Zk. Equivalently,
if Har(z) 6= ∅, then Har(z) = h + (Bk ∩ Zk) for any h ∈ Har(z). In particular, the F-harmonic
representatives of the trivial homology class coincide with Bk ∩ Zk.

Proof. Suppose h, h′ ∈ Har(z). By definition, h, h′ ∈ Zk and thus, h′ − h ∈ Zk. Since [h] = [h′] = z,
h and h′ must differ by a boundary. Hence h′ − h ∈ Bk ∩ Zk, showing h′ ∈ h + (Bk ∩ Zk). For the
reverse inclusion, let h ∈ Har(z) and pick an arbitrary element h + b ∈ h + (Bk ∩ Zk). Since both h
and b are cocycles, so is their sum h+ b. Also, [h+ b] = [h] = z, so we conclude h+ b is a harmonic
representative of z. The second statement follows immediately. �

In general, Bk = (Zk)⊥ with respect to any symmetric non-degenerate bilinear form on Ck, since
Bk = im(∂k+1) = ker(∂∗k+1)⊥ = (Zk)⊥. This means that Bk ∩ Zk = 0 if and only if Bk (equivalently,

Zk) is a nondegenerate subspace of Ck. Combined with Proposition 3.3, this gives the following.

Corollary 3.4. Every harmonic representative in Ck is unique if and only if Bk (equivalently Zk) is
a non-degenerate subspace of Ck with respect to the bilinear form on Ck.

Remark 3.5. If F is a field of characteristic 0, every subspace of Ck is non-degenerate. Corollary 3.4
then implies that harmonic representatives are always unique over a field of characteristic 0.
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3.2. Existence. We turn our attention upon the extent to which harmonic representatives exist.

Theorem 3.6. Let Qk denote the subspace of all degree k-homology classes that have at least one
harmonic representative. Then

Qk =
Zk ∩ (Zk +Bk)

Bk
.

The quotient Hk/Qk is isomorphic to Zk+Zk

Zk+Bk
, and in particular, the codimension of Qk in Hk is

dim(Zk + Zk)− dim(Zk +Bk).

Proof. First we show that Qk = Zk∩(Zk+Bk)
Bk

by dual containment. Let z + Bk ∈ Qk. Write z +

Bk = h + Bk for some harmonic chain h. Since h ∈ Zk ∩ Zk ⊆ Zk ∩ (Zk + Bk), we can conclude

h+Bk ∈ Zk∩(Zk+Bk)
Bk

. For the reverse inclusion, let z+Bk ∈ Zk∩(Zk+Bk)
Bk

, so that z ∈ Zk ∩ (Zk +Bk).

Since z ∈ Zk, z + Bk ∈ Hk. Furthermore, z = z′ + b for some z′ ∈ Zk, b ∈ Bk. Since both b and z
are cycles, z′ is a cycle as well. Hence z′ is a representative of the homology class of z that is both a
cycle and a cocycle. This implies z +Bk ∈ Qk.

Now that we have shown Qk = Zk∩(Zk+Bk)
Bk

, we have

Hk/Qk =

Zk

Bk

Zk∩(Zk+Bk)
Bk

∼=
Zk

Zk ∩ (Zk +Bk)
.

By the second isomorphism theorem,

Zk
Zk ∩ (Zk +Bk)

∼=
Zk +Bk + Zk
Zk +Bk

=
Zk + Zk
Zk +Bk

. �

Remark 3.7. As discussed in Remark 3.5, over a field of characteristic 0, Bk and Zk are orthogonal

complements in Ck. Therefore Zk + Bk = Ck, and Zk+Zk

Zk+Bk
= 0. Theorem 3.6 then implies that

every homology class has a harmonic representative. In addition, by Remark 3.5, that harmonic
representative is unique.

4. Computation of Harmonic Representatives

In this section, we focus on computing harmonic representatives by introducing the Moore-Penrose
pseudoinverse. We then use the results of Sections 3 and 4 to prove Theorem A, as well as Theorem B,
our generalization of the discrete Hodge decomposition.

4.1. Pseudoinverses.

Definition 4.1. Given an m × n matrix A with entries in F, the (Moore-Penrose) pseudoinverse of
A, denoted A†, is an n×m matrix satisfying the following:

(1) AA†A = A†.
(2) A†AA† = A†.
(3) AA† is Hermitian.
(4) A†A is Hermitian.

The (Moore-Penrose) pseudoinverse generalizes the usual matrix inverse to matrices that fail to be
invertible. A preferred solution to the system Ax = y is given by the pseudoinverse: A†y. If A is
invertible, then A† = A−1 and the preferred solution is the unique solution. If Ax = y has multiple
solutions, A†y is the solution orthogonal to ker(A), which is also the solution of minimal norm if A
is over a field of characteristic 0. If Ax = y has no solution, then A†y is a solution to the system
Ax = ŷ where ŷ is the orthogonal projection of y onto im(A). Over a field of characteristic 0, this is
equivalent to saying that A† minimizes the norm of y −A(A†y).

The following existence and uniqueness theorems are due to Pearl [21, Theorem 1] and Penrose1 [22,
Theorem 1].

1While Penrose was considering matrices with complex entries, his uniqueness proof works over any field.
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Theorem 4.2. Let A be a matrix with entries in a field.

(1) (Pearl) A pseudoinverse of A exists if and only if rank(AA∗) = rank(A) = rank(A∗A).
(2) (Penrose) If a pseudoinverse of A does exist, then it is unique.

The uniqueness result justifies the use of the notation A† to denote the pseudoinverse of A.

Remark 4.3. If A is a matrix over a field of characteristic 0, then rank(AA∗) = rank(A∗A) = rank(A)
always holds, so A† always exists.

Remark 4.4. If A is full rank, then A∗A is automatically invertible, so by Theorem 4.2, A† exists if
and only if (AA∗)−1 exists. If this is the case, then it can be shown that A† = A∗(AA∗)−1 by directly
verifying the pseudoinverse axioms.

Given a linear map φ : V → W between finite dimensional vector spaces, the pseudoinverse is
traditionally only defined with respect to chosen bases for V and W . In the special case that φ is
surjective, however, we need only specify a preferred basis for V in order for a pseudoinverse of φ to
be well-defined.

Definition 4.5. Let φ : Fn → W be a linear map and A a matrix representing φ with respect to a
basis B ⊆W . If A† exists, then the pseudoinverse of φ is defined by φ†(w) = A†w.

We show that this definition does not depend on the choice of basis B. Let B′ be another ordered
basis for W . Define αB : Fm →W to be the linear isomorphism sending the standard basis to B, and
define αB′ similarly. Let A and A′ be matrices representing φ with respect to B and B′ respectively,
so that

Fn Fm

Fm W

A

A′
φ

αB

αB′

commutes. We will show that

(3)

Fn Fm

Fm W

A†

A′†

α−1

B′

α−1
B

commutes as well. The two paths from W to Fn in Diagram (3) represent the two possible definitions
of φ†, each with respect to a different basis for W , so showing Diagram (3) commutes will suffice. By
Remark 4.4, A† = A∗(AA∗)−1, so

A†α−1B =A∗(AA∗)−1α−1B .

By the first diagram, A = α−1B αB′A
′. Substituting this into the above expression and simplifying

yields A′†α−1B′ , showing that the diagram commutes.
The following result follows immediately from Remark 4.4.

Proposition 4.6. If φ : Fn → W is a surjective linear transformation, then φ† exists if and only if
φφ∗ is invertible. In this case, φ† = φ∗(φφ∗)−1.

4.2. Computing the Harmonic Representative. In the special case that each homology class has
a unique harmonic representative, that representative can be computed using a pseudoinverse.

Lemma 4.7. Let π : Ck → Ck/Bk be the canonical projection map. Then im(π∗) = Zk.

Proof. By definition of π, we find Bk = im(∂k+1) = ker(π). Taking orthogonal complements,

ker(∂∗k+1) = im(∂k+1)⊥ = ker(π)⊥ = im(π∗). �

Theorem 4.8. Suppose the canonical projection π : Ck → Ck/Bk has pseudoinverse π†. For any
h ∈ Hk, π†(h) is a harmonic representative for h.
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Proof. By Proposition 4.6, π† = π∗(ππ∗)−1, and in particular this shows that π† is a right inverse of
π. Hence h = ππ†(h) =

[
π†(h)

]
, showing that π†(h) is a representative of h.

In addition, since π† = π∗(ππ∗)−1, and (ππ∗)−1 is full rank, we can see im(π†) = im(π∗), and by
Lemma 4.7, im(π∗) = Zk. Therefore π†(h) is indeed a cocycle. �

Theorem 4.8 allows for the computation of harmonic representatives when π† exists but, as stated
in Theorem 4.2, this need not always be the case.

Lemma 4.9. The projection π : Ck → Ck/Bk has a pseudoinverse π† if and only if every harmonic
representative is unique.

Proof. As discussed in Remark 4.4, π† exists if and only if ππ∗ is invertible, and this is true if and
only if im(π∗) ∩ ker(π) = 0. Lemma 4.7 gives im(π∗) = Zk, and clearly ker(π) = Bk. In other words,
π† exists exactly when Bk ∩ Zk = 0. Corollary 3.4 finishes the proof. �

4.3. Proofs of Theorem A and Theorem B.

Proof of Theorem A. First note that, since Zk ∩ Zk is the space of harmonic forms, (4) is just an
algebraic restatement of (1). Omitting (4) from the list, we prove the equivalence of the remaining
items in three parts.

Part 1: (1)⇒ (2)⇒ (3)⇒ (5)⇒ (9)⇒ (1).
The implications (1)⇒ (2)⇒ (3) are immediate. To see that (3)⇒ (5), recall from Proposition 3.3

that the harmonic representatives of any given homology class form a torsor over Bk ∩ Zk, the set of
harmonic representatives of the trivial homology class. If 0 is the only such representative, this torsor
must be over the trivial space, forcing Bk ∩ Zk = 0.

For (5) ⇒ (9), π† exists when ππ∗ is invertible by Proposition 4.6, and since π∗ is injective, this
holds exactly when im(π∗) ∩ ker(π) = 0. Clearly ker(π) = Bk, and Lemma 4.7 implies im(π∗) = Zk.
Therefore im(π∗) ∩ ker(π) = Bk ∩ Zk = 0 and so π† exists.

Finally, (9) ⇒ (1) since, by Theorem 4.8 and Lemma 4.9, π†(h) is the unique harmonic represen-
tative of h ∈ Hk(X;F).

Part 2: (5) and (6) are equivalent.
This follows from a dimension counting argument:

dim(Zk) = null(∂∗k+1) = dim(Ck)− rank(∂∗k+1) = dim(Ck)− rank(∂k+1) ,

where null(∂∗k+1) = dim(ker(∂∗k+1)). Thus dim(Bk) + dim(Zk) = dim(Ck).
Part 3: (5), (7), and (8) are equivalent.
Equivalence of (5) and (7) follows from the general fact that, for linear maps f and g, ker(f ◦ g) =

ker(g) if and only if ker(f) ∩ im(g) = 0. Choosing f = ∂∗k+1 and g = ∂k+1 gives the result.
Lastly, items (7) and (8) are related by taking transposes. Indeed,

ker(∂∗k+1∂k+1) = ker(∂k+1) ⇐⇒ ker((∂∗k+1∂k+1)∗∗) = ker(∂∗∗k+1)

⇐⇒ im((∂∗k+1∂k+1)∗)⊥ = im(∂∗k+1)⊥

⇐⇒ im(∂∗k+1∂k+1) = im(∂∗k+1).

This completes the proof of equivalence.
The final statement about π† follows from Theorem 4.8, using statement (9) for the existence of π†

and statement (2) for uniqueness of the representative. �

We finish the section with a proof of the Hodge decomposition.

Proof of Theorem B. Suppose C• is both homologically and cohomologically harmonic in degree k.
Applying Theorem A item (6), we decompose Ck as an inner direct sum Ck = Zk ⊕ Bk. These
subspaces are orthogonal with respect to the standard symmetric bilinear form, since B⊥k = Zk. Then
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applying the same part of Theorem A to C• at degree k, we get Ck = Ck = Zk ⊕Bk, which is again
an orthogonal decomposition. Intersecting with Zk gives

Zk = (Zk ∩ Zk)⊕ (Zk ∩Bk) = (Zk ∩ Zk)⊕Bk.

Substituting into the first decomposition above, we obtain the orthogonal decomposition

Ck = Zk ⊕Bk = (Zk ∩ Zk)⊕Bk ⊕Bk
as desired.

Conversely, suppose the above decomposition holds. Then in particular, (Zk ∩ Zk) ∩ Bk = Bk ∩
Zk = 0. Theorem A item (5) implies C• is homologically harmonic. A similar argument shows
that Bk ∩ Zk = ∅, implying that C• is cohomologically harmonic as well, completing the left hand
implication.

Next we show that Zk ∩ Zk = kerLk. Since Lk = ∂k+1∂
∗
k+1 + ∂∗k∂k, clearly Zk ∩ Zk ⊆ kerLk. For

the opposite inclusion, suppose Lkx = 0. Then ∂∗k∂kx = ∂k+1∂
∗
k+1(−x) ∈ Bk ∩ Bk = 0. Applying

item 7 to both C• and C• shows x ∈ Zk ∩ Zk as desired.
We have already shown that such a decomposition is orthogonal, so it only remains to show that

the natural maps from (Zk ∩ Zk) to Hk and Hk are both isomorphisms. This follows from applying
Theorem A item (4) to both C• and C•. �

5. Harmonic Representatives on CW Complexes over Fp
We have explored when a chain complex C• is homologically harmonic in degree k. However, in

the case that C• = C•(X;F), it is not clear how changing the field F affects this property. In this
section, we examine the special case where F = Fp is a finite field of prime order, examining for which
p a fixed CW complex is homologically harmonic over Fp. Our conditions are based on the integer Υ,
which is itself defined in terms of the following combinatorial structure.

Definition 5.1 ([7, Definition 1.10]). Let X be a finite CW complex with dimension at least k. A
k-dimensional spanning cotree of X is a subcomplex L such that

• X(k−1) ⊆ L ⊆ X(k)

• The inclusion iL : L→ X induces rational isomorphisms

iL∗ : Hk(L;Q)→ Hk(X;Q) and iL∗ : Hk−1(L;Q)→ Hk−1(X;Q) .

Remark 5.2. Recall that the rows of the matrix ∂k : Ck(X)→ Ck−1(X) correspond to the k-cells of
X. We could equivalently define a k-dimensional spanning cotree to be a subcomplex X(k−1) ⊆ L ⊆
X(k) such that the k-cells not in L form a row basis for the matrix ∂k.

Spanning co-trees of the appropriate dimension always exist [7, Lemma 2.1]. Furthermore, the
rational isomorphisms in their definition imply the relative integral homology group Hk(X,L) is
always finite for any k-dimensional spanning cotree L.

Definition 5.3. Given a k-dimensional spanning cotree L, the weight of L is

aL = |Hk(X,L)|.

Definition 5.4. Given a finite CW complex X and k ≥ 0, define

Υ = Υ(X, k) =

(∑
L

a2L

)∏
L

aL ,

where the sum and product are each over all k-dimensional spanning cotrees of X.

Definition 5.5. Let Z(p) ⊆ Q be the subring of rational numbers with denominators not divisible by

p. Define rp : Z(p) → Fp to be the ring map rp(a/b) = ab−1 mod p. Given a matrix A with entries in
Z(p), define RpA to be the matrix obtained by applying rp entrywise to A.
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Lemma 5.6. Let p be a prime not dividing any denominators of the entries of π†π, and such that
Hk(X) has no p-torsion. Then the matrix Rp(π

†π) is the orthogonal projection map of Ck(X;Fp)
onto Zk(X;Fp) with respect to the standard bilinear form bk on Ck(X;Fp). That is,

• Rp(π†π) is self-adjoint under bk.
• Rp(π†π) fixes its image.
• im(Rp(π

†π)) = Zk.

Proof. First, it is clear that since π†π is a symmetric matrix, so is Rp(π
†π). A symmetric matrix is

self-adjoint under the standard bilinear form bk if and only if it is symmetric, so Rp(π
†π) is indeed

self-adjoint.
We show that im(Rp(π

†π)) ⊆ Zk(X;Fp). If we let c ∈ Ck(X;Fp) and pick c′ ∈ Ck(X;Q) with
rp∗(c

′) = c, then we have

Rp(π
†π)(c) = rp∗(π

†π(c′)).

Since π†π(c′) is always a cocycle, and rp∗ is a chain map, we get that rp∗(π
†π(c′)) ∈ Zk(X;Fp).

Finally, we show Rp(π
†π) fixes every z ∈ Zk(X;Fp). We claim that there is a z′ ∈ Zk(X;Z[Υ−1])

such that rp∗(z
′) = z. To see this, consider the short exact sequence of groups

0→ Z[Υ−1]
·p−→ Z[Υ−1]

rp−→ Fp → 0 ,

and the induced short exact sequence of cochain complexes

0→ Ck(X;Z[Υ−1])
·p−→ Ck(X;Z[Υ−1])

rp∗−−→ Ck(X;Fp)→ 0.

The snake lemma gives us the exact sequence

Zk(X;Z[Υ−1])
rp∗−−→ Zk(X;Fp)

δ−→ Ck+1(X;Z[Υ−1])/Bk+1(X;Z[Υ−1]).

To prove that our desired z′ exists, by exactness it suffices to show that δ = 0. Indeed, Zk(X;Fp)
consists entirely of p-torsion, so it further suffices to show that Ck+1(X;Z[Υ−1])/Bk+1(X;Z[Υ−1])
has no p-torsion. A representative of a p-torsion element would be a chain x ∈ Ck+1(X;Z[Υ−1]) with
px = ∂∗y for some y. Then px is a cocycle, and hence so is x. We now have that x represents a
p-torsion class of Hk+1(X;Z[Υ−1]). By an application of the universal coefficient theorem, since p - Υ,
the p-torsion of Hk+1(X;Z[Υ−1]) is isomorphic to the p-torsion of Hk(X), and we have assumed that
the only such homology class is trivial. Therefore δ = 0, and we can pick a cocycle z′ with rp∗(z

′) = z.

Rp(π
†π)(z) = rp∗(π

†π(z′)) = rp∗(z
′) = z,

which completes the proof. �

Corollary 5.7. If p does not divide the denominators of the entries of the matrix π†π and Hk(X) has
no p-torsion, then Ck(X;Fp) = Zk(X;Fp) +Bk(X;Fp), and X is homologically harmonic in degree k
over Fp.

Proof. Pick any chain c ∈ Ck(X;Fp). Then

c = (c−Rp(π†π)(c)) +Rp(π
†π)(c).

By the previous result, Rp(π
†π)(c) is a cocycle. To show that c−Rp(π†π)(c) is a boundary, we write

Rp(π
†π)(c−Rp(π†π)(c)) = Rp(π

†π)(c)−Rp(π†π) ◦Rp(π†π)(c).

Again by the previous result, Rp(π
†π) fixes its image, so the above expression is 0. Then c−Rp(π†π)(c)

is a boundary, since it is orthogonal to every cocycle z:

bk(z, c−Rp(π†π)(c)) = bk(z, c)− bk(z,Rp(π
†π)(c))

= bk(z, c)− bk(Rp(π
†π)(z), c)

= bk(z, c)− bk(z, c) = 0.
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Hence Ck(X;Fp) = Zk(X;Fp) + Bk(X;Fp). By Theorem A, it follows that X is homologically
harmonic in degree k over Fp. �

The conditions of Corollary 5.7 depend on the denominators of π†π. The following proposition
gives a combinatorial description of the denominators that can appear.

Theorem 5.8. The entries of the matrix π†π lie in Z[Υ−1].

Proof. By clearing denominators (or choosing an appropriate basis for Ck(X;Q)/Bk(X;Q)), we may
assume the entries of π are integers. Following [7, Thm A] as adapted from the general construction
of [5, Thm 2.1], we can give an explicit construction of π†. Let m be the rank of Ck(X;Q)/Bk(X;Q)
and for a subset S ⊂ {1, 2, . . . , |Xk|} of cardinality m, let πS denote the m×m submatrix of π whose
rows correspond to indices in S. We restrict our focus to only those S so that πS is invertible. Denote
the inclusion corresponding to those rows by iS : Zm → Ck(X), set tS = det(πS)2, and finally set
∇ =

∑
S tS . Then

π† = 1
∇

∑
S

tSiS(πS)−1 .

Under the correspondence described in [7, Thm A, Rem 2.7], each such S corresponds to a spanning
cotree L and furthermore, tS = a2L. The inverse iS(πS)−1 requires the invertibility of aL and thus by
definition of Υ, π† has coefficients in Z[Υ−1]. Hence the product π†π has coefficients in Z[Υ−1]. �

6. Harmonic Representatives on Orientable Surfaces

A given CW complex X may have many spanning cotrees of a given dimension, since the corre-
sponding boundary map may have many row bases. This can make Υ difficult to compute directly.
In the case that X = M is a CW structure on an orientable surface, the formula for Υ can be simpli-
fied, making its computation simpler. As we will show, for any spanning cotree L of M , the relative
homology group H1(M,L) is trivial, in which case the formula for Υ simplifies to just the number of
spanning cotrees. We take the convention that a surface is connected.

6.1. The Dual Cell Structure. Given a CW decomposition M of an orientable surface, there
are multiple ways of constructing the dual complex M∗ [13]. A careful construction of the dual cell
structure is beyond the scope of this paper. The salient points we need are the following.

• There is a canonical bijection between the k-cells ofM and the (2−k)-cells ofM∗ for 0 ≤ k ≤ 2.
This lets us identify Ck(M) and C2−k(M∗).

• Under the above identifications, ∂M
∗

1 : C1(M∗)→ C0(M∗) is the transpose of ∂M2 : C2(M)→
C1(M), and similarly ∂M

∗

2 : C2(M∗)→ C1(M∗) is the transpose of ∂M1 : C1(M)→ C0(M).

6.2. Connections between Spanning Trees and Cotrees. In Remark 5.2 we note that a spanning
cotree can be defined as corresponding to the complement of a row basis for the appropriate boundary
matrix. We can similarly define a k-dimensional spanning tree T to be a subcomplex X(k−1) ⊆ T ⊆
X(k) such that the k-cells of T correspond to a column basis for ∂k (see [6] for a homological definition).
When X is a connected graph and k = 1, this definition aligns with the usual graph-theoretic notion
of a spanning tree. When it is understood that T is a k-dimensional spanning tree, we often identify
T with its set of k-cells Tk ⊂ Xk.

Given a subcomplex X(k−1) ⊆ L ⊆ X(k) such as a spanning tree or cotree, we use L⊥ to denote
the subcomplex X(k−1) ⊆ L⊥ ⊆ X(k) whose k-cells are Xk \Lk. If we identify L with its set of k-cells,
then L⊥ is simply the complement of L. In the special case that L is a 1-dimensional spanning cotree
of a CW structure M on an orientable manifold, L⊥ can be thought of as a 1-dimensional spanning
tree of the dual cell structure M?. This is because if L is a spanning cotree, then its 1-cells correspond
to the complement of a row basis for ∂M2 . Hence the 1-cells of L⊥ correspond to a column basis of
(∂M2 )∗ = ∂M

∗

1 .

Definition 6.1. Given a k-dimensional spanning tree T , its weight is defined to be

θT = |Hk−1(T )t|.
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The following result can simplify calculations of weights of spanning trees and cotrees. LetXk,k−2 :=

X(k)/X(k−2), the k-skeleton of X with the (k − 2)-skeleton collapsed to a point.

Proposition 6.2 ([7, Lemma 4.2]). For any spanning tree T or spanning cotree L,

θT = θTk,k−2
aL = aLk,k−2

.

The following formula from the same paper will help us relate these weights to the restricted
Laplacian.

Proposition 6.3 ([7, Theorem C] Higher Matrix-Tree Theorem). Let L̂k : Bk(X) → Bk(X) be the
Laplacian restricted to the k-boundaries. Then

det L̂k =
1

θ2X

(∑
L

a2L

)(∑
T

θ2T

)
,

where the first sum ranges over all k-dimensional spanning cotrees of X, and the second ranges over
(k + 1)-dimensional spanning trees.

6.3. Smith Normal Form. Given an m × n integer matrix A, its Smith normal form is another
m× n matrix SAT where S ∈ GLm(Z), T ∈ GLn(Z), and SAT is of the form

a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .

0 0 0 0


with ai | ai+1 for all i. The Smith normal form of A always exists and is unique up to the signs of the
nonzero entries. The crucial properties we will be using are that the Smith normal forms of A and
AT are themselves transposes, and that | coker(A)| = | coker(SAT )| = |a1 . . . ak|.

Lemma 6.4. Let T be a k-dimensional spanning tree of X, and let t1, . . . , tn be the nonzero entries

of the Smith normal form of the composition Ck(T ) ↪→ Ck(X)
∂→ Ck−1(X). Then

θT = t1 · · · tn.

Similarly, if L is a (k − 1)-dimensional spanning cotree of X, and `1, . . . , `n are the nonzero entries

of the Smith normal form of Ck(X)
∂→ Ck−1(X) � Ck−1(X)/Ck−1(L), then

aL = `1 · · · `n.

Remark 6.5. The matrix for Ck(T ) ↪→ Ck(X)
∂→ Ck−1(X) is the boundary matrix for X restricted

to the columns corresponding to the k-cells of T , precisely the submatrix mentioned in our definition

of a spanning tree. Similarly, the matrix for Ck(X)
∂→ Ck−1(X) � Ck−1(X)/Ck−1(L) is the boundary

matrix for X after removing the rows corresponding to the (k − 1)-cells of L, which is the submatrix
mentioned by Remark 5.2.

Proof of 6.4. We handle the spanning tree first. We know that θT = θTk,k−2
= |Hk−1(T )t| by Propo-

sition 6.2, which is the size of the torsion part of the (k − 1)-homology of the chain complex

· · · → 0→ Ck(T )
∂T
k→ Ck−1(T )→ 0→ . . . ,

whose homology is coker(∂Tk ). Note that Ck−1(T ) = Ck−1(X), and the map ∂Tk is the boundary map
∂ : Ck(X) → Ck−1(X) restricted to Ck(T ). Therefore we can factor the map as the composition in
the statement of the lemma. Our remark about the size of the cokernel in Subsection 6.3 finishes this
part.
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The spanning cotree is handled similarly. Using the fact that aL = aLk,k−2
, it suffices to calculate

the k − 1 homology of the relative chain complex

· · · → 0→ Ck(X)/Ck(L)
∂k→ Ck−1(X)/Ck−1(L)→ 0→ . . . ,

which is coker(∂k). We already know this cokernel is finite, since its order is aL, so its free part
must be trivial. Note that Ck(L) = 0, so the domain of this map is Ck(X). It then factors as the
composition in the statement of the lemma. Since the entire cokernel is torsion, we can again use our
remark about the size of the cokernel in Subsection 6.3 to finish the proof. �

For the statement of the following lemma, recall that if L is a 1-dimensional spanning cotree of M ,
we can regard L⊥ as a 1-dimensional spanning tree of M∗.

Lemma 6.6. If L is a spanning cotree for M of any dimension 0 ≤ k ≤ 2, then aL = θL⊥ .

Proof. The matrices for Ck+1(M)
∂M
k+1→ Ck(M) � Ck(M)/Ck(L) and Ck(L⊥) ↪→ Ck(M∗)

∂M∗
k→ k−1 (X)

are transposes of each other. Indeed, the former is the matrix for ∂Mk+1 with the rows corresponding

to the 1-cells of L removed, while the latter is the matrix for ∂M
∗

k (the transpose of ∂Mk+1) with the
columns corresponding to the 1-cells of L removed. Since these matrices are transposes, we conclude
that their Smith normal forms are transposes as well, and in particular have the same nonzero entries.
Lemma 6.4 finishes the proof. �

Lemma 6.7. For any 1-dimensional spanning cotree L of M , aL = 1.

Proof. By Lemma 6.6, it suffices to prove that every 1-dimensional spanning tree T of M∗ has weight
1. This follows since zero-degree homology is always free. �

Theorem 6.8. Let M be a CW structure on an orientable surface. Then Υ(M, 1) is the number of
1-dimensional spanning cotrees of M , which equals

Υ(M, 1) = det L̂1/|M2|

where L̂1 : B1(X)→ B1(X) is the restricted Laplacian, and |M2| is the number of 2-cells of M .

Proof. The fact that Υ(M, 1) equals the number of spanning cotrees of M follows immediately from
Lemma 6.7 and the definition of Υ(M, 1):

Υ(M, 1) =

(∑
L

|H1(X,L)|2
)∏

L

|H1(X,L)| =

(∑
L

a2L

)∏
L

aL =
∑
L

1.

Rearranging the equation of Proposition 6.3 gives the expression

Υ(M, 1) =
θ2X det L̂1∑

T θ
2
T

Since X is an orientable surface, its second homology has no torsion and θX = 1. Additionally, we
can rewrite each θT as aT⊥ , the weight of a zero-dimensional spanning cotree in M∗. We can derive
from the definition of a spanning cotree that any spanning cotree of a connected complex consists of
a single vertex. Hence θT = aL⊥ = 1. Plugging these into the equation above gives

Υ(M, 1) =
det L̂1

|(M∗)0|
=

det L̂1

|M2|
. �

Corollary 6.9. Let M be a CW structure on an orientable surface and p a prime not dividing

det L̂1/|M2|. Then M is homologically harmonic in degree 1 over Fp.
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Figure 3. A harmonic representative on the torus. (Top) A minimal triangulation
X of the torus, with 7 vertices, 21 edges, and 14 faces. The vertices and edges along
the top edge of the square are identified with those on the bottom, and similarly
with the left and right edges. (Lower left) The cycle x ∈ Z1(X;F2). The edges in
its support are emphasized in blue, with all other edges drawn dashed. (Lower right)
The unique harmonic representative of the homology class [x], drawn in the same
fashion.

7. Experiments

In this section we present visualizations of harmonic representatives over various fields. Much of the
underlying SageMath code from this section is available as a Python package called simpleHarmony.
The source code, installation instructions, and examples can be found on github [26]. Our examples
come from two common applications of simplicial complexes: triangulations of surfaces and point cloud
datasets. There are several methods of constructing a simplicial complex on the latter, including the
C̆ech complex and alpha complex. We elect to use the Vietoris-Rips complex, which is the clique
complex on a proximity graph of the data points. See [12] for a friendly introduction to C̆ech and
Vietoris-Rips complexes, and their applications to persistent homology.

With a simplicial complex X in hand, we manually choose an integral cycle z ∈ Z(X;Z) which
appears to represent a topological feature of interest. We rationalize this cycle by mapping it to
Z(X;Q), where we then compute and plot its harmonic representative using the pseudoinverse from
Theorem 4.8. For comparison, we also map the integral cycle to Z(X;Fp) for some prime p and
calculate its harmonic representative using the same method. As highlighted by Lemma 4.9, the
pseudoinverse need not exist over Fp for all primes p, so we search for the smallest prime p such that
the necessary pseudoinverse exists. After finding such a prime, we proceed to compute and plot the
harmonic representative.

7.1. Minimal Triangulation of the Torus. Consider the minimal triangulation of the torus de-
picted in Figure 3 (top). We examine the first degree homology and harmonic representatives of this
simplicial complex X over the field F2. Using code written in sage, we verify that X is homologically
harmonic over F2 in degree 1. This allows us to pick a particular cycle x ∈ Z1(X;F2) (Figure 3, bottom
left) and compute the unique harmonic representative of [x] (Figure 3, bottom right). We perform
this computation by calculating the pseudoinverse from Theorem A statement (9) and applying it to
[x].

Alternatively, we can use the methods of Section 5 to find the same representative. Indeed, we
use sage to compute the determinant of the restricted Laplacian and, using Theorem D, arrive at
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Υ(X, 1) = 3 · 75 = 50421. Since Υ is odd and p = 2, Theorem D also ensures that X is homologically
harmonic in degree k over Fp. Furthermore, Theorem 5.8 ensures that the entries of the rational matrix
π†π fall within Z[Υ−1]. Applying Rp(π

†π) to x then gives the same F2-harmonic representative as
before, showing that the two methods do indeed agree as expected.

7.2. Point Cloud Sampled from a Lemniscate. For this experiment, we randomly sample 50
points from a lemniscate (a self-intersecting smooth curve homeomorphic to the wedge product S1∨S1)
embedded within R2 with Gaussian noise. We construct the Vietoris-Rips complex X on this dataset
with radius 0.45 (Figure 4, top left). We pick an integral cycle of interest z ∈ H1(X;Z), by selecting
a cycle whose support wraps around the right hand side (Figure 4, top right). We then consider z as
a cycle over both Q and F5, computing its harmonic representative in each case (Figure 4, middle left
and right). In the latter case, we achieve this with the pseudoinverse from Theorem A item (9). To
highlight the similarity between these harmonic representatives, we also plot the symmetric difference
of their supports (Figure 4, bottom).

In this case, the harmonic representatives over both Q and F5 seem to visualize the initial geometric
feature, with the support of each lying most heavily on the right hand circle. They both localize the
topological phenomenon we are trying to isolate. This highlights one potential application of harmonic
representatives over finite fields to topological data analysis, allowing practitioners another way to
visualize persistent homology classes.

7.3. Point Cloud Sampled from S1 ∨ S2 ∨ S1. We next run a similar experiment on a larger
dataset in R3, inspired by [10, Section 3.1], wherein we sample 130 points from S1 ∨S2 ∨S1, a sphere
with two circles attached at antipodal points. Of those 130 points, we take 70 from the sphere and
30 from each circle, with Gaussian noise of standard deviation 0.02. We construct the Vietoris-Rips
complex X on this dataset with radius 1.3 and choose an integral cycle z ∈ H1(X;Z) whose support
encompasses the circle attached to the right hand side of the sphere (Figure 5, top left). As in the
previous experiment, we plot the harmonic representatives of z when considered as a cycle over Q and
a finite field (Figure 5, top right, bottom left). This time, the smallest field over which our calculation
succeeded was F47, showing that X is not homologically harmonic over any smaller primes.

Notice that the support of the harmonic representative over the finite field is much larger in this
case than the previous experiment. Indeed, of the 1948 1-simplices in the Vietoris-Rips complex, 1893
have a nonzero coefficient in this cycle, which is not far from the 1907 that we would expect from a
randomly chosen 1-chain. Note, however, that the support of the rational harmonic form is similarly
large, as shown by the relatively sparse symmetric difference of the supports (Figure 5, bottom right).
These results also differ from the previous experiment in that we require a much larger finite field
before the statements of Theorem A hold.
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