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Abstract. Vietoris–Rips metric thickenings have previously been proposed as an alternate approach

to understanding Vietoris–Rips simplicial complexes and their persistent homology. Recent work has

shown that for totally bounded metric spaces, Vietoris–Rips metric thickenings have persistent homology

barcodes that agree with those of Vietoris–Rips simplicial complexes, ignoring whether endpoints of bars

are open or closed. Combining this result with the known homotopy types and barcodes of the Vietoris–

Rips simplicial complexes of the circle, the barcodes of the Vietoris–Rips metric thickenings of the circle

can be deduced up to endpoints, and conjectures have been made about their homotopy types. We

confirm these conjectures are correct, proving that the Vietoris–Rips metric thickenings of the circle

are homotopy equivalent to odd-dimensional spheres at the expected scale parameters. Our approach

is to find quotients of the metric thickenings that preserve homotopy type and show that the quotient

spaces can be described as CW complexes. The quotient maps are also natural with respect to the scale

parameter and thus provide a direct proof of the persistent homology of the metric thickenings.

1. Introduction

Vietoris–Rips simplicial complexes have gained attention recently because of their use in applied topol-

ogy, and in particular, they provide a practical method of computing persistent homology. This method

is justified theoretically by stability theorems that show Vietoris–Rips persistent homology handles per-

turbations to the underlying space well ([8]). Despite their use and these stability theorems, there is

still a limited theoretical understanding of the topology of Vietoris–Rips complexes, even for simple

underlying spaces. One significant discovery in this area was the homotopy types of the Vietoris–Rips

complexes of the circle, given in [2]. This built on previous work in [1], which gave the homotopy types

of finite numbers of evenly spaced points on the circle; along with the stability of persistent homology,

these finite cases suggested reasonable conjectures for the Vietoris–Rips complexes of the circle. This

understanding of the Vietoris–Rips complexes of the circle has led to an improved interpretation of the

persistent homology of more general spaces: [17] shows that certain loops in a space may be detected by

persistent homology, as they contribute persistent homology bars similar to those of the circle.

Other work in this area has improved the understanding of the homotopy types of Vietoris–Rips

complexes of general n-spheres at low scale parameters: two distinct approaches of [13] and [18] apply

in a range of scale parameters where the homotopy type of the n-sphere is recovered. Furthermore, [13]

describes how their results in fact improve upon those implied by Hausmann’s theorem ([10]), which

states that in the more general setting of Riemannian manifolds, the Vietoris–Rips complexes recover

the homotopy type of the manifold at low scale parameters (in a range depending on the manifold).

Vietoris–Rips metric thickenings, along with more general simplicial metric thickenings, were intro-

duced in [3] and provide an alternate approach. Their topology agrees with Vietoris–Rips complexes in

the case of finite underlying spaces but can differ in general. However, results in [14] and [5] show that,

under reasonable conditions, the persistent homology barcodes of Vietoris–Rips metric thickenings agree

with those of Vietoris–Rips complexes, ignoring differences of open or closed endpoints of bars. This

suggests a close topological relationship between these two constructions. In particular, the barcodes of

the Vietoris–Rips metric thickenings of the circle agree with those of the Vietoris–Rips complexes of the

circle, which provides some evidence that the homotopy types should agree. The homotopy types of the

metric thickenings were in fact already conjectured based on the known homotopy types of the simplicial

complexes: see for example Conjecture 6 of [4]. The homotopy types of the metric thickenings of the

circle have previously been found for only low scale parameters [3, 4, 6]. More generally, Theorem 5.4
1
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of [3] identifies the first new homotopy type, Sn ∗ SO(n+1)
An+2

, that appears in the filtration of Vietoris–Rips

metric thickenings of any n-sphere. The proof applies at the single lowest scale parameter at which the

metric thickening is no longer homotopy equivalent to the n-sphere.

We will use the intuition provided by these previous results to find all homotopy types of the Vietoris–

Rips metric thickenings of the circle. The main results are the following homotopy types, given in

Theorem 2:

VRm
≤ (S1; r) '

{
S2k+1 if r ∈

[
2kπ

2k+1 ,
(2k+2)π

2k+3

)
{∗} if r ≥ π.

Our technique will first show the metric thickenings are homotopy equivalent to CW complexes, which

provide a clear understanding of why these homotopy types appear. These CW complexes provide a

much simpler view of the metric thickenings and will in fact be constructed as quotients of the metric

thickenings. The quotients will identify each measure with a measure supported on an odd number of

regularly spaced points on the circle; a large part of our work will be dedicated to constructing the

quotient maps and showing they are homotopy equivalences.

The CW complexes reveal the homotopy types of odd-dimensional spheres as follows. For k ≥ 0 and

r ∈
[

2kπ
2k+1 ,

(2k+2)π
2k+3

)
as shown above, there is one n-cell for each dimension 0 ≤ n ≤ 2k + 1. The 1-cell

is glued by its two endpoints to the 0-cell to create a circle, which should be viewed as the underlying

copy of S1. For k ≥ 1, the metric thickening contains measures supported on three evenly spaced points

around the circle, which can be viewed as points of a triangle, so we obtain a subspace of triangular

measures on a set of triangles parameterized by a circle. The single two cell is represented by a single

distinguished equilateral triangle and is glued by its boundary to the circle to produce a 2-disk. The

remaining triangles are parameterized by an interval, so adding in the remaining triangular measures

amounts to gluing in a 3-cell. The boundary of this 3-cell is glued to the contractible 2-disk, producing a

space homotopy equivalent to S3. Higher dimensional spheres appear similarly. For the final two steps,

a single distinguished 2k-cell, represented by measures supported on a chosen set of 2k+ 1 evenly spaced

points, is glued into the previous (2k − 1)-sphere to produce a 2k-disk, and then a (2k + 1)-cell is glued

in by its boundary, giving a space homotopy equivalent to S2k+1.

D0 S1 D2 S3

Figure 1. The CW complex giving the homotopy type of S3 has one cell in dimensions
0, 1, 2, and 3. The 2-cell is a triangle and is glued by its boundary to the circle. The
3-cell is a triangular prism with cross sectional triangles corresponding to all equilateral
triangles on the circle. Both of its triangular faces are glued to the 2-cell, with the top
face rotated by 2π

3 . The rectangular faces are collapsed to the circle.
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This approach of reducing to a CW complex is reminiscent of Morse theory and will hopefully con-

tribute to the development of a more general Morse-like theory for simplicial metric thickenings. Morse-

theoretic ideas have previously been applied to related problems. One such idea is described in [11], and

this work was later found to be closely related to Vietoris–Rips complexes; see [13]. The main result

of [11] in fact implies the homotopy type of S3 in the case of Vietoris–Rips complexes of the circle.

Discrete Morse theory has also been applied to the study of the Vietoris–Rips complexes of spheres: [18]

uses a version of discrete Morse theory to show the complexes recover the homotopy types of n-spheres

at low scale parameters.

This paper is organized as follows. In Section 2, we provide the relevant background information

on Vietoris–Rips metric thickenings and give a useful technique for constructing homotopies in metric

thickenings. Section 3 describes properties of the Vietoris–Rips metric thickening of the circle that will

be used throughout, many of which suggest the methods of the later sections. In Section 4, we give

background information and basic results related to quotients and the homotopy extension property, and

we show that certain pairs of subspaces of the metric thickenings of the circle have the homotopy extension

property. Section 5 describes homotopies that collapse certain subspaces of the metric thickenings, and

in Section 6, we piece these homotopies together, defining a quotient map that is a homotopy equivalence.

In Section 7, we show this quotient has the CW complex structure described above and use the CW

complex to find the homotopy types of the metric thickenings. As a final result, in Section 8, we find the

persistent homology of the metric thickenings directly, that is, without relying on any previous knowledge

about the simplicial complexes.

2. Background, Notation, and Conventions

We begin with an overview of Vietoris–Rips metric thickenings and the concepts from optimal trans-

port used to define them. Details and further properties sufficient for our purposes can be found in [3],

and more general constructions and technical discussions can be found in [5].

2.1. Spaces of Probability Measures and the Wasserstein Distance. For any metric space (X, d),

we let Pfin(X) be the space of finitely supported probability measures on X with the 1-Wasserstein

distance. We write the 1-Wasserstein distance as dW for any space (and from Section 3 on, it will always

be the 1-Wasserstein distance on subspaces of Pfin(S1)). Each finitely supported probability measure

µ ∈ Pfin(X) can be written as a convex combination of delta measures: µ =
∑n
i=1 aiδxi where ai ≥ 0 for

each i,
∑n
i=1 ai = 1, each δxi is the delta measure at xi, and x1, . . . , xn ∈ X. We can think of each ai as

the amount of mass located at the point xi. We write the support of a measure µ ∈ Pfin(X) as supp(µ),

so if µ =
∑n
i=1 aiδxi , we have supp(µ) = {xi | ai > 0}.

The 1-Wasserstein distance can be thought of in the language of optimal transport: we will imagine

transporting the mass of one measure to the mass of another, where moving a mass of m from x to x′

costs m · d(x, x′). In our setting of finitely supported probability measures, the 1-Wasserstein distance

has a simple description. A transport plan between two measures µ =
∑n
i=1 aiδxi and µ′ =

∑n′

j=1 a
′
jδx′j

can be described by a matching, an indexed set κ = {κi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n′} of nonnegative real

numbers such that
∑n
i=1 κi,j = a′j for each j and

∑n′

j=1 κi,j = ai for each i. Each κi,j represents the

mass transported from xi to x′j , and we will sometimes succinctly describe matchings by describing how

mass is transported. The cost of this matching is defined by cost(κ) =
∑n
i=1

∑n′

j=1 κi,jd(xi, x
′
j). The

1-Wasserstein distance between µ and µ′ is then given by

dW (µ, µ′) = inf
κ

(cost(κ)) = inf
κ

 n∑
i=1

n′∑
j=1

κi,jd(xi, x
′
j)

 ,

where the infimum is taken over all matchings κ from µ to µ′. In this setting of finitely supported

measures, the infimum is always attained (the space of matchings is a compact subset of Rn·n′), and a

matching κ from µ to µ′ such that cost(κ) = dW (µ, µ′) will be called an optimal matching.
3



A convenient way of working with topology of Pfin(X) comes from the relationship between the

Wasserstein distance and weak convergence. A sequence of measures {µn}n≥0 in Pfin(X) is said to

converge weakly to µ ∈ Pfin(X) if limn→∞
∫
X
f dµn =

∫
X
f dµ for all bounded and continuous f : X → R.

We record the following result in language that applies to our work: for a more general statement, see [16].

Lemma 1. Let X be a Polish bounded metric space and suppose {µn}n≥0 is a sequence of measures in

Pfin(X). Then {µn}n≥0 converges weakly to µ ∈ Pfin(X) if and only if limn→∞ dW (µn, µ) = 0.

Proof. This is a special case of Theorem 7.12 of [16] (the case of bounded metric spaces is mentioned in

Remark 7.13(iii) following the theorem). �

We will be interested in the case where X = S1. The lemma applies since S1 is a Polish space: it

is separable and is complete with respect to either the usual Euclidean metric or the geodesic metric,

which we describe in Section 2.3.

2.2. Vietoris–Rips Metric Thickenings and Support Homotopies. For r ∈ R, the traditional

Vietoris–Rips simplicial complex VR≤(X; r) has all finite subsets of X of diameter at most r as simplices1.

To define the Vietoris–Rips metric thickening, we replace the points of the simplices in this definition

with the corresponding finitely supported probability measures. That is, we define the Vietoris–Rips

metric thickening VRm
≤ (X; r) to be the subspace of Pfin(X) consisting of all measures µ such that

supp(µ) has diameter at most r. The topology of VRm
≤ (X; r) is thus the metric topology given by

the 1-Wasserstein distance2. For all r ≥ 0, the original metric space X is isometrically embedded

in VRm
≤ (X; r) by the map x 7→ δx. The corresponding inclusion from X into the simplicial complex

VR≤(X; r) is not even necessarily continuous, as the vertices of a simplicial complex form a discrete

subspace; this is an important difference between the topologies of metric thickenings and simplicial

complexes. We can extend the map x 7→ δx above by taking convex combinations to obtain a bijection

VR≤(X; r)→ VRm
≤ (X; r), which is in fact continuous. The inverse VRm

≤ (X; r)→ VR≤(X; r), however,

is not necessarily continuous (X can be naturally embedded in VRm
≤ (X; r) as above, but this is not

necessarily true for VR≤(X; r)).

We now show that the metric thickening topology allows for a convenient way of constructing homo-

topies in VRm
≤ (X; r). In fact, we consider the more general setting of subspaces of Pfin(X). The following

lemma shows that if X is bounded, then continuously deforming the supports of measures in a subset

U ⊆ Pfin(X) results in a homotopy U × I → X, as long as all measures remain in U as their supports

are deformed. We will allow the motion of a mass at a point x in supp(µ) to depend on both x and µ,

so we begin with a homotopy on the subspace Q(X,U) = {(x, µ) ∈ X ×U | x ∈ supp(µ)} ⊆ X ×U . We

define a support homotopy in U to be a homotopy H : Q(X,U) × I → X such that for any t ∈ I and

any µ =
∑n
i=1 aiδxi ∈ U with ai > 0 for each i, we have

∑n
i=1 aiδH(xi,µ,t) ∈ U (here we require µ to be

written with each ai positive so that xi ∈ supp(µ), making (xi, µ, t) in the domain of H). The following

lemma shows that a support homotopy in U induces a homotopy H̃ : U × I → U if X is bounded. The

proof uses ideas similar to the proof of Lemma 5.2 of [3].

Lemma 2. Let (X, d) be a bounded metric space and let U ⊆ Pfin(X). If H : Q(X,U) × I → X is a

support homotopy in U , then H̃ : U × I → U given by H̃(µ, t) =
∑n
i=1 aiδH(xi,µ,t) for µ =

∑n
i=1 aiδxi

with ai > 0 for each i, is well-defined and continuous.

Proof. Up to reordering, there is a unique way to write a measure µ ∈ U ⊆ Pfin(X) as µ =
∑n
i=1 aiδxi

with ai > 0 for each i and with x1, . . . , xn distinct. Note that if x1, . . . , xn are not distinct, this does

not affect the value of H̃(µ, t), so H̃(µ, t) is uniquely determined for each (µ, t) ∈ U × I. Furthermore,

by definition of a support homotopy, H̃ does in fact send elements of U × I into U , so it is a well-defined

1We use the ≤ convention, which includes simplices that have a diameter of exactly r. Also note that we use the same
definition for all r ∈ R, so that for r < 0, VR≤(X; r) is empty.
2If X is a bounded metric space, then any p-Wasserstein distance with p ∈ [1,∞) gives VRm≤ (X; r) the same topology: this

is discussed (in more generality) in [5].
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function; we must show it is continuous. Since X is bounded, let C > 0 be such that d(x, y) < C for

any x, y ∈ X. Fix t ∈ I and µ =
∑n
i=1 aiδxi ∈ U with each ai > 0. To show continuity of H̃ at (µ, t), let

ε > 0. Using continuity of H at the finitely many points (x1, µ, t), . . . , (xn, µ, t), there exist η1, η2, η3 > 0

such that for each i, if (y, µ′, t′) ∈ Q(X,U) × I satisfies d(xi, y) < η1, dW (µ, µ′) < η2, and |t − t′| < η3,

then d(H(xi, µ, t), H(y, µ′, t′)) < ε
2 . We will reduce η2 if necessary so that 0 < η2 <

εη1
2C .

Suppose (µ′, t′) ∈ U × I satisfies dW (µ, µ′) < η2 and |t− t′| < η3, where µ′ =
∑n′

j=1 a
′
jδx′j . Then there

exists a matching {κi,j} from µ to µ′ such that
∑
i,j κi,jd(xi, x

′
j) < η2. Let A = {(i, j) | d(xi, x

′
j) ≥ η1}

and B = {(i, j) | d(xi, x
′
j) < η1}. Then we have∑

(i,j)∈A

κi,j ≤
∑

(i,j)∈A

κi,j
d(xi, x

′
j)

η1
<
η2

η1
<

ε

2C
.

We can use the same {κi,j} to define a matching between the measures H̃(µ, t) =
∑n
i=1 aiδH(xi,µ,t) and

H̃(µ′, t′) =
∑n′

j=1 a
′
jδH(x′j ,µ

′,t′), and by our choice of η1,η2, and η3, we have

dW (H̃(µ, t), H̃(µ′, t′))

≤
∑
i,j

κi,jd(H(xi, µ, t), H(x′j , µ
′, t′))

=
∑

(i,j)∈A

κi,jd(H(xi, µ, t), H(x′j , µ
′, t′)) +

∑
(i,j)∈B

κi,jd(H(xi, µ, t), H(x′j , µ
′, t′))

<
∑

(i,j)∈A

κi,jC +
∑

(i,j)∈B

κi,j
ε

2

<
ε

2C
C +

ε

2

=ε.

Therefore H̃ is continuous at (µ, t). �

2.3. Coordinates on the Circle. We now describe some conventions for our work with the circle. The

straightforward techniques here will be used in detail later. We give the circle S1 the geodesic metric,

written dS1 , which assigns to two points the arc length of the shorter arc between them. We will typically

use an angle enclosed in square brackets to indicate a point on the circle: that is, [θ] = (cos(θ), sin(θ)).

The square brackets can be thought of as denoting equivalence classes of points identified by the map

R → S1 given by θ 7→ (cos(θ), sin(θ)). Thus, [θ1] = [θ2] if and only if θ1 − θ2 is an integer multiple

of 2π. We can then describe the distance between two points easily: without loss of generality, two

points can be written as [θ1] and [θ2] with θ1 ≤ θ2 ≤ θ1 + π, and the distance between them is given by

dS1([θ1], [θ2]) = θ2 − θ1.

It will be convenient to identify the circle minus a point with an open interval of length 2π on the real

line in a way that preserves distances locally. For any angle θ0 ∈ R and any chosen point y0 ∈ R, we can

make this identification by a coordinate system x : S1 − {[θ0]} → R defined by

x([θ]) = y0 + θ − θ0,

where the representative θ for [θ] is taken in the interval (θ0, θ0 +2π). The image of x is thus (y0, y0 +2π).

We will describe such an x as a coordinate system that excludes [θ0]. The 2π-periodic function τ : R→ S1

given by

τ(z) = (cos(z + θ0 − y0), sin(z + θ0 − y0))

is a left inverse for x, that is, τ ◦ x([θ]) = [θ] for [θ] 6= [θ0]. Composing in the other direction, we have

x ◦ τ(z) = z for z ∈ (y0, y0 + 2π). We note that τ preserves distances that are at most π. In general, we

have dS1(τ(z1), τ(z2)) ≤ dR(z1, z2), that is, τ is 1-Lipschitz. We will only use coordinate systems defined

as x is above, and we will also call (x, τ) a coordinate system to indicate that τ is the 2π-periodic left

inverse for x.
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We can convert between the coordinate system x and another, x′ : S1 − {[θ′0]} → R, defined by

x′([θ]) = y′0 + θ − θ′0,

where the representative θ for [θ] is taken in the interval (θ′0, θ
′
0 + 2π). We will assume without loss of

generality that θ0 ≤ θ′0 < θ0 + 2π. These coordinate systems are related as follows:

x([θ])− x′([θ]) =

{
(y0 − y′0) + (θ′0 − θ0)− 2π if θ0 < θ < θ′0

(y0 − y′0) + (θ′0 − θ0) if θ′0 < θ < θ0 + 2π,

where here we choose the representative θ for [θ] from the intervals (θ0, θ
′
0) or (θ′0, θ0 + 2π). If τ and τ ′

are the periodic left inverses, then we must have

τ(z) = τ ′(z − (y0 − y′0)− (θ′0 − θ0)).

2.4. The Vietoris–Rips Metric Thickenings of the Circle. Our main goal is to find the homotopy

type of VRm
≤ (S1; r) for each r. The homotopy types and the persistent homology barcodes of the

Vietoris–Rips complexes of the circle were found in [2]. Results in [14] and [5] show that the barcodes

of the Vietoris–Rips metric thickenings of the circle agree, ignoring whether endpoints of bars are open

or closed. Combining these results shows that Vietoris–Rips metric thickenings have one persistent

homology bar in each odd dimension 2k + 1, with endpoints 2kπ
2k+1 and (2k+2)π

2k+3 .

We will show that the Vietoris–Rips metric thickenings of the circle have homotopy types of odd

dimensional spheres in these intervals, as the barcodes suggest. Lemma 2 will be a key tool: it will allow

us to define homotopies in VRm
≤ (S1; r) by sliding support points along the circle. We use this technique

to collapse the metric thickening down to the CW complex described in the introduction, which we show

has the same homotopy type. The construction of this collapse will depend on properties specific to the

Vietoris–Rips metric thickenings of the circle, explored in the next section.

3. Odd numbers of arcs on the circle

A surprising amount of the structure of Vietoris–Rips metric thickenings of the circle will depend on

the following simple observation. Consider n distinct pairs of antipodal points on the circle, with one of

each pair colored blue and the other red. Given such a set of red and blue points on the circle, consider

the maximal length open arcs on the circle containing at least one blue point and no red points. We can

show by induction that there will always be an odd number of these maximal blue arcs. There is one arc

for n = 1 or n = 2, and adding a new pair changes the number of arcs only if the blue point is placed

between two consecutive red points. This introduces a new blue arc, but it also splits a previous blue

arc, since the antipodal red point was placed between two consecutive blue points. Therefore, each new

antipodal pair introduced increases the number of maximal blue arcs by either 0 or 2.

We find similar behavior in finite subsets of S1 with constrained diameter. Let r ∈ [0, π), and consider

a nonempty set Θ = {[θ0], . . . , [θn]} ⊂ S1 with diam(Θ) ≤ r. Since Θ cannot contain a pair of antipodal

points, we may color the points in Θ blue and the points opposite them red, obtaining the situation

described above. Furthermore, for any [θi] ∈ Θ, the open interval of length 2(π − r) opposite [θi] does

not contain any other point in Θ; we call a point in any such interval excluded by Θ. Let a (Θ; r)-arc be a

closed arc of maximal length such that there is at least one point of Θ contained in the arc and no point

excluded by Θ is contained in the arc. We allow the case where a (Θ; r)-arc consists of an individual

point. This simply shrinks the blue arcs described in the case of antipodal pairs, so the number of

(Θ; r)-arcs is still odd. Let arcsr(Θ) be the number of (Θ; r)-arcs.

If µ ∈ VRm
≤ (S1; r), then by definition diam(supp(µ)) ≤ r, so the definitions above may be applied

with Θ = supp(µ). In this case we will call a (supp(µ), r)-arc a (µ, r)-arc, and will write arcsr(µ) for

arcsr(supp(µ)). For any [θ] in supp(µ), we call any point in the open interval of length 2(π− r) opposite

[θ] a point excluded by µ (note that this definition depends on the parameter r – we will use this term

when r is understood). The set of all points excluded by µ may be called the excluded region of µ; this

is the set of points that are at distance greater than r from some point in supp(µ). Thus, a (µ, r)-arc
6



Figure 2. Visualization of Θ-arcs and points excluded by Θ. The blue points are points
of Θ and the red points are the points opposite them. The blue arcs show the Θ-arcs
and the red arcs are excluded by Θ.

is a closed arc of maximal length such that there is at least one point in supp(µ) contained in the arc

and no point excluded by µ is contained in the arc. Each point in supp(µ) is contained in exactly one

(µ, r)-arc, and as above, the number of (µ, r)-arcs is odd. Note that (µ, r)-arcs are defined entirely in

terms of supp(µ), so if µ and µ′ have the same support, then the (µ, r)-arcs agree with the (µ′, r)-arcs.

For any k ≥ 0, let V2k+1(r) be the set of all measures µ ∈ VRm
≤ (S1; r) that have exactly 2k+ 1 (µ, r)-

arcs, and let W2k+1(r) =
⋃k
l=0 V2l+1(r) be the set of measures µ with at most 2k + 1 (µ, r)-arcs. For

convenience, we will let V−1(r) and W−1(r) be empty. By definition, the V2k+1(r) are disjoint, and their

union over all k ≥ 0 is VRm
≤ (S1; r). We will mostly work with a fixed parameter r and will often suppress

the r from the notation. In particular, we will often write the sets of measures above as VRm
≤ (S1), V2k+1,

and W2k+1, and we will use the terms Θ-arc and µ-arc when r is fixed or understood from context.

For r ∈ [0, π), the region excluded by a point in the support of a measure has length 2(π − r) > 0,

so there is a maximum number of arcs a measure in VRm
≤ (S1; r) can have. Thus, V2k+1(r) is empty for

all sufficiently large k. From here on, we let K = K(r) be the largest value of k such that V2k+1(r) is

nonempty; then VRm
≤ (S1; r) = V1(r) ∪ · · · ∪ V2K+1(r) = W2K+1(r). To find K, note that in order for

a measure µ to have 2k + 1 arcs, the set of points excluded by µ must be split into 2k + 1 connected

components. Since the open arc of length 2(π − r) opposite any point of supp(µ) is excluded, this can

only happen if 2(π − r)(2k + 1) ≤ 2π, or equivalently r ≥ 2kπ
2k+1 . Conversely, if r ≥ 2kπ

2k+1 , then any

measure with support equal to a set of 2k + 1 evenly spaced points has diameter 2kπ
2k+1 and is thus in

V2k+1(r). This shows V2k+1(r) is nonempty if and only if r ≥ 2kπ
2k+1 .

We summarize the properties described above in the following proposition.

Proposition 1. Let r ∈ [0, π). For any µ ∈ VRm
≤ (S1; r), there are an odd number of (µ, r)-arcs. V2k+1(r)

is nonempty if and only if r ≥ 2kπ
2k+1 , so K = K(r) is the unique integer such that 2Kπ

2K+1 ≤ r <
(2K+2)π

2K+3 .

Thus, V1(r), V3(r), . . . , V2K+1(r) partition VRm
≤ (S1; r), and VRm

≤ (S1; r) = W2K+1(r).

The following lemma will allow us to determine when a measure µ is in VRm
≤ (S1) −W2k−1 (that is,

when µ has at least 2k + 1 arcs). We will write it in the general setting of finite subsets of S1.

Lemma 3. Let r ∈ [0, π) and let Θ be a nonempty finite set of points in S1 with diam(Θ) ≤ r. There

are at least 2k + 1 distinct (Θ, r)-arcs if there exist distinct points [θ0], . . . , [θ2k] ∈ Θ such that if the

[θi] are colored blue and their antipodal points are colored red, the red and blue points alternate around

the circle. Conversely, if there are exactly 2k + 1 (Θ, r)-arcs, then if [θ0], . . . , [θ2k] are points in Θ, each

contained in a distinct (Θ, r)-arc, then coloring the [θi] blue and their antipodal points red results in red

and blue points that alternate around the circle.
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Proof. Both statements are trivially true if k = 0, so we suppose k ≥ 1. Suppose first that there exist

distinct points [θ0], . . . , [θ2k] ∈ Θ such that if the [θi] are colored blue and their antipodal points are

colored red, the red and blue points alternate. Each blue point belongs to a unique Θ-arc, and each red

point is excluded by Θ. Since the red and blue points alternate, for any pair of blue points, there is a

red point on each of the two arcs between the blue points. Therefore the blue points must be contained

in distinct Θ-arcs, so there are at least 2k + 1 distinct Θ-arcs.

To prove the second statement, suppose there are exactly 2k + 1 (Θ, r)-arcs (note that if k ≥ 1 and

there are 2k + 1 (Θ, r)-arcs, we must have r ≥ 2kπ
2k+1 ≥

2π
3 ). Let [θ0], . . . , [θ2k] ∈ Θ with one [θi] in each

Θ-arc. Color the [θi] blue and the points opposite them red. We show there must be a red point on any

arc between any distinct blue points [θi] and [θj ]; without loss of generality, we assume θi < θj < θi + 2π

and show there is a θ ∈ (θi, θj) such that [θ] is a red point. If θi +π < θj , then [θi +π] is a red point and

θi < θi + π < θj , so now consider the case where θi < θj < θi + π. Since [θi] and [θj ] belong to different

Θ-arcs, there is a point excluded by Θ that can be represented by an angle in (θi, θj), so θj ≥ θi+2(π−r)
and there is a θ′ ∈

[
θi + π + (π − r), θj + π − (π − r)

]
such that [θ′] ∈ Θ. Since [θ′] belongs to some

Θ-arc, there must be a blue point [θk] in this Θ-arc, and without loss of generality, we can choose the

representative θk such that θk ∈
[
θi + π + (π − r), θj + π − (π − r)

]
. Then [θk − π] is a red point and

θi < θk − π < θj . Therefore there must be a red point on any arc between distinct blue points, so the

red and blue points alternate around the circle. �

The somewhat combinatorial nature of the definition of V2k+1 and W2k+1 leads to interesting topo-

logical properties. In general, the V2k+1 are neither open nor closed, as shown in the following example.

However, we will see soon that each W2k+1 is closed, and we will provide a description of the closure of

V2k+1 in VRm
≤ (S1).

Example 1. For any k ≥ 1, suppose r ∈ [0, π) is large enough so that V2k+1(r) is nonempty. Then

V2k+1 contains measures supported on 2k + 1 evenly spaced points, and we can define a sequence with

a predictable limit by varying the mass placed at these points: define the sequence {µn}n≥1 by

µn = 1
nδ[0] +

2k∑
j=1

(
1
2k −

1
2kn

)
δ[ 2jπ

2k+1 ].

For each n ≥ 2, µn is in V2k+1, since it has nonzero mass at each of the 2k + 1 regularly spaced points.

On the other hand, the sequence converges to µ =
∑2k
j=1

1
2k δ[ 2jπ

2k+1 ], which is in V2k−1 because [ 2kπ
2k+1 ] and

[ 2(k+1)π
2k+1 ] are in the same µ-arc (since 0 is not in supp(µ)). Thus, {µn}n≥2 is a sequence in V2k+1 that

converges to a measure in V2k−1. This shows V2k−1 is not open in VRm
≤ (S1) and V2k+1 is not closed in

VRm
≤ (S1). Since this example applies whenever 1 ≤ k ≤ K, we see V2k+1 is neither open nor closed if

1 ≤ k ≤ K − 1. If K > 0, then V1 is not open and V2K+1 is not closed. We will see soon that V1 is

always closed and V2K+1 is always open.

The following lemma shows that all measures sufficiently close to a fixed measure µ have certain

properties determined by µ.

Lemma 4. Let k ≥ 0 and r ∈ [0, π), and suppose µ ∈ V2k+1(r). For all ε > 0, there exists an η > 0

such that the following statements hold for all ν ∈ VRm
≤ (S1; r) satisfying dW (µ, ν) < η.

(1) For any [θ] ∈ supp(µ), there is a [θ′] ∈ supp(ν) such that dS1([θ], [θ′]) < ε.

(2) ν ∈ VRm
≤ (S1; r)−W2k−1(r), that is, ν has at least 2k + 1 arcs.

(3) If A0, A1, . . . , A2l are all the ν-arcs, then for each i, define the closed arc A′i by expanding Ai
by π−r

2 on both sides. Then ν(A′i) = ν(Ai) for each i, the arcs A′0, A
′
1, . . . , A

′
2l are disjoint,

supp(µ) ⊆
⋃
iA
′
i, and |µ(A′i)− ν(A′i)| < ε for all i.

The length of π−r2 in (3) is just used for convenience, and it could be replaced with an arbitrarily small

positive number. This length will also be used later when we need to expand arcs by a small amount.
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Proof. For (1), let m = min{µ([θ]) : [θ] ∈ supp(µ)}, noting that m > 0 because µ is finitely supported.

Then moving any point mass of µ a distance of ε costs at least mε. Choosing η ∈ (0,mε), we find that

for any ν ∈ VRm
≤ (S1) satisfying dW (µ, ν) < η, there is a transport plan between µ and ν with a cost of

less than mε, so each point in supp(µ) must be at a distance less than ε from some point in supp(ν).

To show (2), choose one point in each µ-arc that is in supp(µ) to color blue, and color the points

opposite them red. We apply (1) to choose η such that each point in supp(µ) is at a distance less that
π−r

2 from some point in supp(ν). Then for each blue point, choose a point in supp(ν) at distance less

than π−r
2 to color green, and color the points opposite the green points orange (here a point may be

colored both blue and green or may be colored both red and orange). Since the blue points are in distinct

µ-arcs, the distance between any two of them is at least 2(π− r), and thus the green points are distinct;

so we have 2k+ 1 points of each color. Since the red and blue points alternate by Lemma 3 and each red

point is at a distance of at least π − r from each blue point, the green and orange points must alternate

as well. So again by Lemma 3, ν has at least 2k + 1 arcs.

Finally, we prove (3). By (1), we may choose η so that each point in supp(µ) is within a distance of
π−r

2 from some point in supp(ν), and this will imply supp(µ) ⊆
⋃
iA
′
i. Since A0, A1, . . . , A2l are distinct

ν-arcs, each is at a distance of at least 2(π − r) from all others, so each A′i is at a distance of at least

π − r from all others. This shows that the A′i are disjoint. For each i, the only points of supp(ν) in

A′i are those that are in Ai, so ν(A′i) = ν(Ai). In any transport plan between µ and ν, for each i, at

least a mass of |µ(A′i)− ν(A′i)| must be transported from A′i to outside of A′i. Since all other A′j are at

a distance of at least π − r from A′i, we must have |µ(A′i) − ν(A′i)|(π − r) ≤ dW (µ, ν). Therefore, if we

require η < (π − r)ε, we find that if dW (µ, ν) < η, then |µ(A′i)− ν(A′i)| < ε. �

For any k ≥ 0 and any µ ∈ VRm
≤ (S1) −W2k+1, Lemma 4(2) above implies there is an open neigh-

borhood of µ in which all measures have at least as many arcs as µ. This neighborhood is therefore

contained in VRm
≤ (S1)−W2k+1. This gives us the following lemma.

Lemma 5. For any r ∈ [0, π) and any k ≥ 0, W2k+1(r) is closed in VRm
≤ (S1; r).

Note that in the case k = 0, we have W1 = V1, so this lemma shows V1 is closed in VRm
≤ (S1). This

lemma also implies V2k+1 = W2k+1 − W2k−1 is open in W2k+1 for each k. We now give an explicit

description of the closure of each V2k+1: we will write the closure of V2k+1(r) in VRm
≤ (S1; r) as V2k+1(r).

Note that Lemma 5 already implies V2k+1 ⊆ W2k+1. The following lemma shows that situations like

that in Example 1, in which a sequence in V2k+1 converges to a point in V2k+1 by altering the masses on

a fixed support, in fact account for all measures in V2k+1. While this result is not unexpected, the proof

is long and we give it in the appendix.

Lemma 6. For all k ≥ 0 and all r ∈ [0, π), µ ∈ V2k+1(r) if and only if supp(µ) is contained in a finite

set T ⊂ S1 such that diam(T ) ≤ r and arcsr(T ) = 2k + 1.

Lemma 6 will allow us to describe measures of VRm
≤ (S1) in a concise and useful form. First, by

Lemma 5, the closure of V2k+1 in W2k+1 is V2k+1, and the interior of V2k+1 in W2k+1 is V2k+1. Therefore,

the boundary of V2k+1 in W2k+1 is V2k+1 − V2k+1. From here on, we write ∂V2k+1 = V2k+1 − V2k+1 for

the boundary of V2k+1 in W2k+1. Note that this is not necessarily the boundary of V2k+1 in VRm
≤ (S1),

as there may be points in V2k+1 that are not in the interior of V2k+1 in VRm
≤ (S1) (see Example 1). By

Lemma 6, we may write any measure µ ∈ V2k+1 as µ =
∑2k
i=0 aiµi where

⋃
i supp(µi) has 2k+1 arcs, each

µi is a probability measure supported on a distinct (
⋃
i supp(µi))-arc, ai ≥ 0 for each i, and

∑
i ai = 1.

Furthermore, µ ∈ ∂V2k+1 if and only if ai = 0 for some i. If µ ∈ V2k+1, then each ai is the amount of

mass in an individual µ-arc, so in this case we will refer to the ai as the arc masses of µ. When we write

µ ∈ V2k+1 as µ =
∑2k
i=0 aiµi meeting the description above, we will say µ is written in (2k+1)-arc mass

form, or simply arc mass form when k is understood. The value of k is relevant, as measures may be

in V2k+1 for multiple values of k (in general, the closures V2k+1 are not disjoint, even though the V2k+1

are disjoint: again, see Example 1). If µ ∈ V2k+1, both the set of µi and their corresponding ai are

completely determined by µ, so the arc mass form of µ is unique up to reordering the sum. In general, it
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is not unique if µ ∈ ∂V2k+1, since if ai = 0, there are many choices for µi. We now expand on the ideas

of Lemma 4: the following lemma essentially shows that close measures have close arc masses.

Lemma 7. Let r ∈ [0, π), and let each sum below express measures in arc mass form.

(1) Let k ≥ 1, and let µ ∈ ∂V2k+1(r). For any ε > 0, there exists an η > 0 such that if ν =∑2k
i=0 biνi ∈ V2k+1(r) satisfies dW (µ, ν) < η, then bi < ε for some i.

(2) Let k ≥ 0, and let µ =
∑2k
i=0 aiµi ∈ V2k+1(r). For any ε > 0, there exists an η > 0 such that

if ν =
∑2k
i=0 biνi ∈ V2k+1(r) satisfies dW (µ, ν) < η and A0, . . . , A2k are closed arcs obtained by

expanding the ν-arcs by π−r
2 on both sides, then possibly after reordering, we have supp(µi) ⊆ Ai,

ai = µ(Ai), bi = ν(Ai), and |ai − bi| < ε for each i.

Proof. To prove (1), suppose ν =
∑2k
i=0 biνi ∈ V2k+1(r) is written in arc mass form and satisfies

dW (µ, ν) < η. For each i, supp(µ) must have a point within η
bi

of some point in supp(νi), otherwise the

mass of biνi could not be transported for a cost of less than η. We now suppose for a contradiction that
η

mini{bi} <
π−r

2 . For each i, we may choose a point in supp(νi) to color green and a point in supp(µ)

within a distance of η
mini{bi} from this green point to color blue (here we allow a point to be colored both

green and blue). The green points are in separate ν-arcs, so they are at distance at least 2(π − r) from

each other. Since η
mini{bi} <

π−r
2 , the blue points must be distinct, so we have 2k + 1 points of each

color. Color the points opposite the blue points red and the points opposite the green points orange.

By Lemma 3, the green and orange points alternate around the circle, and each green point is at a

distance of at least π − r from each orange point since diam(supp(ν)) ≤ r. Since η
mini{bi} <

π−r
2 , this

implies the red and blue points alternate as well. But by Lemma 3, this implies µ has at least 2k + 1

arcs, contradicting the assumption that µ ∈ ∂V2k+1. Therefore we can conclude that η
mini{bi} ≥

π−r
2 , so

mini{bi} ≤ 2η
π−r . So given any ε > 0, setting η = π−r

2 ε gives the desired result.

To prove (2), let ε > 0. Applying parts (1) and (3) of Lemma 4, we can choose an η > 0 such

that for any ν =
∑2k
i=0 biνi ∈ V2k+1(r) written in arc mass form and satisfying dW (µ, ν) < η, the

following hold: each point in supp(µ) is within π−r
2 of some point in supp(ν), and letting A0, . . . , A2k

be the disjoint closed arcs obtained by expanding the ν-arcs by π−r
2 on both sides, supp(µ) ⊆

⋃
iAi and

|µ(Ai)−ν(Ai)| < ε for each i. If k = 0, we are done, since A0 contains all points of supp(µ) and supp(ν),

so we can suppose k ≥ 1. Reordering if necessary, we have bi = ν(Ai) by the definition of arc mass

form. We will show that for any i, the points of supp(µ) contained in Ai all belong to the same µ-arc;

since supp(µ) ⊆
⋃
iAi, this will imply that each Ai contains some points of supp(µ) and thus contains

exactly the points of supp(µ) belonging to a particular µ-arc. After reordering if necessary, this will show

ai = µ(Ai) for each i. Suppose for a contradiction that [θ1], [θ2] ∈ supp(µ) are in distinct µ-arcs and

that [θ1], [θ2] ∈ Ai. Color one point of supp(µ) in each µ-arc blue, choosing [θ1] and [θ2] for their µ-arcs,

and color the points opposite the blue points red. By Lemma 3, the red and blue points alternate, so

there is a red point [θ′] contained between [θ1] and [θ2] in Ai, and since [θ′] is at distance at least π − r
from both [θ1] and [θ2], [θ′] must in fact be contained in the ν-arc contained in Ai. Since there must be

a point of supp(ν) within π−r
2 of the blue point [θ′ + π], the point [θ′] is excluded by ν, contradicting

the fact that it is in a ν-arc. Therefore if [θ1], [θ2] ∈ supp(µ) ∩ Ai, they must belong to the same µ-arc,

as required. �

We can now define certain subspaces of VRm
≤ (S1) of interest and describe how these subspaces will

eventually be used to define a CW complex. As with our previous definitions, we will often omit the

parameter r. For 0 ≤ k ≤ K, let P2k+1 = P2k+1(r) ⊆ VRm
≤ (S1; r) be the set of measures whose support

is 2k+1 evenly spaced points; we refer to these as regular polygonal measures. Each P2k+1 is nonempty if

and only if V2k+1 is nonempty, and by Proposition 1, this holds if and only if r ≥ 2kπ
2k+1 . The closure P2k+1

of P2k+1 in VRm
≤ (S1) consists of measures whose support is contained in a set of 2k + 1 evenly spaced

points (where not all of these points are required to be in the support). The set of measures with support

contained in a fixed individual (2k+1)-gon is homeomorphic to a 2k-simplex (and thus homeomorphic to

the disk D2k), where a homeomorphism can be defined by taking linear combinations of delta measures to
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the corresponding linear combinations of vertices of a 2k-simplex. This homeomorphism sends a measure

with all 2k+1 points in its support to the interior of the simplex. Furthermore, P2k+1
∼= D2k×S1, where

the S1 parameterizes the set of regular (2k + 1)-gons on the circle (this S1 may be better thought of as

the quotient of S1 by the action of Z
(2k+1)Z ). These homeomorphisms can be checked using Proposition

5.2 of [3], for instance. We define ∂P2k+1 = P2k+1 − P2k+1 = P2k+1 ∩ ∂V2k+1 since for k ≥ 1, we have

the homeomorphism ∂P2k+1
∼= S2k−1 × S1; however, ∂P2k+1 is in general not the boundary of P2k+1 in

VRm
≤ (S1). Note that P1(r) consists of all delta measures, is equal to its own closure, and is homeomorphic

to S1 by the canonical embedding of S1 into VRm
≤ (S1). We also let R2k = R2k(r) ⊆ VRm

≤ (S1; r) be

the set of measures with support equal to the specific regular (2k + 1)-gon {[0], [ 1·2π
2k+1 ], . . . , [ 2k·2π

2k+1 ]} (the

choice of the polygon containing [0] is just for convenience; any fixed individual polygon could also be

used). Then R2k ⊆ V2k+1 and R2k is homeomorphic to the interior of a 2k-simplex. The closure R2k of

R2k in VRm
≤ (S1) is the set of measures with support contained in {[0], [ 1·2π

2k+1 ], . . . , [ 2k·2π
2k+1 ]}, and we will

write ∂R2k = R2k −R2k. Thus, for k ≥ 1, the pair (R2k, ∂R2k) is homeomorphic to (D2k, S2k−1). Note

that ∂R2k is not necessarily the boundary of R2k in VRm
≤ (S1). For k = 0, we let D0 be a space with one

point, so R0
∼= D0.

Our strategy for finding the homotopy type of VRm
≤ (S1) will be to define (in Section 6) a quotient

map q : VRm
≤ (S1) → VRm

≤ (S1)/ ∼ that is a homotopy equivalence. Under the equivalence relation ∼,

each measure of VRm
≤ (S1) will be equivalent to exactly one regular polygonal measure, that is, one

measure in some P2k+1. Thus, VRm
≤ (S1)/ ∼ can be described by specifying how the closures P2k+1 are

glued together by their boundaries. We further split each P2k+1 into R2k and P2k+1 − R2k, which are

homeomorphic to an open 2k-disk and an open (2k+ 1)-disk respectively. We will show that these form

open cells of a CW complex that is homeomorphic to VRm
≤ (S1)/ ∼ and thus homotopy equivalent to

VRm
≤ (S1). We thus have one cell in each dimension 0 ≤ n ≤ 2K+1, and these cells are glued together as

described in Section 1 to give a space homotopy equivalent to S2K+1. In the following section, we record

some technical results that will allow us to describe a quotient map that is also a homotopy equivalence.

4. Homotopies, Quotients, and the Homotopy Extension Property

4.1. General Facts. This section covers some facts related to quotient maps and the homotopy exten-

sion property. We recall the relevant definitions. If X is a topological space and A ⊆ X, the pair (X,A)

is said to have the homotopy extension property (HEP) if given any homotopy H : A × I → Z and any

map f : X → Z such that f(a) = H(a, 0) for any a ∈ A, there exists a homotopy G : X×I → Z such that

G|A×I = H and G( , 0) = f . A fiber of a function is a preimage of a singleton. A surjective continuous

function q : X → Y is a quotient map if and only if it satisfies the following universal property: for any

space Z and any continuous f : X → Z that is constant on the fibers of q (that is, q(x1) = q(x2) implies

f(x1) = f(x2)), there is a unique continuous function g : Y → Z such that g ◦ q = f , as in the following

diagram.

X

Y Z

q
f

g

Furthermore, if this property holds, then Y is homeomorphic to the quotient space X/ ∼ where x1 ∼ x2

if and only if q(x1) = q(x2) and a subset of X/ ∼ is open if and only if its preimage under q is open in

X.

Proposition 2 below shows that quotient maps meeting certain conditions are homotopy equivalences,

and this is one of the main tools we will use. Lemma 9 will be used in the proof of Proposition 2, as well

as in a later section. Lemma 8 will only be used for proofs in this section.
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Lemma 8. Suppose q : X → Y is a quotient map and Z is a locally compact Hausdorff space. Then the

product map q × 1Z : X × Z → Y × Z is a quotient map.

Proof. Lemma 4.72 of [12]. �

Lemma 9. Suppose X is a topological space, ∼ is an equivalence relation on X, and ∼′ is an equivalence

relation on X × I defined by (x1, t1) ∼′ (x2, t2) if and only if x1 ∼ x2 and t1 = t2. Then we have a

homeomorphism (X/ ∼)× I ∼= (X × I)/ ∼′ defined by ([x], t) 7→ [(x, t)].

Proof. Let q : X → X/ ∼ and q′ : X × I → (X × I)/ ∼′ be the quotient maps. By Lemma 8, since I is

locally compact and Hausdorff, the map q × 1I : X × I → (X/ ∼)× I is also a quotient map. It can be

checked that the function f : (X/ ∼)× I → (X × I)/ ∼′ given by ([x], t) 7→ [(x, t)] is well-defined and is

a bijection, so we just must verify it is continuous and has a continuous inverse. This follows from the

universal property of quotients since the fibers of q × 1I and q′ agree and we have both f ◦ (q × 1I) = q′

and f−1 ◦ q′ = q × 1I .

X × I

(X/ ∼)× I (X × I)/ ∼′

q×1I
q′

f

�

We will use the following fact about pairs of spaces with the HEP, which establishes that certain

quotient maps are homotopy equivalences. This is a modest generalization of Proposition 0.17 from [9],

and we will mimic its proof.

Proposition 2. Suppose (X,A) has the HEP and suppose H : A × I → A is a homotopy such that

H( , 0) = 1A and each H( , t) sends each fiber of H( , 1) into a fiber of H( , 1). Define an equivalence

relation on X by x1 ∼ x2 if and only if either x1 = x2 or x1, x2 ∈ A and H(x1, 1) = H(x2, 1). Then the

quotient map q : X → X/ ∼ is a homotopy equivalence.

Proof. Apply the HEP to find a homotopy G : X × I → X such that G( , 0) = 1X and G(a, t) = H(a, t)

for all (a, t) ∈ A × I. Let ∼′ be an equivalence relation on X × I defined by (x1, t1) ∼′ (x2, t2) if and

only if x1 ∼ x2 and t1 = t2. Because each H( , t) sends fibers of H( , 1) into fibers of H( , 1), each

G( , t) sends fibers of q into fibers of q. Thus, q ◦ G is constant on the fibers of the quotient map

X × I → (X × I)/ ∼′, so we get an induced map on the quotient. By applying the homeomorphism of

Lemma 9, we obtain a homotopy G̃ such that the following diagram commutes for each t.

X X

X/ ∼ X/ ∼

G( ,t)

q q

G̃( ,t)

Since G( , 0) = 1X , we have G̃( , 0) = 1X/∼. Furthermore, since G(a, t) = H(a, t) for all (a, t) ∈ A× I,

we can see that G( , 1) is constant on the fibers of q, so we get a map g : X/ ∼ → X such that the

following diagram commutes.

X X

X/ ∼ X/ ∼

G( ,1)

q q

G̃( ,1)

g

Therefore g ◦ q ' 1X via G and q ◦ g ' 1X/∼ via G̃, so q is a homotopy equivalence. �
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The next proposition will allow for further use of the HEP in combination with quotient maps.

Proposition 3. Let (X,A) be a pair of spaces with the HEP and let ∼ be an equivalence relation on X

with quotient map q : X → X/ ∼ . If for each x ∈ X −A the equivalence class of x is the singleton {x},
then the pair (X/ ∼ , q(A)) has the HEP.

Proof. A pair (X,A) has the HEP if and only if there exists a retraction r : X × I → X × {0} ∪ A × I
(see Proposition A.18 of [9]). We will find a map r̃ making the following diagram commute.

X × I X × {0} ∪A× I

(X/ ∼)× I (X/ ∼)× {0} ∪ (A/ ∼)× I

r

q×1I (q×1I)|X×{0}∪A×I

r̃

By Lemma 8, the map q×1I is a quotient map, so by the universal property of quotients, it is sufficient

to show that (q × 1I)|X×{0}∪A×I ◦ r is constant on the fibers of q × 1I . This follows from the fact that

r is constant on A × I and each x ∈ X − A is the only element of its equivalence class. Finally, r̃ is a

retraction because r is, so the pair (X/ ∼ , q(A)) has the HEP. �

4.2. The Homotopy Extension Property for
(
VRm
≤ (S1; r),W2k+1(r)

)
. In order to apply the ideas

above in later sections, we will first demonstrate that certain pairs of spaces within VRm
≤ (S1) have the

HEP. We will use the fact that a pair (X,A) has the HEP if and only if X × {0} ∪A× I is a retract of

X×I (Proposition A.18 of [9]). For any n ≥ 1, let ∆n ⊂ Rn be a regular n-simplex centered at the origin.

We can first obtain retractions that demonstrate (∆n, ∂∆n) has the HEP similar to the retractions used

in Proposition 0.16 of [9]. Let λn : ∆n × I → ∆n × {0} ∪ ∂∆n × I be the map defined by projecting

radially from the point (~0, 2) ∈ ∆n × R, where ∆n × R is considered as a subspace of Rn+1. Then λn is

continuous, and if the vertices of ∆n are v0, . . . , vn, then λn has the form

λn

(
n∑
i=0

aivi, t

)
=

(
n∑
i=0

λn,i(a0, . . . , an, t)vi, σn(a0, . . . , an, t)

)
,

where σn : ∆n × I → I is continuous and the barycentric coordinates λn,i : ∆n × I → I are continuous.

Any point in the codomain ∆n × {0} ∪ ∂∆n × I has at least one of the barycentric coordinates or

the coordinate for I equal to zero, so for any (
∑n
i=0 aivi, t) ∈ ∆n × I, either σn(a0, . . . , an, t) = 0 or

λn,i(a0, . . . , an, t) = 0 for some i. Furthermore, λn respects the symmetry of ∆n, so any permutation

of the vertices vi does not affect the definition. Since λn fixes points in ∆n × {0} ∪ ∂∆n × I, it is a

retraction; specifically, λn (
∑n
i=0 aivi, t) = (

∑n
i=0 aivi, t) if either t = 0 or ai = 0 for some i.

We extend the ideas above to subsets of VRm
≤ (S1). Recall that we have defined ∂V2k+1 = V2k+1−V2k+1

and that ∂V2k+1 is the boundary of V2k+1 in W2k+1, although it is not necessarily the boundary in

VRm
≤ (S1). For each k ≥ 1, we define a retraction ρ2k+1 : V2k+1× I → V2k+1×{0}∪ ∂V2k+1× I based on

λ2k. With measures written in (2k + 1)-arc mass form, define

ρ2k+1

(
2k∑
i=0

aiµi, t

)
=

(
2k∑
i=0

λ2k,i(a0, . . . , a2k, t)µi, σ2k(a0, . . . , a2k, t)

)
.

Since for any a0, . . . , a2k, t, either σ2k(a0, . . . , a2k, t) = 0 or λ2k,i(a0, . . . , a2k, t) = 0 for some i, ρ2k+1

does in fact send points into V2k+1 × {0} ∪ ∂V2k+1 × I. Each measure µ ∈ V2k+1 may be expressed in

arc mass form µ =
∑2k
i=0 aiµi in multiple ways, either by permuting indices or by a choice of µi when

ai = 0; we must check that the definition of ρ2k+1 does not depend on the choice of how µ is written.

First, if ai = 0 for some i, then as described above, λ2k

(∑2k
i=0 aivi, t

)
=
(∑2k

i=0 aivi, t
)

, which implies

ρ2k+1(µ, t) = (µ, t). Thus, if ai = 0 for some i, then ρ(µ, t) is uniquely defined. If ai 6= 0 for each i, then
13



µ has 2k + 1 arcs, and thus two different ways of expressing µ in arc mass form must be the same up to

a permutation of indices. By the symmetry of λ2k, permuting the set of indices does not affect the value

of ρ(µ, t). Therefore ρ2k+1 is a well-defined function.

Lemma 10. For each k ≥ 1, the function ρ2k+1 : V2k+1 × I → V2k+1 ×{0} ∪ ∂V2k+1 × I is a retraction,

and thus the pair (V2k+1(r), ∂V2k+1(r)) has the homotopy extension property.

Proof. Since λ2k is a retraction, ρ2k+1 fixes all points of V2k+1 × {0} ∪ ∂V2k+1 × I, as required. We

need to show it is continuous. We will suppose {(νn, tn)}n≥0 is a sequence in V2k+1 × I that converges

to (µ, t) ∈ V2k+1 × I and check that ρ2k+1(νn, tn) converges to ρ2k+1(µ, t), splitting into cases for when

µ ∈ V2k+1 and when µ ∈ ∂V2k+1.

For the first case, suppose µ ∈ V2k+1 and write µ in (2k + 1)-arc mass form as µ =
∑2k
j=0 ajµj . Then

aj 6= 0 for all j, since µ ∈ V2k+1. Applying Lemma 7(2), we see that for all large enough n, we can

write each νn in arc mass form as νn =
∑2k
j=0 an,jνn,j such that limn→∞ an,j = aj for each j. As in the

lemma, the νn,j can be chosen so that expanding the νn-arc containing supp(νn,j) by π−r
2 on either side

produces an arc that contains supp(µj). Furthermore, we show νn,j converges weakly to µj for each j.

Let Aj be the µ-arc containing supp(µj). Define A′j by expanding Aj by π−r
4 on either side, and define

A′′j by expanding Aj by π−r
2 on either side. For all large enough n, supp(νn,j) is contained in A′, since

by Lemma 4(1), expanding all open arcs excluded by νn by π−r
4 covers all points excluded by µ. Any

bounded continuous function f : S1 → R can be replaced with a bounded continuous function f̃ equal

to f on A′j and with supp(f̃) ⊆ A′′j . Then
∫
S1 f dνn,j =

∫
S1 f̃ dνn for all large enough n, so

lim
n→∞

∫
S1

f dνn,j = lim
n→∞

∫
S1

f̃ dνn =

∫
S1

f̃ dµ =

∫
S1

f dµj ,

where the second equality follows from Lemma 1. Therefore νn,j converges weakly to µj for each j.

Since an,j approaches aj for each j, continuity of each λ2k,i and σ2k show that λ2k,i(an,0, . . . , an,2k, tn)

approaches λ2k,i(a0, . . . , a2k, t) for each i and σ2k(an,0, . . . , an,2k, tn) approaches σ2k(a0, . . . , a2k, t) as n

approaches infinity. Then since νn,j converges weakly to µj for each j, Lemma 1 shows the components∑2k
i=0 λ2k,i(an,0, . . . , an,2k, tn)νn,i converge in the Wasserstein distance to

∑2k
i=0 λ2k,i(a0, . . . , a2k, t)µi,

which is the first component of ρ2k+1(µ, t). We have thus shown both components of ρ2k+1(νn, tn)

converge, so ρ2k+1(νn, tn) converges to ρ2k+1(µ, t), as required.

We now consider the second case, where µ ∈ ∂V2k+1, and we have previously noted this means

ρ2k+1(µ, t) = (µ, t). First, we determine how λ2k behaves near ∂∆2k × I. Since λ2k is continuous, we

have a continuous function λ̃2k : ∆2k × I → R2k+1 given by λ̃2k(x, t) = λ2k(x, t) − (x, t). For any open

neighborhood of ~0 in R2k+1, the preimage under λ̃2k is an open set that contains the compact set ∂∆2k×I
and thus contains an open ball around this compact set3. Therefore, for any ε > 0, there is an η > 0

such that if (a0, . . . , a2k, t) ∈ ∆2k × I with aj < η for some j, then |λ2k,i(a0, . . . , a2k, t)− ai| < ε for all i

and |σ2k(a0, . . . , a2k, t)− t| < ε.

We apply this fact to describe the image of the sequence {(νn, tn)} under ρ2k+1. Again, write each

νn in arc mass form as νn =
∑2k
j=0 an,jνn,j . Temporarily write the first component of ρ2k+1 as a map

ω2k+1 : V2k+1 × I → V2k+1, so that

ω2k+1 (νn, tn) =

2k∑
i=0

λ2k,i(an,0, . . . , an,2k, tn)νn,i.

By Lemma 7(1) and the fact that νn converges to µ ∈ ∂V2k+1, given any η > 0, for all sufficiently large n,

we have an,j < η for some j. Applying the fact above, this shows that given any ε > 0, for all sufficiently

large n, we have |λ2k,i(an,0, . . . , an,2k, tn)−an,i| < ε for all i and |σ2k(an,0, . . . , an,2k, tn)−tn| < ε. Simple

bounds on the Wasserstein distance show that this implies ω2k+1(νn, tn) is arbitrarily close to νn for all

sufficiently large n. Combined with the fact that (νn, tn) converges to (µ, t) = ρ2k+1(µ, t), this shows

ρ2k+1(νn, tn) converges to ρ2k+1(µ, t). �

3This is a general fact about compact subsets of metric spaces: see, for instance, Exercise 2 in Section 27 of [15].
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We use Lemma 10 to prove the fact we will use in later sections, that
(
VRm
≤ (S1),W2k+1

)
has the

homotopy extension property for each k. Recall we have defined K = K(r) to be the smallest integer

such that VRm
≤ (S1) = W2K+1. For each k ≥ 1, we extend the retraction ρ2k+1 to a retraction

ρ̃2k+1 : W2K+1 × {0} ∪W2k+1 × I →W2K+1 × {0} ∪W2k−1 × I

defined by

ρ̃2k+1(µ, t) =

{
ρ2k+1(µ, t) if (µ, t) ∈ V2k+1 × I
(µ, t) if (µ, t) ∈W2K+1 × {0} ∪W2k−1 × I.

We have defined ρ̃2k+1 on two closed subsets of W2K+1 × {0} ∪W2k+1 × I, since W2k−1 × I is closed for

each k by Lemma 5. The intersection is given by

V2k+1 × I ∩
(
W2K+1 × {0} ∪W2k−1 × I

)
= V2k+1 × {0} ∪ ∂V2k+1 × I

and ρ2k+1 is constant on this intersection by Lemma 10, which shows ρ̃2k+1 is well-defined. Again by

Lemma 10, the definitions on the two closed sets are continuous, so ρ̃2k+1 is continuous. By definition,

all points of W2K+1 ×{0} ∪W2k−1 × I are fixed, so ρ̃2k+1 is in fact a retraction for each k. By applying

these retractions in decreasing order starting with ρ̃2K+1, we obtain a retraction

ρ̃2k+3 ◦ . . . ◦ ρ̃2K+1 : W2K+1 × I →W2K+1 × {0} ∪W2k+1 × I

for any 0 ≤ k < K. Thus, Lemma 10 implies the following.

Proposition 4. For any k ≥ 0, there exists a retraction

VRm
≤ (S1; r)× I −→ VRm

≤ (S1; r)× {0} ∪W2k+1(r)× I,

and thus the pair
(
VRm
≤ (S1; r),W2k+1(r)

)
has the homotopy extension property.

5. Collapse to Regular Polygons

For each k ≥ 0 and any r ∈ [0, π) such that V2k+1(r) is nonempty, we define a homotopy that

collapses V2k+1 to the set of regular polygonal measures P2k+1. We first define a support homotopy (see

Section 2.2). Let µ ∈ V2k+1. We will choose a coordinate system (x, τ) with x : S1 − {[θ0]} → R. If

k = 0, we can choose [θ0] to be any point excluded by µ and let A0 be the single µ-arc. Otherwise, let

A0, A1, . . . , A2k be the µ-arcs, in counterclockwise order around the circle and with [θ0] chosen strictly

between the two closest support points of A2k and A0. Let vx,µ2k+1 : S1 → R be a function such that

[θ] ∈ Avx,µ2k+1([θ]) for any [θ] belonging to any Ai. Then vx,µ2k+1 is constant on the arcs, and we can choose

it to be continuous. Define mx
2k+1 : V2k+1 → R by

mx
2k+1(µ) =

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ =

2k∑
i=0

∫
Ai

(
x− 2iπ

2k + 1

)
dµ,

where we recall x : S1 − {[θ0]} → R is a continuous function, defined everywhere except the set {[θ0]},
which has measure 0. Furthermore, let Q(S1, V2k+1) = {([θ], µ) ∈ S1×V2k+1 | [θ] ∈ supp(µ)} and define,

using any such coordinate system (x, τ), the function4 F2k+1 : Q(S1, V2k+1)× I → S1 by

F2k+1([θ], µ, t) = τ

(
(1− t)x([θ]) + t

(
2π

2k + 1
vx,µ2k+1([θ]) +mx

2k+1(µ)

))
.

The intuition for these definitions is as follows. We use the choice of x to work with coordinates in R
(we will soon show that the definition of F2k+1 is independent of the choice of coordinate system). The

homotopy is constructed as a composition

Q(S1, V2k+1)× I R S1.τ

4We define F2k+1 for any value of r such that V2k+1(r) is nonempty. However, the definition does not depend on r, so

we can safely omit it from the notation. We follow this convention for the homotopies F̃2k+1, G2k+1, and G̃2k+1, defined

later, as well. In fact, we could even treat r as fixed until the end of Section 7.
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The integral
∫
Ai
x dµ acts as a weighted average (ignoring the total mass of Ai) of the images under

x of the support points in Ai. Since the µ-arcs A0, . . . , A2k are in counterclockwise order around the

circle, the integral mx
2k+1(µ) =

∑2k
i=0

∫
Ai

(
x− 2iπ

2k+1

)
dµ takes an average of where points in supp(µ)

“expect” A0 to be centered. Then for each [θ] ∈ supp(µ), 2π
2k+1v

x,µ
2k+1([θ]) + mx

2k+1(µ) is an angle of a

point on a regular polygon associated to µ, as vx,µ2k+1 ∈ {0, . . . , 2k}. The homotopy is then defined as a

linear homotopy in R, and we compose with the map τ to return to S1. This has the effect of moving

all masses in a single µ-arc to the same point and ending with masses located at 2k + 1 evenly spaced

points; we can picture F2k+1 as deforming the support of each measure in V2k+1 into an average regular

polygon.

Lemma 11. For each k ≥ 0, the function F2k+1 : Q(S1, V2k+1(r)) × I → S1 is well-defined and is a

support homotopy.

Proof. We begin by showing F2k+1 is well-defined, that is, that the choice of coordinate system does

not affect the definition. We compare the definition for two coordinate systems x : S1 − {[θ0]} → R and

x′ : S1 − {[θ′0]} → R, where {[θ0]} and {[θ′0]} are points excluded by µ. As above, if k = 0, let A0 be

the single µ-arc, and otherwise, let A0, A1, . . . , A2k be the µ-arcs, in counterclockwise order around the

circle, and with [θ0] between A2k and A0. If k ≥ 1, then [θ′0] is excluded by µ, and it lies between two

µ-arcs; let l be such that [θ′0] lies between Al−1 and Al, or let l = 2k+ 1 if [θ′0] lies between A2k and A0.

If k = 0, let l = 1. By converting between coordinates x and x′ as in Section 2.3, we find that there is

an s ∈ R such that on arcs,

x′([θ]) =

{
x([θ])− s+ 2π if [θ] ∈ A0 ∪ · · · ∪Al−1

x([θ])− s if [θ] ∈ Al ∪ · · · ∪A2k.

Furthermore, there exist periodic functions τ, τ ′ : R → S1 such that τ ◦ x = 1S1 and τ ′ ◦ x′ = 1S1 , and

these must satisfy τ(z) = τ ′(z − s).
We just need to convert each term in the definition of F2k+1 between the two coordinate systems.

First, for [θ] ∈ A0 ∪ · · · ∪A2k, we have

vx
′,µ

2k+1([θ]) =

{
vx,µ2k+1([θ]) + (2k + 1)− l if [θ] ∈ A0 ∪ · · · ∪Al−1

vx,µ2k+1([θ])− l if [θ] ∈ Al ∪ · · · ∪A2k.

Next, keeping in mind that supp(µ) ⊂ A0 ∪ · · · ∪A2k, we compute

mx′

2k+1(µ) =

∫
S1

(
x′ − 2π

2k + 1
vx
′,µ

2k+1

)
dµ

=

∫
A0∪···∪Al−1

(
x− s+ 2π − 2π

2k + 1

(
vx,µ2k+1 + (2k + 1)− l

))
dµ

+

∫
Al∪···∪A2k

(
x− s− 2π

2k + 1

(
vx,µ2k+1 − l

))
dµ

=
2π

2k + 1
l − s+

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ

=
2π

2k + 1
l − s+mx

2k+1(µ).

From these, we can convert the following term in the definition of F2k+1:

2π

2k + 1
vx
′,µ

2k+1([θ]) +mx′

2k+1(µ) =

{
2π

2k+1v
x,µ
2k+1 +mx

2k+1(µ)− s+ 2π if [θ] ∈ A0 ∪ · · · ∪Al−1

2π
2k+1v

x,µ
2k+1 +mx

2k+1(µ)− s if [θ] ∈ Al ∪ · · · ∪A2k.
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Along with the conversion for x′([θ]), this gives

τ ′
(

(1− t)x′([θ]) + t

(
2π

2k + 1
vx
′,µ

2k+1([θ]) +mx′

2k+1(µ)

))
= τ

(
(1− t)x([θ]) + t

(
2π

2k + 1
vx,µ2k+1([θ]) +mx

2k+1(µ)

))
,

where we have used the fact that τ(z) = τ ′(z − s) for all z ∈ R and τ ′ is 2π-periodic. This shows the

definition of F2k+1 does not depend on the choice of coordinate system.

We next show F2k+1 is continuous at an arbitrary point ([θ′], µ′, t′). First, choose a [θ0] such that

[θ0 + π] ∈ supp(µ′) (thus, [θ0] is excluded by µ′), and work with a coordinate system x : S1−{[θ0]} → R
and τ such that τ ◦ x = 1S1−{[θ0]}. By Lemma 4(1), for any measure µ sufficiently close to µ′, there is a

point in supp(µ) at distance less than π−r from [θ0 +π] and thus excludes [θ0] as well. Therefore we may

use the same coordinate system (x, τ) in some neighborhood of µ′. Since x and τ are continuous and the

argument for τ in the definition of F2k+1 is defined by a linear homotopy in R, it is sufficient to check

that the function given by ([θ], µ) 7→ 2π
2k+1v

x,µ
2k+1([θ]) +mx

2k+1(µ), defined on a neighborhood of ([θ′], µ′),

is continuous. By Lemma 7(2), for any µ sufficiently close to µ′, if A0, . . . , A2k are defined by extending

the µ-arcs by π−r
2 on both sides, all points of supp(µ′) contained in a single µ′-arc are contained in the

same Ai, with distinct µ′-arcs corresponding to distinct Ai. This implies that if [θ′′] ∈ supp(µ) and

dS1(θ′, θ′′) < π − r, then vx,µ
′

2k+1([θ′]) = vx,µ2k+1([θ′′]), and thus we now only need to show the function

µ 7→ mx
2k+1(µ), defined on some neighborhood of µ′, is continuous. With µ and A0, . . . , A2k as above,

we have

mx
2k+1(µ′)−mx

2k+1(µ) =

∫
S1

(
x− 2π

2k + 1
vx,µ

′

2k+1

)
dµ′ −

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ

=

∫
S1

x dµ′ −
2k∑
i=0

2iπ

2k + 1
µ′(Ai)−

∫
S1

x dµ+

2k∑
i=0

2iπ

2k + 1
µ(Ai)

=

∫
S1

x dµ′ −
∫
S1

x dµ+

2k∑
i=0

2iπ

2k + 1

(
µ(Ai)− µ′(Ai)

)
.

For the integrals,
∫
S1 x dµ approaches

∫
S1 x dµ

′ as µ approaches µ′: this follows from Lemma 1 after

replacing x by an appropriate bounded continuous function without changing the values of the integrals.

For the sum, by Lemma 7(2), each |µ(Ai)−µ′(Ai)| can be made arbitrarily small by choosing a sufficiently

small neighborhood of µ′. Therefore the function µ 7→ mx
2k+1(µ) is continuous, so we conclude that F2k+1

is continuous.

Finally, to see that F2k+1 satisfies the definition of a support homotopy (Section 2.2), we must

check that for any µ =
∑n
i=1 aiδ[θi] ∈ V2k+1 with ai > 0 for all i, and for any t ∈ I, we have∑n

i=1 aiδF2k+1([θi],µ,t) ∈ V2k+1. This amounts to checking that
∑n
i=1 aiδF2k+1([θi],µ,t) has diameter at

most r and has exactly 2k + 1 arcs. First, supposing V2k+1 is nonempty, we must have r ≥ 2kπ
2k+1 by

Proposition 1. For the diameter bound, consider any two points in supp(µ), without loss of generality

writing them as [θ1] and [θ2]. Choose a coordinate system (x, τ) with a corresponding ordered set of

µ-arcs A0, . . . , A2k so that, without loss of generality, [θ1] ∈ A0 and [θ2] ∈ Aj with 0 ≤ j ≤ k. Then

|x([θ1]) − x([θ2])| ≤ r. For any t ∈ I, we apply the fact that τ is 1-Lipschitz (Section 2.3), giving the

following bound:
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dS1

(
F2k+1([θ1], µ, t), F2k+1([θ2], µ, t)

)
= dS1

(
τ
(
(1− t)x([θ1]) + tmx

2k+1(µ)
)
, τ

(
(1− t)x([θ2]) + t

(
2jπ

2k + 1
+mx

2k+1(µ)

)))
≤
∣∣∣∣(1− t)x([θ1]) + tmx

2k+1(µ)−
(

(1− t)x([θ2]) + t

(
2jπ

2k + 1
+mx

2k+1(µ)

))∣∣∣∣
≤ (1− t)

∣∣∣∣x([θ1])− x([θ2])

∣∣∣∣+ t

∣∣∣∣mx
2k+1(µ)−

(
2jπ

2k + 1
+mx

2k+1(µ)

)∣∣∣∣
≤ (1− t)r + t

2jπ

2k + 1

≤ (1− t)r + t
2kπ

2k + 1

≤ (1− t)r + t r

= r.

Therefore,
∑n
i=1 aiδF2k+1([θi],µ,t) has diameter at most r.

To see that each
∑n
i=1 aiδF2k+1([θi],µ,t) has 2k+1 arcs, we first associate to any nonempty finite subset

Θ ⊂ S1 of diameter at most r a continuous map fΘ : S1 → S1. Color the points of Θ blue and the points

opposite them red. Let fΘ send each blue point to [0] and each red point to [π]. On any arc between

consecutive colored points that are the same color, let fΘ remain constant at the value of the endpoints.

On an arc between consecutive colored points with opposite colored endpoints, let the angle of fΘ([θ])

increase at a constant rate as θ increases, such that it increases by π across the length of the arc. Since

each blue point is at a distance of at least π − r from each red point, fΘ is π
π−r -Lipschitz. We can see

that arcsr(Θ) is equal to the degree of fΘ. Letting Θt = {F2k+1([θi], µ, t) | 1 ≤ i ≤ n}, we get a function

fΘt : S1 → S1 for each t. The continuity of F2k+1 can be used to check that we get a continuous map

S1 × I → S1 defined by ([θ], t) 7→ fΘt([θ]). Thus, any fΘt is homotopic to fΘ0
, so for each t,

arcsr(Θt) = deg(fΘt) = deg(fΘ0
) = arcsr(Θ0) = arcsr(supp(µ)) = 2k + 1.

This shows each
∑n
i=1 aiδF2k+1([θi],µ,t) has 2k + 1 arcs and completes the proof that F2k+1 is a support

homotopy. �

Applying Lemma 2 to the support homotopy F2k+1, we obtain a homotopy F̃2k+1 : V2k+1×I → V2k+1,

defined for µ =
∑n
i=1 aiδ[θi] with ai > 0 for each i by F̃2k+1(µ, t) =

∑n
i=1 aiδF2k+1([θi],µ,t). For each

µ ∈ V2k+1, F̃2k+1(µ, 1) is a measure supported on 2k + 1 evenly spaced points on the circle, and all

masses in µ in a single µ-arc are moved to a single one of these evenly spaced points. Explicitly,

following the notation above, for each µ ∈ V2k+1, we have

F̃2k+1(µ, 0) = µ

(1) F̃2k+1(µ, 1) =

2k∑
i=0

µ(Ai)δτ( 2iπ
2k+1 +mx2k+1(µ)).

Thus, F̃2k+1( , 1) sends V2k+1 into P2k+1.

For each k, it can be checked that the homotopy F̃2k+1 is a deformation retraction, which is enough to

show that V2k+1 ' P2k+1. However, this is not enough for our purposes, as we would like to collapse all

the V2k+1 while preserving the homotopy type of the entire space VRm
≤ (S1). We will describe in Section 6

how this can be accomplished using Proposition 2, by defining equivalence relations that relate measures

in V2k+1 if they are sent to the same measure by F̃2k+1( , 1). To prepare for this use of Proposition 2,

we prove the following lemma, which implies that each F̃2k+1( , t) sends each fiber of F̃2k+1( , 1) into

the same fiber.
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Figure 3. F̃2k+1 can be visualized for an individual measure by sliding the sup-

port points along the circle. This example shows F̃2k+1(µ, 0) = µ, F̃2k+1(µ, 1
2 ), and

F̃2k+1(µ, 1) for a specific measure µ. The blue points are the support points, which
move until they reach the smaller black points.

Lemma 12. For any r ∈ [0, π) such that V2k+1(r) is nonempty, any k ≥ 0, any t ∈ I, and any

µ ∈ V2k+1(r), we have

F̃2k+1(F̃2k+1(µ, t), 1) = F̃2k+1(µ, 1).

Proof. Let µ =
∑n
i=1 aiδ[θi] with ai > 0 for each i. We will show the claimed equation holds at a

fixed t0 ∈ I. We first show we can find a coordinate system that can be used for each computation of

F̃2k+1. Temporarily, we define a reduced µ-arc to be the smallest closed arc containing all the points

of supp(µ) contained in a given µ arc; that is, its endpoints are the outermost support points of the

µ-arc. For any µ ∈ V2k+1, we know that F̃2k+1 collapses the masses of each reduced µ-arc to a single

point. If some reduced µ-arc contains the point it is collapsed to, let [θ0] be the point opposite it (note

that this is the only possible case when k = 0). Otherwise, suppose each reduced µ-arc is collapsed

to a point outside it and hence, within each reduced µ-arc, all support points are moved in the same

direction by F2k+1. Since mx
2k+1 is defined by a weighted average, we can show not all support points are

moved clockwise and not all are moved counterclockwise. This can be seen using any valid coordinate

system (x, τ): by the definition of F2k+1, a point [θi] ∈ supp(µ) is moved in x values from x([θi])

to 2π
2k+1v

x,µ
2k+1([θi]) + mx

2k+1(µ). Since
∑n
i=1 ai

(
x([θi])−

(
2π

2k+1v
x,µ
2k+1([θi]) +mx

2k+1(µ)
))

= 0 by the

definition of m2k+1, not all support points move in the same direction. Thus, beginning with an arc

that is moved clockwise and reading counterclockwise around the circle until we reach the first arc

that is moved counterclockwise, we can find two reduced µ-arcs A and A′ such that A′ is the µ-arc

immediately counterclockwise from A, A is moved clockwise, and A′ is moved counterclockwise. Because

these are contained in distinct µ arcs, there must be a point excluded by µ between the two, immediately

counterclockwise of A and clockwise of A′; let [θ0] be any such point. In either case, we can check that

no mass is moved through [θ0] by F̃2k+1(µ, ), so the coordinate system (x, τ) with x : S1 − {[θ0]} → R
is a valid choice of coordinate system for both µ and F̃2k+1(µ, t) for the computation of F̃2k+1. In the

notation of Section 2.3, we can choose y0 to be 0, so that the image of x is (0, 2π) . By the choice of [θ0],

the expression (1 − t)x([θ]) + t
(

2π
2k+1v

x,µ
2k+1([θ]) +mx

2k+1(µ)
)

used in the definition of F̃2k+1 produces

values in (0, 2π) for all t and all [θ] ∈ supp(µ). This means we will be able to use the fact that x ◦ τ
restricted to the interval (0, 2π) is the identity.

Equation (1) above shows

F̃2k+1(µ, 1) =

2k∑
i=0

µ(Ai)δτ( 2iπ
2k+1 +mx2k+1(µ))

and

F̃2k+1(F̃2k+1(µ, t0), 1) =

2k∑
i=0

F̃2k+1(µ, t0)(A′i)δτ( 2iπ
2k+1 +mx2k+1(F̃2k+1(µ,t0))),

where A0, . . . , A2k are the arcs of µ and A′0, . . . , A
′
2k are the arcs of F̃2k+1(µ, t0), 1), both ordered coun-

terclockwise starting at [θ0]. Since the arcs of µ and F̃2k+1(µ, t0) remain in the same order and have
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the same amounts of mass, F̃2k+1(µ, t0)(A′i) = µ(Ai) for each i. Thus, it is sufficient to show that

mx
2k+1(µ) = mx

2k+1(F̃2k+1(µ, t0)). By definition,

mx
2k+1(µ) =

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ,

and

mx
2k+1(F̃2k+1(µ, t0)) =

∫
S1

(
x− 2π

2k + 1
v
x,F̃2k+1(µ,t0)
2k+1

)
dF̃2k+1(µ, t0).

Again, the arcs of µ and F̃2k+1(µ, t0) remain in the same order and have the same amounts of mass, so

the terms vx,µ2k+1 and v
x,F̃2k+1(µ,t0)
2k+1 integrate to the same value. We thus need to show that∫

S1

x dµ =

∫
S1

x dF̃2k+1(µ, t0).

By definition, if µ =
∑n
i=1 aiδ[θi] with ai > 0 for each i, then F̃2k+1(µ, t0) =

∑n
i=1 aiδF2k+1([θi],µ,t0). We

compute, applying the fact that x ◦ τ restricted to the interval (0, 2π) is the identity:∫
S1

x dF̃2k+1(µ, t0) =

n∑
i=1

aix(F2k+1([θi]), µ, t0)

=

n∑
i=1

aix ◦ τ
(

(1− t0)x([θi]) + t0

(
2π

2k + 1
vx,µ2k+1([θi]) +mx

2k+1(µ)

))

=

n∑
i=1

ai

(
(1− t0)x([θi]) + t0

(
2π

2k + 1
vx,µ2k+1([θi]) +mx

2k+1(µ)

))
= (1− t0)

∫
S1

x dµ+ t0

(∫
S1

2π

2k + 1
vx,µ2k+1 dµ + mx

2k+1(µ)

)
=

∫
S1

x dµ,

where the last step uses the definition of mx
2k+1(µ). �

6. A Sequence of Quotients

Having defined homotopies F̃2k+1 : V2k+1 × I → V2k+1 that collapse the V2k+1 to measures supported

on regularly spaced points, we now show how to collapse all V2k+1 at once in a way that preserves the

homotopy type. There is not necessarily a natural way to extend a given F̃2k+1 continuously to all of

VRm
≤ (S1). However, it turns out that proceeding one k at a time, we can identify points with equal

images under F̃2k+1 while preserving the homotopy type, which produces a much simpler space. We

introduce a sequence of quotient maps as follows.

VRm
≤ (S1)

VRm
≤ (S1)

VRm≤ (S1)

∼1

VRm≤ (S1)

∼3
. . .

VRm≤ (S1)

∼2K+1

1VRm≤ (S1)

q1 q3 q2K+1

q̃1 q̃3 q̃5 q̃2K+1

For each k ≥ 0, let the equivalence relation ∼2k+1 on VRm
≤ (S1) be defined by µ1 ∼2k+1 µ2 if and only

if µ1 = µ2 or for some l ≤ k, µ1 and µ2 are in V2l+1 and F̃2l+1(µ1, 1) = F̃2l+1(µ2, 1). Let q1, . . . , q2K+1

be the associated quotient maps. For convenience, we will also let ∼−1 be equality and let q−1 be the

identity map on VRm
≤ (S1). Because each equivalence relation respects the previous ones, we also get
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quotient maps q̃1, . . . , q̃2K+1. We also note that for all k and l, W2l+1 is a closed, q2k+1-saturated5

subspace of VRm
≤ (S1), which implies the restriction q2k+1|W2l+1

: W2l+1 → q2k+1(W2l+1) is a quotient

map (Theorem 22.1 of [15]). Our aim is to show that each quotient q̃2k+1 is a homotopy equivalence.

We extend the composition q2k−1 ◦ F̃2k+1 : V2k+1× I → q2k−1(V2k+1) to the following map so that we

will be able to apply Proposition 2. For each k ≥ 0, define G2k+1 : W2k+1 × I → q2k−1(W2k+1) by

G2k+1(µ, t) =

{
q2k−1 ◦ F̃2k+1(µ, t) if µ ∈ V2k+1

q2k−1(µ) if µ ∈W2k−1.

Thus, we have µ1 ∼2k+1 µ2 if and only if G2k+1(µ1, 1) = G2k+1(µ2, 1).

Checking that each G2k+1 is continuous will be tedious, so we place the proof of continuity in Appen-

dix B. The intuition for the continuity of G2k+1 is as follows. We can reduce to checking continuity at

each point in ∂V2k+1 × I. Since F̃2k+1( , 1) performs an averaging operation on measures of V2k+1 and

q2k−1 identifies measures with the same averages under the various F̃2l+1( , 1) with l < k, we need to

check that these averages are compatible with each other (where for F̃2k+1 we actually need to consider

a limit as we approach ∂V2k+1). This compatibility is analogous to the fact that to take a weighted

average in R, we can perform the sum in any order, and in particular, averaging certain subsets of points

first does not change the final average. Since the averaging operation performed by each F̃2l+1 depends

on taking weighted averages of coordinates in R, it is reasonable to expect that the various averages are

in fact compatible.

We proceed with our goal of showing each q̃2k+1 is a homotopy equivalence. Letting r ∈ [0, π) and

0 ≤ k ≤ K(r), we will check that we can apply Proposition 2 to the pair
(

VRm≤ (S1)

∼2k−1
, q2k−1(W2k+1)

)
and the homotopy G̃2k+1 constructed below. Proposition 4 states that each pair (VRm

≤ (S1),W2k+1)

has the HEP. By Proposition 3, since each µ ∈ VRm
≤ (S1) − W2k+1 is only equivalent to itself un-

der the equivalence relation ∼2k−1, we find that each pair
(

VRm≤ (S1)

∼2k−1
, q2k−1(W2k+1)

)
has the HEP.

Each G2k+1( , t) : W2k+1 → q2k−1(W2k+1) is constant on the equivalence classes of ∼2k−1, so apply-

ing Lemma 9 and the universal property of quotients, we get a homotopy G̃2k+1 : q2k−1(W2k+1) × I →
q2k−1(W2k+1) defined by G̃2k+1(q2k−1(µ), t) = G2k+1(µ, t). Specifically,

G̃2k+1(q2k−1(µ), t) =

{
q2k−1 ◦ F̃2k+1(µ, t) if µ ∈ V2k+1

q2k−1(µ) if µ ∈W2k−1.

Thus, G̃2k+1(q2k−1(V2k+1)×I) ⊆ q2k−1(V2k+1) and G̃2k+1(q2k−1(W2k−1)×I) ⊆ q2k−1(W2k−1), where we

can note that q2k−1(V2k+1) and q2k−1(W2k−1) are disjoint. Furthermore, equivalence classes of V2k+1 with

respect to q2k−1 are singletons, so for µ1, µ2 ∈ V2k+1, we have G̃2k+1(q2k−1(µ1), 1) = G̃2k+1(q2k−1(µ2), 1)

if and only if F̃2k+1(µ1, 1) = F̃2k+1(µ2, 1). Therefore, the quotient map q̃2k+1 :
VRm≤ (S1)

∼2k−1
→ VRm≤ (S1)

∼2k+1
de-

scribed above identifies q2k−1(µ1) and q2k−1(µ2) if and only if G̃2k+1(q2k−1(µ1), 1) = G̃2k+1(q2k−1(µ2), 1).

Finally, by Lemma 12, for any t ∈ I, we have G̃2k+1(G̃2k+1(q2k−1(µ), t), 1) = G̃2k+1(q2k−1(µ), 1), so each

G̃2k+1( , t) sends each fiber of G̃2k+1( , 1) back into the same fiber. Therefore, all conditions of Propo-

sition 2 apply to the pair of spaces
(

VRm≤ (S1)

∼2k−1
, q2k−1(W2k+1)

)
and the homotopy G̃2k+1, so we conclude

that q̃2k+1 is a homotopy equivalence. By forming the composition q̃2K+1 ◦ · · · ◦ q̃3 ◦ q̃1 of homotopy

equivalences, we have thus proved the following theorem. We now simplify notation, writing the final

equivalence relation ∼2K+1 above as ∼ and writing q : VRm
≤ (S1)→ VRm

≤ (S1)/ ∼ for the quotient map.

Theorem 1. Define an equivalence relation ∼ on VRm
≤ (S1; r) by setting µ1 ∼ µ2 if and only if for some

k ≥ 0, µ1 and µ2 are in V2k+1(r) and F̃2k+1(µ1, 1) = F̃2k+1(µ2, 1). Then VRm
≤ (S1; r) ' VRm

≤ (S1; r)/ ∼.

5Given a function f : X → Y , a subset U ⊆ X is called f-saturated, or simply saturated, if U = f−1(f(U)). A continuous,
surjective function between topological spaces is a quotient map if and only if the image of each saturated open (closed)

set is open (closed) [15].
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The quotient VRm
≤ (S1; r)/ ∼ is a much simpler space than VRm

≤ (S1; r). Each measure is deformed

to a regular polygonal measure by some F̃2k+1 and is equivalent to this measure under the equivalence

relation. This means every class in VRm
≤ (S1; r)/ ∼ can be represented by a regular polygonal measure.

7. The CW Complex and Homotopy Types

We now show that each quotient VRm
≤ (S1; r)/ ∼ described in Theorem 1 has the topology of a CW

complex, which will allow us to determine the homotopy types. We will use the description of CW

complexes from Proposition A.2 of [9], which first requires that VRm
≤ (S1; r)/ ∼ be Hausdorff; this is

not generally true of a quotient of a metric space, so the proof will depend on the construction of this

particular quotient.

Lemma 13. For each 0 ≤ k ≤ K(r), VRm
≤ (S1; r)/ ∼2k+1 is Hausdorff.

Proof. We will use induction on k. Recall we defined ∼−1 as equality, so that VRm
≤ (S1)/ ∼−1

∼= VRm
≤ (S1)

is Hausdorff. We use this as the base case. For the inductive step, let k ≥ 0 and suppose that

VRm
≤ (S1)/ ∼2k−1 is Hausdorff. Supposing that q2k+1(µ1) 6= q2k+1(µ2), we must find disjoint open neigh-

borhoods of these points in VRm
≤ (S1)/ ∼2k+1. This is equivalent to finding q2k+1-saturated, disjoint,

open neighborhoods of µ1 and µ2 in VRm
≤ (S1).

We split into three cases. If µ1 and µ2 are in VRm
≤ (S1)−W2k+1, then let U1 = BVRm≤ (S1)(µ1, ε) and

U2 = BVRm≤ (S1)(µ2, ε), with ε > 0 small enough so that U1 and U2 are disjoint. Then since W2k+1 is

closed in VRm
≤ (S1), U1 −W2k+1 and U2 −W2k+1 are open, disjoint neighborhoods of µ1 and µ2. They

are q2k+1-saturated since each element in VRm
≤ (S1)−W2k+1 is the only element in its equivalence class.

Next, suppose µ1 ∈ W2k+1 and µ2 ∈ VRm
≤ (S1) −W2k+1. Let U ′1 =

⋃
µ∈W2k+1

BVRm≤ (S1)(µ, ε) and let

U ′2 = BVRm≤ (S1)(µ2, ε), where ε > 0 is chosen by Lemma 4(2) so that all measures of BVRm≤ (S1)(µ2, 2ε)

have at least as many arcs as µ2. Suppose for a contradiction that there is a ν ∈ U ′1 ∩U ′2. Then for some

µ ∈W2k+1, we have ν ∈ BVRm≤ (S1)(µ, ε), so dW (µ, µ2) ≤ dW (µ, ν)+dW (ν, µ2) < 2ε. But this contradicts

the choice of ε, since µ has at most 2k+ 1 arcs and µ2 has greater than 2k+ 1 arcs. Therefore U ′1 and U ′2
are disjoint open neighborhoods of µ1 and µ2. Furthermore, W2k+1 ⊆ U ′1 and U ′2 ∩W2k+1 = ∅ because

all measures in U ′2 have at least as many arcs as µ2. Therefore U ′1 and U ′2 are q2k+1-saturated, again

because each element in VRm
≤ (S1)−W2k+1 is the only element in its equivalence class.

Finally, we consider the case where µ1 and µ2 are both in W2k+1. Recall we have shown that

G2k+1 : W2k+1 × I → q2k−1(W2k+1) is continuous and that G2k+1(ν1, 1) = G2k+1(ν2, 1) if and only

if q2k+1(ν1) = q2k+1(ν2), for ν1, ν2 ∈ W2k+1. Since we have supposed q2k+1(µ1) 6= q2k+1(µ2), we must

have G2k+1(µ1, 1) 6= G2k+1(µ2, 1). By the inductive hypothesis, we can find disjoint open neighborhoods

of G2k+1(µ1, 1) and G2k+1(µ2, 1) in q2k−1(W2k+1) ⊆ VRm
≤ (S1)/ ∼2k−1; let U ′′1 and U ′′2 be their preimages

under G2k+1( , 1). Then U ′′1 and U ′′2 are q2k+1-saturated, disjoint, open subsets of W2k+1 that contain

µ1 and µ2 respectively. We must extend these to open subsets of VRm
≤ (S1), so we will thicken around

every point, as follows. For each ν1 ∈ U ′′1 and each ν2 ∈ U ′′2 , define

ε1(ν1) = sup{ε | BW2k+1
(ν1, ε) ⊆ U ′′1 }

ε2(ν2) = sup{ε | BW2k+1
(ν2, ε) ⊆ U ′′2 }.

These are always positive since U ′′1 and U ′′2 are open in W2k+1, so we can obtain the following open sets

of VRm
≤ (S1):

U ′′′1 =
⋃

ν1∈U ′′1

BVRm≤ (S1)

(
ν1,

1
2ε1(ν1)

)
U ′′′2 =

⋃
ν2∈U ′′2

BVRm≤ (S1)

(
ν2,

1
2ε2(ν2)

)
.

If ν ∈ U ′′′1 ∩W2k+1, then ν ∈ U ′′1 by choice of ε1(ν1), so we have U ′′′1 ∩W2k+1 = U ′′1 . Therefore U ′′′1

is q2k+1-saturated, since U ′′1 is q2k+1-saturated and each point not in W2k+1 is the only element in its
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equivalence class. Similarly, we see U ′′′2 is q2k+1-saturated. To show U ′′′1 and U ′′′2 are disjoint, suppose

ν ∈ U ′′′1 ∩U ′′′2 , so that ν ∈ BVRm≤ (S1)(ν1,
1
2ε1(ν1))∩BVRm≤ (S1)(ν2,

1
2ε2(ν2)) for some ν1 ∈ U ′′1 and ν2 ∈ U ′′2 .

Without loss of generality, suppose ε1(ν1) ≥ ε2(ν2), so that dW (ν1, ν2) < 1
2 (ε1(ν1) + ε2(ν2)) ≤ ε1(ν1).

Then by definition of ε1(ν1), we have ν2 ∈ U ′′1 ∩ U ′′2 , contradicting the fact that U ′′1 and U ′′2 are disjoint.

Therefore U ′′′1 and U ′′′2 are q2k+1-saturated, disjoint, open neighborhoods of µ1 and µ2 in VRm(S1; r), as

required. �

For the following lemma, recall that we have defined R2k ⊆ VRm
≤ (S1) to be the set of measures with

support equal to the regular (2k + 1)-gon {[0], [ 1·2π
2k+1 ], . . . , [ 2k·2π

2k+1 ]}.

Lemma 14. For each k ≥ 1, and any r ∈ [0, π) such that R2k ⊆ VRm
≤ (S1; r), restricting q gives a

surjective map q|∂R2k
: ∂R2k → q(W2k−1(r)). If we further restrict the domain to ∂R2k ∩ V2k−1(r), then

q|∂R2k∩V2k−1(r) is a bijection onto q(V2k−1(r)).

Proof. To simplify notation, we will write (z0, z1, . . . , z2k) for the measure
∑2k
i=0 ziδ[ i·2π2k+1 ] and will refer

to the masses being in positions 0 through 2k. When we describe points between consecutive positions,

we will mean points on the shorter arc, of length 2π
2k+1 , immediately between them (as opposed to the

longer arc of length 2k·2π
2k+1 on the other side of the circle). Any equivalence class in q(W2k−1) can be

represented by a regular polygonal measure with at most 2k − 1 vertices, so we begin with an arbitrary

set of masses a0, . . . , a2k−2 with ai ≥ 0 for each i and
∑2k−2
i=0 ai = 1. We will write indices of the masses

ai modulo 2k − 1 and the positions modulo 2k + 1. To determine the arcs of a measure in ∂R2k, we

can use the fact that a position i has nonzero mass in a measure µ if and only if the open arc between

positions i+ k and i+ k + 1 contains a point excluded by µ.

We begin with the measure (a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−2) and gradually pass masses between

the support points. Define γ0 : [0, a0]→ ∂R2k by

γ0(t) = (a0 − t, t, a1, . . . , ak−1, 0, ak, . . . , a2k−2).

Since there is zero mass at position k + 1 throughout, this is in fact a map into ∂R2k, and furthermore,

there is no excluded point between positions 0 and 1. This shows positions 0 and 1 belong to the same

arc of γ0(t) for each t. Thus, if k′ is such that γ0(0) ∈ V2k′+1, then γ0(t) ∈ V2k′+1 for all t ∈ [0, a0], and if

we consider (2k′+1)-arc mass forms, the arc masses of γ0(t) are the same for all values of t. The measure

γ0(a0) has zero mass at positions 0 and k + 1, so positions k and k + 1 belong to the same γ0(a0)-arc.

We will next move mass between these positions, then repeat this process. In general, we obtain paths

γl : [0, al(k−1)]→ ∂R2k, defining γl(t) by letting the masses as positions lk through lk + 2k be, in order,

al(k−1) − t, t, al(k−1)+1, . . . , al(k−1)+k−1, 0, al(k−1)+k, . . . , al(k−1)+2k−2.

Note that the domain of γl is the singleton {0} if al(k−1) = 0. Again, a mass of zero at position lk+k+1

implies that positions lk and lk+ 1 are in the same arc, so the arc masses remain constant in each path.

It can be checked that γl(al(k−1)) = γl+1(0) for each l, so we may concatenate these paths; write the

resulting path as γl ·γl+1. Then the path γ0 ·γ1 · · ·γ2k−2 preserves arc masses throughout and has starting

point (a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−2) and ending point (a2k−2, a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−3).

That is, the overall effect has been to move each mass over one position. Repeating 2k + 1 times, we

define γ = γ0 · γ1 · · · γ(2k−1)(2k+1)−1, which rotates each mass once around the circle; thus, γ is a loop.

By scaling, we can assume the domain of γ is [0, 1]. More generally, for any l and l′, we have γl = γl′ if

l ≡ l′ mod (2k − 1)(2k + 1).

To see that q|∂R2k
is surjective onto q(W2k−1), take any equivalence class in q(W2k−1) and choose a

representative µ ∈W2k−1 with support a regular (2k′+ 1)-gon, with k′ < k. We can choose a0, . . . a2k−2

and set ν = (a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−2) such that in (2k′ + 1)-arc mass form, the ordered arc

masses of ν match those of µ: for instance, if we choose ν to have nonzero masses at exactly positions

0, k, . . . , 2k′k, then these positions lie in separate ν-arcs, and we can choose the masses at these positions

to match the arc masses of µ. Define each γl and γ as above with this choice of a0, . . . a2k−2. Then

γ(0) = ν, and for any t ∈ [0, 1], since γ(t) and γ(0) have the same ordered arc masses, F̃2k′+1(γ(t), 1) is
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a0 − t

t

a1

0

a2

0

a0

a1 − t

t

a2

t

a0

0

a1

a2 − t

γ0(t) = (a0 − t, t, a1, 0, a2) γ1(t) = (0, a0, a1 − t, t, a2) γ2(t) = (t, a0, 0, a1, a2 − t)

Figure 4. Paths in the proof of Lemma 14 with k = 2. We have γ0(a0) = γ1(0) and
γ1(a1) = γ2(0), so the paths may be concatenated. Compare γ0(0) to γ2(a2): the masses
are shifted by one position.

a measure with support a regular (2k′ + 1)-gon and ordered arc masses matching those of µ. Working

in any coordinate system x valid near some γ(t), we can see that mx
2k′+1(γ(t)) is strictly increasing in t,

since γ moves mass counterclockwise. This implies that locally, the masses of F̃2k′+1(γ(t), 1) move strictly

counterclockwise as t increases. Furthermore, γ is a loop and each mass of F̃2k′+1(γ(t), 1) traverses the

entire circle exactly once as t ranges from 0 to 1, so there is some t0 such that F̃2k′+1(γ(t0), 1) = µ. This

shows that q(γ(t0)) = q(µ), and since γ(t0) ∈ ∂R2k, we can conclude that q|∂R2k
is surjective.

To show that q|∂R2k∩V2k−1
is injective a bijection onto q(V2k−1), consider any equivalence class in

q(V2k−1) and let µ′ be a representative measure with support a regular (2k − 1)-gon. We show the

equivalence class of µ′ intersects ∂R2k ∩ V2k−1 in a single point. Let a′0, . . . , a
′
2k−2 be the masses at the

support points of µ′, ordered counterclockwise around the circle, and note that a′i > 0 for all i, since

µ′ ∈ V2k−1. Define each γ′l like γl above, with a′i in place of ai in each case, and define γ′ similarly to γ.

If ν′ ∈ ∂R2k ∩ V2k−1 satisfies q(ν′) = q(µ′), then ν′ must have 2k − 1 arcs, so one of the positions will

have zero mass. Then the opposite two positions are in the same ν′-arc, and the remaining positions

must each be in separate ν′-arcs. It follows that the masses of ν′ are, in order counterclockwise and

beginning with the two positions opposite a position with mass zero,

a′j − t, t, a′j+1, . . . , a
′
j+k−1, 0, a

′
j+k, . . . , a

′
j+2k−2

for some j and some t ∈ [0, a′j ]. In fact, if t = a′j , we could instead write the list above starting with

a′j+k−1 (or starting with the only nonzero mass if k = 1), so the masses of ν′ can actually be written

as above with t ∈ [0, a′j). Thus, we have ν′ = γ′l(t) for some l and t ∈ [0, a′l(k−1)): in particular, we can

choose 0 ≤ l < (2k − 1)(2k + 1) by the Chinese remainder theorem. Therefore, every ν′ ∈ ∂R2k ∩ V2k−1

satisfying q(ν′) = q(µ′) is of the form ν′ = γ′(t) for some t ∈ [0, 1), so it is sufficient to show that if

q(γ′(t1)) = q(γ′(t2)), then γ′(t1) = γ′(t2).

The simplest case occurs when the masses of µ′ have no rotational symmetry: that is, there is no

nontrivial cyclic permutation of its masses that leaves it unchanged. In this case, since the masses of

F̃2k−1(γ′(t), 1) move strictly counterclockwise as t increases and traverse the circle exactly once, there is

a unique t ∈ [0, 1) such that q(γ′(t)) = q(µ′). Now consider the case where the masses of µ′ have some

nontrivial symmetry: let j be the least positive integer dividing 2k−1 such that a′i+j = a′i for all i. Then

once again, since each mass of F̃2k−1(γ′(t), 1) traverses the circle exactly once as t ranges from 0 to 1,

there must be exactly 2k−1
j values of t ∈ [0, 1) such that q(γ′(t)) = q(µ′). We show that each of these

values of t yields the same value of γ′(t). It can be checked that for any l, γ′l+2k+1(t) is defined by the

formula for γ′l(t) with each a′i replaced by a′i−1. Applying the assumed symmetry, γ′l+(2k+1)j = γ′l for

each l, so γ′l = γ′l′ if l ≡ l′ mod (2k + 1)j. Therefore, there must be an index 0 ≤ l0 < (2k + 1)j and a

t0 ∈ [0, a′l0(k−1)) such that q(γ′l0(t0)) = q(µ′). Furthermore, we have defined γ′ = γ′0 ·γ′1 · · ·γ′(2k−1)(2k+1)−1

and we have γ′l0+n(2k+1)j(t0) = γ′l0(t0) for each 0 ≤ n < 2k−1
j . Therefore, the 2k−1

j values of t ∈ [0, 1)
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such that q(γ′(t)) = q(µ′) all satisfy γ′(t) = γ′l0(t0), so there is exactly one ν′ ∈ ∂R2k ∩ V2k−1 such that

q(ν′) = q(µ′). �

We can now describe VRm
≤ (S1)/ ∼ as a simple CW complex, with one cell in each dimension from 0

to 2K + 1. See Figure 1 for an illustration of the case of K = 1. We partition VRm
≤ (S1)/ ∼ into cells

C0, . . . , C2K+1: for 0 ≤ k ≤ K, define

C2k = q(R2k)

C2k+1 = q(V2k+1)− q(R2k).

Since q only identifies a measure with measures that have the same number of arcs, the collection of

subspaces q(V2k+1) for all k ≥ 0 partitions VRm
≤ (S1)/ ∼, and thus the cells C0, . . . , C2K+1 partition

VRm
≤ (S1)/ ∼ as well. Since VRm

≤ (S1)/ ∼ is Hausdorff by Lemma 13, to give VRm
≤ (S1)/ ∼ the structure

of a CW complex, it is sufficient to construct for each n ≥ 1 a map from a closed n-disk Dn into

VRm
≤ (S1)/ ∼ such that the interior is mapped homeomorphically onto Cn and the boundary is mapped

into the union of the lower dimensional cells; see Proposition A.2 of [9]. We will write each n-skeleton

as Xn = C0 ∪ · · · ∪ Cn, so for each 0 ≤ k ≤ K, we have

X2k = q(W2k−1) ∪ q(R2k)

X2k+1 = q(W2k+1)

We consider the even dimensions first. For k = 0, the single 0 cell is q(R0) = {q(δ[0])}. For each k ≥ 1,

choosing a homeomorphism D2k → R2k that maps S2k−1 homeomorphically onto ∂R2k, we define the

characteristic map Φ2k by the following composition:

D2k R2k VRm
≤ (S1) VRm

≤ (S1)/ ∼ .
∼= q

Combining Lemma 13 with the closed map lemma, we find that Φ2k is a closed map. Since q is injective

on R2k, Φ2k maps the interior of D2k bijectively onto C2k. It can be checked6 that since Φ2k is a closed

map and the interior of D2k is Φ2k-saturated, it is in fact mapped homeomorphically onto C2k. Because

∂R2k consists of measures with less than 2k+1 arcs, the boundary of D2k is sent into q(W2k−1) = X2k−1,

as required.

For the odd dimensions, for any k ≥ 1, we consider D2k × I as a (2k + 1)-cell and construct

a map into VRm
≤ (S1). We can choose a continuous, surjective map D2k × I → P2k+1 that, for

each t ∈ I, maps D2k × {t} homeomorphically onto the set of measures with support contained in

{[ t
2k+12π], [ 1+t

2k+12π], . . . , [ 2k+t
2k+12π]} and maps S2k−1 × {t} to the set of such measures with zero mass at

at least one of these points. Thus, I parameterizes the regular (2k+1)-gons and D2k×{0} and D2k×{1}
are both mapped into R2k. Define Φ2k+1 by the following composition:

D2k × I P2k+1 VRm
≤ (S1) VRm

≤ (S1)/ ∼q

Each element of q(V2k+1) can be represented by a unique measure in P2k+1, so by an argument similar

to the above, Φ2k+1 maps the interior of D2k × I homeomorphically onto C2k+1. Furthermore, points in

the boundary of D2k × I are mapped into either q(∂P2k+1) ⊆ q(W2k−1) or q(R2k), so the boundary is

mapped into X2k. We have thus shown VRm
≤ (S1)/ ∼ has the CW-complex structure described above.

We now find the homotopy types of the skeletons: we show for each k ≥ 0 that X2k ' D2k ' {∗}
and X2k+1 ' S2k+1. We use induction on k to construct, for each k ≥ 0, a homotopy equivalence

ϕ2k+1 : X2k+1 → S2k+1 that maps X2k to a point z ∈ S2k+1 and maps the cell C2k+1 homeomorphically

onto S2k+1−{z}. For the base case, q(R0) = {q(δ[0])} is the single 0-cell, and since X1 = q(W1) is formed

by gluing a 1-cell to by its two boundary points to the zero cell, we in fact have a homeomorphismX1
∼= S1

that maps C1 homeomorphically onto S1 − {[0]}.

6In general, if f : X → Y is a closed map and A ⊆ X is an f -saturated set, then f |A : A→ f(A) is a closed map. We will
use this fact once more below.
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S2k−1 X2k−1

S2k−1 S2k−1

D2k X2k

D2k S2k−1 tf D2k

Φ2k|S2k−1

1 ϕ2k−1

f

Φ2k

1 ψ

Figure 5. Diagram for determining the homotopy type of X2k. The front and back
squares are pushouts and the map ψ is a homotopy equivalence.

For the inductive step, let k ≥ 1 and suppose ϕ2k−1 : X2k−1 → S2k−1 is a homotopy equivalence that

maps X2k−2 to a point z ∈ S2k−1 and maps the cell C2k−1 homeomorphically onto S2k−1 − {z}. In

the diagram in Figure 5, Φ2k : D2k → X2k is the characteristic map defined above, with the codomain

restricted. By Lemma 14, Φ2k|S2k−1 is surjective, and this implies Φ2k is also surjective. Since Φ2k is

a closed map, this implies it is a quotient map, and these facts can be used to check that the square

in the diagram containing Φ2k and Φ2k|S2k−1 is a pushout. Letting f = ϕ2k−1 ◦ Φ2k|S2k−1 , the diagram

commutes and both the front and back squares are pushouts. By the gluing theorem for adjunction spaces

(7.5.7 of [7]), the resulting map ψ : X2k → S2k−1 tf D2k defined by the universal property of pushouts is

a homotopy equivalence. Since (D2k, S2k−1) has the HEP, the homotopy type of S2k−1 tf D2k depends

only on the homotopy equivalence class of the map f (Proposition 0.18 of [9]). This, in turn, depends

only on the degree of the map f (see, for instance, Corollary 4.25 of [9]), which we will find by considering

the local degree at a suitable point.

Since (q|∂R2k
)−1(C2k−1) ⊆ (q|∂R2k

)−1(q(V2k−1)) ⊆ V 2k−1 ∩ ∂R2k, Lemma 14 shows q restricts to a

bijection from (q|∂R2k
)−1(C2k−1) onto C2k−1. Furthermore, Φ2k|S2k−1 factors as

S2k−1 ∂R2k q(W2k−1),
∼= q|∂R2k

so Φ2k|S2k−1 restricts to a bijection from (Φ2k|S2k−1)−1(C2k−1) onto C2k−1. Since Φ2k is a closed

map and S2k−1 is Φ2k-saturated, Φ2k|S2k−1 : S2k−1 → X2k−1 is also a closed map. Similarly, since

(Φ2k|S2k−1)−1(C2k−1) is Φ2k|S2k−1 -saturated, it can be checked that the restriction of Φ2k|S2k−1 to

(Φ2k|S2k−1)−1(C2k−1) is in fact a homeomorphism onto C2k−1. By the inductive hypothesis, we have

ϕ−1
2k−1(S2k−1 − {z}) = C2k−1, and this cell is mapped homeomorphically onto S2k−1 − {z} by ϕ2k−1,

so we can conclude that f restricts to a homeomorphism from f−1(S2k−1 − {z}) onto S2k−1 − {z}.
Therefore, the local degree of f at any point in f−1(S2k−1 − {z}) is ±1, which shows that the degree

of f is ±1 (see Proposition 2.30 of [9]). This shows S2k−1 tf D2k is homotopy equivalent to the space

formed by gluing the boundary of D2k to S2k−1 by the identity map, which is homeomorphic to D2k.

Thus, we find X2k ' S2k−1 tf D2k ' D2k ' {∗}.
Finally, since CW pairs have the HEP and we have shown X2k is contractible, the quotient map

X2k+1 → X2k+1/X2k is a homotopy equivalence by Proposition 0.17 of [9] (or by our Proposition 2). In

our case, X2k+1 is obtained by gluing single a (2k + 1)-cell by its boundary to X2k, and thus we have

the homotopy equivalence ϕ2k+1 defined by the composition

X2k+1 X2k+1/X2k D2k+1/S2k S2k+1.
∼= ∼=
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Furthermore, ϕ2k+1 sends X2k to a single point of S2k+1 and sends the cell C2k+1 homeomorphically

onto the remainder of S2k+1, completing the inductive step.

We have thus found the homotopy types of the skeletons. Furthermore, for r ≥ π, it can be checked

that VRm
≤ (S1) is contractible7. Recalling the r values for which V2k+1(r) is nonempty, described in

Proposition 1, we have proved the following theorem.

Theorem 2. For each k ≥ 0, if V2k+1(r) is nonempty, then q(W2k+1(r)) ' S2k+1. This implies

VRm
≤ (S1; r) '

{
S2k+1 if r ∈

[
2kπ

2k+1 ,
(2k+2)π

2k+3

)
{∗} if r ≥ π.

8. Persistent Homology

Finally, we will address the inclusion maps between the metric thickenings as the parameter r varies

and find the associated persistent homology barcodes. As mentioned above, the barcodes are already

implied by previous work, as long as we disregard whether endpoints of bars are open or closed. Thus,

this section simply demonstrates that the techniques we have used are sufficient to find the barcodes

directly; this will hopefully be of use in future research.

Here we must be careful to distinguish between the quotients we have constructed at different values

of the parameter r. Let k ≥ 0 and let r, r′ ∈
[

2kπ
2k+1 ,

(2k+2)π
2k+3

)
with r ≤ r′. Let the equivalence relations on

VRm
≤ (S1; r) and VRm

≤ (S1; r′) described in Theorem 1 be denoted ∼ and ∼′ respectively, and let the corre-

sponding quotient maps be q and q′ respectively. In both quotients VRm
≤ (S1; r)/ ∼ and VRm

≤ (S1; r′)/ ∼′,
any equivalence class can be represented by a regular polygonal measure with at most 2k + 1 support

points, and all such regular polygonal measures represent distinct equivalence classes. Since the defini-

tion of each F̃2l+1 does not depend on the parameter r, if µ ∈ VRm
≤ (S1; r) ⊆ VRm

≤ (S1; r′), then q(µ)

and q′(µ) are in fact represented by the same polygonal measure. We thus have a homeomorphism

VRm
≤ (S1; r)/ ∼ → VRm

≤ (S1; r′)/ ∼′ that sends the equivalence class of a regular polygonal measure in

VRm
≤ (S1; r) to the equivalence class of the same regular polygonal measure in VRm

≤ (S1; r′) (note that

this homeomorphism can be viewed as the natural homeomorphism of the CW complexes constructed

in Section 7). This homeomorphism makes the following diagram commute:

VRm
≤ (S1; r) VRm

≤ (S1; r′)

VRm≤ (S1;r)

∼
VRm≤ (S1;r′)

∼′ .

q q′

The vertical maps are homotopy equivalences by Theorem 1 and the bottom map is the homeomor-

phism described above. Therefore, after applying a singular homology functor Hn in any dimension

n ≥ 0 and with coefficients in any fixed field, we obtain a commutative square in which each map is an

isomorphism:

Hn(VRm
≤ (S1; r)) Hn(VRm

≤ (S1; r′))

Hn

(
VRm≤ (S1;r)

∼

)
Hn

(
VRm≤ (S1;r′)

∼′

)
.

7One simple option to show VRm≤ (S1) is contractible is to use a linear homotopy in the metric thickening. Specifically, fix

some µ0 ∈ VRm≤ (S1) and define L : VRm≤ (S1)× I → VRm≤ (S1) by L(µ, t) = (1− t)µ+ tµ0. Linear homotopies have played

a significant role in previous work: see Lemma 3.9 of [3], Lemma 4 of [14], and Proposition 2.4 of [5].
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By Theorem 2, both VRm
≤ (S1; r)/ ∼ and VRm

≤ (S1; r′)/ ∼′ are homotopy equivalent to S2k+1. From the

homology of spheres, for any r ∈
[

2kπ
2k+1 ,

(2k+2)π
2k+3

)
, we find that H0(VRm

≤ (S1; r)) and H2k+1(VRm
≤ (S1; r))

are 1-dimensional and the homology in all other dimensions is zero. Applying these facts across all scale

parameters r, this shows that the quotient maps induce an isomorphism of persistence modules between

Hn(VRm
≤ (S1; )) and Hn

(
VRm≤ (S1; )

∼

)
. In particular, for zero-dimensional homology, we note that the

class of a fixed delta measure is a generator for all r ≥ 0. By considering all k ≥ 0, we can find the

persistent homology in all dimensions. The barcodes are given in the following theorem.

Theorem 3. The filtration VRm
≤ (S1; ) of Vietoris–Rips metric thickenings of the circle has one persis-

tent homology bar [0,∞) in dimension 0, one bar
[

2kπ
2k+1 ,

(2k+2)π
2k+3

)
in dimension 2k + 1 for each k ≥ 0,

and no bars in the remaining dimensions.

. . .

H1

H3

H5

0 2π
3

4π
5

π6π
7

Figure 6. Visualization of the reduced persistent homology bars of VRm
≤ (S1; ). There

is one bar in each odd dimension, corresponding to the homotopy types of odd-
dimensional spheres.

9. Conclusion

While certain techniques used here depend on specific properties of the circle, such as characterizing

a measure µ by the number of µ-arcs, some ideas will hopefully generalize to other settings. The

notion of a support homotopy already applies to more general Vietoris–Rips metric thickenings (and

other simplicial metric thickenings), as we proved Lemma 2 with only the requirement of a bounded

metric space. This suggests that the idea of collapsing a Vietoris–Rips metric thickening to a subset

of representative measures, which we did via a support homotopy, could work in other spaces as well.

Here we used µ-arcs to describe how to identify µ with a simple representative in a quotient. In another

space, a similar description of what portions of the space are excluded by a support point may lead to a

similar, albeit possibly more complicated, way to choose a representative.

For those interested in pursuing other specific spaces, natural choices include spheres of higher dimen-

sions. Previous work indicates the homotopy types are likely to be more complicated than those of the

circle: see Theorem 5.4 of [3]. Another approach to future work would be to examine what techniques

presented here can be generalized to reasonable classes of metric spaces, for instance, those that have

the topology of a compact manifold. Ideally, we would eventually be able to show that Vietoris–Rips

metric thickenings (and possibly other simplicial metric thickenings) of metric spaces meeting reasonable

conditions are homotopy equivalent to CW complexes, thus providing an analog of Morse theory. Even

in cases where the homotopy types are too difficult to describe fully, such a theory could provide bounds

on the dimensions of homology modules and the numbers of persistent homology bars, analogous to the

Morse inequalities. Results in this direction will improve our understanding of not only Vietoris–Rips

metric thickenings but also of Vietoris–Rips simplicial complexes, since in terms of persistent homology,

these constructions are essentially interchangeable.
28



10. Acknowledgements

I would like to thank Henry Adams for discussing this project many times and for reading the paper

as it was in progress.

References

[1] Micha l Adamaszek. Clique complexes and graph powers. Israel Journal of Mathematics, 196(1):295–319, August 2013.

[2] Michal Adamaszek and Henry Adams. The Vietoris-Rips complexes of a circle. Pacific Journal of Mathematics, 290,

March 2015.

[3] Micha l Adamaszek, Henry Adams, and Florian Frick. Metric reconstruction via optimal transport. SIAM Journal on

Applied Algebra and Geometry, 2(4):597–619, 2018.

[4] Henry Adams, Johnathan Bush, and Florian Frick. Metric thickenings, Borsuk–Ulam theorems, and orbitopes. Math-

ematika, 66:79–102, 2020.

[5] Henry Adams, Facundo Mémoli, Michael Moy, and Qingsong Wang. The Persistent Topology of Optimal Transport

Based Metric Thickenings. arXiv e-prints arXiv:2109.15061, September 2021.

[6] Henry Adams and Joshua Mirth. Metric thickenings of Euclidean submanifolds. Topology and its Applications, 254:69–

84, 2019.

[7] Ronald Brown. Topology and Groupoids. http://www.groupoids.org.uk/, Deganwy, United Kingdom, 2006.

[8] Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric complexes. Geometriae Dedicata,

173(1):193–214, 2014.

[9] Allen Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.

[10] Jean-Claude Hausmann. On the Vietoris–Rips complexes and a cohomology theory for metric spaces. Annals of

Mathematics Studies, 138:175–188, 1995.

[11] Mikhail Katz. On neighborhoods of the Kuratowski imbedding beyond the first extremum of the diameter functional.

Fundamenta Mathematicae, 137(3):161–175, 1991.

[12] John M. Lee. Introduction to Topological Manifolds. Graduate Texts in Mathematics. Springer, 2011.

[13] Sunhyuk Lim, Facundo Memoli, and Osman Berat Okutan. Vietoris-Rips Persistent Homology, Injective Metric Spaces,

and The Filling Radius. arXiv e-prints arXiv:2001.07588, January 2020.

[14] Michael Moy. Persistence stability for metric thickenings. Master’s thesis, Colorado State University, March 2021.

[15] James R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, second edition, 2000.

[16] Cédric Villani. Topics in optimal transportation. Number 58 in Graduate Studies in Mathematics. American Mathe-

matical Society, Providence, 2003.
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Appendix A. Proof of Lemma 6

Here we prove Lemma 6, which states that µ ∈ V2k+1(r) if and only if supp(µ) is contained in a finite

set T ⊂ S1 such that diam(T ) ≤ r and arcsr(T ) = 2k + 1.

Proof of Lemma 6. Let C be the set of measures µ ∈ VRm
≤ (S1) with supp(µ) contained in some finite set

T ⊂ S1 such that diam(T ) ≤ r and arcsr(T ) = 2k+1. We must show C = V2k+1, and we start by noting

that V2k+1 ⊆ C. We first show C ⊆ V2k+1. We can write any α ∈ C in the form α =
∑n
i=0 aiδ[θi], with

ai ≥ 0 for each i and such that diam({[θ0], . . . , [θn]}) ≤ r and arcsr({[θ0], . . . , [θn]}) = 2k + 1 (note that

some ai may be 0, allowing for the case when the support of µ is strictly contained in {[θ0], . . . , [θn]}).
For each positive integer j, let αj =

∑n
i=0

(
(1− 1

j )ai + 1
j

1
(n+1)

)
δ[θi]. Then αj ∈ V2k+1 for each j and

the sequence {αj} converges to α, so α ∈ V2k+1.

The remainder of the proof will handle the converse: we suppose µ ∈ VRm
≤ (S1) − C and show

µ ∈ VRm
≤ (S1)− V2k+1. If k = 0, then this is true since V1 is closed (by Lemma 5) and V1 ⊆ C; thus, we

may assume for the remainder of the proof that k ≥ 1. If arcsr(µ) > 2k+1, then µ ∈ VRm
≤ (S1)−W2k+1,

so µ ∈ VRm
≤ (S1) − V2k+1 because Lemma 5 implies V2k+1 ⊆ W2k+1. Thus, we consider the case where

arcsr(µ) ≤ 2k+ 1, and in this case, we must in fact have arcsr(µ) < 2k+ 1 because V2k+1 ⊆ C. Then for

any finite set T ⊂ S1 with diam(T ) ≤ r such that supp(µ) ⊆ T , we must have arcsr(T ) < 2k + 1, since

µ /∈ C.

We examine the ways that points can be added to supp(µ) to produce such a set T . Begin by coloring

the points of supp(µ) blue and the points opposite them red. From here on, whenever we color a point

red or blue, we assume the point opposite it is colored the opposite color, and thus it is sufficient to

describe colored points on half the circle. Fix some blue point [θ] ∈ supp(µ), and let A1, . . . , AN be all

arcs between consecutive colored points on a fixed half of the circle between the blue point [θ] and the

red point [θ+π]. Then diam(Ai) is the length of the arc Ai for each i. In general, if a finite set of points

on the circle are colored blue and the points opposite them are colored red, the set of blue points has

diameter at most r if and only if the distance between any blue point and any red point is at least π− r.
Following this restriction on distances, we search for a way to color additional points of an arc Ai that

produces the greatest increase in the number of arcs of the set of blue points. Adding a pair of antipodal

points, with one red and one blue, increases the number of arcs of the set of blue points by two if and only

if the blue point is placed between consecutive colored points that are both red, which happens if and

only if the red point is placed between consecutive colored points that are both blue. If the endpoints

of Ai are both the same color, without loss of generality we let them be blue and note that after adding

additional points, the increase in the number of arcs is equal to two times the number of new red points

in Ai immediately counterclockwise of a blue point. There can be at most bdiam(Ai)
2(π−r) c such red points

because of the required distance between red and blue points, and this number of new red points can

be achieved by placing points of alternating colors at distance π − r from each other, beginning at one

endpoint A and continuing until no new red points can be placed. Therefore 2bdiam(Ai)
2(π−r) c is the maximal

increase in the number of arcs of the set of blue points that can be produced by coloring additional points

of Ai, and this maximal increase can be achieved. By similar reasoning, if one endpoint of Ai is red and

the other is blue, we find that the maximal increase is 2bdiam(Ai)−(π−r)
2(π−r) c.

If T ⊂ S1 is any finite subset with diam(T ) ≤ r and such that supp(µ) ⊆ T , then T can be obtained as

a set of blue points meeting the description above. Using the bounds on the maximal increases described

above, we have

arcsr(T ) ≤ arcsr(µ) +
∑
i∈I

2
⌊diam(Ai)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(Ai)− (π − r)

2(π − r)

⌋
where I is the set of all i such that Ai has endpoints of the same color and J is the set of all i such that

Ai has endpoints of opposite colors. Furthermore, this bound is tight, since the maximal increase can be

achieved for each Ai, so since µ /∈ C implies arcsr(T ) < 2k + 1 for a T producing the maximal increase
30



in arcs, we have

arcsr(µ) +
∑
i∈I

2
⌊diam(Ai)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(Ai)− (π − r)

2(π − r)

⌋
< 2k + 1.

We can now choose an ε > 0 such that increasing any diam(Ai) by 2ε does not increase the value of

any floor function above. Specifically, choose ε > 0 so that

ε < (π − r) min
i∈I

(⌊diam(Ai)

2(π − r)

⌋
+ 1− diam(Ai)

2(π − r)

)
and

ε < (π − r) min
i∈J

(⌊diam(Ai)− (π − r)
2(π − r)

⌋
+ 1− diam(Ai)− (π − r)

2(π − r)

)
,

noting that each minimum is taken over a finite set of positive values. By Lemma 4(1), there exists a

δ > 0 such that if ν ∈ VRm
≤ (S1) and dW (µ, ν) < δ, then each point of supp(µ) has a point of supp(ν) that

is at distance less than ε. For any such ν, choose one such point in supp(ν) for each point of supp(µ) to

define a set U ⊆ supp(ν), and color the points of U green and the points opposite them orange. Shrinking

ε if necessary, we can assume each green point is within ε of a unique blue point, and the ordering of the

green and orange points matches the ordering of the corresponding blue and red points. This implies

that arcsr(U) = arcsr(µ); that the arcs A1, . . . , AN above have corresponding arcs A′1, . . . , A
′
N defined

analogously for corresponding the green and orange points; and that for each i the endpoints of A′i differ

from the corresponding endpoints of Ai by less than ε. Since U ⊆ supp(ν), arcsr(ν) can be bounded

by the same method we used to bound arcsr(T ) above, replacing Ai with A′i for each i. For each i,

diam(A′i) < diam(Ai) + 2ε, so by the choice of ε, we have

arcsr(ν) ≤ arcsr(U) +
∑
i∈I

2
⌊diam(A′i)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(A′i)− (π − r)

2(π − r)

⌋
= arcsr(µ) +

∑
i∈I

2
⌊diam(Ai)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(Ai)− (π − r)

2(π − r)

⌋
< 2k + 1.

This shows ν /∈ V2k+1, so µ has an open neighborhood that does not intersect V2k+1, and we can conclude

µ ∈ VRm
≤ (S1)− V2k+1. �

Appendix B. Continuity of G2k+1

We now return to check that each G2k+1 is continuous. The intuition is described in Section 6. The

main challenge is that there is not a unique natural way to extend the definition of F̃2k+1 to ∂V2k+1× I,

which makes it difficult to consider a limit as µ approaches ∂V2k+1. To handle this, we consider all

sensible ways one could attempt to extend F̃2k+1 to a given point in ∂V2k+1 × I and find that there are

finitely many. This allows us to use a compactness argument to consider a limit as µ approaches ∂V2k+1.

In the proof, it will be convenient to bound the 1-Wasserstein distance between measures by spec-

ifying how only part of the mass is transported. Formally, this will be described by a partial match-

ing between measures µ =
∑n
i=1 aiδ[θi] and µ′ =

∑n′

j=1 a
′
jδ[θ′j ], which is defined to be an indexed set

κ = {κi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n′} of nonnegative real numbers such that
∑n
i=1 κi,j ≤ a′j for all j and∑n′

j=1 κi,j ≤ ai for all i. A partial matching gives an incomplete description of how mass is transported

from µ to µ′, and the cost of a partial matching is defined in the same way as the cost of a matching.

Any partial matching from µ to µ′ can be completed to a matching from µ to µ′: that is, given a partial

matching κ, there exists a matching κ′ such that κi,j ≤ κ′i,j for all i, j. The cost of transporting the

remaining mass not accounted for by the partial matching κ can be bounded using the diameter of S1

(as a metric space): the maximum distance between two points of S1 is π.
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Proof of continuity of G2k+1. Note that G1 = F̃1 is continuous, so we let k ≥ 1. It is sufficient to

check sequential continuity for each point in ∂V2k+1, since the continuity of q2k−1 and F̃2k+1 imply that

G2k+1 is continuous on V2k+1 and W2k+1 − V2k+1, which are open in W2k+1. Suppose {(µn, tn)}n is

a sequence in W2k+1 × I that converges to (µ, t) ∈ ∂V2k+1 × I. We need to show {G2k+1(µn, tn)}n
converges to G2k+1(µ, t) = q2k−1(µ). For the subsequence consisting of those (µn, tn) in W2k−1 × I,

we have G2k+1(µn, tn) = q2k−1(µn), and we can apply continuity of q2k−1 to show this subsequence

converges. Thus, we can reduce to the case where (µn, tn) ∈ V2k+1 × I for all n.

Let l < k be such that µ ∈ V2l+1. By Lemma 4(3), for any µ′ ∈ V2k+1 sufficiently close to µ, if we

extend the arcs of µ′ on either side by π−r
2 , we obtain disjoint arcs A0, . . . , A2k that collectively contain

the support of µ. Let (x, τ) be a coordinate system that excludes a point not in these arcs and assume

the arcs are in counterclockwise order starting from the excluded point. As before, we let vx,µ
′

2k+1 : S1 → R
be a function such that for any [θ] in some Ai, we have [θ] ∈ A

vx,µ
′

2k+1([θ])
. With µ fixed as above, define

mx,µ′ =

∫
S1

(
x− 2π

2k + 1
vx,µ

′

2k+1

)
dµ

and writing µ as µ =
∑N
i=1 aiδ[θi], define Jx,µ

′
: I → V2l+1 by

Jx,µ
′
(t) =

N∑
i=1

aiδτ((1−t)x([θi])+t(
2π

2k+1v
x,µ′
2k+1([θi])+mx,µ

′ ))
.

This mimics the definition of F̃2k+1, but applies it to µ, which is not in V2k+1(r). By an argument

similar to that in the proof of Lemma 11, each Jx,µ
′
(t) is in fact in V2l+1. Since Jx,µ

′
is continuous,

Jx,µ
′
(I) is compact. Note that the only reason Jx,µ

′
depends on µ′ is because of the use of vx,µ

′

2k+1 in

these definitions. Since there are only finitely many points in supp(µ) and finitely many indices of arcs

they are assigned to by vx,µ
′

2k+1, there are only finitely many sets Jx,µ
′
(I) that can be obtained from all

possible µ′. Taking the union of these finitely many Jx,µ
′
(I) for all possible µ′, we obtain a compact set

S ⊆W2k+1.

Any open set of q2k−1(W2k+1) containing G2k+1(µ, t) = q2k−1(µ) has a preimage equal to a (q2k−1)-

saturated open subset U ⊆ W2k+1 containing µ. For any such U , we show S ⊆ U by showing

F̃2l+1(Jx,µ
′
(t), 1) = F̃2l+1(µ, 1) for each t ∈ I and each µ′ meeting the description above. We mimic

the proof of Lemma 12, omitting details. As in the proof of Lemma 12, we can choose (x, τ) to be a

valid coordinate system for both µ and Jx,µ
′
(t) and such that all points of supp(µ) and supp(Jx,µ

′
(t))

are sent into (0, 2π) by x. Since the masses of the corresponding arcs of µ and Jx,µ
′
(t) agree, following

Equation 1 before Lemma 12, it is sufficient to check that mx
2l+1(µ) = mx

2l+1(Jx,µ
′
(t)). If A′0, . . . , A

′
2l

are the arcs of µ, we have mx
2l+1(µ) =

∫
S1 x dµ −

∑2l
i=0

2iπ
2l+1µ(A′i), and analogously for mx

2l+1(Jx,µ
′
(t)).

Again, since the arc masses of µ and Jx,µ
′
(t) agree, we only must check that

∫
S1 x dµ =

∫
S1 x d(Jx,µ

′
(t)).

Using the notation above for µ and Jx,µ
′
(t), we have∫

S1

x d(Jx,µ
′
(t)) =

N∑
i=1

aix ◦ τ
(

(1− t)x([θi]) + t

(
2π

2k + 1
vx,µ

′

2k+1([θi]) +mx,µ′
))

=

N∑
i=1

ai

(
(1− t)x([θi]) + t

(
2π

2k + 1
vx,µ

′

2k+1([θi]) +mx,µ′
))

= (1− t)
∫
S1

x dµ+ t

∫
S1

2π

2k + 1
vx,µ

′

2k+1dµ+ tmx,µ′

=

∫
S1

x dµ,

where the last equality follows from the definition of mx,µ′ .

32



Therefore we have S ⊆ U , and since S is compact and U is open in W2k+1, there exists8 an ε > 0 such

that any point within ε of S is contained in U . We will show that even though {F̃2k+1(µn, tn)}n does

not necessarily converge to a specific point in S, the points of the sequence become arbitrarily close to S

as n approaches infinity and are thus contained in U for all sufficiently large n. Since µn approaches µ,

we can set µ′ = µn for all sufficiently large n. We can also make a choice of a coordinate system (x, τ)

that meets the requirements above simultaneously for all µn with n sufficiently large: for instance, let x

exclude a point opposite a point of supp(µ). Then we have

mx,µn =

∫
S1

(
x− 2π

2k + 1
vx,µn2k+1

)
dµ

mx
2k+1(µn) =

∫
S1

(
x− 2π

2k + 1
vx,µn2k+1

)
dµn,

where mx
2k+1 is as defined in Section 5. Thus,

Jx,µn(tn) =

N∑
i=1

aiδτ((1−tn)x([θi])+tn( 2π
2k+1v

x,µn
2k+1([θi])+mx,µn )),

and if µn =
∑Nn
j=1 an,jδ[θn,j ], then

F̃2k+1(µn, tn) =

Nn∑
j=1

an,jδτ((1−tn)x([θn,j ])+tn( 2π
2k+1v

x,µn
2k+1([θn,j ])+mx2k+1(µn))).

We show that F̃2k+1(µn, tn) becomes close to S by showing the distance between F̃2k+1(µn, tn) and

Jx,µn(tn) approaches zero as n approaches infinity. For all sufficiently large n, we will have a bound

|mx,µn−mx
2k+1(µn)| < ε

2 by Lemma 7(2) and the fact that
∫
S1
x dµn approaches

∫
S1
x dµ as n approaches

infinity (by Lemma 1, replacing x with a suitable bounded continuous function that does not change the

value of the integrals). As long as n is sufficiently large, we can define the arcs A0, . . . , A2k as above

with µ′ = µn and these arcs collectively contain supp(µ) and supp(µ′). We now fix n and let {κi,j}
be an optimal matching between µ and µn. Distinct arcs are separated by a distance of at least π − r,
so a mass of no more than dW (µ,µn)

π−r may be transported between distinct arcs by {κi,j}. Thus, letting

B = {(i, j) | vx,µn2k+1([θi]) = vx,µn2k+1([θn,j ])}, we have∑
(i,j)∈B

κi,j ≥ 1− dW (µ, µn)

π − r
.

We define a partial matching for the measures Jx,µn(tn) and F̃2k+1(µn, tn) by using the same values κi,j
for (i, j) ∈ B. We will use the fact that for (i, j) ∈ B, the distance |x([θi]) − x([θn,j ])| is the arc length

between [θi] and [θn,j ] in the arc Avx,µn2k+1([θi]) containing them, so |x([θi]) − x([θn,j ])| = dS1([θi], [θn,j ]).

8This is a general fact about compact subsets of metric spaces, which was also used in the proof of Lemma 10. See, for
instance, Exercise 2 in Section 27 of [15].
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Thus, the cost of this partial matching is bounded by∑
(i,j)∈B

κi,jdS1

(
τ((1− tn)x([θi]) + tn( 2π

2k+1v
x,µn
2k+1([θi]) +mx,µn)),

τ((1− tn)x([θn,j ]) + tn( 2π
2k+1v

x,µn
2k+1([θn,j ]) +mx

2k+1(µn)))
)

≤
∑

(i,j)∈B

κi,jdR

(
(1− tn)x([θi]) + tn( 2π

2k+1v
x,µn
2k+1([θi]) +mx,µn),

(1− tn)x([θn,j ]) + tn( 2π
2k+1v

x,µn
2k+1([θn,j ]) +mx

2k+1(µn))
)

≤(1− tn)
∑

(i,j)∈B

κi,j |x([θi])− x([θn,j ])|+ tn
∑

(i,j)∈B

κi,j |mx,µn −mx
2k+1(µn)|

=(1− tn)
∑

(i,j)∈B

κi,jdS1([θi], [θn,j ]) + tn
∑

(i,j)∈B

κi,j |mx,µn −mx
2k+1(µn)|

<(1− tn)dW (µ, µn) + tn
ε

2

≤dW (µ, µn) +
ε

2

There is mass at most dW (µ,µn)
π−r remaining, and this mass can be transported arbitrarily at a cost of at

most π
π−rdW (µ, µn). This shows there exists a matching between Jx,µn(tn) and F̃2k+1(µn, tn) with cost at

most (1+ π
π−r )dW (µ, µn)+ ε

2 . Thus, for all sufficiently large n, we have dW (Jx,µn(tn), F̃2k+1(µn, tn)) < ε.

Therefore, for all sufficiently large n, F̃2k+1(µn, tn) is within ε of Jx,µn(tn) and is thus within ε of S, so

it is in U . So for any open neighborhood of q2k−1(µ) in q2k−1(W2k+1), we have shown q2k−1◦F̃2k+1(µn, tn)

is in this neighborhood for all sufficiently large n, so {G2k+1(µn, tn)}n converges to G2k+1(µ, t). This

completes the proof that G2k+1 is continuous. �
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