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Abstract: Wireless big data is attracting extensive attention from operators, vendors and academia, which

provides new freedoms in improving the performance from various levels of wireless networks. One possible

way to leverage big data analysis is predictive resource allocation, which has been reported to increase

spectrum and energy resource utilization efficiency with the predicted user behavior including user mobility.

However, few works address how the traffic load prediction can be exploited to optimize the data-driven radio

access. We show how to translate the predicted traffic load into the essential information used for resource

optimization by taking energy-saving transmission for non-real-time user as an example. By formulating and

solving an energy minimizing resource allocation problem with future instantaneous bandwidth information,

we not only provide a performance upper bound, but also reveal that only two key parameters are related

to the future information. By exploiting the residual bandwidth probability derived from the traffic volume

prediction, the two parameters can be estimated accurately when the transmission delay allowed by the

user is large, and the closed-form solution of global optimal resource allocation can be obtained when

the delay approaches infinity. We provide a heuristic resource allocation policy to guarantee a target

transmission completion probability when the delay is no-so-large. Simulation results validate our analysis,

show remarkable energy-saving gain of the proposed predictive policy over non-predictive policies, and il-

lustrate that the time granularity in predicting traffic load should be identical to the delay allowed by the user.
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1 Introduction

To support the explosively growing traffic demands

in big data era, the main trend techniques for the

5G (fifth Generation) cellular networks are to update

network architecture, boost throughput by network

densification, and explore more spectrum[1]. Yet in

reality the resources are often under-utilized in most

BSs (Base Stations), due to the time-varying traffic

pattern. It has been observed from prevalent net-

works that in average less than 15% resource blocks

are truly used in practice. To deal with such a

dilemma, which comes from the inherent human rou-

tine activity, managing radio resources by exploiting

predictable human behavior is a possible solution.

Recently, wireless big data is attracting extensive

attention from operators, vendors and academia[2],

which is expected to provide new freedom in optimiz-
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ing various performance of wireless networks. How-

ever, it remains elusive about whether or not big

data analysis can improve resource utilization effi-

ciency, and how to optimize data-driven radio access

networks.

More or less inspired by the recent report that hu-

man behavior is highly predictable[3], optimizing re-

source allocation by leveraging the prediction ability

endowed by big data is emerging as a new research

area[4-8]. With big data analytics, the traffic volume

and the mobility pattern can be predicted[9-11], at

least within a prediction window. From the traffic

volume prediction, the average network resource us-

age status can be estimated. From the trajectory of

a mobile user, the average channel gains can be pre-

dicted with the help of a radio map[8]. With various

machine learning algorithms such as collaborative fil-

tering that has long been studied for recommenda-

tion problems[12], the content popularity and even

the preferred content of an individual user are pos-

sible to be known before the user(s) truly initiates

the request. Undoubtedly, predicting the behavior

related information is challenging, considering that

the numbers of users and contents are extraordinarily

huge. This naturally raises the following questions:

What performance of wireless access networks can be

improved by exploiting the predictable information

and with how much gain? How to translate the pre-

dictable knowledge to the essential information that

can be used to optimize radio resource allocation and

how to exploit the information?

Most existing works of predictive resource allo-

cation assume that there exists only one class of

mobile users in the network either requesting RT

(Real-Time) or NRT (Non-Real-Time) services, and

preserve or pre-allocate radio resources according

to their channel variation in the future[4-8]. Yet a

real-world cellular network needs to support differ-

ent kinds of services with various priorities. While

jointly allocating resources to different services can

maximize the resource utilization efficiency, it is very

hard to predict trajectories of all mobile users if

not impossible, considering the prohibitive compu-

tational complexity to process such a huge amount

of data.

Fortunately, in real-world systems a large percent-

age of users requesting NRT services are not mobile.

If we can predict the traffic load of the BS where

these NRT users are located, which are dynamic due

to the random requests from the RT users in the cell,

then we can pre-allocate resources to the NRT users

to exploit the excess resources. Then, the data to be

processed will be reduced drastically. As reported in

Ref. [13] and references therein, the dynamics of traf-

fic load exhibit periodical characteristic among days

and even hours. This implies that the traffic load is

highly predicable. With the predicted traffic loads

for different services, we can infer the resource occu-

pation status for different classes of services. How-

ever, the prediction granularity for different purposes

of resource management are quite different. For ex-

ample, in order to close idle BSs for energy saving

during the off-peak time, the traffic volume in every

hour of the next day was predicted in Ref. [9], while

the traffic volume in future 5 min was predicted in

Ref. [10]. In order to assist predictive resource allo-

cation, which usually operates in milliseconds, what

time granularity in predicting traffic load is neces-

sary? How to translate the predicted traffic load to

the useful information in resource allocation? These

questions are important but still open.

In this paper, we strive to answer these questions

by taking energy saving as an example performance

metric. We first illustrate how to derive the resid-

ual bandwidth probability from the traffic volume

prediction. Then, by formulating and solving an en-

ergy minimizing problem with future instantaneous

bandwidth information, we reveal that the optimal

resource allocation only depends on two parame-

ters, which can be estimated accurately when the

transmission delay allowed by the NRT user is large.

Next, we derive the closed-form expression of the op-

timal resource allocation when the delay approaches

infinity, and provide a heuristic policy to guarantee

a target transmission completion probability with fi-

nite delay. The simulation results validate our anal-

ysis, and show remarkable energy save gain from the

proposed policy.
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2 System model

Consider a cellular system where a BS equipped with

Nt antennas serves multiple users with RT traffic and

a user with NRT traffic. The total bandwidth and

transmit power of the BS are Wmax and pmax, re-

spectively.

Due to the random behavior and possible mobil-

ity of the RT users, the instantaneous request arrival

rate of the RT service is time varying. To capture

the essence of the problem at hand and simplify the

analysis, we assume that the instantaneous arrival

rate of the RT traffic keeps constant in a time slot

with duration ∆, and may change among time slots.

Assume that the NRT user is equipped with a sin-

gle antenna. We model the request of the NRT user

as to download a file from the BS with B bits before

a deadline with T time slots, i.e., T is the preferred

transmission delay of the NRT user. To emphasize

the role of traffic load prediction on radio resource

allocation, assume that the NRT user is stationary.

For conciseness, in the rest of this paper a/the “user”

is referred to as the NRT user unless otherwise spec-

ified.

Since RT traffic is with high priority, only part

of resources can be used for the NRT user. In par-

ticular, the BS serves the NRT user with residual

resources W t and ptmax, which may vary among dif-

ferent time slots. Denote mt ∈ {0, 1} as a time slot

scheduling indicator of the user. When mt = 1, the

user is scheduled by the BS in the tth time slot,

otherwise it is not. Then, in the tth time slot, the

achievable rate of serving the NRT user (in nats) is

Rt = mtW t ln

(
1 +

h

W tN0
pt
)
, (1)

where pt 6 ptmax is the transmit power allocated to

the user, h is the channel gain including path loss,

shadowing and small scale channel, and N0 is the

noise power spectrum density.

Assume that the BS can be switched into sleep

mode when the BS dose not serve any traffic. Then,

the power consumed at BS by serving the NRT user

contains not only the transmit power but also the

extra circuit power for BS operation when there is

no RT traffic1. The power consumed at the BS for

the NRT user in the tth time slot can be modeled

as[14]

ptEx =
1

ξ
pt + 1(W t = Wmax)mt(pact − psle), (2)

where ξ is the power amplifier efficiency, pact and psle

are respectively the circuit power consumption when

the BS is in active and sleep modes, and 1(c) = 1

when c is true and 1(c) = 0 otherwise.

3 Resource allocation with traffic vol-

ume prediction

In this section, we first show how to translate the pre-

dictable traffic volume into the information to be ex-

ploited in the resource allocation, i.e., residual band-

width probability. Then, by formulating and finding

the solution of an energy minimizing problem with

future instantaneous residual bandwidth, we show

how to apply the residual bandwidth probability for

radio resource allocation.

3.1 From traffic volume to residual

bandwidth probability

With big data analysis, the traffic volumes for differ-

ent services are reported predictable at least within

a time window[9,10]. In this paper, the traffic volume

is the traffic load (i.e., average request arrival rate)

of the RT traffic multiplying the average service time

of each RT request.

To illustrate how to translate the predicted traf-

fic volume into the statistics of residual bandwidth

available for NRT user, we make the following as-

sumptions: (1) The request arrival of the RT traffic is

Poisson process with average rate λ. (2) Serving each

request occupies 1/L · 100% of the total bandwidth

in each time slot, where L is the maximal number

1 If the BS is busy with RT traffic when serving the NRT user, its circuit power is not taken into account for the NRT user.

Otherwise, the BS needs to consume extra circuit power to operate the BS.
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of RT requests the BS able to serve simultaneously.

(3) The service time of each RT request follows ex-

ponential distribution with mean time V . (4) A new

RT request will not be admitted to the BS if all the

bandwidth is occupied, i.e., when W t = Wmax. For

mathematical tractability and notational simplicity,

the transmit power reserved for the RT traffic is as-

sumed in proportion to the occupied bandwidth2,

i.e., ptRT = (1 −W t/Wmax)pmax. Since the BS can

at most serve L requests simultaneously, the total

bandwidth can be regarded as L servers and each

request can be viewed as a customer with different

service time. Then, the transmission of the RT traffic

follows a queuing M/M/C/C discipline[15], and the

occupation probability of the servers can reflect the

statues for the excess resources at the BS. Then, the

probability that (1− l/L) · 100% of the total band-

width is occupied by the RT traffic can be obtained

from Ref. [16] as

Pl , P

(
W t =

l

L
Wmax

)
=

(λV )L−l

(L−l)!∑L
l=0

(λV )l

l!

. (3)

Pl can reflect the average resource utilization sta-

tus of the BS, which is called residual bandwidth

probability.

In practice, the above-mentioned four assumptions

may not hold, then the relation between Pl and traf-

fic volume λV will be no longer the expression in

Eq. (3). Yet the basic principle to translate the pre-

dicted traffic volume into residual bandwidth proba-

bility is still applicable. In fact, it is no need to first

predict λV and then convert it to Pl. Instead, we

can predict Pl from traffic data directly, say simply

estimate Pl in a specific time (e.g., 12:00 a.m.) each

day and then use the prediction in the past days to

predict the value in the same time of the next day.

3.2 Resource allocation with future in-

stantaneous residual bandwidth

To provide a performance upper bound and gain in-

sight into how the translated information is exploited

to allocate resources for conveying the B bits (i.e.,

B ln 2 nats) before the deadline of T for the NRT

user, we first formulate an energy minimization prob-

lem with bandwidth information in all future time

slots, i.e., in the first time slot, the instantaneous

residual bandwidths in the future, W t, t = 1, · · · , T ,

are known. The optimal predictive resource alloca-

tion that minimizes the average total energy con-

sumption in T time slots for the NRT user can be

obtained from the following problem,

min
m1,··· ,mT ,p1,··· ,pT

1

T

T∑
t=1

ptEx∆ (4a)

s.t.
T∑
t=1

Rt =
B ln 2

∆
, TR̄ (4b)

pt > 0, t = 1, · · · , T, (4c)

where R̄ is the required time-average rate for the

user, reflecting the demand of the NRT user.

According to whether or not the BS serves the RT

traffic, we divide the T time slots into busy time and

idle time. Denote Tac = {t|W t < Wmax} with car-

dinality Tac as the index set of time slots, where in

these time slots the BS is active since it needs to

serve the RT traffic, and Tid = {t|W t = Wmax} with

cardinality Tid = T − Tac as the index set of the idle

time slots. Then, Tid is the complementary set of Tac
as shown in Fig. 1.

residual 
resources

occupied residualarrival of RT request

re-ordered
residual 
resources

Tac                      Tid

Figure 1 Illustration of the idle and busy time slots. To

help understand, we have re-ordered the time slots in the lower

sub-figure.

To save energy consumed by the circuits, the BS

can be switched into sleeping mode in idle time slots.

2 Simulation results show that this assumption has minor impact on the performance of the proposed policy, which are not shown

for space limitation.



56 Journal of Communications and Information Networks

If the NRT user needs to exploit some of the idle

time slots, i.e., {t|mt = 1, t ∈ Tid}, the BS needs

to activate these time slot. Considering Eq. (2) and

the definition of the idle time slot set, the objective

function of problem (4) can be rewritten as,

1

T

1

ξ

T∑
t=1

pt∆+
1

T

∑
t∈Tid

mt(pact − psle)∆

,
1

T

1

ξ

T∑
t=1

pt∆+
κTid
T

(pact − psle)∆, (5)

where κ ,
1

Tid

∑
t∈Tid

mt is the active ratio of idle

time slots.

Since the channel gain h is the same among the

T time slots, randomly selecting any κTid idle time

slots to serve the NRT user consumes the same en-

ergy. Denote the κTid idle time slots set activated for

the NRT user as N . Since for the idle time slots that

are not activated, the transmit power allocated to

the NRT users is zero, i.e., pt = 0, t ∈ Tid and t /∈ N ,

problem (4) can be equivalently transformed to

min
κ,pt,

t∈Tac∪N

Ψp,
1

Tξ

∑
t∈Tac∪N p

t +
κTid
T

(pact − psle) (6a)

s.t.
∑
t∈Tac∪N W

t ln

(
1 +

h

W tN0
pt
)

= TR̄ (6b)

pt > 0, t ∈ N ∪ Tac, (6c)

where we omit the duration of each time slot ∆,

which does not affect the solution.

From problem (6), we can see that the objec-

tive function is a sum of transmit power and circuit

power, and the constraint only affects the transmit

power. Therefore, to find the global optimal solu-

tion, we can first fix the circuit power by fixing κ to

find the minimal average transmit power. Then, the

optimal power allocation can be obtained to mini-

mize the average total power by searching κ ∈ [0, 1].

In the following, we solve problem (6) with two steps.

When κ is given, the second term of Eq. (6a)

is fixed. Then, the problem can be reduced into a

transmit power minimizing problem as follows,

min
pt,t∈Tac∪N

∑
t∈Tac∪N

pt (7a)

s.t. Eqs. (6b), (6c). (7b)

By relaxing Eq. (6b) as
∑

t∈Tac∪N
W t ln

(
1 +

h

W tN0
pt
)

6 TR̄, problem (7) becomes a convex problem with-

out losing optimality3. Then, the optimal solution

can be solved from the KKT (Karush-Kuhn-Tucker)

conditions[17] as

pt = W t

(
ν − N0

h

)
, (8)

where ν is a power level, which is

ν =
N0

h
exp

(
TR̄∑

t∈Tac∪N W
t

)

=
N0

h
exp

(
TR̄∑

t∈Tac
W t + κTidWmax

)
. (9)

The solution suggests that more power should be al-

located to the time slots with more residual band-

width.

Considering that the residual bandwidth for the

idle time slots in N is Wmax, the objective function

in problem (6) can be expressed as a function of κ,

which is

Ψp =
1

Tξ

∑
t∈Tac

W t

(
N0

h
exp

(
TR̄

×

(∑
t∈Tac

W t + κTidWmax

)−1− N0

h


+
κTid
Tξ

Wmax

(
N0

h
exp

(
N0

h
TR̄

×

(∑
t∈Tac

W t + κTidWmax

)−1− N0

h


+
κTid
T

(pact − psle). (10)

Since the number of activated idle time slots κTid

should be an integer, by searching κTid from 0 to

Tid, it is easy to find the optimal solution of κ∗ that

3 The equality constraint and the inequality constraint give rise to the same optimal solution, because if the optimal power pt∗

satisfies
∑
t∈Tac∪N W t ln

(
1 + h

W tN0
pt∗
)
< TR̄, we can always find a new power allocation p̃t∗ = cpt∗ with c < 1, which can

meet the user’s requirement R̄ with properly selected c but consuming less transmit power and the same circuit power.
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minimizes the average total power Ψp. Then, the

optimal power allocation of problem (6) is

pt∗ =

W t

(
ν∗ − N0

h

)
, Tac ∪N ∗,

0, else,

(11)

where ν∗ is obtained by substituting κ∗ into Eq. (9),

and N ∗ can be any subset of Tid with cardinality

κ∗Tid.

It is worthy to note that in the 1st time slot

when the NRT user initiates its request, only two

parameters, the active ratio of idle time slots κ∗ and

the power level ν∗, contain the future instantaneous

residual bandwidth W t, t = 2, · · · , T .

3.3 Predicting two parameters from

residual bandwidth probability

The solution obtained in previous section is not vi-

able in practice, because when optimizing the re-

source allocation for the NRT user in the 1st time

slot, the future instantaneous residual bandwidthW t

for t > 1 is hard to predict if not impossible, owing

to the random arrival of RT traffic.

Fortunately, only the two parameters ν∗ and κ∗

depend on the future instantaneous information,

which do not change across the T time slots, and can

serve as the resource planning parameters after pre-

dicted in the first time slot. With these two param-

eters, the BS can determine the operation mode (ac-

tive or sleep) and allocate resource (time and power)

for the upcoming T time slots, i.e., make a resource

allocation plan for the NRT user: when to transmit

and with how much radio resources. In what fol-

lows, we show how to estimate these two parameters

from the residual bandwidth probability Pl and the

corresponding estimation accuracy.

We first estimate the power level ν with given κ,

and then estimate κ∗. We start from the following

proposition.

Proposition 1 When T is large,
R̄

ln(hν/N0)
asymptotically follows Gaussian distribution, i.e.,

R̄

ln(hν/N0)
∼ N(µw, σ

2
w), (12)

where µw =
∑L−1
l=1 Pl

l

L
Wmax + κPLWmax, and

σ2
w =

1

T

L−1∑
l=1

Pl
l2

L2
W 2

max + κPLW
2
max

−

(
L−1∑
l=1

Pl
l

L
Wmax + κPLWmax

)2
 ,

with PL denoting the probability that the residual

bandwidth equals to Wmax.

Proof See Appendix A).

From the expression of σ2
w, we have limT→∞ σ2

w =

0. This indicates that for a given κ,
R̄

ln(hν/N0)
can

be estimated by its mean value µw without errors

when T →∞. Then, ν can be estimated asymptot-

ically as follows,

ν =
N0

h
exp

(
R̄

µw

)
. (13)

Since κ∗ is obtained by minimizing the average

total power Ψp in Eq. (6b), if Ψp is estimated ac-

curately, then κ∗ can be estimated accurately. The

following proposition indicates that Ψp can be esti-

mated asymptotically as its mean value µ∞Ψp without

errors when T →∞.

Proposition 2 When T → ∞, the expectation of

Ψp approaches to

lim
T→∞

µΨp , µ∞Ψp =
1

ξ

N0

h
µw
(
e
R̄
µw − 1

)
+κPL(pact − psle), (14)

and the variance is

lim
T→∞

σ2
Ψp = 0. (15)

Proof See Appendix B).

Propositions 1 and 2 indicate that with the unbi-

ased estimation of the total average power Ψp when

T → ∞, the optimal active ratio κ∗ and hence the

optimal power level ν∗ can be estimated accurately.

In the following, we find the optimal estimate κ∗

and ν∗ by using µ∞Ψp as the estimate of the power

consumption Ψp.
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To find κ∗ that minimizes the average total power,

we first derive the first order derivative of µ∞Ψp with

respect to κ as

∂µ∞Ψp
∂κ

=
1

ξ

N0

h

(
e
R̄
µw − 1− R̄

µw
e
R̄
µw

)
∂µw
∂κ

+

PL(pact − psle),

where
∂µw
∂κ

= PLWmax is obtained from the expres-

sion of µw in Proposition 1.

From Eq. (14), the second order derivative of µ∞Ψp
with respect to κ can be derived as

∂2µ∞Ψp
∂κ2

=
1

ξ

N0

h

P 2
LW

2
maxR̄

2

µ3
w

e
R
µw , (16)

which is a positive value with easy transformations.

This indicates that ∂µ∞Ψp/∂κ is an increase function

of κ.

According to the value of ∂µ∞Ψp/∂κ, κ∗ ∈ [0, 1] can

be found in the following three cases as shown in

Fig. 2.

1 0 

case 1 

case 3 

case 2 

∂µ∞
Ψp

∂κ

κ

Figure 2 Example of
∂µ∞Ψp
∂κ

1.
∂µ∞Ψp
∂κ
|κ=0 > 0, the average total power in-

creases with κ. Then, the optimal estimate κ∗ = 0.

2.
∂µ∞Ψp
∂κ
|κ=1 < 0, the average total power de-

creases with κ. Then, κ∗ = 1.

3. The average total power first increases and then

decreases with κ, the optimal estimate κ∗ satisfies

∂µ∞Ψp
∂κ
|κ=κ∗ = 0, (17)

from which κ∗ can be obtained as

κ∗ =

R̄

Lw(x) + 1
−
∑L−1
l=1 Pl

l

L
Wmax

PLWmax
, (18)

where Lw(x) is principle branch of Lambert-W

function[18], and x =
ξ(pact − psle)h
N0Wmaxe

− 1

e
.

With κ∗, we can obtain the optimal estimate ν∗

from Eq. (13) and the expression of µw in Proposi-

tion 1 as follows,

ν∗ =



N0

h
exp

 R̄∑L−1
l=1 Pl

l

L
Wmax

 , if κ∗ = 0,

N0

h
exp (Lw(x) + 1) , if κ∗∈(0, 1),

N0

h
exp

 R̄∑L
l=1 Pl

l

L
Wmax

 , if κ∗ = 1.

(19)

It is shown from Eq. (18) that κ∗ is a non-

decreasing function of the user demand R̄. It means

that if the NRT user requests more data before the

deadline T , more idle time slots should be activated

to transmit. From the numerical results of κ∗ and

ν∗ computed from Eqs. (18) and (19) in Fig. 3, we

can find that with the increase of R̄, κ∗ and ν∗ will

not change simultaneously. When the user demand

is lower than a value such as R1, the BS allocates

power to all the busy time slots, and when R̄ > R1,

the BS begins to activate idle time slots. When the

user demand is too high (i.e., R̄ > R2) such that all

the idle time slots have been activated, the BS will

increase the power level again.

R1 R2

user demand

0

1

o
p
ti
m

a
l 
a
ct

iv
e 

ra
ti
o
 o

f 
id

le
 t

im
e 

sl
o
ts

 κ
¤
 

0

o
p
ti
m

a
l 
p
o
w

er
 l
ev

el
 ν

∗

active ratio κ 
power level ν 

increase bandwidth

increase power

increase power

Figure 3 Illustration of Eqs. (18) and (19)
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3.4 Predictive resource allocation for a

finite deadline

In this section, we propose a predictive resource allo-

cation for practical use where the value of T is finite.

When T is not infinity, using ν∗ as the power level

may fail to transmit the B bits before the deadline.

Intuitively, if the estimated power level is higher,

the completion probability, defined as the probability

that the B bits can be completely transmitted before

the T th time slot, will be higher. Such a completion

probability can reflect how much percent NRT users

are satisfied, i.e, the satisfactory rate of the NRT

user. Therefore, to transmit B bits before deadline,

we first estimate the active ratio κ̂∗ = κ∗, and in-

crease the completion probability only by adjusting

the power level.

From Proposition 1,
R̄

ln(hν/N0)
follows Gaussian

distribution N(µw, σ
2
w) when T →∞. To ensure the

user satisfactory rate, we can make a conservative

resource allocation by increasing transmit power, we

adjust the power level as follows,

ν̂∗ ,
N0

h
exp

(
R̄

µw|κ=κ∗ − ησw|κ=κ∗

)
Pr
> ν∗, (20)

where
Pr
> means greater in probability of Pr, and η

reflects the degree of the conservation. Since for a

normal distributed random variable, 95% of its val-

ues are less than two-fold standard deviations from

its mean value, when η = 2, Pr = 95%. Similarly,

when η = 0, Pr = 50%, and when η = 1, Pr = 68%.

Here Pr is the target completion probability prede-

termined for the predictive resource allocation, that

can be controlled by η.

The proposed predictive resource allocation policy

is implemented in the following two time scales.

• When the NRT user initiates its request in the

1st time slot, the BS makes a resource usage plan for

the user according to its demand (i.e., B and T ), the

target completion probability Pr, and the predicted

residual bandwidth probability Pl, by estimating the

power level ν̂∗ with Eq. (20) and the active ratio

κ̂∗ = κ∗ with Eq. (18). These two parameters will

serve as a “ruler” in the subsequent on-line trans-

mission: κ̂∗ determines whether a time slot should

be scheduled to serve the user, and ν̂∗ determines

how much power needs to be allocated to the time

slot.

• In the tth time slot, the BS computes the optimal

transmit power with Eq. (11). If the BS has no RT

traffic to serve, then the BS switches into sleep mode

in probability 1 − κ∗. Otherwise, the BS transmits

to the user with transmit power pt = W t(ν̂∗ − N0

h
).

If there are some bits of the NRT user failing to

transmit before the deadline, they will be transmit-

ted with ptmax.

3.5 Extension to multiple NRT users

When there exists multiple NRT users, a user sched-

uler needs to be introduced. Then, the NRT users

can be scheduled in different time slots randomly

selected, and the number of time slots can be de-

termined under various criteria, say fairness among

users. Then, the resource allocation parameters for

each NRT user can be predicted by using the pro-

posed method, and the power allocation to each user

can use the same way as in the single NRT user sce-

nario.

4 Simulation and numerical results

In this section, we validate our analysis, evaluate the

performance of the proposed predictive resource al-

location, and show the impact of the granularity of

traffic volume prediction.

We consider a single micro BS with cell radius of

100 m, Nt = 4. The maximal transmit power and

bandwidth are pmax = 13 W and Wmax = 10 MHz,

respectively. The duration of each time slot is set as

∆ = 10 ms.

The BS serves the NRT user with the residual re-

sources left by serving randomly arrived RT requests.

In the simulation, the RT traffic arrival is Poisson

process with average rate λ = 0.2 requests/time slot,

and each request of RT traffic occupies the same

bandwidth of 2 MHz (i.e., 20% of 10 MHz) with
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transmit power 2.6 W (i.e., 20% of 13 W). To reflect

the difference in requests and channel conditions of

different RT users, their service time follows expo-

nential distribution with mean V = 2 time slots[15].

Each BS can serve at most L = 5 requests of RT traf-

fic in one time slot, and the newly arrived RT request

will not be admitted if the BS has been fully occu-

pied. In this simulation setup, about 10% resources

are occupied by the RT traffic.

The NRT user is located at d = 50 m from the

BS, and the path-loss model is 30.6 + 36.7 lg(d)[19].

The noise power spectrum density is N0 = −165

dBm/Hz. The circuit power consumption of the BS

in active mode is pact = 40.14 W, and that in sleeping

mode is psle = 15.5 W[14]. The power amplifier effi-

ciency is ξ = 26%[14]. The results are obtained from

1 000 Monte Carlo trails, in each trail the random

request arrival and service time of RT traffic vary.

Unless otherwise specified, this simulation setup is

used for all results.

4.1 Validation of the analysis

We first validate the estimation accuracy of ν when

given κ, and then the estimation accuracy of aver-

age power consumption that is used to estimate κ∗.

To show the impact of finite number of T , we com-

pare different numbers of time slots T = 1 000 and

T = 10 000 with the same user demand R̄.

In Fig. 4, we compare the simulated mean values

of power level ν given different κ with the numerical

results of power level obtained from Eq. (13) when

R̄ = 1, 4, 7 Gbit/s, which represent the three typi-

cal cases in Fig. 2, where a larger value of R̄ means

more data need to be transmitted to the user be-

fore deadline. With other values of R̄, the trends are

similar and hence are not provided. We also provide

the simulated standard deviations of the estimated

power level, as shown with curves within the magni-

fied window. It can be seen that the deviation from

the mean value is small. This shows that the esti-

mate of the power level is very accurate when the

required deadline is 100 s or even 10 s.
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Figure 4 Power level ν vs. κ

In Fig. 5, we simulate the expectation of the aver-

age total power consumption over T time slots with

different κ. We also provide the simulated standard

deviations of the estimated total power consumption

in the magnified window. It can be seen that the de-

viation from the mean value is small, which indicates

that when the deadline is 100 s or even 10 s, the esti-

mation of the average total power consumption (and

hence κ) can be very accurate.
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Figure 5 Average total power vs. κ

4.2 Performance evaluation

To evaluate the performance of the proposed predic-

tive resource allocation, we compare the following

strategies (the first two strategies are non-predictive)

via simulation, first considering perfect value of Pl.

• SE-maximizing (with legend “SE”): the BS

transmits with maximal residual resources W t and
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Figure 6 Average power consumption vs. R̄. Pl is perfectly known. The probability marked is the completion rate of “EE”

ptmax, then the spectral efficiency in each time slot is

maximized.

• EE-maximizing (with legend “EE”): According

to the deadline and the remaining data to be trans-

mitted of the user, the BS can obtain an expected

time-average transmit rate in the remaining dura-

tion as Rt0. To fully use the residue bandwidth, the

BS serves the user with ptmax when W t < Wmax. In

the case where the BS needs to consume extra cir-

cuit power (i.e., W t = Wmax), the BS serves the user

according to the principle of EE-optimal resource al-

location (i.e., maximizing the instantaneous EE in

each time slot while ensuring the QoS required by the

user), whose optimal transmit power can be found

from pt∗ = arg max
Rt

ptEx

, Rt > Rt0, p
t > 0, pt 6 ptmax.

• Resource allocation with future instantaneous

residual bandwidth information (with legend “UB”):

The BS transmits with the optimal resource alloca-

tion obtained from problem (4).

• Resource allocation with residual bandwidth

probability (with legend “Proposed”): The predic-

tive resource allocation proposed in subsection 3.4.

In Fig. 6, we compare average total power con-

sumption of different strategies. It can be seen that

the proposed policy almost overlaps with “UB”, i.e.,

it can almost achieve all the energy saving poten-

tial when T = 1 000. The fluctuation in the result

for the proposed policy with η = 2 comes from the

inaccurate estimate on the variance σw when T is

short. When R̄ is not very large, the energy saving

gain of predictive resource allocation is remarkable

over both “SE” and “EE” strategies that are non-

predictive (say, about 100% gain when R̄<7 Gbit/s).
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Figure 7 Average energy consumption vs. η. Pl is known,

T = 1 000. The probabilities marked on the curves are corre-

sponding target completion probability

In Fig. 7, we show the average total energy con-

sumption versus η. When R̄ is low, high comple-

tion probability and low energy consumption can

be achieved at the same time. This is because in

this case the bits failed to be transmitted before the

deadline consume more energy since circuit power

consumption dominates the total consumption. In-

creasing the power level can efficiently reduce the
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amount of bits failing to transmit before deadline,

which can also reduce the circuit power consump-

tion for delivering these bits left. However, when

R̄ is high, the transmit power dominates, there is a

tradeoff between completion probability and energy

consumption.

4.3 Impact of prediction granularity and

errors

The reported prediction horizon for traffic volume in

the literature ranges from 5 min[10] to one day[9], and

the corresponding prediction granularity ranges from

5 min to 1 h. The prediction granularity is the dura-

tion of a period that a traffic load predictor outputs

a predicted value, which reflects the prediction res-

olution. While the big data analysis indicates that

the overall traffic volume variation of multiple BSs

exhibits strong periodic trend in each day, the traf-

fic loads at each BS and at a fine time granularity

are observed as random and non-stationary. Con-

sidering that an implicit assumption in deriving the

residual bandwidth probability Pl is that the traffic is

stationary within the T time slots, and within a suf-

ficient small prediction granularity, a non-stationary

random process can be approximated as stationary,

a high prediction resolution will yield a more accu-

rate prediction. However, it also leads to high com-

putational complexity due to frequently making the

prediction and requires large storage space at the

BS. This naturally raises the following question: how

large the prediction granularity should be for a given

duration of T time slots?

We first show whether or not a finer prediction

granularity than T is necessary. To reflect the im-

pact of non-stationary traffic load within the T time

slots, we artificially generate two extreme cases from

the original simulation setup, as shown in Fig. 8,

where the residual bandwidth probabilities for the

three cases are all equal to Pl.

Case 1: Residual bandwidth in the T time slots

changes randomly according to the Poisson arrival

of RT traffic as in the original simulation setup.

Case 2: Residual bandwidth of case 1 are re-

ordered in an ascending order, while keeping the

same Pl.

Case 3: Residual bandwidth of case 1 are re-

ordered in a descend order, while keeping the same

Pl.

occupied residual arrival of RT request

…                                         …    case1: residual 
bandwidth 

case 2: ascend
ordered residual 
bandwidth

case 3: descend
ordered residual
bandwidth

Figure 8 Illustration of one snap-shot of the residual band-

width for the three cases

The traffic loads in cases 2 and 3 are highly non-

stationary. If the prediction granularity is much

smaller than T , then the traffic loads can be approx-

imately regarded as stationary within the period of

the prediction granularity.
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Figure 9 Average total energy consumption in the three

cases. R̄ = 4 Gbit/s

To show if predicting in a smaller granularity than

T is necessary, in Fig. 9 we simulate the average total

energy consumption achieved by the four strategies

for the three cases when the prediction granularity

is set as T time slots. It can be observed that the

non-stationary traffic has little impact on the per-
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formance. This suggests that the predictive resource

allocation does not need higher prediction resolution.

On the other hand, if the prediction granularity

is longer than the duration of making the predictive

resource allocation, say the prediction granularity is

2T or even hundred times of the T time slots, then

there may be large deviation between the actual traf-

fic load and the predicted traffic load. Moreover,

even if the prediction granularity is identical to T ,

there inevitably exist prediction errors in practice.

In Fig. 10, we simulate the average total energy

consumption achieved by the four strategies when

the predicted traffic volume is inaccurate, which

may be caused by either larger prediction granular-

ity than T or prediction errors or both. The actual

average arrival rate is λ = 0.2 requests per time slot,

and the predicted average arrival rate is a constant

changing from 0 to 0.4 requests per time slot, i.e., the

largest prediction error is 100%. Considering that

the maximal prediction error of traffic volume in ev-

ery 5 min is within 20% as reported in Ref. [10], i.e.,

from 0.16 to 0.24 requests per time slot, the results

show that the energy saving gain of the proposed

policy is robust to the prediction errors on traffic

loads.
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Figure 10 Average total energy consumption vs. prediction

deviation of traffic load. R̄ = 4 Gbit/s, T = 1 000

The results in Figs. 9 and 10 indicate that the

prediction granularity should be identical to the re-

quired deadline of the NRT user for predictive re-

source allocation.

5 Conclusion

In this paper, we showed how to translate the pre-

dictable traffic load to the useful information in re-

source allocation by taking an energy-saving predic-

tive resource allocation as an example. By formu-

lating and solving an energy minimizing problem for

a non-real-time user with future instantaneous infor-

mation, we revealed that the optimal resource alloca-

tion only depends on two key parameters, which can

be estimated from the residual bandwidth probabil-

ity accurately when the transmission delay allowed

by the NRT user is large. We derived the closed-form

expression of the optimal resource allocation when

the delay approaches infinity, and provided a heuris-

tic resource allocation policy to guarantee a target

transmission completion probability for practice use.

The simulation results validated our analysis, showed

remarkable energy save gain from the predictive pol-

icy, and illustrated the impact of of prediction gran-

ularity and errors in traffic load on the performance

of the predictive resource allocation.

Appendix

A) Proof of Proposition 1.

Eq. (9) can be rewritten as

R̄

ln(hν/N0)
=

1

T

∑
N∪Tbu

W t. (21)

When T → ∞, according to central limit theorem,
1

T

∑
N∪Tbu

W t =
1

T

∑T
t=1m

tW t asymptotically fol-

lows Gaussian distribution N(µw, σ
2
w), where µw and

σ2
w are respectively the mean value and the variance

of
1

T

∑T
t=1m

tW t.

From Eq. (8), it can be seen that pt > 0, i.e.,

mt = 1 for all the busy time slots with non-zero resid-

ual bandwidth. For the κTid activated idle time slots,

mt = 1. Then, the mean value of
1

T

∑T
t=1m

tW t can

be derived as

µw = E{mtW t} =
L−1∑
l=1

Pl
l

L
Wmax + κPLWmax (22)
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and the variance can be derived as

σ2
w = Var

{ 1

T

T∑
t=1

mtW t
}

=
1

T
Var{mtW t}

=
1

T

( L−1∑
l=1

Pl
l2

L2
W 2

max + κPLW
2
max

)
− 1

T

(( L−1∑
l=1

Pl
l

L
Wmax + κPLWmax

)2)
. (23)

B) Proof of Proposition 2.

Denote X ,
1

T

∑
N∪Tbu

W t and Y ,
1

T

∑
N 1.

Then, Ψp can be written as follows,

Ψp =
1

ξ

N0

h
X

(
exp

(
R

X

)
− 1

)
+ Y (pact − psle). (24)

When T → ∞, according to central limit theo-

rem, X asymptotically follows Gaussian distribu-

tion N(µw, σ
2
w) as in Eq. (12) and Y asymptoti-

cally follows Gaussian distribution N(κPL,
1

T
(κPL−

(κPL)2)). Denote the probability density functions

of X as fx(X). Then, the expectation of Ψp can be

obtained as

µΨp =

∫ ∞
−∞

1

ξ

N0

h
X

(
exp

(
R

X

)
− 1

)
fx(X)dX

+κPL(pact − psle).

Since X converges to µw when T →∞, the average

power consumption when T →∞ can be obtained as

lim
T→∞

µΨp =
1

ξ

N0

h
µw

(
exp

(
R

µw

)
− 1

)
+κPL(pact − psle). (25)

In a similar way, we can show that the variance of

Ψp satisfying limT→∞ σ2
Ψp

= 0.
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