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Abstract Computational epidemiology seeks to develop computational methods to
study the distribution and determinants of health-related states or events (includ-
ing disease), and the application of this study to the control of diseases and other
health problems. Recent advances in computing and data sciences have led to the
development of innovative modeling environments to support this important goal.
The datasets used to drive the dynamic models as well as the data produced by
these models presents unique challenges owing to their size, heterogeneity and diver-
sity. These datasets form the basis of effective and easy to use decision support and
analytical environments. As a result, it is important to develop scalable data man-
agement systems to store, manage and integrate these datasets. In this paper, we
develop EpiK—a knowledge base that facilitates the development of decision sup-
port and analytical environments to support epidemic science. An important goal is to
develop a framework that links the input as well as output datasets to facilitate effec-
tive spatio-temporal and social reasoning that is critical in planning and intervention
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analysis before and during an epidemic. The data management framework links mod-
eling workflow data and its metadata using a controlled vocabulary. The metadata
captures information about storage, the mapping between the linked model and the
physical layout, and relationships to support services. EpiK is designed to support
agent-based modeling and analytics frameworks—aggregate models can be seen as
special cases and are thus supported. We use semantic web technologies to create
a representation of the datasets that encapsulates both the location and the schema
heterogeneity. The choice of RDF as a representation language is motivated by the
diversity and growth of the datasets that need to be integrated. A query bank is
developed—the queries capture a broad range of questions that can be posed and
answered during a typical case study pertaining to disease outbreaks. The queries
are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over
the EpiK. EpiK can hide schema and location heterogeneity while efficiently sup-
porting queries that span the computational epidemiology modeling pipeline: from
model construction to simulation output. We show that the performance of bench-
mark queries varies significantly with respect to the choice of hardware underlying
the database and resource description framework (RDF) engine.

Keywords Computational epidemiology · Knowledge base · Social contact
networks · Mapping · RDF · SPARQL

1 Introduction

Epidemiology is the study of the distribution and determinants of health-related states
or events (including disease), and the application of this study to the control of
diseases and other health problems [1–6]. Computational and digital epidemiology
aims to develop computational models, analytics, and decision support tool to sup-
port epidemic science [2, 7]. The science and practice of the discipline has matured
steadily over the past decades. Advances in computing and data science have facili-
tated the development of novel technologies and apps that support epidemic planning
and response. These tools are now viewed as important assets for epidemiologists
and public health officials. Epidemiologists use such tools to study a number of epi-
demic policy questions, including forecasting, planning, situational awareness, and
intervention analysis; see [4, 8–17] and the references therein.

1.1 Agent-Based Epidemiological Modeling and Analytics

Aggregate or collective computational epidemiology models that have been studied
in the literature for over a century often assume that a population is partitioned into
a few subpopulations (e.g., by age) with a regular interaction structure within and
between subpopulations. Although useful for obtaining analytical expressions for a
number of interesting parameters such as the numbers of sick, infected, and recovered
individuals in a population, it does not capture the complexity of human interac-
tions that serves as a mechanism for disease transmission. See [4–6, 18, 19] for more
details.
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Agent-based models (aka network-based models) extend the aggregate models by
representing the underlying interactions by dynamic networks. These class of models
capture the interplay between the four components of computational epidemiology:
(i) individual behaviors of agents, (ii) unstructured, heterogeneous multi-scale net-
works, (iii) the dynamical processes on these networks, and (iv) contextualized social
and pharmaceutical implementable interventions. They are based on the hypothe-
sis that a better understanding of the characteristics of the underlying network and
individual behavioral adaptation can give better insights into contagion dynamics
and response strategies. Although computationally expensive and data intensive,
agent-based epidemiology alters the types of questions that can be posed, providing
qualitatively different insights into disease dynamics and public health policies. It
also allows policy makers to formulate and investigate potentially novel and context-
specific interventions. We refer the reader to [1, 2, 7, 11, 12, 18–20] for further
discussion on this subject.

Agent-based models and analytics have become increasingly popular and are often
the model of choice to study certain kinds of epidemiological questions. They are
harder to build, largely due to the expertise in computing and data science needed
to build them. For instance, implementing these models on computing clusters and
analyzing the outputs produced by such models requires a fair bit of expertise in
computing and data science. This has led to the development of web-apps and mod-
eling environments that make it easier for analysts to use such models and analytical
tools. Our group was the first group that developed such a web-based modeling
and analytics environment. It is called SIBEL—Synthetic Information Based Epi-
demiological Laboratory1; screenshots of the system are shown in shown in Figs.
1, and 2a, b [21]. SIBEL was specifically designed so that epidemiologists can
carry out sophisticated what-if studies using agent-based epidemiological models
and analytics without becoming computing experts. A few other groups have also
begun developing similar modeling and analytics environments; see [22, 23]. Other
significant recent related efforts include the following: (i) CDC FluView [24]; (ii)
HealthMap [25]; (iii) Texas Pandemic Flu Toolkit [26]; (iv) LANL BARD [27], (v)
EpiC [28].

1.2 The Need for a Knowledge Base

The input and output datasets arising in the context of developing agent-based model-
ing environments for epidemics are large, diverse and heterogeneous. They are stored
in various formats and over multiple storage devices. This makes the task of devel-
oping effective analytical and decision support tools challenging. This motivates the
need to develop a knowledge-base (EpiK) to store, link and efficiently retrieve the
diverse datasets. For the purposes of this paper, we use the term knowledge base to
denote a data management system to represent, organize, collect, store, and integrate
structured and unstructured information in a machine-readable form.

1SIBEL was formerly called ISIS
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Fig. 1 This figure shows the SIBEL web application experiments page. The user sees this page after
logging in. This page provides a quick summary of the experiments. If a user clicks the “All” button,
then this page shows all the experiments run on SIBEL by various users. Otherwise, it shows only the
experiment(s) conducted by the logged in user

Fig. 2 Experiment setup facility in SIBEL
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The motivation to develop EpiK arose as we were working on SIBEL. To under-
stand this, we briefly describe how systems like SIBEL are used to support a typical
case study.

1.2.1 What Is a Case Study?

An in silico epidemiological case study evaluates outcomes generated by a computa-
tional experiment. In these experiments, users can specify the following:

1. A social contact network
2. A within-host disease progression model
3. A set of initial conditions
4. A set of interventions

Each intervention requires additional details such as compliance level, sub-populations
to which interventions are applied, and under what conditions the interventions take
place. The experiment contains one or more sweeping parameter(s) across a user-
specified range of values. For example, experiments in a typical study would be
divided into one or more cell(s). A cell may have multiple interventions. Vaccina-
tion, social distancing, and closing schools are a few examples. In order to arrive
at a stochastically robust conclusion, each experiment is run multiple times but
with different initial conditions (for example, the number of infectious persons at
the beginning of the simulation) [21]. A web portal such as SIBEL provides an
easy-to-use and intuitive interface to carry out such an experiment.

1.2.2 An Illustrative Example

A typical case study involves planning for an infectious disease outbreak such as
influenza-like illness (ILI). Consider the following hypothetical situation: Alice and
Bob are two epidemiologists tasked with carrying out computer experiments to study
various what-if scenarios concerning the spread of ILI in the USA. They are particu-
larly interested in understanding the role of interventions in controlling the outbreak.
Both Alice and Bob decide to use SIBEL for their computer experiments. As a
first step, Alice selects Boston, MA, as a region of interest since reports suggest
that it might be one of the first regions to experience an ILI outbreak this sea-
son. Bob chooses Houston, TX, as a region of interest, keeping in mind that the
last influenza pandemic started in Mexico. Using SIBEL, both select different dis-
ease parameter values, including susceptibility, infectivity, and days to recovery.
They then choose a complex set of interventions, including school closure, social
distancing, and antiviral distributions, and decide how these interventions are imple-
mented (who, when, and for how long). The entire workflow effectively sets up
a formal statistical experimental design. Launching the experiments is easy with
SIBEL; it involves simply pushing the run button. Alice and Bob do not have to
know where the data is stored and where the computation will be carried out. Once
the experiments are completed, they can carry out a detailed analysis. Basic results
of the experiments are displayed to the user through a set of plots and aggregate
statistics.
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1.2.3 A More Detailed Epidemic Investigation and Initial Challenges for SIBEL

Suppose, upon completion of the study, Alice seeks to infer additional information
about a few infected individuals including their home locations and their daily activ-
ities before the time of infection. Alice might also look for infected individuals are
known as super-spreaders, while Bob might be interested in the role of critical work-
ers and school-aged children in disease transmission. Both might also want to do a
comparative analysis to see the differences and similarities between the epidemics in
the two regions. This would help them understand the impact of social networks and
the built infrastructure on epidemic dynamics and in turn may help them design and
study contextualized intervention policies. Investigations such as the ones above can
be cast as workflows involving queries that Alice and Bob write.

To retrieve the results for the abovementioned queries, a user with access to the
servers must determine the cell information of the experiment from the SIBEL user
interface. Then the system administrator must read the cell directory from the HPC
resource. The cell directory contains the configuration file. The configuration file
provides the output file location in the HPC resource. The output file provides infec-
tor and infectee information and their identification (ID) numbers. The configuration
file contains the social network folder path information as well. From there, syn-
thetic population location can be determined and stored in a relational database. By
querying that database with the IDs of infected individuals, Alice/Bob can discover
activities performed by the infected person in the last few days, the disease trans-
mission between various demographic groups, and their location information. In its
current form, SIBEL does not support this kind of enhanced analysis. In other words,
answering queries such as this tends to be a manual, tedious, and laborious process
because of its use of heterogeneous and fragmented data sources.

1.2.4 Further Challenges as SIBEL Is Used and Grows

A key aspect of SIBEL is its simplicity—public health analysts are trained to make
effective use of the system in approximately three hours [21]. Studies that took
months and days can now be done in hours using SIBEL. The early days of SIBEL
saw significant effort devoted toward making the system user-friendly and toward
modeling realistic epidemic situations by scaling the backend simulation engine
[29–31]. As a result of this effort, SIBEL is used by epidemiologists, computational
researchers, and public health experts to model the spread of infectious diseases over
large geographical regions with populations of up to 50 million people. We have
since performed over 30 case studies requested by our sponsors in many metropolitan
areas in the United States. As a recent example, SIBEL was used to support DTRA’s
Ebola response efforts in West Africa. SIBEL is constantly evolving; new modeling
engines are being added as a part of the backend; new kinds of analysis is supported
and new populations and regions are being added.

The continued growth and use of SIBEL have made the problems identified above
even more challenging. The output datasets are growing rapidly as analysts use
SIBEL routinely. As a result, comparative analysis of experiments and contextual
analysis of outcomes that need to reason over both input and output data has become
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progressively challenging. Data-centric tasks like performing validation, verification,
analysis, and model refinement also became cumbersome and challenging. This prob-
lem is further exacerbated because the exponential growth in the volume of data is
intertwined with heterogeneity (in data types) and fragmentation (in storage) present
in the datasets. Heterogeneity in data types is pervasive across the entire spectrum
of the discipline, i.e., starting from data acquisition (of surveillance, census, etc.)
to analysis of simulation outputs. A typical simulation makes use of a sequence of
digital content types including input parameter configurations, raw datasets, result
summaries, analyses and plots, documentation, publications, and annotations. A myr-
iad of datasets is generated as a simulation output. SIBEL is distributed and part of
a larger ecosystem. Fragmentation of the storage is a major hurdle, primarily aris-
ing due to the logistics of maintaining such large datasets and the architecture of
the SIBEL infrastructure itself. All these factors contribute toward the current state
where organization, querying, annotation, and other services become cumbersome
and often infeasible. Small changes to the schema at the storage layer cascade into
significant changes in the data access and application layer. EpiK addresses these
challenges.

Although the discussion was framed in the context of SIBEL, the issues discussed
are generic — all epidemic modeling environments for decision support and planning
face similar challenges.

1.3 Contributions

The paper describes EpiK—a knowledge base that can support agent-based epidemi-
ological modeling, analytics, and decision-making. EpiK designed to store, link, and
query diverse datasets are arising in epidemic modeling and counterfactual analy-
sis. We focus on agent-based networked models; supporting compartmental models
is considerably easier and can be seen as a subcase. EpiK uses modern semantic
web technology to unify and link diverse dynamic datasets and represent them in a
machine-understandable format. It provides methods for building semantic graphs
and provides a query bank to improve analysts’ productivity.

The paper focuses on agent-based epidemiological modeling and analytics of
infectious diseases. Extensions to chronic and environmental disease epidemiology
will be undertaken subsequently. The use of EpiK to support aggregate modeling is
relatively easy.

In Fig. 3, we present the main flow of the agent-based epidemic modeling and
analytics. EpiK provides linked access to SIBEL data sources such as synthetic
population and contact data, computational experiment setup data, and computa-
tional experiment output data. The datasets may contain data of different types, such
as demographic, aggregate, and sequence, or may differ in the storage technology
(such as ASCII files, binary files), and may be distributed physically across differ-
ent machines in the network. We discuss two approaches for machine-understandable
RDF representations. We show the prospect of virtual and materialized views when
developing EpiK.

A programmatic data access capability is provided to access the data organized
within EpiK. This permits data sharing and interoperability and makes it easier for
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Fig. 3 This figure displays computational networked epidemiology pipeline (CNEP). It has three parts.
The first part of the pipeline is “Synthetic Population.” This part handles a synthetic representation of peo-
ple, household structure, location and various people activities. We employ census, landscan, and other
data sources to create statistically identical synthetic population. This part also creates people visitation
synthetic graphs (people-people and people-location). The second part of the figure is “Agent-Based Mod-
eling”, which represents the SIBEL tool. Here we employ “People Visitation Synthetic Graphs” generated
in the earlier phase. The “Agent-Based Modeling” also uses “Disease Model,” “Initial Condition,” “Inter-
vention,” and “Trigger” information. This part conducts various computational networked epidemiology
experiments, and it generates numerous output files. The main file is the “Dendogram” that contains who
infected whom’s information. Finally, by using SIBEL analysis facility, the user can perform data analytics
on experiment outputs. The EpiCurve and daily mean infections are some examples of the analysis output

others to build applications on top of the simulation data. The user can execute com-
plex queries over heterogeneous SIBEL contents. We demonstrate the utility of EpiK
by developing a query bank. The queries are representative of typical analysis car-
ried out by an epidemiologist during the course of planning or response phase of an
epidemic. These queries are based on the 5W1H concept and demonstrate the utility
of semantic web technologies. Specific contributions are summarized below.

1. Linked Data Access and Query Execution Framework A central contribu-
tion of EpiK is a federation of all datasets relevant to agent-based epidemiological
modeling and analytics using SIBEL—including input, output, and experimental
conditions. The proposed framework offers various advantages: (i) linking large
amounts of data sources, (ii) linking a variety of data sources, (iii) access to
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programmatic data, and (iv) query efficiency. The methodology is general—as new
datasets arrive, they can be easily integrated with the proposed EpiK framework.
Data linking, in EpiK, is achieved through native relational database (RDB) to RDF
data mappings. The RDF tools and data mappings are central to our research. This
linked data framework, to a large extent, addresses the challenges faced due to het-
erogeneity in schema, formats, and storage across the datasets in the domain science.
The key concept to achieve this end is to define a representation of the datasets that
encapsulate both the location and the schema heterogeneity. The proposed frame-
work provides a linked view to access and query end-to-end epidemiology workflow
datasets.

2. Native to RDF Mappings (Techniques and Their Trade-Offs) We study two
classes of RDF mappings in this context: value-based and tuple-based. Fundamen-
tally, the difference in these two mappings lies in how relationships among entities
are expressed and materialized. Value-based mapping preserves child-parent entities
relationships while tuple-based mapping completely ignores it. This paper investi-
gates the trade-offs of the mappings with respect to schema clarity (including ease in
understanding the data organization and ability to frame queries), storage cost, and
efficiency of answering queries.

3. Query Bank and Benchmarking We develop a benchmark to evaluate different
implementations for a homogeneous query execution framework. The homogeneous
query execution framework builds a federation of the disparate datasets and exposes
them (using the mappings) as a unified whole. The benchmark is a collection of
SPARQL queries over the federated SIBEL data. Collectively, they capture access
patterns and workloads that appear frequently in the domain. The queries are repre-
sentative of real-time epidemiology queries. We use the benchmark to evaluate two
kinds of query execution frameworks: one relational engine-based and the second
RDF engine-based. Relational engines are space efficient and therefore can scale to
very large datasets while RDF engines are query efficient and therefore useful when
a real-time response is mandatory.

4. Evaluation of the Design Space for Homogeneous Data Access and Querying
Framework The choice with respect to style of representation (value- vs. tuple-
based) combined with the implementation of the execution platform (relational
engine-based vs. RDF engine-based) provides us with four possible design points
for the proposed platform. Each design point has different trade-offs. This work
evaluates all the four possible implementations with respect to the benchmark.

In summary, we provide a solution for how to build a linked database for het-
erogeneous and federated computational epidemiology data sources. Preliminary
evaluation of the framework demonstrates that leveraging semantic web technology
(in particular RDF concepts) is an effective strategy for handling data-centric chal-
lenges faced in such distributed, multi-user, large-scale computational science. Our
approach demonstrates that fast unified access across fragmented datasets is feasi-
ble. Different strategies offer trade-offs with respect to storage space or query time.
Query execution in a pure RDF engine is faster, but has a large storage cost. On the
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other hand, in the hybrid relational-RDF engine, we have zero RDF graph storage
cost but efficiency is compromised.

2 Related Work

Our work builds on earlier work in scientific data management, digital libraries, and
semantic web tools. Scientific data management is a long-standing research field,
driven by the fact that most scientific software produces a myriad of specialized
data. Early work on scientific data management introduced the concept of a process-
oriented scientific database model (POSDBM) [32], which includes two data objects
and relation types. This work is extended with key semantic elements of scientific
experimentation by Pratt et al. [33].

Shi et al. [34] presents a web-based epidemiology reporting system that uses
Google Maps data. Allon et al. [35] describes a leukemia epidemiology study where
the data model arises from the experiment based on a relational modeling approach.
In the domain of the Semantic Web, tools that map data from the relational model
to RDF (and vice versa) have been an active area of research [36–40]. Bertails et
al. demonstrates the power of the mapping to treat all of the important features of
SQL tables, like cardinality and NULLs, and to yield an RDF graph which preserves
the relational information [37]. Hert et al. illustrate ontology-based access to rela-
tional databases as discussed in [41]. It describes a mapping language, the translation
algorithms, and a prototype implementation. Robert et al. develop a schema ontol-
ogy for healthcare using reference information model (RIM). This modeling helps
better manage healthcare effectiveness data and information set (HEDIS) measures
by providing a rule ontology that is matched to the language of the specifica-
tion [42]. Horrocks et al. propose an ontology-based data access (OBDA) solution
for diverse varieties of data management. They describe their efforts in the con-
text of managing disparate Siemens Energy Services datasets; see [43] for further
discussion.

Multiple studies have addressed processing queries using mapping [44–46].
Bornea et al. [44] describe novel query translation techniques as well. Experiments
show that the approach provides good results when compared with current state-of-
the-art stores. Groppe et al. describe an SPARQL query optimization technique that
uses seven indices to retrieve RDF data quickly [45]. This approach computes joins
by dynamically restricting triple patterns, and provides good efficiency. Arenasa et
al. introduce a theoretical foundation for faceted search explicitly designed for RDF-
based knowledge graphs improved with OWL 2 ontologies. Authors also investigate
convenient faceted interfaces [47].

Unification of heterogenous data using semantic tools has been actively studied for
biological data [48, 49]. BioPortal provides biomedical ontologies [50]. Federation
(or mediation) of physically distributed data sources using RDF (and other semantic
constructs) in DartGrid is presented in [51], which provides RDF/OWL to define the
mediated ontologies for integration, as well as automatic conversion rules from the
relational schema to RDF/OWL descriptions. Kamdar et al. proposes an approach for
Ebola virus knowledge-based creation using semantic web technologies [52].
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Examples of scientific digital libraries include earthquake simulation reposito-
ries [53], embedded sensor network DLs [54], and D4Science II [55]. Barrett et
al. describe a data management tool to study infectious diseases [56]. Schriml
et al. provide the GeMIna system, that uses epidemiology metadata to identify
infectious pathogens and their representative genomic sequences [57]. The Vec-
Net digital library maintains curated data, tagged citations, and articles related to
epidemiology [58]. Leidig describes a scientific digital library to manage epidemi-
ology experiments and simulations, but does not provide any specific framework for
heterogeneous epidemiology big data management [59].

3 The EpiK: Data Federation and Homogeneous Query Execution
Framework

The proposed EpiK consists of three layers: (i) the data layer: datasets (Section 3.1),
(ii) the mapping layer (Section 3.2), and (iii) RDF engine and services layer (Section
3.3). See Fig. 4. We discuss each of the layers below.

Fig. 4 The proposed EpiK for agent-based epidemic modeling and analytics. It consists of three com-
ponents/layers. The bottom layer (data layer) presents various computational epidemiology datasets in
numerous formats. The middle layer (mapping layer) converts all the relevant data into materialized and
virtual RDF graphs through mapping file and D2RQ engine. The top layer (RDF engine and services layer)
exposes the materialized RDF graph through Jena TDB [60] and Virtuoso servers [61], and the virtual
RDF graph through D2RQ server [62]



J Healthc Inform Res (2017) 1:260–303 271

3.1 The Data Layer

We start by describing EpiK’s dataset layer; see Fig. 4. Here, we focus on by
SIBEL. The datasets are summarized in Fig. 5 and comprise the (i) synthetic popu-
lation, synthetic people-location network, and synthetic social contact network, (ii)
experimental setup data consisting of disease model parameters and intervention
specification, and (iii) experimental output data comprising of epidemic curves, den-
dograms, and various analysis. Table 1 shows the type, size, and format for datasets
present in SIBEL [63].

3.1.1 Synthetic Input Data

Synthetic population and activity data describe individuals and their activities. Syn-
thetic activity data describe activities performed by the individuals, which include
travel and visits to locations of work, home, and daily errands. As part of the activ-
ity, people come in close contact with other individuals. The contact data capture
this information and are central to the study of epidemics. The synthetic population

Fig. 5 Figure summarizing the type of datasets used as a part of agent-based epidemic modeling and
analytics framework pipeline shown in Fig. 3. Here, oval shape represents dataset, and the ontological
relationships between various datasets are available just next to the oval. Here synthetic population and
network part cover person, household, location, activity, and contact network datasets. The agent-based
modeling uses contact network, disease model, intervention, and produces output datasets. The analytical
tool covers experiment output analysis related datasets
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Table 1 We present an approximate estimation of numerous computational networked epidemiology
datasets available at the NDSSL

Category Data Size Representation

Synthetic Household, ∼8 TB Relational

population person,

activity

Contact network Contact network, ∼2 TB File

and output simulation,

output

Experiment Experiment ∼500 TB Relational

Here we present an estimation for three broad categories: Synthetic population, contact network and
output, and experiment

database contains households, persons, activities, and location information. Data are
stored in a relational format. Schema descriptions of the synthetic population tables
for household, person, and activity, activity location, and home locations are given in
Tables 2, 20, 21, 22, and 23. Descriptions of U.S. Census 2000 Public Use Microdata
Sample (PUMS) demographic variables are available online at [64].

Table 2 This table provides the name and description of the household-related attributes stored in the
relational database

Column Description

state FIPS state ID
county FIPS county ID
tract Census tract
blkgrp Census blockgroup
hid Unique household ID
persons Number of persons in the household
vehicl Census household demographic
hloc Home location ID
serialno Serial number of the PUMS household used to generate this synthetic household
hinc Household income
bldgsz Units in structure
busines Business on property
fuel Heating Fuel
hhl Household language
hht Household family type
p18 Number of people under 18 years in household
p65 Number of people 65 years and over in household
value Property Value
workers Number of workers in the household
p gt 18 Number of adults in the household (age >18)
p lt 19 Number of children in the household (age <19)
subloc 1 The sub-location assignment for this household within the home location
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Table 3 This table provides the name and description of the intervention-related attributes stored in the
relational database

Column Description

ID The intervention ID

Name Intervention examples are:- vaccinate, antiviral,

social distance, close work, close school

Description Description of the intervention

3.1.2 Disease Manifestation and Intervention Data

Experiments are divided into multiple cells. Each cell characterizes one set of quan-
tified simulation conditions and may have many replicates (10 is typical). Numerous
intervention actions are applied to the epidemic simulation for decision making pro-
cesses. Social distance, school closure, work closure, vaccinations, and antivirals are
some of the intervention types. Interventions may be implemented at a predetermined
time (e.g., on day 1), or when a certain condition is met (e.g., when 1% of school-aged
children are diagnosed). The goal of the intervention is to interrupt disease trans-
mission from one person to another. Interventions may be targeted to specific demo-
graphic groups, or subpopulations, such as school-aged children or workers in critical
jobs (e.g., first responders). SIBEL experiment setup data are stored in both the
relational database and the file system. The relational database mainly stores experi-
ment, analysis, disease model, and intervention information (Tables 24, 25, 26, and 3)
[29]. Configuration information is stored in the file system (Table 4).

3.1.3 Output Data

Output data describe the spread of disease through a population. This generally con-
tains three parts [65]. First, it contains a list of infected people along with information
about the time and duration of incubation and infection and results of interactions
with health care providers such as whether or not they were diagnosed. Second, it
contains a set of trees with the initially infected persons as the roots showing the
path of infection through the population. This is referred to as a dendogram. Third,

Table 4 This table provides the name and description of the Experiment Configuration and Output file
related attributes stored in the relational database

File Stored Information

Configuration Contact graph file, contact graph file format, simulation duration, transmis-
sibility, incubation period format, incubation period file, infectious period
format, infectious period file, epidemic seed type, epidemic seed num-
ber, iteration number, output file, output level, log file, intervention file,
simulation random seed, config version

Output Incubation duration, symptomatic duration, iteration, exposure day, infector
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it contains a list of interventions and the time at which they were implemented. Mul-
tiple dendograms across replicates and cells are used to produce tabular data (e.g.,
epidemic curves, intervention rankings, and interaction effects, etc.).

The datasets are distributed across several different databases, schemas, file sys-
tems, and machines. The scale of the data and use of fragmented storage makes
tracking experiment setups and scientific workflows cumbersome and error prone
and therefore limits verification and reproducibility of results (Table 4).

3.2 The Mapping Layer

Next, we discuss the second layer in EpiK as depicted in Fig. 4. This layer maps all
the datasets to RDF. We briefly discuss our rationale for doing this.

3.2.1 Why RDF?

Our choice to represent all data using RDF stems from similar considerations by other
researchers using RDF in the field of biomedical and health sciences. We briefly
discuss the rationale below.

First, epidemiologically relevant datasets come in various forms, are large, and
are growing rapidly as SIBEL continues to be used by policy analysts. Often, new
kinds of datasets need to be accommodated. This requires frequent schema changes
when using relational database management system (RDMS), but easily handles with
RDF. Commercial relational databases can be useful in some cases but their cost
and licensing rules limits their use and increases the cost of using SIBEL for our
customers.

Second, RDF data model is a good choice for the epidemiologists that satisfies the
prerequisites listed earlier. It is a standard data model recognized by the World Wide
Web Consortium (W3C) [66]. The RDF permits the consolidation of various data
models (for example, tree, relational, graph, and so on) and vocabularies [67]. The
RDF data model gives dynamic metadata structure in contrast to relational databases.
Therefore, RDF is much more suitable for handling the growing graph-oriented
dynamic data [67].

Third, RDF-based storage allows us to identify data on the internet with URIs.
This allows the creation of globally unique names and is useful as multiple stakehold-
ers across the world use SIBEL with little direct coordination. Using RDF makes it
possible to distribute our data as linked open data (LOD) on the internet using RDF
data model. This makes it easy to link our datasets to pertinent internal and external
datasets from the LOD cloud (for example, BioModels, BioPortal, BioGateway, and
BioSamples) [68, 69]. Linking these and other social media datasets is needed in the
near future to understand complex questions arising in anti-microbial resistance and
phylodynamic analysis.

Fourth, SPARQL is a natural language for studying questions arising in epidemic
modeling given that a number of questions pertain to traversing social contact net-
works or disease dendograms. Complex queries that need multiple combinations in
SQL are relatively easy to create in SPARQL [70]. Moreover, transitive closure style
queries (e.g., looking for paths in a network) are easier in SPARQL than SQL.
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Finally, using RDF allows utilization of a publicly accessible linked data browser,
link discovery, semantic web indexes, and diverse representation tools. Very little
effort is needed to implement these tools. Rather than creating a personalized graph-
ical user interface (GUI) for data browsing, epidemic experts can utilize current
faceted programs to analyze data with the help of basic ontologies [71–74]. Any
change in the data or ontology will automatically reflect in the GUI. Most of these
tools are freely available on the web. Although these tools have some limitations,
they provide a quick view on top of the data with no cost.

3.2.2 Mapping to RDF

We would like to unify heterogeneous and fragmented CNEP datasets into RDF for-
mat. That requires relational to RDF mapping. Several mapping strategies exist in the
literature along with tools that use the mapping to build the RDF dataset [36–40]. In
this work, we investigate tuple-based and value-based mapping techniques [75]. We
use the D2RQ tool to generate the mappings. We consider two types of mapping.

3.2.3 Tuple-Based and Value-based Mappings

In tuple-based mapping, RDB table name is considered as an RDF class name and
column name as property name. For each instance of the table a unique blank node
is created. Naming of the blank node can be done in various ways but incremental
number assignment is the simplest way. Tuple of an instance contains a blank node,
a label edge, and a literal. Property name is used as an edge label and each of the
property values are used as a literal of the tuple (Fig. 6). Tuple-based mapping uses
relational database tables as input and produces RDF graph as output, ignoring the
primary key foreign key relationship.

Fig. 6 This figure depicts a tuple-based mapping example. Here, we have two datasets (person and household).
The tuple-based mapping disregards the primary key and foreign key relationship in RDF mapping
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Primary key and foreign key join exists in the database and is preserved in value-
based mapping. The input of value-based mapping is relational tables and output is
RDF graph with join information. Primary key attribute values are presented by URIs.
In value-based mapping the primary key attribute value of the parent object points to
the child object (Fig. 7).

In this paper, we have used tuple-based and value-based mappings. Our choice
was based on the following observations. First, both are commonly used mapping
schemes in the literature; see [75]. Numerous relational to RDF data conversion
approaches are developed on top of tuple-based mapping or a modified version of
it. Examples include the following: Relational.OWL [76], DataMaster [77], ROSEX
[78], Automapper [79], FDR2 [80], CROSS [81], D2RQ [82], Tether [83], and
OntoAccess [41]. Value-based mapping is the simplest form of the relational to RDF
mapping approach that preserves primary key and foreign key relationships [75].
The availability of mature tools and our goal of preserving primary and foreign key
relationships were important considerations when we made the choice. To the best
of our knowledge, this is the first use of RDF graphs for supporting computational
networked epidemiological investigations.

Lausen discusses other kinds of mappings, most notably URI-based mappings and
object-based mappings to convert RDB into RDF [75]. However, they have certain
limitations. In URI-based mapping, primary key values are encoded in the tuple URI.
Suppose primary key of a table is a foreign key to another table then one might
encounter consistency problems. In object-based mapping, it is hard to find foreign
key because it requires property path traversal [84].

Tuple-based and value-based mappings are formally defined below.

Fig. 7 This figure illustrates a value-based mapping example. The value-based mapping considers the
primary key and foreign key relationship in RDF mapping (dotted arrow in the figure). Here, “HID” is the
primary key in the household table and foreign key in the person table
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Preliminaries Let S be a relational schema and A(S) = {A1, ..., Ak} is the attributes
of S. I denotes an instance of S and T = (a1, ..., ak) represents every tuple of I . We
use CS as a class over S with properties P(CS) = {PS,A1 , ..., PS,Ak

}. We use FC to
denote the finite set of classes. Mapping creates an RDF graph G such that for every
tuple T in I create a node nT and an edge (nT , rdf : type, CS). Tuple-based and
value-based mappings have differences in edge creation.

Tuple-Based Mapping Let T .A be the value of an attribute A. For every non-null
value T .A of T , A ∈ A(S), tuple-based mapping creates an edge(nT ,PS,A,(T .A)nT ,PS,A

).
This type of mapping ignores primary key and foreign key relationships.

Value-Based Mapping We use CS to denote a child class and C′
S′ for parent class.

Let CS, C′
S′ ∈ FC . We write T .A to represent a non-null value of an attribute A

over CS and T ′.A′ for a non-null value of an attribute A′ over C′
S′ . PS,A represents

the CS properties and P ′
S′,A′ represents C′

S′ properties. Value-based mapping contains
primary key and foreign key relationships information. For that, if T .A of T contains
foreign key value and T ′.A′ of T ′ contains primary key value then an edge (nT , PS,A,

(T ′.A′)n′
T ′ ,P ′

S′,A′ ) created in value-based mapping to represent the relationship. For

every other non-null value of T .A of T introduce an edge (nT , PS,A, (T .A)nT ,PS,A
).

3.2.4 Mapping Implementation

We use the D2RQ Mapping Language to convert relational data to RDF graphs. It
is a declarative language that generates mapping files from the table structure of a
database. The mapping file is used to generate an RDF graph through resource iden-
tification and property value generation techniques. D2RQ maps database schemas
to RDFS/OWL schemas. D2RQ ClassMap maps database records to RDF classes
of resources. ClassMap has a number of PropertyBridges that specify how resource
descriptions are created. Resources are identified by using URI patterns. For example:
uriPattern:seattle/@@person.pid@@ creates URI like seattle/person/215016716.
ClassMap has a number of PropertyBridges that specify how resource descriptions
are created. As a property value D2RQ supports literals, URI or blank nodes. It can
be created directly from a database or using patterns. D2RQ join facility enables us
to perform primary key foreign key joining. The following propertyBridge definition
(Table 6) creates property person:hid and also shows the D2RQ join facility.

In Table 5 we present corresponding RDF triples of Figs. 6 and 7. To demonstrate the
difference between the two types of mapping, we present the results of a query. Results show
that value-based mapping captures data link information unlike tuple-based mapping
because it is capable of storing primary and foreign key relationships (Table 6).

3.3 The RDF Engine and Services Layer

We now discuss the third layer of EpiK (Fig. 4)—it focuses on the RDF engine, the
query language, and various services. Querying over the RDF generated using map-
ping requires an RDF data engine and a querying interface (web frontend for the
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Table 6 In this table, we present a partial D2RQ mapping implementation of the value-based mapping
(join part only)

map:person hid a d2rq:propertybridge;

d2rq:belongstoclassmap map:person;

d2rq:property vocab:person hid;

d2rq:propertydefinitionlabel “person hid”;

d2rq:referstoclassmap map:household;

d2rq:join “person.hid =>household.hid”;

...................................................................

query service). We evaluate Virtuoso DB and Jena TDB as the RDF data engine.
Virtuoso is an open source framework for developing semantic web and linked data
applications, and Jena is a useful tool for processing RDF data. The querying inter-
face is granted through the Fuseki server and Virtuoso server. Both of these servers
provide SPARQL endpoints.

In addition to querying, the framework allows faceted browsing using a Virtu-
oso Facet Browser. This capability offers browsing over billions of triples, full-text
search, structured querying and result ranking capabilities. This facility allows
epidemiologists to navigate through complete epidemiology workflow, exploring
experiment, synthetic population, disease model, interventions, and analysis infor-
mation.

4 Query Bank

We studied two class of queries, they are summarized in Tables 9, 10, and 11.
The queries in Table 9 are created from our discussions with epidemiologists while
queries in Table 10 are created by following BSBM SPARQL benchmark queries.
The queries in Table 11 are standard D2RQ benchmark queries.

4.1 Native Queries Based on 5W1H Approach

We employ a 5W1H interrogative approach to classify the queries [85–87]. This
approach draws on rhetorical theory and structuration and better captures the social
and epidemiological context; see [88]. 5W1H approach classifies the dimensions
of a query in six dimensions, namely: (i) WHO: (human/participants); (ii) WHAT:
(object/content); (iii) WHEN: (time); (iv) WHERE: (space/location), (v) WHY:
(purpose/behavior); and (vi) HOW: (behavior/form). See [87–90] for additional
discussion of structuring queries and knowledge-base using the 5W1H approach.

In Table 7, we present a mapping between 5W1H questions and RDF property
vocabularies. The table shows that it is possible to construct a large corpus of queries
using the 5W1H approach. The first column exhibits 5W1H question types, the sec-
ond column provides question type description, and finally, the last column shows
an example RDF data property vocabulary list. This list can be used in the predicate
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Table 7 This table illustrates how 5W1H questions can be mapped to the RDF data property vocabularies

5W1H question Definition Example property vocabulary

WHO Property used to refer people Person Class:

*pid
WHAT Property refers to specific information Person Class:

*age, *sex, *esr, .........
Household Class:
*hid, *hinc, *fuel, .........
Activity Class:
*anum, .........

WHERE Property refers to place or location Household Class:
*state, *county, *blkgrp, .........
Location Class:
*latitude, *longitude, .........

WHEN The property refers to time or occasion Activity Class:
*starttime, *duration, .........

WHY The property use to refer reason or cause Activity Class:
*purpose, .........

HOW Property refers the manner that some-
thing is done

Queries those need SPARQL

aggregate function like COUNT, SUM. etc.

We are showing a partial example of the 5W1H questions’ vocabulary domain for the brevity of the space.
This vocabulary list is expandable based on the properties we present in the Tables 2–4. Here, asterisk
symbol represents wildcard (a character or sequence of characters)

part of the RDF triples. The wildcard (*) in the vocabulary means syntax variation is
possible. For example, “has age”and “has state”. We provide an example SPARQL
query in Table 8.

The query bank was created after a number of discussions with epidemiologists
who used SIBEL and other similar tools over the years. Table 9 summarizes the

Table 8 In this table, we present a SPARQL implementation of a sample 5W1H query

Query: What is the gender of an infected person?

Sample SPARQL implementation:

@prefix ndssl:<http://ndssl.bi.vt.edu/>

@prefix vocab:<http://ndssl.bi.vt.edu/vocab/>

SELECT ?infected person gender

WHERE {
ndssl:person#1 vocab:has sex ?infected person gender

}

Here, we are showing a WHAT query. In this query, we assume the infected person ID is given. The
vocabulary “has sex” fits of the WHAT type property vocabulary (*sex)
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Table 9 In this table, we present queries we collected by interviewing various epidemiologists (native
queries)

No. English query 5W1H question Data needed to answer the query

Q1 What is the gender of an infected
individual?

WHAT Experiment, dendogram, person

Q2 What is the household location of
an infected person and where he has
been in past few days and why?

WHAT,
WHERE

Experiment, dendogram, person,
household, location, activity

Q3 How many preschool children
information are used in Seattle
strong flu experiment?

HOW Experiment, area, subpopulations

Q4 What are the interventions used in
Seattle strong flu experiment?

WHAT Experiment, interventions

Q5 How many people get infected after
the intervention?

HOW Experiment, dendogram, interventions

Q6 What is the demographic informa-
tion of an infected person?

WHAT Experiment, dendogram, person

Q7 How many people of a particular
demographic are sick on the first
day of the simulation?

HOW Experiment, dendogram

Q8 Who infected whom of a particular
demographic?

WHO Experiment, dendogram

Q9 How long does a person stay in
infected state?

HOW Experiment, dendogram

Q10 Given the demographic location
and disease type finds an infected
person, in that location and, also
find what are the activities he/she
performed, in last few days?

WHO,
WHAT,
WHERE

Experiment, dendogram, person,
activities

These are the example queries frequently asked in the computational networked epidemiology domain.
We present queries in plain English, their 5W1H question category, datasets needed to answer the queries,
and their computational complexity

queries generated through this effort. The queries are chosen to highlight the need
to synthesize varied datasets to answer such queries. For example, to answer a query
such as: What is the household location and the daily activity of an infected individ-
ual? requires one to access Experiment, Dendogram, Person, Household, Location,
and Activity datasets. Some parts of the experimental data exists in a relational
database, and others are stored in files. As discussed earlier, we map all the datasets
into RDF. SPARQL can then be used to answer the query.

4.2 Benchmark Queries

It is important to compare the performance of our framework with current state-of-
the-art research. However, there are no SPARQL benchmark queries in existence
for the epidemiology domain. Therefore, we created a set of benchmark queries
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Table 10 The table presents BSBM benchmark queries, and their corresponding epidemiology queries,
5W1H question categories, and benchmark queries properties employ to construct epidemiology queries

No. BSBM query Corresponding epidemiol-
ogy query

5W1H question properties

BQ1 Find products for a given
set of generic features.

Find experiment informa-
tion for a given set of
generic properties.

WHAT Touches a large amount of
data, uses ORDER BY and
LIMIT.

BQ2 Retrieve basic information
about a specific product
for display purposes

Retrieve basic information
about a specific experi-
ment for display purposes.

WHAT Query touches only a
small amount of data,
Larger set of triple
patterns, uses OPTIONAL

BQ3 Find products having a
label that contains a spe-
cific string.

Find experiment having a
name that contains a spe-
cific string.

WHAT Query uses REGEX

BQ4 Retrieve in-depth informa-
tion about a specific prod-
uct including offers and
reviews.

Retrieve in-depth informa-
tion about a specific exper-
iment including cell and
intervention information.

WHAT Touches lot of data, uses
OPTIONAL

BQ5 Get information about a
reviewer.

Get information about an
intervention.

WHAT Use DESCRIBE

We employ experiment and intervention datasets to answer the queries

based on Berlin SPARQL Benchmark (BSBM) version 3.1 [91]. BSBM provides a
suite of Benchmark queries to compare the performance of SPARQL queries. It is
developed on an e-commerce use case. We investigated BSBM and found that each
query follows some standard properties. We used those properties to create a cor-
responding epidemiology benchmark query (BQ) list (Table 10). We implemented
BQ to demonstrate the effectiveness of our mapping techniques with different query
patterns.

D2RQ provides a set of benchmark queries to assess performance analysis [92].
We selected some D2RQ benchmark queries (DBQ) and executed them in our
framework, using Benchmarking D2RQ v0.2.(Table 11).

Table 11 In this table, we present D2RQ benchmark queries use in the experimentation

No. D2RQ benchmark queries

DBQ1 Find(s ? ?) on large table

DBQ2 Find(s ? ?) with non-existing subject

DBQ3 Find(? p o)

DBQ4 Find(? ? o) with o being a resource that matches pattern

DBQ5 Find(? ? o) with o being a resource that doesn’t match pattern
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5 Empirical Analysis of EpiK

As a proof of concept, we built a prototype implementation of EpiK. A set of com-
putational experiments were undertaken to demonstrate the linked datasets and to
compare the performance of the system as a function of various mappings and views.

5.1 Experimental Design

The overall design comprises of the following variables: (i) set of queries summarized
in Tables 9, 10, and 11; (ii) two sets of RDF graphs, created by using value-based and
tuple-based mappings summairzed in Table 13, (iii) virtual and materialized views
of the underlying data. The choice with respect to style of representation (value- vs.
tuple-based) combined with the implementation of the execution platform (relational
engine based (virtual) vs. RDF engine based (materialized)) provides us with four
possible design points for the proposed platform. Each design point has different
trade-offs. Our experiments evaluates these decision choices using the set of queries
discussed above.

5.2 Datasets

All our experiments are conducted using a case study carried out for the Seat-
tle region. The basic goal of the study was to understand the efficacy of various
pharmaceutical and non-pharmaceutical interventions before and during a pandemic
influenza outbreak. SIBEL is used to carry out the computational counterfactual
experiments. The data used in the study and produced as a result of the study is stored
in various places. As a first step, we convert all the data into the relational format
and store them in Oracle and Postgres databases (Table 14). The dataset is briefly
summarized in Table 14.

5.3 Software and Hardware Used

We use D2RQ (relational database to RDF mapping) version 0.8.1 as a mapping
language [62], Virtuoso Open-Source Edition 7.1.0 (RDF triplestore and SPARQL
engine) [61], Apache Jena 2.11.2 (RDF triplestore and SPARQL engine) [60],
SPARQL [93] for querying the RDF graph, Oracle Database 11g Enterprise Edition
Release 11.2.0.3.0 - 64-bit Production (relational database) [94], and Postgres version
8.3.14 (relational database) [95]. SIBEL simulations were run on Shadowfax [96].
We performed the Postgres experiment on Shadowfax and others on Taos machine
because of the software facilities available at NDSSL.

5.4 Creating the RDF Graphs

We create tuple-based and value-based mapping files using the D2RQ language. A
mapping file is also an RDF graph. D2RQ maps the table name to the RDFS class
name, and column name to the property bridge. Most of the mapping generations
take less than a minute. Sizes of the mapping files are relatively small, so they are
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easy to maintain. The mappings create linked and storage agnostic access to the het-
erogeneous data. Table 12 reports our mapping file size, number of triples in the
mapping files, and mapping generation time. Next we apply mapping files into our
data sources to produce RDF graphs (Table 13). In a value-based RDF graph some
triple lengths are larger than tuple-based RDF graph because of the primary key and
foreign key link information. Hence, a 10% increase in the number of triples causes a
20% increase in the RDF graph size. After generating the RDF graph it is loaded into
the Virtuoso and Jena TDB to publish data and execute queries. Mapping files create
a link between various heterogeneous data sources (Table 14), thus solving our data
linking problems.

5.5 Results

We used SPARQL to implement all queries listed in Tables 9, 10, and 11. For exam-
ple, the SPARQL query shown in Table 15 indicates retrieval of information on the
number of preschool children, which is a data type used in a Seattle case study. We
then executed queries to measure the strength of mapping approaches over various
types of RDF graphs. Figures 8 and 9 show query execution performance of our map-
ping approaches over D2RQ with the Oracle database, D2RQ with Postgres database,
Jena TDB, and Virtuoso tools, respectively.

Observation 1. For both virtual and materialized RDF graphs, value-based map-
ping performs better than tuple-based mapping with native queries (except Q8).
Figure 8 shows that “Find infector and infectee information on a particular demo-
graphic” query (Q8) on PostgreSQL takes longer to run because it outputs many
result triples and depends on the system RAM.

Observation 2. Performance results for benchmark queries are shown in Figs. 10a,
b and 11a, b. It can be seen that tuple-based mapping with the Virtuoso tool
performs better in this case.

Observation 3. Our experiment results show that a SPARQL query that contains
a regular expression (BQ3) performs faster with tuple-based mapping and Oracle
tool for virtual RDF graph. On the other hand for materialized graph, the value-
based mapping is faster (for BQ3) and provide the same performance for both Jena
TDB and Virtuoso tools.

The above observations show that queries that need multiple data sources to
retrieve results perform better with the value-based approach. On the other hand,

Table 12 The table summarizes tuple-based and value-based mapping files creation times, their sizes,
and triple counts

Mapping Size Number of Creation time

(KB) triples (min)

Tuple-based 92 2 273 <1

Value-based 92 2 276 <1
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Table 14 Information related to the epidemic experiments carried out using Seattle synthetic data

Databases Size (GB) Number rows

Seattle synthetic 2.33 49 726 461

Population

Output 0.04 3 237 375

Experiment database 0.004 4 785

We present their size and number of rows information in the table

Table 15 This table presents SPARQL implementation of the query “How many preschool children’s
information is used in Seattle strong flu (flu that infects 30% of the population) experiment?”

@prefix vocab: <http://ndssl.vbi.vt.edu.dl/vocab/> .

@prefix rdf:

<http://www.w3.org/1999/ 02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

select ?s ?p ?o where {
?s <http://ndssl.vbi.vt.edu.dl/vocab/AREA ID >

’5’‘<http://www.w3.org/2001/XMLSchema#decimal>.

?s <http://ndssl.vbi.vt.edu.dl/vocab/DESCRIPTION>

“Seattle children with age less than 5 years”.

?s <http://ndssl.vbi.vt.edu.dl/vocab/POPULATION SIZE>?o

}

Fig. 8 This figure shows native query performance over virtual RDF graph. Here, we present the
performance for both tuple-based and value-based mappings by employing Oracle and PostgreSQL
databases
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Fig. 9 This figure shows native query performance over materialized RDF graph. Here, we present the
performance for both tuple-based and value-based mappings by using Jena TDB and Virtuoso triplestores

Fig. 10 BSBM like epidemiology query performance over virtual and materialized RDF graphs

Fig. 11 D2RQ benchmark query performance over virtual and materialized RDF graphs
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queries that need a single data source have approximately the same execution time
regardless of which mapping was used. This is because tuple-based mapping ignores
primary key and foreign key relationships, and converts all the relational database
values to literals. This leads to the duplication of data in the RDF graph. Moreover,
there is no explicit link between data entities exits in tuple-based mapping. Hence,
complex queries that need numerous data sources to answer take a longer time to
execute in RDF graphs constructed with the tuple-based mapping approach. However
value-based mapping preserves primary key and foreign key relationships that link
multiple data sources. Therefore, complex queries that need multiple datasets join
to retrieve results that execute faster in RDF graph created with valued-based map-
ping approach. Hence, most of the queries mentioned in Table 9 execute faster with
a RDF graph created with values-based mapping. However, most of the benchmark
queries mentioned in Tables 10 and 11 do not need multiple data sources to retrieve
the results. Hence their performance over RDF graphs constructed with tuple-based
and value-based mappings are relatively similar. Note that the triplestores and the
relational databases indexing algorithms have a significant impact on query perfor-
mance. We use two different triplestores (Virtuoso and Jena TDB) and relational
databases (Oracle and PostgreSQL) in our experiments. We find that that our query
execution time depends on internal indexing algorithms used by the two systems.
Moreover, query performance depends on the hardware configuration as well. These
aspects will need to be taken into account before deploying the system as a part of a
production system.

6 Analytics with EpiK

We briefly describe the kinds of analytics that can be done using EpiK. The goal is
not to be exhaustive but to convey the utility of developing an environment such as
EpiK. We describe three simple examples. The examples are chosen based on the fol-
lowing: (i) to illustrate the value of developing a federated data representation so that
insights can be obtained by reasoning over multiple datasets simultaneously and (ii)
to illustrate the use of SPARQL and RDF in terms of query language and data rep-
resentation; this allows us to develop network queries that are pertinent in epidemic
analysis; (iii) illustrate “realistic” studies that can be undertaken in the agent-based
epidemic analysis. All the queries that arose in the examples below are done using the
EpiK. In our experimentation, we use a materialized RDF graph generated through
the value-based mapping approach. The materialized RDF graph is constructed from
various datasets used and generated by one cell ten replicate influenza simulation
study.

Example 1: Understanding the Structure of the Dendograms A basic task in an
epidemic analysis is to understand the structure of the dendogram. The dendogram
is a directed acyclic graph (DAG), and one can also do basic analysis that involves
the demographics of the infected individuals. We analyze ten dendograms coming
from ten replicates. We compute basic properties of a dendogram: degree, path, and
star distributions. We count distinct star patterns only and discard duplicates. For
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Fig. 12 This figure shows degree distribution information of a ten replicates one cell experiment. For
each replicate, we present node degree in the x-axis and fraction of nodes in the y-axis. The figure depicts
that degree distributions for ten replicates are similar. We have a lower number of higher-degree nodes and
a higher number of lower-degree nodes

example, a five nodes star is not included in a six nodes star. However, duplication
is considered in path counts. In our experimentation minimum star length is four
nodes. The degree, star, and path distributions of the ten replicates are shown in
Figs. 12, 13, and 14. Fig. 12 shows that we have few high degree nodes and many low
degree nodes. Similarly, Figs. 13 and 14 show that we have a small amount of long
path (or large star) and many small paths (or stars). Moreover, Figs. 12 and 14 show
that replicates are relatively similar for degree and star distributes. Furthermore, the
distributions contain long tails. However, it is not the case for path distribution. Figure 13
shows that replicates have variations and do not have the long tail like degree and star

Fig. 13 This figure provides path distribution information. We count the number of occurrences of the various
length of paths in the dendograms. Plots show the path length distribution across replicates is similar
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Fig. 14 This figure represents the distribution of the star patterns in the dendograms. We present star size
(number of nodes in a star) in the x-axis and fraction of total stars in the y-axis

distributions. In Tables 16, 17, and 18, we provide detailed information of degree,
path, and star counts. A summary statistics across all the replicates is presented in
Table 19.

Example 2: Understanding Chains of Transmissions in Epidemics During the
course of H5N1 planning efforts, several groups including ours were interested
in understanding long chains of epidemic transmission. The basic idea builds on
Example 1 and tries to understand super-spreaders. In epidemiology discipline, it
is important to identify super-spreaders because many disease distribution of infec-
tion rate infers that 20% of the population cause the 80% of the diseases spread

Table 16 In this table, we provide degree count information

Degree count

Maximum Minimum Mean degree Standard deviation

degree Number of degree Number of o f degree

nodes nodes

Replicate 0 20 1 1 466 6.2 5.67
Replicate 1 20 1 1 452 6 6
Replicate 2 20 1 1 102 5.86 6.47
Replicate 3 20 1 1 502 6.6 5.46
Replicate 4 20 1 1 301 6.3 5.7
Replicate 5 20 1 1 433 6.2 5.65
Replicate 6 20 1 1 495 6 6
Replicate 7 20 1 1 103 5.86 6.47
Replicate 8 20 1 1 71 6 6.48
Replicate 9 20 1 1 724 6.6 5.46

The table presents maximum degree, minimum degree, mean degree, and standard deviation of degree for
various replicates
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Table 17 The table represents path count statistics. That includes maximum, and minimum, mean, and
standard deviation of path lengths for all the replicates

Path count

Maximum Minimum Mean path Standard deviation

path length Number of path length Number of length of path length

occurrences occurrences

Replicate 0 26 3 1 1133 13.5 7.65

Replicate 1 24 11 1 1084 12.5 7.07

Replicate 2 13 1 1 228 7 3.89

Replicate 3 25 7 1 1180 13 7.36

Replicate 4 27 1 1 688 14 7.94

Replicate 5 25 6 1 988 13 7.36

Replicate 6 27 4 1 1219 14 7.94

Replicate 7 22 33 1 240 11.5 6.49

Replicate 8 23 2 1 159 12 6.78

Replicate 9 27 1 1 1719 14 7.94

[97]. Hence, super-spreader information can help policy makers to design precise
interventions to effectively diminish the epidemic.

Intuitively, a node (individual) is a super-spreader if the node infects many other
nodes. The basic issue of interest is direct infections versus indirect infections. A
direct super-spreader is a node directly infects a large number of individuals. An indi-
rect super-spreader is a node that is the root of long chain of infections. Intuitively,

Table 18 The table shows star pattern count information

Star count

Maximum Minimum Mean star Standard deviation

star size Number of star Size Number of size of star size

occurrences occurrences

Replicate 0 21 1 4 74 8.5 6.78

Replicate 1 21 1 4 77 8.6 7.02

Replicate 2 21 1 4 12 9 8.04

Replicate 3 21 1 4 77 8.71 5.77

Replicate 4 21 1 4 45 8.67 6.28

Replicate 5 21 1 4 67 8.5 6.28

Replicate 6 21 1 4 83 8.6 7.02

Replicate 7 21 1 4 11 9 8.04

Replicate 8 21 1 4 4 9.25 7.93

Replicate 9 21 1 4 96 8.71 5.77

We provide the maximum, minimum, mean, and standard deviation of star sizes for all the replicates
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Table 19 Summary of degree, star, and path counts

Maximum Minimum Mean Standard deviation

Degree 20 1 6.2 5.57

Path 27 1 12.78 7.34

Star 21 4 8.72 6.09

these two transmission pathways are different. The first resembles a star while the
later is long path in the dendogram. Understanding the distribution of paths and stars
in a dendogram thus provides us with an understanding of the transmission struc-
ture. An analysis across multiple dendograms tells us how robust the conclusions are
within a single cell of the experiment (and thus provides a basis for sensitivity anal-
ysis). We present path and star distributions in Figs. 13 and 14 (count information
in Tables 17 and 18). The figures clearly show a small number of occurrences of
super-spreaders across different replicates. Policy makers can use this super-spreader
information to design targeted interventions (e.g., vaccinations) to stop the disease
propagation.

Example 3: Investigating the Role of School Children in Disease Transmission
As a final example, we study the role of school children in an epidemic. Intuitively,
it is well accepted that school children play an important role in epdemics [98, 99].
EpiK can be used for a simulation-based analytical experiment to understand this.
We look at dendograms produced by simulations as discussed in the earlier experi-
ments. We look at two kinds of motifs. We look at paths of various lengths in which
the starting node is a school-aged child (age range 3–18). We also look at stars of
various sizes where the root of the star motif is a school-aged child. Our results are
summarized in Figs. 15 and 16. In both the plots, for a given size S, the y-axis plots

Fig. 15 The figure illustrates the percentage of the paths (over total) where root infector is a school
child for various path lengths. We present path length in the x-axis and school child root infector paths
percentage on the y-axis
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Fig. 16 In this figure, we show for several star size the percentage of star patterns (over total) where the
root node is a school infected child. We present star size in the x-axis and school child root infector stars
percentage on the y-axis. In the experiment, we consider four nodes as a minimum length of a star pattern

the percentage of the fraction A
B

where A is the total number of paths (stars) of size
S where the root is a school-aged child and B is the total number of paths (stars) of
size S. The higher the fraction, the more prominent the role of a school-aged child.
The figures clearly show that school-aged children play an important role in epidemic
spread. For example, by examining Fig. 15 we see that for most of the path lengths,
over 50% of the paths have a school-aged child as a root. The same conclusion folds
for stars. Furthermore, for 100% of the large stars (sizes 9, 10, 21) and path’s (size
27) roots nodes (act as a super-spreader) are school-aged children.

The choice of paths and stars is important. Stars represent a particular school-
aged child infecting many other individuals in a small time frame; a path represents a
school-aged child being the originator of a sustained transmission chain. Each motif
points to a different role played by a school-aged child. The high fraction of such
motifs with school-aged children as root provides evidence that school children play
a major role in disease transmission.

This example illustrates how simulations can be used to assess the important role
of school children in an epidemic spread. To do this, first we look at paths in which
a single school kid infects many other individuals. Second, we look at all edges in
the dendogram in which the infector node is a school age child and the infectee
is any type (star pattern). We compute the total number of occurrences of various
length of path and star patterns across all the replicates where the root node belongs
to any demographic groups (school age, young age, middle age, and senior age).
We also compute the total number of occurrences of various length of path and star
patterns where the root node is a school infected child (age range 3–18) across all the
replicates. We calculate the percentage of the different length of path and star patterns
occurrences where the root node is a school infected child over all the replicates. We
present path and star patterns percentage information in Figs. 15 and 16. Figure 15
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shows that for various path lengths (1–27) over all the replicates most of the time
more than 50% originator of a path infection is a school-infected child (except for
path lengths 23, 24, and 26). Moreover, across all the replicates, 100% longest path’s
(size 27) root node (act as a super-spreader) is a school-infected child. Similarly, Fig.
16 represents across all the replicates for various star size most of the time more
than 50% root node of a star infection is a school-infected child (except for star size
8). Furthermore, 100% of the large size stars (size 9, 10, 21) roots nodes (act as a
super-spreader) are school infected children (over all the replicates). Hence Figs. 15
and 16 support that more than half of the infection hosts and a significant number of
super-spreaders are school-infected children.

The graph pattern queries (e.g., path, star) are crucial for understanding disease
propagation and design of effective interventions. SIBEL system can be enhanced
by using EpiK and the query bank described above. Currently, the SIBEL backend
organizes the data using a RDB. As a part of future work, we will integrate EpiK
and SIBEL. This will allow analysts to execute complex graphical queries. This will
allow us to avoid expensive join operations and execute path and network motif style
queries more efficiently. The queries described above capture a number of realistic
scenarios that analysts using SIBEL encountered.

7 Concluding Remarks

We described a knowledge base (EpiK) to store, organize, integrate, and retrieve
diverse and heterogeneous datasets occurring in the context of agent-based epidemi-
ological modeling and analytics of infectious diseases. Our results demonstrate that
epidemic analysis and data management can benefit from a knowledge base such
as EpiK. Semantic web technologies played an important in the development of
EpiK that provides a flexible mechanism for creating a federated data layer. EpiK
is designed to accommodate the continued growth of output data. EpiK allows pro-
grammatic data access and execution of complex queries over datasets spanning the
entire agent-based modeling workflow. The query bank provides examples of the
kinds of analysis that can be done using EpiK. As users add new types of queries
to the system, the task of an analyst can become progressively easier. To the best
of our knowledge, this is the first attempt to develop a benchmark suite in this area.
Finally, by running various epidemiologically relevant queries with two types of data
mapping techniques, we demonstrate the performance of various tools. The empir-
ical results show that our proposed framework is capable of extracting complex
query results from heterogeneous data sources, with performance comparable to the
state-of-the-art technologies.

We conclude with directions for future research. Our efforts have focused pri-
marily on infectious disease epidemiology—extensions to chronic disease and
environmental epidemiology would be interesting next steps. Extensions will also be
needed when studying vector-borne and water-borne diseases to represent vectors,
climatic, hydrological environmental, and ecological datasets. These extensions pose
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new challenges. We briefly discuss a few of them. Extension of EpiK to study infec-
tious diseases such as Malaria and Zika require data pertaining to vectors, weather
and the habitat of the vector. Weather, ecological and land cover datasets come from
various sources and would need to be mapped on a common coordinate system. The
World-pop and Malaria-Map projects [100–102] have begun important work in this
direction. Coupling these efforts with modeling environments and analytics such as
SIBEL will be useful in the design and analysis of public policies.
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Appendix A: Synthetic Input Data

Table 20 This table provides the name and description of the Person-related attributes stored in the
relational database

Column Description

hid Household ID

pid Person ID

age Age of person

relate Relationship

sex Sex

esr Employment Status Recode

occcen5 Occupation (Census) for 5% File

abgo Able to Go Out Disability

enroll School Enrollment; Attended since February 1, 2000

grade School Enrollment: Grade Level Attending

http://energy.gov/downloads/doe-public-access-plan
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Table 21 This table provides the name and description of the Activity related attributes stored in the
relational database

Column Description

hid Household ID of the person

pid Person ID

patternid ID assigned to this set of activity sequences for this person

anum The number of this activity in the activity sequence. First activity has the lowest number,
etc.

purpose The purpose of this activity. Valid values for the US population are: 1 - home activities 2
- work activities 3 - shopping activities 4 - other activities 5 - school activities

starttime The start time of the activity in seconds past midnight

duration The duration of the activity in seconds

location The location ID where the activity occurs

subloc 1 The sublocation ID within the location where the activity occurs

mode The transportation mode used to arrive at the activity. Valid values are: 1 - walk 2 -
automobile 3 - transit 4 - airplane 5 - other

firstathome 1 if the first activity in the sequence starts at home, 0 otherwise

surveyhh The ID of the survey household that was matched to this person’s household

Table 22 This table provides the name and description of the Activity location-related attributes stored
in the relational database

Column Description

id The location ID

x Longitude of the location

y Latitude of the location

z Altitude of the location

zoneid Assigned zone for the location. The census tract can be used for the zone. The ID for a
census tract zone has the following format: SSCCCTTTTTT where SS = FIPS State CC
= FIPS County TTTTTT = Census Tract

state FIPS state

county FIPS county

tract Six characters designated census tract

blockgroup Census block group

linkid NAVTEQ link ID closest to the location

work Attractor value for work activities

school Attractor value for school activities

college Attractor value for college activities

shopping Attractor value for retail activities

hospital Is location a hospital designator

other Attractor value for other activities
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Table 23 This table provides the name and description of the Home location-related attributes stored in
the relational database

Column Description

id The location ID

x Longitude of the location

y Latitude of the location

z Altitude of the location

state FIPS state

county FIPS county

tract FIPS census tract

blockgroup FIPS block group

hloctype Type of residential unit. Values are from census type designators for housing units

ctb id County, tract, blockgroup designator for this home location.

Appendix B: Disease Manifestation and Intervention Data

Table 24 This table provides the name and description of the Experiment related attributes stored in the
relational database

Column Description

Cells Number of cells in the experiment.

Id Each experiment is assigned a unique sequential ID number, generated automatically by
the system.

Name The user may provide a Name for each experiment.

Region This is a unique name for the geographic region within which the experiment is per-
formed. The name of the region is specified at the time the region database is generated
by NDSSL.

Status The current status of the experiment. May be one of the following six values:- New
– just created, not yet executed experiment. Starting – initializing execution environ-
ment and preparing to run. Queued – ready to run as soon as computing resources are
available. Running – currently executing on the IDAC cluster. Completed – simulations
completed, and data ready for analysis on the IDAC cluster. Failed – failed to achieve
normal termination.
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Table 25 This table provides the name and description of the Analysis related attributes stored in the
relational database

Column Description

id Unique ID number assigned by the system

name Each analysis may be assigned a unique name by the analyst for reference purposes. The
system does not use this Name field – all pointers in the software are specified by the ID
number.

category Analysis may be done on raw epi curves, or on Reproduction Number (actual and
estimated). The category is set by the Owner.

owner The Username associated with the login account from which this analysis was specified.

status Operational condition of the analysis. Values are:- New, Starting, Running, or Completed.

type Type of analysis employed. Examples of Plot Types are:-Plots all of the epi curves or
cumulative epi curves (replicates) for each cell in the combined experiments. The repli-
cates from each cell in the combined experiments areshown on a separate plot.-The mean
of the replicates for each experimental cell and displays them on the same plot.-The attack
rate for the cells in the combined experiment.

Table 26 This table provides the name and description of the Disease Model related attributes stored in
the relational database

Column Description

id The diseases model ID.

Disease models are prepared by NDSSL.

name Disease model name

transmissibility The rate of transmission

incubation period From the time a node becomes exposed until the time it becomes infectious.

infectious period From the time a node becomes infectious until the time it becomes removed.
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47. Arenas M, Grau BC, Kharlamov E, Marciuška Š, Zheleznyakov D (2016) Faceted search over RDF-
based knowledge graphs. Web Semant Sci Serv Agents World Wide Web 37:55–74

48. Gupta S (2011) A unified data model and declarative query language for heterogenous life sciences
data, San Diego Super Computing Center, UCSD, Tech. Rep. SDSC TR-2011-3

49. Birkland A, Yona G (2006) BIOZON: a system for unification, management and analysis of
heterogeneous biological data. BMC Bioinf 7(1):70

50. Noy NF, Shah NH, Whetzel PL, Dai B, Dorf M, Griffith N, Jonquet C, Rubin DL, Storey M-A,
Chute CG, et al. (2009) Bioportal: ontologies and integrated data resources at the click of a mouse.
Nucleic Acids Res 37(suppl 2):W170–W173

51. Chen H, Wu Z, Zheng G, Mao Y (2004) RDF-based schema mediation for database grid. In: Fifth
IEEE/ACM International Workshop on Grid Computing, 2004. Proceedings. IEEE, pp 456–460

52. Kamdar MR, Dumontier M (2015) An Ebola virus-centered knowledge base, Database: the journal
of biological databases and curation 2015, pp bav049

53. Jordan TH. SCEC 2009 Annual Report, Southern California Earthquake Center, 2009. [Online].
Available: http://www.scec.org/aboutscec/documents/SCEC2009 report.pdf

54. Borgman CL, Wallis JC, Mayernik MS, Pepe A (2007) Drowning in data: digital library architecture
to support scientific use of embedded sensor networks. In: Proceedings of the JCDL 2007, pp 269–
277. [Online]. Available: https://doi.org/10.1145/1255175.1255228

55. Candela L, Castelli D, Pagano P (2009) D4Science: an e-infrastructure for supporting virtual
research. In: Proceedings of IRCDL 2009 - 5th Italian Research Conference on Digital Libraries,
pp 166–169

56. Barrett CL, Bisset K, Eubank S, Fox E, Ma Y, Marathe MV, Zhang X (2007) A scalable data manage-
ment tool to support epidemiological modeling of large urban regions. In: Research and Advanced
Technology for Digital Libraries, pp 546–548

57. Schriml LM, Arze C, Nadendla S, Ganapathy A, Felix V, Mahurkar A, Phillippy K, Gussman A,
Angiuoli S, Ghedin E, et al. (2010) GeMIna, Genomic metadata for infectious agents, a geospatial
surveillance pathogen database. Nucleic Acids Res 38(suppl 1):D754–D764

58. Vector-Borne Disease Network, https://www.vecnet.org, [Online; accessed 2015-03-25]
59. Leidig JP Epidemiology Experimentation and Simulation Management through Scientific Digital

Libraries, Ph.D. dissertation

http://www.sascommunity.org/seugi/SEUGI1997/ALLON_POSTERS.PDF
http://www.sascommunity.org/seugi/SEUGI1997/ALLON_POSTERS.PDF
http://www.scec.org/aboutscec/documents/SCEC2009_report.pdf
http://dx.doi.org/10.1145/1255175.1255228
https://www.vecnet.org


302 J Healthc Inform Res (2017) 1:260–303

60. Apache Jena: TDB. https://jena.apache.org/documentation/tdb/, [Online; accessed 2015-10-04]
61. Virtuoso Open-Source Edition, 2014, http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/
62. D2RQ: Accessing Relational Databases as Virtual RDF Graphs, 2012, http://d2rq.org/, [Online;

accessed 2015-04-10]
63. Hasan S, Gupta S, Fox E, Bisset K, Marathe MV, et al. (2014) Data mapping framework in a digital

library with computational epidemiology datasets. In: 2014 IEEE/ACM Joint Conference on Digital
Libraries (JCDL). IEEE, pp 449–450

64. U.S. Census 2000. 5-Percent Public Use Microdata Sample Files. https://www.census.gov/census
2000/PUMS5.html, [Online; accessed 2015-03-25]

65. Bisset K, Chen J, Feng X, Ma Y, Marathe MV (2010) Indemics: an interactive data intensive
framework for high performance epidemic simulation, pp 233–242

66. Resource Description Framework, https://en.wikipedia.org/wiki/Resource Description Framework,
[Online; accessed 2015-04-10]

67. Why RDF for Healthcare Interoperability – Part 2 of Yosemite Series, http://yosemiteproject.
org/recorded-webinars/2015-2/why-rdf-for-healthcare-interoperability-part-2-of-yosemite-series/,
[Online; accessed 2015-04-10]

68. Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, Gaulton A, Gehant S, Laibe
C, Redaschi N, et al. (2014) The EBI RDF platform: linked open data for the life sciences.
Bioinformatics 30(9):1338–1339

69. Linked data - connect distributed data across the web, http://linkeddata.org/, [Online; accessed 2015-
04-10]

70. Triple Stores vs Relational Databases, http://stackoverflow.com/questions/9159168/triple-stores-vs-
relational-databases, [Online; accessed 2015-04-10]

71. Fuseki: serving RDF data over HTTP. https://jena.apache.org/documentation/serving data/, [Online;
accessed 2015-10-04]

72. Installation and Configuration of the Virtuoso Faceted Browser. http://virtuoso.openlinksw.com/
dataspace/doc/dav/wiki/Main/VirtFacetBrowserInstallConfig, [Online; accessed 2015-10-04]

73. Silk - The Linked Data Integration Framework, http://silkframework.org/, [Online; accessed 2015-
04-10]

74. WELKIN. http://simile.mit.edu/welkin/
75. Lausen G (2008). In: Christophides V, Collard M, Gutierrez C (eds) Relational Databases in

RDF: Keys and Foreign Keys, ser. Lecture Notes in Computer Science, vol 5005. Springer, Berlin.
[Online]. Available: https://doi.org/10.1007/978-3-540-70960-2 3

76. de Laborda CP, Conrad S (2005) Relational. OWL: a data and schema representation format based on
OWL. In: Proceedings of the 2nd asia-pacific conference on conceptual modelling, vol 43. Australian
Computer Society, Inc., pp 89–96

77. Nyulas C, O’Connor M, Tu S (2007) Datamaster–a plug-in for importing schemas and data from
relational databases into protege. In: 10th International Protégé Conference, pp 15–18
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