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Abstract
This study was to understand the impacts of three key demographic variables, age,
gender, and race, on the adverse outcome of all-cause hospitalization or all-cause
mortality in patients with COVID-19, using a deep neural network (DNN) analysis.
We created a cohort of Veterans who were tested positive for COVID-19, extracted
data on age, gender, and race, and clinical characteristics from their electronic health
records, and trained a DNN model for predicting the adverse outcome. Then, we
analyzed the association of the demographic variables with the risks of the adverse
outcome using the impact scores and interaction scores for explaining DNN models.
The results showed that, on average, older age and African American race were
associated with higher risks while female gender was associated with lower risks.
However, individual-level impact scores of age showed that age was a more impactful
risk factor in younger patients and in older patients with fewer comorbidities. The
individual-level impact scores of gender and race variables had a wide span covering
both positive and negative values. The interaction scores between the demographic
variables showed that the interaction effects were minimal compared to the impact
scores associated with them. In conclusion, the DNN model is able to capture the non-
linear relationship between the risk factors and the adverse outcome, and the impact
scores and interaction scores can help explain the complicated non-linear effects
between the demographic variables and the risk of the outcome.
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1 Introduction

The coronavirus disease 2019 (COVID-19) caused by the novel severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) has infected about 8 million people
globally causing over 400,000 deaths by June 2020. In the USA, there had been over
2 million cases and 100,000 deaths [1–3]. As of June 12, 2020, 16,765 Veterans in the
US Veteran Affairs (VA) system have been diagnosed with COVID-19, of whom 1422
(8.5%) have died and over 20% hospitalized [4]. However, the risk factors for
hospitalization and death in patients with COVID-19 are still being studied [5].

To date, there is no effective treatment to improve outcomes in patients with
COVID-19. Although most patients with COVID-19 are asymptomatic, those who
develop symptoms and are sicker contribute to most of the hospitalizations and deaths
[5]. Thus, identifying risk factors for poor outcomes may help clinicians focus preven-
tive efforts on high-risk subgroups and/or address modifiable risk factors. Some recent
studies have examined the risk factors of adverse outcomes in COVID-19 patients,
mostly using traditional statistical analysis [6–8].

Early descriptive data from China suggest that most of the deaths in patients with
COVID-19 occurred among adults aged ≥60 years and among persons with serious
underlying health conditions [9]. Early preliminary descriptive studies of outcomes in
patients with COVID-19 in the USA suggested that case fatality was the highest in
those aged 85 years and older, ranging from 10 to 27%, while for those aged 65–84
years it was 3 to 11%, 1 to 3% for persons aged 55–64 years, <1% among persons aged
20–54 years, and no fatalities among persons aged ≤19 years [10].

In one study from China, of 1590 patients hospitalized with COVID-19 in China, 50
patients died [11]. Significant predictors of mortality included age 75 years or older
(hazard ratio (HR), 7.86; 95% confidence interval (CI), 2.44–25.35), age 65 to 74 years
(HR, 3.43; 95% CI, 1.24–9.5), coronary heart disease (HR, 4.28; 95% CI, 1.14–16.13),
cerebrovascular disease (HR, 3.1; 95% CI, 1.07 to 8.94), dyspnea (HR, 3.96; 95% CI,
1.42–11), procalcitonin level greater than 0.5 ng/mL (HR, 8.72; 95% CI, 3.42–22.28),
and aspartate aminotransferase level greater than 40 U/L (HR, 2.2; 95% CI, 1.1–6.73).

In another study, also from China, 372 hospitalized patients with non-severe
COVID-19 were followed for >15 days after admission [12]. Of these, 72 (19%)
patients developed severe COVID-19. The authors trained a risk prediction model in
a cohort of 189 patients and validated their findings in 2 independent cohorts of 165
and 18 patients. Predictors for transition to severe or critical COVID-19 were older age,
higher serum lactate dehydrogenase, C-reactive protein, coefficient of variation of red
blood cell distribution width, blood urea nitrogen, direct bilirubin, and lower albumin.

Most of these studies used traditional statistical analytic approaches such as logistic
or Cox regression modeling. Such analyses yield odds or hazard ratios as a measure of
the effect or association of a specific risk factor with outcomes. While these are
considered to be robust and standard measurements, they represent estimates of risk
for an entire group and do not account for individual differences and non-linear effects.
For example, we cannot assume the relationship between age and COVID-19 outcomes
to be linear. It may also be too simplistic to assume that for each individual of the same
age, their chronological age poses the same risk.

The resurgence of artificial intelligence with deep learning as a key technology has
led to many breakthroughs [13–18]. Some of deep learning’s advantages are its ability
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to model complex relationships, accommodate a large number of variables, and take
advantage of a large amount of data. The models resulted from deep learning thus offer
an alternative to the traditional statistical models as we seek to understand the under-
lying relations between demographic risk factors and adverse outcomes in COVID-19
patients.

An important step in this study is the explanation of deep learning models. The
interpretation or explanation of deep learning models is an active area of research
[19–23]. We have developed and validated two measures which we refer to as impact
score and interaction score [24–26]. They each have two versions: one at the individual
level and one at the population level. In this study, we will restate and use them, and
also introduce two new concepts—impact and interaction. Unlike the two score
measures, impact and interaction are only defined at the individual level. They are
introduced here because for individuals they provide more meaningful information than
the score measures. In addition, we provide a visualization of the individual impacts
and impact scores as part of the explanation, which also demonstrates the relationship
and difference between the new and the old measures. We also include a comparison
with logistic regression results and descriptive statistics. These measures are applied to
a DNN model of multi-layer perceptron (MLP) type in this study. However, the
measures are model-agnostic; hence, their use is not limited to DNNs of MLP type.

Identifying risk factors for poor outcomes may help clinicians stratify patients with
COVID-19 by risk and develop and test interventions that may target modifiable risk
factors, thus lowering the risk of deterioration resulting in hospitalization and/or death.
It may also inform policymaking, e.g., tailored social distancing, frequency of testing,
and priority of vaccination. The objective of the current study is to understand the
impacts of the three key demographic variables of age, gender, and race on the adverse
outcome of all-cause hospitalization or all-cause mortality in patients with COVID-19
using a deep neural network (DNN) analysis.

2 Methods

2.1 Explaining DNN Models with Impact and Interaction Measures

In this subsection, we will introduce four measures to explain DNN models: impact,
impact score, interaction, and interaction score. The two score measures, i.e., impact
score and interaction score, are each defined at two levels: the individual level and the
population level. Although they have already been developed in [24–26], we will
restate their definitions here for the sake of completeness. We will also illustrate
mathematically that, when applied to simple logistic regression models, they reduce
to the familiar log odds ratios and interaction coefficients. Unlike the score measures,
impact and interaction are only defined at the individual level. For mathematical
coherence, the content of this section will not be arranged in the order of old concepts
first and new concepts next but rather in mixed order.

Consider a DNN with one input layer of n nodes, several hidden layers with a
various number of nodes each, and one output layer with a single node outputting the
risk scores. The activation function for the output layer is usually chosen as the sigmoid
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function σ(x) = ex/(1 + ex) so that the output is always a value between 0 and 1. This
type of DNN is commonly used for predicting dichotomized outcomes.

Let p = F(x1,…, xn) denote the final trained DNN model, where x1, …, xn are the n
variables corresponding to the n nodes of the input layer, and p (0 < p < 1) is the output
of the model representing the risk of adverse outcome. Let y denote the outcome
variable, then we expect to have p = Prob(y = 1). This condition can be verified through
the calibration curve [27]. If this condition is not satisfied, the predicted risk scores
should be calibrated using methods such as Platt Scaling or Isotonic Regression [27].
The calibration process will be considered as part of the prediction of the DNN model;
hence, we can still assume the condition p = Prob(y = 1) is satisfied.

To define impact scores and interaction scores, we first define

f x1;…; xnð Þ≔logit F x1;…; xnð Þð Þ ¼ logF x1;…; xnð Þ1−F x1;…; xnð Þ;

where logit is the inverse of the sigmoid function σ: logit pð Þ ¼ log p
1−p. The output of

the logit function is also known as the log odds, which ranges from −∞ to ∞. We use
the logit function because it makes the impact scores calculated on a linear logistic
regression model (a simple neural network with no hidden layers) be the same as the
common log odds ratios, which will be demonstrated later in this section.

For each variable xi (i = 1,…, n), we choose and fix a reference value xri . The role of
the reference values is to serve as the “background” situations for comparison purpose.
Therefore, the general principle is to choose the most “common” (e.g., median, mean,
and mode) value of the variable. For example, for a binary variable with values 1/0
representing the presence/absence of a diagnosis, usually 0 (absence) is the reference
value because absence of a diagnosis is usually the most common situation. However,
we do not impose any strict rules, so one is free to choose other values as the reference
value based on the specific problem or study. For example, in a study of dementia
patients with ages >=65 years, we can choose “65” as the reference value for age.

For an individual subject, we denote by xci the value of xi on this subject and call it
the current value of xi. We define the impact of the current value xci relative to the
reference value xri as

impact ¼ f ⋯; xci ;⋯
� �

− f ⋯; xri ;⋯
� �

:

where “⋯” represents the current values for all variables other than xi. If xci ≠xri , we
further define the impact score of xi on this subject as

impact score ¼ f ⋯; xci ;⋯
� �

− f ⋯; xri ;⋯
� �

xci −xri
;

This defines individual-level impact score. The populational-level impact score of xi is
defined as the mean of all the individual-level impact scores of xi.

The impact measures the change in risk (in terms of log odds) as xi changes from the
reference value xri to the current value xci while keeping all the other variables
unchanged. The impact score measures the rate of change in risk relative to the change
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in xi, or in other words, the change in risk for one unit change in xi. If xi is a binary
variable taking values 0 and 1 with 0 being the reference value, the impact and impact
score are equal numerically on any subject with xci ¼ 1. Moreover, the impact is a unit-
less quantity, while the impact score has units if xi has units. If xi is a continuous
variable such as age and body mass index, the impact depends on both the current value
and the reference value, while the dependence of the impact score on those values is
diminished greatly (but not totally removed if the model is nonlinear in xi).

As a simple illustration, we calculate the impact and impact score on a linear logistic
regression model in n variables. The model can be written as

p ¼ σ β0 þ β1x1 þ⋯þ βnxnð Þ;

where the coefficients βi of xi (i = 1, …, n) are also known as the log odds ratios.
Applying the logit function to both sides, we obtain

logit pð Þ ¼ β0 þ β1x1 þ⋯þ βnxn:

Then the impact of xci on an individual subject is

f ⋯; xci ;⋯
� �

− f ⋯; xri ;⋯
� � ¼ β0 þ β1x

c
1 þ⋯þ βix

c
i þ⋯þ βnx

c
n

� �

− β0 þ β1x
c
1 þ⋯þ βix

r
i þ⋯þ βnx

c
n

� � ¼ βix
c
i −βix

r
i ¼ βi x

c
i −x

r
i

� �
:

And the impact score of xi on this subject is

f ⋯; xci ;⋯
� �

− f ⋯; xri ;⋯
� �

xci −xri
¼ βi x

c
i−xri

� �
xci −xri

¼ βi;

which is exactly the log odds ratio of xi. Therefore, impact scores can be viewed as a
generalization of the log odds ratios to DNN models. This also shows that the impact
scores of xi on all subjects are the same and equal to the coefficient of the variable xi in
the logistic regression model, which is known as the log odds ratio. In addition, the use
of logit function in the calculation of impacts and impact scores is justified.

Next, for each individual subject and each pair of variables xi and xj, we define the
interaction of the two current values xci and xcj as

interaction ¼ f ⋯; xci ;⋯; xcj;⋯
� �

− f ⋯; xci ;⋯; xrj;⋯
� �

− f ⋯; xri ;⋯; xcj;⋯
� �

þ f ⋯; xri ;⋯; xrj;⋯
� �

:

If xci ≠xri and xcj≠xrj, we further define the interaction score of xi and xj on this subject as

interaction score ¼
f ⋯; xci ;⋯; xcj;⋯
� �

− f ⋯; xci ;⋯; xrj;⋯
� �

− f ⋯; xri ;⋯; xcj;⋯
� �

þ f ⋯; xri ;⋯; xrj;⋯
� �

xci −xrið Þ xcj−xrj
� � :

This defines individual-level interaction score. The populational-level interaction score
is defined as the mean of all the individual-level interaction scores.
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If we rewrite the interaction as

interaction ¼ f ⋯; xci ;⋯; xcj;⋯
� �

− f ⋯; xri ;⋯; xrj;⋯
� �� �

− f ⋯; xri ;⋯; xcj;⋯
� �

− f ⋯; xri ;⋯; xrj;⋯
� �� �

þ f ⋯; xci ;⋯; xrj;⋯
� �

− f ⋯; xri ;⋯; xrj;⋯
� �� �h i

;

then the interaction can be regarded as the difference between the “double” impact

f ⋯; xci ;⋯; xcj;⋯
� �

− f ⋯; xri ;⋯; xrj;⋯
� �

and the sum of the two “single” impacts:

f ⋯; xci ;⋯; xrj;⋯
� �

− f ⋯; xri ;⋯; xrj;⋯
� �

and f ⋯; xri ;⋯; xcj;⋯
� �

− f ⋯; xri ;⋯; xrj;⋯
� �

:

Therefore, the interaction captures the impact of two variables that cannot be explained
by the simple sum of impacts of each one. If the “double” impact is exactly the same as
the sum, then both the interaction and the interaction score are zero, which means there
is no interaction between the two variables.

Similar to the impact, the interaction is dependent on the current values xci and x
c
j and

the reference values xri and xrj, and similar to the impact score, the dependence of the

interaction score on those values is diminished greatly.
Again, as a simple illustration, we calculate the interaction and interaction score on a

non-linear logistic regression model in 2 variables x1 and x2:

p ¼ σ aþ bx1 þ cx2 þ dx1x2ð Þ;

where dx1x2 is the interaction term and d is the interaction coefficient. Then, we find the
interaction score between x1 and x2 to be

aþ bxc1 þ cxc2 þ dxc1x
c
2

� �
− aþ bxr1 þ cxc2 þ dxr1x

c
2

� �
− aþ bxc1 þ cxr2 þ dxc1x

r
2

� �þ aþ bxr1 þ cxr2 þ dxr1x
r
2

� �

xc1−xr1
� �

xc2−xr2
� �

¼ dxc1x
c
2−dxr1xc2−dxc1xr2 þ dxr1x

r
2

xc1−xr1
� �

xc2−xr2
� � ¼ d xc1−xr1

� �
xc2−xr2
� �

xc1−xr1
� �

xc2−xr2
� � ¼ d:

This also shows that for the logistic regression model, all the individual-level interac-
tion scores are the same and equal to the population-level interaction score.

2.2 Study of the COVID-19 Patients

Data Source The data source was the VA’s Corporate Data Warehouse (CDW)
administered by VINCI.

Cohort The cohort was defined as the Veterans who met both of the following criteria:

1) Tested positive for COVID-19 on or before May 1, 2020;
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2) Not an inpatient at the time of the first positive test, or an inpatient at the time but
was admitted no more than 24 h earlier than the first positive test.

To create the desired cohort, we first identified in the CDW all the patients who were
tested positive for COVID-19 on or before May 1, 2020. Then we excluded all the non-
Veteran patients (e.g., employees) from them because they could not use regular
healthcare services in VA (but they could still be tested for COVID-19 in VA). Next,
we excluded those Veterans who were already hospitalized for more than 24 h at the
time of the positive test because those hospitalizations were very likely long-term stays
such as stays in nursing home or psychiatric facilities, which were not caused by
COVID-19.

Index Dates For each patient, the index date was defined as the date of the first positive
test, if the patient was not hospitalized then. If the patient was already hospitalized at
the time of the first positive test, then the index date was defined as the admission date
of the hospitalization.

Adverse Outcome, Cases and Controls We defined the adverse outcome to be either all-
cause hospitalization or all-cause mortality which occurred between the index date and
May 15, 2020 (the date when the cohort was created). For the patients not hospitalized
at the time of the first positive test, an adverse outcome must occur after the index date.
For those who were hospitalized at the time of the first positive test, that hospitalization
itself was the adverse outcome. The patients having the adverse outcome were called
cases, and the remaining were called controls.

Predictors and Covariates The predictors were the demographic characteristics includ-
ing age, gender, and race. Covariates were clinical characteristics, divided into two
groups. The first group was the diagnosis data, which included all the ICD-10 codes
occurring within 1 year before the index date for each patient. The second group was
the medication data, which included all medications used within 2 weeks before the
index date for each patient.

Variables and Values Predicting variables were defined based on the predictors and
covariates. Age measured in years was a continuous variable and was named age. This
variable was normalized to have zero mean and unit standard deviation before it was
supplied to the input layer of the DNN model. However, in the calculation of impact
score and interaction score, the variable was transformed back to the original scale so
that it was still measured in years. For gender, the coding was male=0 and female=1.
This variable was named gender_female(vs. male). We categorized races into 4
categories: White, African American (AA), Other, and Unknown, where “Other”
included all races other than White or AA: Asian, American Indian, Alaska Native,
Native Hawaiian, and other Pacific Islander. These 4 categories were coded as binary
vectors of 3 dimensions: White = (0,0,0), AA = (1,0,0), Other = (0,1,0), and Unknown
= (0,0,1). This was equivalent to defining 3 binary variables: race_aa(vs. white),
race_other(vs. white), and race_unknown (vs. white), which corresponded to the 3
dimensions of the vectors, respectively.
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For the diagnosis data and medication data, a variable was defined for each ICD-10
code and for each medication with a prevalence of ≥1% in the cohort. Each of the
variables took binary values 1/0 representing the presence/absence of the corresponding
code or medication.

The outcome variable was a binary variable as well, which took value 1/0
representing the presence/absence of the adverse outcome.

To calculate the impact/interaction scores, we chose the reference values for these
variables as follows: for age, the only continuous variable, we chose the median as the
reference value, and for gender and race variables, which were binary variables, we
chose 0 as the reference value. This made them consistent with what their names
suggested: male was the reference gender, and White was the reference race.

DNN Model We designed a DNN as follows: it had one input layer with the number of
nodes equal to the number of predicting variables; 4 hidden layers with 50, 20, 20, and
10 nodes, respectively; and one output layer with only one node. The hidden layers and
the output layer were all fully connected to their previous layer with a non-linear
activation function. The 4 hidden layers used the rectified linear unit (ReLU) function
[18] as the activation function. The output layer used the sigmoid function σ as the
activation function so that the output value was always between 0 and 1. The output
values were called risk scores, as higher values corresponded to higher risks of the
adverse outcome. For model training, we chose the binary-cross-entropy function as the
loss function, which measures the error between the prediction and the actual result.
This function was to be minimized in the training process. Following the convention,
the area under ROC curve (AUC) was used as the main metric for measuring the
prediction performance. The additional metrics included accuracy, sensitivity, and
specificity, which all depended on a choice of threshold on the predicted risk scores.
We chose the threshold that maximized the accuracy.

Training, Validation and Testing We randomly partitioned the cohort into 3 subsets: (1)
training (80%), (2) validation (10%), and (3) testing (10%). Before the training, the
weights of the DNN model were initialized as small random numbers. Then, the
weights were iteratively updated using the mini-batched Nesterov [28] gradient descent
method to decrease the value of the loss function. Each mini-batch consisted of 50
patients.

One pass over the whole training set was called an epoch. After each epoch, an AUC
was computed on the validation set based on the model prediction. To prevent
overfitting to the training set, we took an early stopping strategy: the training should
stop at the end of the number of epochs such that the validation AUC was higher than
all the validation AUCs of the previous epochs and also higher than the validation
AUCs of the next 10 epochs. The model obtained at the early-stop point was the final
model. Then, the AUC computed on the testing set was reported as the performance of
the final model prediction.

Logistic Regression Model We fitted a logistic regression (LR) model as the baseline.
The LR model was fitted to the training set, and the AUC computed on the testing set
was reported as the performance measure.
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3 Results and Analyses

We developed a final cohort of 5407 patients, of whom 2355 (43.6%) had an adverse
outcome (including 566 (10.5%) who had a mortality outcome) and 3052 (56.4%) had
a favorable outcome. The basic demographic characteristics are summarized in Table 1,
and some prevalent conditions are summarized in Table 2.

The overall trend was that the proportion of cases grows with age (Fig. 1). However,
as age passes 80 years, the proportion starts plateauing and then dropping for ages >90
years. The dropping after 90 is of particular interest to us because a higher age is
generally considered as a key harmful factor. This will be investigated further in a later
part of this section.

The calibration curve (Fig. 2) of the final DNN model shows the predicted risk
scores well represented the probabilities of having the adverse outcomes, as indicated
by its closeness to the diagonal line. Hence, the risk scores can be interpreted as the
probabilities of having the adverse outcome without any additional calibration as
described in Section 2.1.

The performance on the test set showed that the DNN model was better than the LR
model (Table 3), which was expected as the DNN model can model non-linear
relationships between the predictors and outcome. The ROC curve of the DNN model
is shown in Fig. 3.

Based on the final DNN model, both individual-level and population-level impact
scores of the demographic variables were calculated. Since age was a continuous
variable, the impact of each individual’s age on the risk was also calculated. The
reference value for age was chosen to be the median age of the cohort, which was 63
years.

The single-numbered population-level impact score provides not only a succinct but
also simplistic summarization of the relationship between the predicting variable and
outcome (risk). It is comparable to the log odds ratios obtained from the LR model for
the same variable. We can see (Table 4) that they were very close on age, but on other
variables, the log odds ratios generally had much larger magnitude. The impact scores

Table 1 Summary of the demographic characteristics

Characteristics Cases (N = 2355) Controls (N = 3052) Overall (N = 5407)

Age

Mean±SD 68.8±13.6 56.6±15.8 61.9±16.1

Median (Q1, Q3) 70.5 (60.6, 76.3) 57.5 (44.3, 67.7) 63.0 (51.1, 72.8)

Gender

Female 122 (5.2%) 382 (12.5%) 504 (9.3%)

Male 2233 (94.8%) 2670 (87.5%) 4903 (90.7%)

Race

AA 1236 (52.5%) 1342 (44.0%) 2578 (47.7%)

White 930 (39.5%) 1377 (45.1%) 2307 (42.7%)

Other 48 (2.0%) 85 (2.8%) 133 (2.4%)

Unknown 141 (6.0%) 248 (8.1%) 389 (7.2%)
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and log odds ratios agreed on signs/directions on age, gender_female(vs. male), and
race_aa(vs. white), which means both models regarded the female gender as being
associated with decreased risk while older ages and the AA race being associated with
increased risk. However, they disagreed on race_other(vs. white) and
race_unknown(vs. white). The impact scores of these two variables show that the other
and unknown races had very small impacts on the risk although they were associated
with decreased risks. In contrast, the log odds ratios show that these two race categories
had big impacts on the risk and were associated with increased risks.

To deepen the understanding of the impact and impact score of age, we graphically
present in Fig. 4 the impacts and impact scores at various levels: the individual level,
the average by age, and the 7-year moving average by age. We see that the individual
impacts/impact scores of age were very different even in patients of similar ages. This
shows that the DNN model captured the non-linear relationship between the predictors
and the outcome. For comparison, we present in Fig. 5 the impacts and impact scores
calculated based on the LR model to show what they look like for a linear model.

Table 2 Examples of some prevalent diagnoses and their prevalences in the cohort

I C D
code

Description Cases (N =
2355)

Controls (N =
3052)

Overall (N =
5407)

I10. Essential (primary) hypertension 1624 (69%) 1338 (43.8%) 2962 (54.8%)

E78.5 Hyperlipidemia, unspecified 1078 (45.8%) 966 (31.7%) 2044 (37.8%)

E11.9 Type 2 diabetes mellitus without
complications

892 (37.9%) 670 (22%) 1562 (28.9%)

M54.5 Low back pain 605 (25.7%) 839 (27.5%) 1444 (26.7%)

G47.33 Obstructive sleep apnea 568 (24.1%) 572 (18.7%) 1140 (21.1%)

K21.9 Gastro-esophageal reflux disease without
esophagitis

543 (23.1%) 500 (16.4%) 1043 (19.3%)

E66.9 Obesity, unspecified 393 (16.7%) 525 (17.2%) 918 (17%)

F43.12 Post-traumatic stress disorder, chronic 328 (13.9%) 522 (17.1%) 850 (15.7%)

Fig. 1 Proportion (7-year moving average) of cases by age
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The impact score of age should be interpreted as the change in risk per unit (1 year)
change in age. Since the impact is the total change in risk, Fig. 4a and Fig. 4b are
geometrically related as follows: the slope of the line connecting from the point (63,0)
to any point in Fig. 4a corresponding to a patient is equal to the y-value of the point in
Fig. 4b corresponding to the same patient. In this sense, Fig. 4b does not introduce any
new information than Fig. 4a but provides a different view in which the special role of
the reference age is not pronounced. The same relationship holds for the LR model: in
Fig. 5a, all the dots are on a line passing through the point (63,0), and in Fig. 5b, all the
dots are on a horizontal line at a level equal to the slope of the line in Fig. 5a. Note that
in Fig. 5a the reference age still plays a special role, but in Fig. 5b, the dependence on
the reference age is completely removed.

Specifically, Fig. 4a shows that the impacts of age were positive on all patients aged
>63 years and negative for all patients aged <63 years, which shows that age was
associated with an increased risk for all patients. On the other hand, the average by age
curves show that the growth of risk was faster for younger patients (age <70 years) but
slower for older patients (age >70 years). This corresponds to what we see in Fig. 4b:
lower ages had higher impact scores while higher ages had lower impact scores.

This may be due to the fact that older patients tend to have more comorbidities, and
the model had learned to attribute the higher risks of the older patients more to their
comorbidities than to their ages, which effectively reduced the impact score at higher
ages. If this were true, then we would observe a negative correlation between the
impact scores and the number of comorbidities among the elderly patients. Moreover, if
this were true, then we could also explain the decreased risk for ages >90 years as
shown in Fig. 1: the patients aged >90 years had fewer comorbidities than those aged
80–90 years, and this might be due to the survivor effect [29], i.e., the patients with

Fig. 2 The calibration curve of the predicted risk scores of the DNN model

Table 3 Predictive performance of the DNN and LR models

Model AUC Accuracy Sensitivity Specificity

DNN 0.762 0.720 0.683 0.743

LR 0.732 0.669 0.686 0.659
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ages >90 years survived to an age of >90 years because they had fewer comorbidities
than those with ages 80–90 years.

Therefore, we investigated the data further to find evidence for the above hypoth-
eses, i.e., (1) the model attributed the higher risks of the older patients more to their
comorbidities than to their ages, and (2) the patients aged >90 years had fewer
comorbidities than those aged 80–90 years.

We first calculated the mean ICD count (number of distinct ICD codes) per patient
by impact score (Fig. 6) on patients aged ≥60 years. We can see that as the impact score
increases from 0 to 0.08, the average number of ICD counts per patient decreases from
48.6 to 6.4. This shows a negative correlation between the impact scores and the
number of comorbidities among the older patients.

We next calculated the mean ICD count per patient by age (Fig. 7) and the
prevalence of 6 common comorbidities (Fig. 8)—hypertension, hyperlipidemia, type
2 diabetes, obstructive sleep apnea, obesity, and chronic obstructive pulmonary
disease—on all patients. All these show a common trend: as age increases starting
from 20 years, the number/prevalence of comorbidities increases first and then

Fig. 3 The ROC curve of the DNN model on the test set. The square dot corresponds to the threshold which
maximizes the accuracy

Table 4 Impact scores and log odds ratios of the demographic variables

Variable Impact score Log odds ratio

age 0.045 0.046

gender_female(vs. male) −0.108 −0.370
race_aa(vs. white) 0.178 0.497

race_other(vs. white) −0.037 0.535

race_unknown(vs. white) −0.002 0.469
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decreases. In particular, all show the same pattern that the patients aged >90 years had
fewer comorbidities than those aged 80–90 years.

Similar to age, the variations of impact scores of the other variables were not
revealed by the population-level impact scores shown in Table 4. The distribu-
tions of the impact scores (Fig. 9) demonstrate that, for all of the gender and
race variables, there were both positive and negative impact scores, which
means that these factors were associated with increased risks on some patients
and decreased risks on the other patients. In fact, the “span” of the individual
impact scores was much larger than the magnitude of the corresponding
population-level impact scores for all the variables.

Lastly, we calculated the interaction score for each pair of demographic
variables (Table 5). We can see that the interactions between age and the other
variables were generally very small compared to the impact score of age.
Ignoring the magnitudes, we find that the female gender, the AA race, and
the other races were associated with slightly decreased impact score of age.
Furthermore, the female gender was associated with decreased impact score of
the AA race and the unknown race but with increased impact score of the other
races.

Fig. 4 Impacts and impact scores of age through the DNN model. The horizontal dashed line in (b) represents
the population-level impact score of age (=0.045) as shown in Table 4

Fig. 5 Impacts and impact scores (=log odds ratios) of age through the LR model. Only the 300 randomly
selected individuals are used for illustration
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4 Discussions and Conclusions

Based on our analysis, higher age and African American race are associated with
increased risks while female gender is associated with decreased risks, which is
consistent with the literature and empirical observations [30–34]. Age, in particular,
is the most important factor. The values of impact score and odds ratio of age in Table 4
do not appear to be as large as those of gender and African American race. However,
for age, impact score and log odds ratio are calculated as per unit (year) change. For a
given patient who could easily be 5 or 10 years younger or older than the reference age
of 63, his/her age can play a big role in the risk of adverse outcomes. We also found
that age, gender, and race had very small interactions with each other: the female
patients of a race other than AA and White are at a slightly higher risk than the
combined (added) risks of being female and of other race, and the female African
American patients are at slightly lower risk than the combined risks of being female and
being African American. Other interactions are comparatively trivial.

For every variable, we observed a range of individual impacts/impact scores. This
range should not be confused with the confidence interval. The overall (population-

Fig. 6 Mean ICD count per patient by impact score of age on patients aged ≥60 years

Fig. 7 Mean ICD count per patient by age
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level) impact scores are calculated directly as the mean of the individual impact scores.
As shown in Fig. 4b, in many cases, the individual scores can be quite different for a
given age. Especially in some patients aged >60 years, the impact score of age is very
small (near zero). This result may occur because of the presence or absence of
comorbid conditions. Some patients have more than 3 chronic conditions while some
have none. In the DNN model, their risk of adverse outcome was mainly explained by
their comorbid conditions.

While the effects of demographic variables are notable, even when combined with
comorbidities, the risk prediction performance has room for improvement. The indi-
vidual differences are also very large. Broad guidelines such as allowing individuals
below 60 years old to continue to work may not be sufficiently precise.

Based on Fig. 4, the effect of age can be observed to be non-linear, nor should we
expect it to be. While it is common for scientific literature to report the increase in risk
per one unit of a measure (e.g. year), it is also well known that relationships between
certain variables and outcomes are not linear. For example, the relationship between
weight and mortality is considered to be a “U” shape with both over and underweight
associated with high mortality [35]. Based on the impact and impact score analysis, age
is a bigger risk factor in the younger patients (aged <50–60 years) than the older
patients.

To assess the “impact” of a variable on the outcome, we have two measures: the
impact and the impact score. The former is new in this paper whereas the latter has been
introduced before. The two measures are closely related, but they serve different
purposes and are useful in different situations. For the individuals, the impact is more
useful than impact score, because the impact measures the absolute change in risk while

Fig. 8 Prevalence of six common comorbidities by age

Fig. 9 Frequency distributions of the individual-level impact scores of the gender and race variables
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the impact score measures the rate of change in risk per unit change in the variable. It is
possible for an individual that the impact score is small, but the total impact is large;
thus, impact is more informative than impact score in this case. On the other hand, to
understand the overall impact of a variable on the outcome, we must move to the
population-level, and impact score will be necessary because only the average of the
(individual-level) impact scores over a population is meaningful. For the interaction
and interaction score, the same arguments apply as well.

One concern about the impact score and interaction score as explanations may be
their dependence on the reference values. This is a valid concern because for linear
models, with which we are most familiar, the explanations (e.g., log odds ratios) are
independent of any reference values. However, such experience does not transfer
directly to non-linear models, and we choose to make the reference values as part of
the explanations to deal with the complexity of those models. Actually, the idea of
reference values is not new, and we have already used it in linear regression models,
that is, when we deal with multivalued categorical variables (e.g., race). To incorporate
a categorical variable with n values into a regression model, the standard procedure is to
convert the categorical variable into n-1 binary variables, with one value chosen as the
reference. It is obvious that the final explanation of categorical variable would depend
on what the reference value. Therefore, it is not too surprising to see our explanation
method depends on reference values. However, we still strive to reduce the variability
of the explanations, by making as a general guideline to choose the most “common”
value as the reference value. This is intuitively plausible, since we usually compare a
particular individual to an “average” person. Although there may still be different
choices (e.g., mean, median, and mode) for the most “common” value, the difference is
usually very small, and the explanations should be consistent. Nevertheless, we
emphasize that the reference values are part of the explanations. We also note that
reference values have also been used by other machine learning explaining methods
such as LIME [21] and Integrated Gradients [36].

Another concern may be the different values and even the opposite signs between
the impact scores and the log odds ratios for the same variables (Table 4), and more
generally, different impact scores that may be derived from different DNN models for
the same variables. On one hand, the difference in the values comes from the difference
in the models, which further comes from the different assumptions underlying the
models. On the other hand, we should acknowledge that every model is an

Table 5 Interaction scores between the demographic variables

Variable #1 Variable #2 Interaction score

age gender_female(vs. male) −0.00075
age race_aa(vs. white) −0.00063
age race_other(vs. white) −0.00081
age race_unknown(vs. white) 0.00094

gender_female(vs. male) race_aa(vs. white) −0.00703
gender_female(vs. male) race_other(vs. white) 0.01042

gender_female(vs. male) race_unknown(vs. white) −0.00154
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approximation to the “ground truth,” which underlies the data but is unknown. There-
fore, it is expected to see that some parts of the explanations of different models are
similar (e.g., age in Table 4), and the other parts are far apart (e.g., other race in
Table 4).

The explanation method in this study is designed for DNNs whose output layer is a
single node with a sigmoid activation function. However, this method is not limited to
such type of output layer and can be easily modified to adapt to other types. For
example, for DNNs making multinomial classification or prediction, assuming there are
n classes, there will be n-1 impact scores for each predictor variable, and n-1 interaction
scores for each pair of predictor variables. Actually, this is similar to the generalization
of the odds ratios for binary logistic regression models to multinomial regression
models. Moreover, the impact score and interaction score for multinomial regression
models, the impact scores and interaction scores should coincide with the generalized
log odds ratios and interaction coefficients for such models.

In summary, this study showed that the DNN model was able to capture the
complicated non-linear relationship between the risk factors and the adverse outcome,
and the explanation method we developed provided a tool to find the complicated non-
linear effects of the demographic variables.

5 Limitations and Future Work

The sample size of about 5000 COVID-19 patients is not big data in the traditional
sense, but it is larger than most published COVID-19 studies. As we accumulate more
data, we plan to repeat these analyses.

We used hospitalization and mortality as a combined outcome. This is a common
approach in outcome dichotomization (adverse vs. favorable) as both reflect a negative
clinical connotation and the latter is a competing risk factor of the former. We did so
also because the number of mortality cases is relatively low, which would mean a low
accuracy in prediction for this outcome. However, we understand that hospitalization
and mortality are different outcomes, and there are interests to study their own
respective risk factors. Moreover, a small number of COVID hospitalizations were
used in order to protect the patients with unstable housing or other social situations
because this way a contagious person would be physically isolated from close contacts
and/or the community. Therefore, in future analyses, especially when we have a much
larger cohort, we plan to separate the two outcomes.

In this study, the deep learning model performed better than logistic regression in
terms of AUC, but only by 3 percentage points. Since the number of Veterans with
positive COVID-19 tests has doubled [4] in the 6–7 weeks after May 1, 2019 (the
cutoff date used by this cohort creation), we can now have a much larger cohort, with
which we anticipate the deep learning model’s performance will improve. We limited
the number of hidden layers in our deep learning model to 4 because of the large
number of hyperparameters. With a larger sample, we can include more hidden layers
and experiment with more complex architectures to optimize the model performance.
Arguably, a better-fitted model can lead to a better understanding of the relationship
between predictors such as demographics and outcomes.
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