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Abstract

Purpose: With the unprecedented growth of biomedical publi-
cations, it is important to have structured abstracts in bibli-
ographic databases (i.e., PubMed), thus, to facilitate the infor-
mation retrieval and knowledge synthesis in needs of researchers.
Methods: Here we propose a few-shot prompt learning-based approach
to classify sentences in medical abstracts of randomized clinical trials
(RCT) and observational studies (OS) to subsections of Introduc-
tion, Background, Methods, Results, and Conclusion, using an existing
corpus of RCT (PubMed 200k/20k RCT) and a newly built cor-
pus of OS (PubMed 20k OS). 5 manually designed templates in
a combination of 4 BERT model variants were tested and com-
pared to a previous Hierarchical Sequential Labeling Network archi-
tecture and traditional BERT-based sentence classification method.
Results: On the PubMed 200k and 20k RCT datasets, we achieved
overall F1 scores of 0.9508 and 0.9401 respectively. Under few-shot set-
tings, we demonstrated that only 20% of training data is sufficient
to achieve a comparable F1 score by the HSLN model (0.9266 by us
and 0.9263 by HSLN). When trained on the RCT dataset, our method
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achieved a 0.9065 F1 score on the OS dataset. When trained on the OS
dataset, our method achieved a 0.9203 F1 score on the RCT dataset.
Conclusion: We show that the prompt learning-based method outper-
formed the existing method, even when fewer training samples were used.
Moreover, the proposed method shows better generalizability across two
types of medical publications when compared with the existing approach.

Keywords: Natural Language Processing, Prompt learning, Few-shot
learning, Text Classification, Medical Abstracts

1 Introduction

The number of biomedical publications keeps growing. As of February 25th,
2022, there are a total of over 40,000,000 publicly available abstracts in
PubMed, a widely used bibliographic database that helps researchers find arti-
cles of interest. Structural information (e.g., subsections such as Background,
Objective, Methods, Results, and Conclusion) of medical abstracts is useful
for various Natural Language Processing (NLP) tasks such as information
retrieval, information extraction, and text summarization. Nevertheless, many
abstracts in PubMed are not organized with subsections. According to Franck
, over a half of all the abstracts in PubMed provide their structural informa-
tion [1], limiting efficient information retrieval and knowledge discovery from
those large-scale biomedical bibliographic databases. Therefore, it is valuable
to develop automated methods to classify sentences in biomedical abstracts
into different subsections.

A number of studies have investigated approaches for classifying sentences
in medical abstracts. Dernoncourt et. al. (2017) conducted the first study on
this topic [1]. In their study, they developed a corpus named “PubMed 200K
RCT”, which contains a total of 200,000 abstracts of Randomized Controlled
Trials with labeled structure information, as well as a subset of 20K RCT
abstracts. The benchmark model achieved an F1 score of 0.900 on the 20K
subset and an F1 score of 0.916 on the complete 200K dataset. Later, Jin and
Szolovits (2018) reported an F1 score of 0.926 on the 20K subset and an F1
score of 0.939 on the 200K dataset by using the hierarchical sequential labeling
network (HSLN) [2]. More recently, Srivastava et al. (2019) have pushed the
performance on this task even further, achieving a state-of-the-art (SOTA)
performance of F1 scores of 0.928 on the 20K dataset and 0.941 on the 200K
dataset [3]. Despite promising results reported by previous studies, two main
challenges still exist: (1) current models are based on data from a sub-domain
(e.g., RCT) and its generalizability to other types of studies is unknown; and
(2) it requires a significant amount of annotated data. Although annotated
datasets can be generated using structured abstracts, more annotations from
real-world, unstructured abstracts will be ideal for testing its generalizability.
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Therefore, methods that can achieve good performance while requiring fewer
annotated samples would be valuable.

To address those challenges, we propose to investigate prompt learning
(PL) for sentence classification of medical abstracts. PL is an emerging frame-
work that attempts to use the knowledge from the Pretrained Language Model
(PLM) without introducing the extra layers for the downstream tasks [4]. Pre-
viously, the prevalent way of performing NLP tasks is basically encoding text
x by a PLM, then PLM passes the encoded xencoded to a classifier that can
predict P (y|xencoded; θ), where θ is the parameters of the model, y is the tar-
get output [4]. Instead of predicting P (y|xencoded; θ) using extra models or
extra parameters, PL encodes the candidate outputs y as yencoded, then allows
the PLM to calculate the probability of yencoded to be in the xencoded and
choose the yencoded with highest probability as the final output y. By doing so,
there are mainly two advantages : (1) Fewer parameters are needed for deep-
learning-based approaches because no extra model or layer is needed [5]; and
(2) Fewer data are needed to achieve a comparable performance because of the
hidden knowledge in PLM [6].

Researchers have applied prompt learning to the sentence classification
task. One approach is to convert the sentence classification task to the cloze
question format by PL. More specifically, it puts a [mask] within a text tem-
plate x, defines a list of vocabulary V , and lets the PLM decide which word
y ∈ V has the highest probability to be in the mask place. And there are sev-
eral works have been done to illustrate the great potential of PL. For example,
Gao et al. (2021) defined a template ‘No reason to watch. It was [mask]’ and
let the V be ‘Great’, ‘Terrible’, etc. to perform a sentiment classification in
movie reviews, demonstrating that a small amount of training data can lead
to comparable results as the whole training data does [7]. Schick and Schutze
(2021) combined the results from several templates x to decide on a single
output y in text classification, which again shows the ability of PL to reduce
the training data [8]. Zhu (2022) tested several templates like ‘A [mask] news :
[News]’ to classify the news, beating the SOTA results in AG news, Snippets,
and News title classification tasks [9].

Despite the promising results of PL in text classification, it has not been
applied to the sentence classification task for medical abstracts. In this study,
we developed a prompt-learning-based sentence classification method for med-
ical abstracts from both randomized clinical trials (RCT) and observational
study (OS). Our results show that the proposed PL model not only reduces
the number of required training samples, but also shows better generalizability
across medical article types, when compared with the existing HSLN method.
The main contributions of this work include: (1) a new corpus of OS abstracts
for sentence classification in medical abstracts; (2) a new prompt-learning-
based sentence classification method that performs well with less training data;
(3) a sentence classification model with good generalizability for different types
of medical publications.
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2 Methods and Materials

2.1 Study Design

Figure 1 shows the overall study design and workflow. First, we designed 5 dif-
ferent templates for PL. Second, we tested 4 different PLMs (BERT, BioBERT,
RoBERTa, and PubMedBERT) and decided on the best one for following
experiments. Then we compared the PL method with the HSLN method by
Jin and Szolovits (2018), using the benchmark datasets of PubMed RCT 200K
and 20K. Finally, we conducted a generalizability study of the PL method: we
evaluated the model trained using RCT on the OS dataset (and vice versa).

Fig. 1 The overall design and workflow of this study

2.2 Datasets

For RCT, the PubMed 200K RCT dataset and the 20K subset of it were
used. These two datasets are directly available at https://github.com/Franck-
Dernoncourt/pubmed-rct. To test the generalizability of the sentence classifi-
cation model, a dataset of Observational Study (OS) called PubMed 20k OS
was created from scratch. There is a total number of 122,329 OS abstracts
available on PubMed and 39,762 of them are structured. We collected all
the structured OS abstracts and randomly picked 20,000 abstracts out of
them as a subset. To be noted, even for the structured OS abstracts, they
do not have standardized structures. For example, some of the abstracts
used OBJECTIVE instead of OBJECTIVES (PMID: 27008686), and some of
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them used subtitles like IMPORTANCE (PMID: 29799986) and RESEARCH
DESIGN AND METHODS (PMID: 28655740). To standardize all the het-
erogenous subtitles, National Library of Medicine (NLM) attempted to
category them into 5 classes, which is OBJECTIVE, INTRODUCTION,
METHODS, RESULTS, and CONCLUSIONS, and published a mapping file
for it. The subtitle and corresponding standardized labels is available at
https://lhncbc.nlm.nih.gov/ii/areas/structured-abstracts.html. However, the
mapping file still does not cover all the subtitles appeared in the OS corpus.
For those subtitles that do not exist in the mapping file, we use fuzzy match-
ing to find the most similar one among the mapper. Levenshtein distance was
used to find the most similar subtitle existing in the mapping file and the cor-
responding label was then assigned. After standardization, all the subtitles are
converted to one of the five subtitles. We followed the PubMed 200K RCT for-
mat to construct the dataset, one of the example abstract (PMID: 31872515) is
shown in Figure 2. The PMID is in the first line and in the remaining lines, the
first coloumn is the standardized label and the second coloumn is the sentence.

Fig. 2 Example of a standradized abstract

2.3 Design of PL templates

For PL, the design of templates is important, as it may greatly impact the
model performance. In this task, we tested several manually-designed tem-
plates as shown in Table 1, where the [Mask] and [Sentence] are two variables
and <Begin>and <End>are two fixed textual tokens. [Mask n] denotes the
standardized subtitle of the [Sentence n], [Title] denotes the Title of that
abstract. <Begin>and <End>are two tokens which were added to indicate the
beginning or the end of that abstract. Taking PMID 31872515 in Figure 2 as
an example, the [Mask 1] denotes [OBJECTIVE] and the [Sentence 1] denotes
[To investigate the optimal dual. . . ]. The [Mask 2] denotes [BACKGROUND]
and the [Sentence 2] denotes [Diabetic patients are at. . . ]. Under each tem-
plate in Table 1, we are showing two example inputs respectively in Table 2 for
clearer illustration. The standardized subtitles were showed in training, while
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they were kept masked in prediction. In our results, all the template indexes
are corresponding to the ID column in Table 1.

Here we introduce the idea of how these templates are designed. The first
template imitates the way of naturally written structured sentences. The sec-
ond template is a typical way of how researchers do text classification based on
PL. For the first 2 templates, the classification is simply based on the sentences
themselves. We noticed that in this task, not only the sentences themselves
but also their contextual information should be taken into account. Hence, in
the third template, we tried to feed the previous sentence together with the
sentence that needs to be classified. In the fourth and fifth templates, we fed
the whole abstract to the PLM, trying to give as much contextual information
as we can.

Table 1 The templates used in our experiments

ID Templates

1 [Mask n]: [Sentence n]

2 [Sent n] This sentence belongs to the [Mask n] section.

3 [Sentence n-1] [Mask n]: [Sentence n]

4 In [Sentence 1] [Sentence 2]... [Sentence n].
The sentence ”[Sentence n]” belongs to the [Mask n] section.

5 <Begin>[Sentence 1] [Sentence 2] ... [Mask n]: [Sentence n] <End>

In template 3, when [Sentence n] is the first sentence, [Title] was used instead of
[Sentence n-1].

2.4 Benchmark architecture

In our experiments, we have two baselines, one of which is Jin and Szolovits’s
HSLN architecture [2] and the other one is transformer-based sentence
classification method.

Despite the SOTA method in this task is the Hierarchical Capsule Based
Neural Network Architecture (HCBNN) proposed by Srivastava [3], the code
of it is not publicly available. We were not able to repeat their work. Instead,
we used Jin and Szolovits’s HSLN architecture [2], which has similar perfor-
mance as Srivastava [3], as a baseline in our study. The Hierarchical Sequential
Labeling Network (HSLN), by name, leverages 4 different hierarchical lay-
ers. It includes a traditional token-level embedding layer, a sentence-level
encoding layer by CNN or bi-RNN, a context enriching layer by bi-LSTM
and a sequential labeling layer by CRF. In our experiments, we trained and
tested the baseline HSLN model based on both PubMed 200K RCT dataset
and 20K subset. All the training settings for HSLN remained the default as
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Table 2 The input examples of each template

ID Input examples

1
OBJECTIVE : To investigate the optimal dual. . .

BACKGROUND: Diabetic patients are at. . .

2

To investigate the optimal dual. . .
This sentence belongs to the OBJECTIVE section.

Diabetic patients are at. . .
This sentence belongs to the BACKGROUND section.

3

Impact of dual antiplatelet therapy. . .
OBJECTIVE: To investigate the optimal dual. . .

To investigate the optimal dual. . .
BACKGROUND: Diabetic patients are at. . .

4

In To investigate. . . with high-risk profiles.
The sentence “To investigate . . . ” belongs to the OBJECTIVE section.

In To investigate. . . with high-risk profiles.
The sentence “Diabetic patients. . . ” belongs to the BACKGROUND section.

5

<Begin>OBJECTIVE : To investigate the optimal dual. . .
Diabetic patients are at. . . with high-risk profiles. <End>

<Begin>To investigate the optimal dual. . .
BACKGROUND: Diabetic patients are at. . . with high-risk profiles. <End>

provided in Jin’s Github link (available at https://github.com/jind11/HSLN-
Joint-Sentence-Classification).

To demonstrate the advantages of PL compared to Non-PL method, we
also tested transformer-based sentence classification method using the same
pretrained models as PL methods.

2.5 PLMs

PLMs may play an important role in PL because different PLMs utilize
different algorithms and can be trained using different corpora. BERT and
RoBERTa were trained on general corpus like books and wiki, which have a
good understanding of general English. While BioBERT and PubMedBERT
were pre-trained on PubMed articles, which should have a better understand-
ing of PubMed abstracts. Here we tested the performance of BERT, BioBERT,
RoBERTa, and PubMedBERT models to evaluate their performance on this
task [10] [11] [12] [13].

2.6 Experimental settings

One of the important advantages of PL is to elicit the knowledge of the PLM;
thus, the amount of training data needed can be reduced [14]. To examine how
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prompt-learning-based methods and HSLN perform in few-shot settings, we
evaluated model performance when different percentages of training data were
used. We divided both PubMed 200K RCT and PubMed 20K RCT training
data into 5 different subsets according to different percentages (5%, 10%, 20%,
50%, and 100%). The validation data and test data remained unmodified.

In our experiments, all the training processes were based on the training
set, all the hyper-parameter tunings were based on the validation set and all
the displayed F1 scores were based on the test set. The max sequence length
for each input instance was set at 512. The excess sequence will be truncated
from the head when the length of the input instance exceeded 512. The batch
size for each loop is set at 8. The Adaptive Moment Estimation with Decoupled
Weight Decay (AdamW) [15] optimizer was leveraged. We set the weight decay
at 0.01 and the learning rate at 10−6 for AdamW. We stopped the training
loop after there is no improvement in the F1 score on the validation data in 2
epochs.

2.7 Evaluation

To make fair comparison with the HSLN, we used the same evaluation metrics
as it as well, which is Precision, Recall, and F1 score. In the overall performance
calculations, we used weighted F1 score to align with the HSLN also.

The equations of these scores are shown as following:

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F1 = 2 ∗ Precision ∗Recall/(Precision+Recall)

where TP, FP, and FN are True Positive, False Positive and False Negative,
respectively.

2.8 Generalizability test

To be applicable to different types of medical abstracts, and to reduce the
need for manually annotated data when applying to unstructured abstracts
of different publications, a generalizable model is preferred. We compared the
generalizability of PL and HSLN. We firstly trained the models using the RCT
corpus (with different percentages of training data) and then tested them on
the test set of the OS corpus. The same procedure was repeated by using
the OS corpus for training and the RCT corpus for testing. By doing so, the
models’ ability to predict the unseen data was tested.

3 Results and Discussion

3.1 Corpus statistics

The statistics of the PubMed 20k OS and PubMed 20k RCT corpus were shown
in Figure 3. As the figure shows, the distribution of 5 classes is not balanced
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in 2 corpora. RESULTS is the most frequent class while OBJECTIVE is the
least class. In the RCT corpus, the number METHODS and RESULTS are
similar. While in the OS corpus, RESULTS are much more than METHODS.

Fig. 3 Distribution of 5 classes in 20k RCT and 20k OS dataset

3.2 Baseline Peformance by HSLN

The average F1 score for HSLN we achieved was 0.9263 on the 20k subset,
which aligned with the 0.926 F1 score reported in Jin’s original paper. The
average F1 score we achieved was the 0.9332 on the 200k dataset, which was
lower than (but close to) 0.939, the F1 score reported by Jin. The detailed
results are shown in Table 3. In the following experiments, we took the results
from this experiment as the baseline F1 score.

Table 3 Baseline performance by HSLN architecture

Dataset Class Precision Recall F1

200k

OBJECTIVE 0.7293 0.7989 0.7625
BACKGROUND 0.8009 0.7221 0.7595
METHODS 0.9615 0.9797 0.9705
CONCLUSIONS 0.9759 0.9600 0.9679
RESULTS 0.9712 0.9638 0.9675
Average 0.9338 0.9334 0.9332

20k

OBJECTIVE 0.7197 0.7218 0.7207
BACKGROUND 0.8135 0.8048 0.8091
METHODS 0.9567 0.9727 0.9646
CONCLUSIONS 0.9744 0.9591 0.9667
RESULTS 0.9645 0.9583 0.9614
Average 0.9263 0.9264 0.9263
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3.3 Performance by different PLMs

To find out the optimal PLM in this task, we conducted experiments on
BERT, BioBERT, RoBERTa, and PubMedBERT models using 5 templates
on the PubMed 20K RCT training data. The results are shown in Figure
4. As expected, PubMedBERT outperforms all other PLMs in all different
templates and Non-PL method, as it was pre-trained using PubMed articles.
Thus, PubMedBERT was chosen as the PLM in the next experiments. But
the performance of domain-adapted PLM (BioBERT and PubMedBERT) and
general-purpose PLM (BERT and RoBERTa) differ only around 0.02 on F1
score.

Fig. 4 The F1 scores of different PLMs on the PubMed 20k RCT data

3.4 Few-shot experiments

Based on different percentages of the training data, we tested HSLN and PL
based on 5 different templates using the 20k RCT subset. All the results are
shown in Table 4 and Figure 5. Among all 5 different templates, the 5th tem-
plate always outperforms the other templates on each percentage of training
data. With only 20% of the training data, it achieved a comparable perfor-
mance (0.9266) to HSLN (0.9263) which used the complete training data. With
over 20% of the training data, the 5th template consistently outperformed
HSLN trained on 100% training data. With all the training data, the 5th tem-
plate achieved 0.9401, which outperformed HSLN by nearly 0.014 on the F1
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score, as well as the SOTA results reported in Srivastava’s paper by 0.012.
These results demonstrated that PL is effective when the training data is lim-
ited. Meanwhile, with the same amount of training data, it can outperform
HSLN.

The trend is clear that the templates with contextual information are more
likely to outperform the templates without contextual information. However,
giving more information to the model does not necessarily improve the perfor-
mance of the model because the template is also an important factor. If the
template is more similar to the natural format of how a sentence is written,
the model is more likely to perform better.

Table 4 F1 scores on the PubMed 20k RCT test set using
different methods at different training sizes

Methods
F1 scores at different percentages of training data

5% 10% 20% 50% 100%

Non-PL 0.8564 0.8620 0.8724 0.8733 0.8747
PL (Template 1) 0.8606 0.8686 0.8713 0.8716 0.8775
PL (Template 2) 0.8555 0.8620 0.8682 0.8731 0.8770
PL (Template 3) 0.8928 0.8978 0.9038 0.9081 0.9122
PL (Template 4) 0.8863 0.8996 0.9102 0.9265 0.9342
PL (Template 5) 0.9146 0.9211 0.9266 0.9335 0.9401
HSLN 0.8858 0.9019 0.9117 0.9127 0.9263

Fig. 5 The trend of how performance increased at different percentages of 20k RCT training
data using different methods

To further test the effectiveness of PL under the few-shot setting, we
compared it with HSLN on the complete PubMed 200K RCT corpus. Since
template 5 outperformed all other templates in the previous experiments, we
tested Template 5 only on the 200k dataset. The results are shown in Table 5
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and Figure 6. With 5% training data, PL had already outperformed the HSLN
trained at 100% training data. With 20% training data, PL achieved a 0.9440,
which outperformed the SOTA result reported in Srivastava’s paper (0.9407)
with 100% training data. With 100% training data, PL beat the SOTA result
by 0.01 and beat HSLN by 0.017. The results on the 200k dataset again show
the effectiveness of PL when training samples are limited.

Table 5 F1 scores on the PubMed 200k RCT test set using
different methods at different training sizes

Methods
F1 scores at different percentages of training data

5% 10% 20% 50% 100%

Non-PL 0.8798 0.8822 0.8846 0.8859 0.8909
PL (Template 1) 0.8811 0.8848 0.8855 0.8893 0.8917
PL (Template 2) 0.8796 0.8825 0.8827 0.8909 0.8921
PL (Template 3) 0.9111 0.9129 0.9155 0.9207 0.9224
PL (Template 4) 0.9276 0.9336 0.9396 0.9450 0.9478
PL (Template 5) 0.9369 0.9385 0.9440 0.9469 0.9508
HSLN 0.9255 0.9264 0.9275 0.9332 0.9332

Fig. 6 The trend of how performance increased at different percentages of 200k RCT
training data using different methods

3.5 Generalizability

The results of the generalizability test are shown in Tables 6 and 7 and plotted
in Figure 7 and 8. The results show that when PL template 5 was trained on
either RCT data or OS data, the F1 scores of PL at different sizes of training
data were much closer, compared with results from HSLN. The performance
of templated 5 ranged from 0.8905 to 0.8971 when trained on RCT and tested
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on OS. It ranged from 0.0.9001 to 0.0.9203 when trained on OS and tested on
RCT. The results from HSLN showed a more wide range, ranging from 0.8306
to 0.8732 when trained on RCT and tested on OS and ranging from 0.8582 to
0.8921 when trained on OS and tested on RCT. With different percentages of
the training data, PL consistently outperformed HSLN. These results demon-
strated that the generalizability of the sentence classification model trained by
PL template 5 overwhelms the one trained by HSLN. We noticed that when
trained on 100% OS data, the F1 score dropped 0.001 compared to trained on
50% OS data, which is probably the overfitting issue.

Table 6 F1 scores on OS test set trained on RCT data

Methods
F1 scores on OS test set

5% 10% 20% 50% 100%

Non-PL 0.8378 0.8384 0.8411 0.8441 0.8422
PL (Template 1) 0.8392 0.8396 0.8445 0.8441 0.8510
PL (Template 2) 0.8234 0.8347 0.8416 0.8417 0.8454
PL (Template 3) 0.8681 0.8741 0.8763 0.8781 0.8832
PL (Template 4) 0.8514 0.8723 0.8821 0.8971 0.8999
PL (Template 5) 0.8905 0.8971 0.9025 0.9055 0.9065
HSLN 0.8306 0.8528 0.8643 0.8697 0.8732

Fig. 7 The trend of how performance increased at different percentages of trained on 20k
RCT data tested on 20k OS data using different methods

4 Conclusion

In this paper, we proposed a prompt-learning-based method for sentence classi-
fication in medical abstracts. Our results show that PL with designed templates
can achieve better performance than the SOTA method. Moreover, much less
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Table 7 F1 scores on RCT test set trained on OS data

Methods
F1 scores on RCT test set

5% 10% 20% 50% 100%

Non-PL 0.8485 0.8524 0.8583 0.8655 0.8690
PL (Template 1) 0.8497 0.8544 0.8627 0.8667 0.8669
PL (Template 2) 0.8465 0.8512 0.8560 0.8649 0.8655
PL (Template 3) 0.8814 0.8880 0.8899 0.8968 0.9003
PL (Template 4) 0.8652 0.8735 0.8855 0.9060 0.9128
PL (Template 5) 0.9001 0.9021 0.9027 0.9104 0.9203
HSLN 0.8582 0.8668 0.8752 0.8788 0.8921

Fig. 8 The trend of how performance increased at different percentages of trained on 20k
OS data tested on 20k RCT data using different methods

training data are needed for PL for achieving good performance, indicating
the feasibility of few-shot learning for this task. We also demonstrated that
our sentence classification model has a better generalizability on the unseen
data. In the future, we will continue to explore the influence of different tem-
plates on the performance and test the model on other types of articles. In
addition, our current method is purely based on manual template and answer
engineering, which may not reveal the full potential of prompt learning in this
task. Applications of automated template and answer engineering should be
explored in the future study.
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