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Abstract
Deep learning (DL) has gained prominence in healthcare for its ability to facilitate 
early diagnosis, treatment identification with associated prognosis, and varying 
patient outcome predictions. However, because of highly variable medical prac-
tices and unsystematic data collection approaches, DL can unfortunately exacerbate 
biases and distort estimates. For example, the presence of sampling bias poses a sig-
nificant challenge to the efficacy and generalizability of any statistical model. Even 
with DL approaches, selection bias can lead to inconsistent, suboptimal, or inac-
curate model results, especially for underrepresented populations. Therefore, with-
out addressing bias, wider implementation of DL approaches can potentially cause 
unintended harm. In this paper, we studied a novel method for bias reduction that 
leverages the frequency domain transformation via the Gerchberg-Saxton and cor-
responding impact on the outcome from a racio-ethnic bias perspective.

Keywords Deep learning · Medical decision-making · Racial bias mitigation · 
MIMIC-III · Mortality rate prediction

1 Introduction

Machine learning’s ubiquitous presence in a variety of domains has had a profound 
impact on many industries leading to advancements and previously unfeasible pro-
gress. Specifically, in healthcare, deep learning has emerged as a promising tool in 
drug discovery [1], early diagnosis [2], advancements in medical imaging [3], and 
personalized treatments [4]. The growing prominence and initial results of deep 
learning have unearthed significant drawbacks and limitations from interpretabil-
ity to data availability, and more importantly inherent biases. Recently, the artifi-
cial intelligence research community has realized the undesired impact and potential 
danger of bias and fairness in healthcare. While complete elimination may not be 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s41666-024-00163-8&domain=pdf


226 Journal of Healthcare Informatics Research (2024) 8:225–243

1 3

yet possible, mitigation and counter measures may enable DL adaptation in clinical 
applications in a relatively considerate manner.

In the context of machine learning, bias refers to the presence of systematic 
inaccuracies or distortions that result in a disadvantage to a certain group of 
people. In contrast, fairness is the absence of prejudice based on an inherited or 
acquired characteristic [5]. Bias in machine learning can be represented in vari-
ous ways, including data-to-algorithm bias, which arises from a biased dataset 
resulting in a subsequent bias in algorithmic outcomes; algorithm-to-user bias, 
which occurs when the machine learning algorithm itself is biased; and user-
to-data, which the users’ inherited bias is reflected in the data generated. In 
this study, the data-to-algorithm bias is investigated and mitigated. Sampling 
bias occurs when the samples used for model training are not representative of 
the source population. Overall, caution is always needed as the trends and pat-
terns estimated for one population do not necessarily generalize to other exter-
nal populations. This is especially frequent in healthcare where data is typi-
cally skewed toward a specific characteristic of the population serviced by a 
healthcare facility and its providers in a geographic location with correspond-
ing risk or socioeconomic factors. Particularly, the representation bias arises 
when the data does not accurately represent the true (or uniform) distribution 
of the population, and similarly, population bias occurs when the distribution of 
the training data does not represent the population the model was intended for 
[5]. Ensuring fairness is crucial for the deployment of a safe (i.e., remediation 
of unintended harm) and ethical machine learning application since failure may 
cause potentially dangerous and life-altering events. Especially in medicine, 
misdiagnosis and incorrect treatment recommendation due to unmitigated bias 
could lead to unintended and severe consequences for patients.

In this paper, we propose a method for racial bias mitigation in DL classifi-
cation based on advanced frequency domain operations by utilizing the Gerch-
berg-Saxton (GS) algorithm. This method operates by distributing the informa-
tion carried among features utilized in model training more uniformly that is 
achieved by leveraging the frequency domain magnitude equalization feature of 
the GS algorithm. Specifically, we demonstrate that the racial bias caused by the 
information embedded in the data features can be minimized and results in more 
consistent models with more uniform accuracy per race category. This approach 
has the potential to offer an innovative solution for resolving discrepancies in 
model results that arise from the uneven representation of population. Hence, 
improving model performance for underrepresented populations has the poten-
tial to improve equity in healthcare.

2  Related Work

As the utilization of Artificial Intelligence (AI) has rapidly exploded in recent years, 
the fairness and bias resulting from these approaches are crucial considering the 
importance of equitable decision-making processes and potential harm. Various 
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methodologies and frameworks have been proposed to overcome such challenges, 
each with unique advantages with corresponding challenges.

A widely discussed method to overcome these problems, data augmentation 
focuses on generating synthetic samples to reinforce the representation of under-
represented groups in the training dataset. While this approach has proven some 
success, the data augmentation method often carries concerns on generating 
an accurate representation of samples for specific populations, consequentially 
making it less effective for comprehensive bias mitigation [6]. Some other works 
have further delved into the potential pitfalls of this approach, emphasizing the 
need for careful implementation to avoid inadvertently introducing new biases 
[7, 8].

Another noteworthy approach is adversarial learning, where a predictor and 
adversary models are trained simultaneously. In this approach, the objective is to 
sharpen the predictor’s ability to yield the desired outcome while mitigating the 
adversary’s efficiency in predicting the target variable. This strategy has shown 
effectiveness in bias mitigation, especially when compared with various fairness 
measurements. Moreover, to address its inherent limitations in assessing fairness 
across all testing cohorts, a novel fairness prediction scheme is introduced, allow-
ing users to evaluate the model’s alignment with their fairness criteria [9]. How-
ever, despite its potential, the demand for the computational power and the method’s 
effectiveness on complex datasets warrant further exploration [10].

On the topic of fairness constraints, there’s ongoing research concentrating on 
their integration within learning processes to guarantee just outcomes. However, 
there is a lot of debate about which constraints are the most appropriate with no 
absolute conclusions, making this approach an upcoming area of discussion and 
innovation [5].

In the realm of deep reinforcement learning, Yang et  al. demonstrated a novel 
approach by focusing on algorithmic fairness to achieve equal odds. Although their 
results showed a noteworthy decline in bias, the model failed to fulfill the equalized 
odd requirements [11]. Furthermore, its model-specific nature makes it less gener-
alizable for wider applications, especially in biomedicine. However, this method’s 
merits cannot be overlooked, as it offers fresh insights into the broader dialogue on 
fairness in AI.

Our contribution to this ongoing discourse is a model-agnostic method that 
targets bias directly within the data. At the heart of our approach is the Gerch-
berg-Saxton (GS) algorithm, traditionally utilized in computer vision for optic 
and signal processing applications. The GS algorithm’s prowess lies in its ability 
to optimize information distribution, making it an invaluable tool in our quest 
for fairness. In the context of AI fairness, our innovative application of the GS 
algorithm promises a new pathway to tackle bias, drawing from its established 
efficacy in other domains.

In essence, the landscape of bias mitigation in AI is diverse and dynamic. While 
significant strides have been made, the quest for the most effective and universally 
applicable methodology continues. Our work, building upon the foundation laid by 
previous researchers, introduces a promising avenue, leveraging the proven capabili-
ties of the GS algorithm in a novel context.



228 Journal of Healthcare Informatics Research (2024) 8:225–243

1 3

3  Methodology

3.1  Clinical Data Source and Study Population

This study utilized the Medical Information Mart for Intensive Care (MIMIC) 
III version 1.4 database, which has been widely used in research for developing 
and testing machine learning algorithms and predictive models for various clini-
cal applications, such as mortality prediction, sepsis detection, and disease phe-
notyping [12]. The database is created and maintained by the MIT Laboratory 
for Computational Physiology. The data contains de-identified health data from 
electronic medical records, laboratory information systems, and bedside monitors 
from over 40,000 patients who were admitted to intensive care units (ICUs) at the 
Beth Israel Deaconess Medical Center in Boston, Massachusetts, USA between 
2001 and 2012 [12].

In this study, we employed the MIMIC-III dataset to predict mortality 
rates while demonstrating bias across different racio-ethnic groups. Thirty 
vital sign features were leveraged to train a DL classification model that pre-
dicts patient mortality rates within 24 h of admission. All feature values were 
selected from score equivalents of the actual feature values ranging from 0 
to 22 or features indicating probability scores to minimize numeric variance. 
Patients with any missing values were removed from the dataset, and the final 
sub-selected dataset consists of 13,980 patients from 36 different racial and 
ethnic groups. To produce a dataset more conducive to analysis and observa-
tion, the 36 different ethnic groups were re-classified based on patients’ self-
reported common ancestral heritage [13, 14]. The resulting dataset consisted 
of 9814 patients categorized as “European American” (EA), 1690 patients 
categorized as “African American” (AA), 346 patients categorized as “East-
ern Asian American” (EEA), 641 patients categorized as “Hispanic Ameri-
can”, and 1489 patients who identified as “Unkown” or declined to report 
were categorized as “Others” (OTH). The MIMIC-III data has previously 
been shown to have a potential bias that can adversely impact the accuracy 
of predictive models [13, 14]. Therefore, our study demonstrates that we can 
mitigate racio-ethnic bias allowing for more equitable and unbiased estimates. 
It is crucial to note that the categorization was based solely on patients’ self-
reported ethnicity and was used for research purposes only.

To evaluate the efficacy of the Gerchberg-Saxton (GS) algorithm in bias miti-
gation on the MIMIC-III, we conducted an analysis of the models’ accuracy, 
demographic parity, and error rate parity fairness constraints among the sensi-
tive population groups using true positive, true negative, false positive and false 
negative rates obtained individually from both the benchmark dataset, and the 
GS applied dataset. The model was trained to classify patients who passed away 
within 24  h of admission as “True” (1) and patients who passed away longer 
than 24 h after admission or an unspecified time as death as “False” (0). These 
experiments were repeated with three different population cohorts, which are 
constructed using the same patients in different sampling settings to produce 
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consistent and reproducible results. Tests were run five times for each cohort 
resulting in a total of fifteen repetitions.

3.2  Gerchberg‑Saxton Algorithm

The Gerchberg-Saxton (GS) algorithm is an iterative phase retrieval technique devel-
oped for determining the phase of a light or electron beam from its intensity distri-
butions in two transverse planes [15]. It is frequently used in holographic imaging to 
extract the phase patterns of images from corresponding intensity patterns, making 
it a valuable tool in image processing for reconstructing images with unknown phase 
patterns [16]. The algorithm takes the magnitudes of the sample image ( � ) and the 
corresponding Fourier transform of the diffraction intensities ( X ) as input param-
eters to estimate the phase pattern of the input image. The GS algorithm iteratively 
cycles between the image and diffraction planes using Fourier and Inverse Fourier 
transforms until an estimation for the phase pattern of the input image is obtained. 
We use the standard definition, in which the Discrete Fourier Transform (DFT) of f  
is F and the Inverse DFT (IDFT) of F is f  where

In the mathematical representation of the GS procedures, x and X represent the 
intensity arrays for the image and diffraction, respectively, and the superscripts of H 
and T  indicate the hologram and target planes, respectively. The subscript k denotes 
the number of iterations in the GS algorithm.

The GS algorithm begins by generating random phases between 0 and 2 � , which 
are then assigned to the image amplitudes using (3) and (4). Subsequently, the 
algorithm uses (5) to compute the DFT of the image plane and updates the phase 
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distribution using (6). The algorithm then calculates the IDFT (7) of the diffraction 
plane to prepare a new set of phase distributions for the next iteration. Repeating 
this process for all iterations of the GS algorithm results in an improved phase dis-
tribution on each cycle, eventually leading to the best estimation on the final itera-
tion [15–17]. The optimal phase distribution is produced within 20 cycles of the GS 
transformation; however, the number of cycles required may vary depending on the 
input matrix [18–20].

3.3  Gerchberg‑Saxton Algorithm Effect on MIMIC‑III

To achieve a fairer model prediction rate, the Gerchberg-Saxton algorithm was 
applied to the modified MIMIC-III cohorts before splitting into training, test, and 
validation datasets. This is done to leverage GS’s information distribution property 
on the vital sign features utilized across the entire modified MIMIC-III cohorts and 
ensure equal information distribution among all the subsequent data subsets. The 
GS algorithm was applied for 50 cycles, transforming each element of the matrix 
input to its frequency domain equivalent with a magnitude and phase component. 
The magnitude component represents the element’s intensity, in this case, the fea-
ture value’s information, while the phase component indicates its location. During 
each cycle in the GS algorithm, the phase components were preserved, and the mag-
nitude components were equalized to 1, resulting in an output matrix with a uniform 
distribution of feature information across the entire dataset. Moreover, preserving 
the phase (location) information during the GS algorithm among features increased 
the variance of constant-valued features based on the patient (row) they belonged in 
the tabular data, thus, increased the model contribution of those features on post-GS 
transformations. The population sample and model architecture were kept consistent 
for each cohort for benchmark and GS model testing.

To ensure the output matrix’s suitability for model training, we compared the 
input and output matrices first overall side by side, and then individually feature 
by feature using heatmaps (see Appendix). We evaluated the output matrix’s effect 
based on the preservation of the local minima and maxima locations before and 
after the GS algorithm to assess the transformed dataset’s ability to preserve essen-
tial features for predicting mortality rates. The model used was a Deep Neural 
Network (DNN) via TensorFlow 2.4.0 with ReLu activation functions and Adam 
optimizer. Our model adopts a sequential architecture comprising four layers. The 
input layer accepts data with a specified shape of (35,). Subsequently, three fully 
connected (dense) layers follow, where the number of nodes exhibits a reversed 
pyramid structure: 64 nodes in the first layer, 32 nodes in the second layer, and 
16 nodes in the third layer. The final layer serves as the output layer, consisting of 
two units and employing the SoftMax activation function. To avoid unbalanced 
model training on mortality rate predictions as well as to avoid model overfit-
ting, our DNN model is supported with balanced class weights and early stopping 
conditions. While the patients’ ethnic backgrounds were recorded and utilized for 
analysis and evaluation purposes, they were not included in model training. To 
minimize the computational time required by the algorithm, we have incorporated 
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the CUDA’s CuPy library as an alternative to NumPy. This library enables GPU 
utilization during the Gerchberg-Saxton (GS) transformations, thereby enhancing 
efficiency.

3.4  Feature Contribution on Model Training

To investigate the effect of Gerchberg-Saxton on feature contributions during model 
training, we used the Shapley Additive Explanations (SHAP) to provide a more 
definitive and substantiated view on the effectiveness of the GS algorithm in miti-
gating racial bias. SHAP is a mathematical concept that assigns importance values 
to each feature in a machine learning model to estimate its impact on the model’s 
output [21]. It is commonly used in machine learning to explain the output of a 
model by identifying the contribution of each feature to the predicted outcome [21].

The SHAP calculations were performed for all three cohorts used for data split-
ting to ensure consistency of the obtained results. We performed the SHAP calcula-
tions on both trained models to compare feature contributions on the model training 
before and after GS transformation was applied. The goal is to illustrate three main 
outcomes on post-GS-trained model results.

First, we expect to see a more equalized feature contribution on the model trained 
with the post-GS transformed dataset. This expectation can be demonstrated by a 
significant improvement in the effectiveness of GS transformations for bias mitiga-
tion resulting from a more uniform feature contribution on the model training after 
the GS transformations. Second, we expect to see a different order of feature impor-
tance on model contribution after GS transformations. Specifically, we expect to 
demonstrate the impact of the GS algorithm in redistributing the feature importance 
across different racio-ethnic groups by minimizing the ethnic discrimination effect 
of each feature. Lastly, we expect to observe all features used in the model training 
have a positive or non-zero contribution on the model training for post-GS transfor-
mations. This expected outcome illustrates that the GS applied dataset utilizes all 
features in model training, thus, providing a trained model more representative of 
the entire population.

3.5  Information Entropy

Another measure of the effectiveness of the Gerchberg-Saxton algorithm in racio-
ethnic bias mitigation is calculated via the information entropy across all trainable 
features using Shannon’s Entropy Theorem. Shannon entropy is a measure of the 
amount of variety or uncertainty in a dataset. It is commonly used in machine learn-
ing to identify informative features with higher discriminatory power. Features with 
higher entropy contain more information and are more likely to be relied on accurate 
predictions. On the other hand, features with lower entropy may be redundant or 
irrelevant to the task at hand [22].

Shannon entropy values of the training dataset were calculated before and after 
the GS transformations to measure whether the information among the features 
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was distributed more uniformly. Considering feature values are ranging between 
0 and 22, we have used logarithmic base 10 during the Shannon Entropy cal-
culations. Although the Shannon Entropy metric cannot specifically identify 
the information causing bias among the racio-ethnic groups, we aimed to show 
a more uniform distribution of information entropy in the post-GS transformed 
dataset, which may indicate bias mitigation.

3.6  Fairness Constraints

Demographic Parity and Error Rate Parity are fairness constraints or metrics 
often employed for the machine learning implementations. They are used to eval-
uate the fairness of a model or algorithm by assessing the bias in its outcomes 
[23]. Demographic Parity, also known as statistical or group fairness, requires 
that the decision or classification outcome be independent of the protected attrib-
ute, typically demographic features such as age, gender, or race. This constraint 
is applied to ensure that the proportion of positive outcomes is the same across 
all groups. Mathematically, this is expressed as P(Ẏ  = 1 | A = a) = P(Ẏ  = 1) for all 
a ∈ A, where Ẏ  is the predicted outcome, and A is the protected attribute [24]. 
The Demographic Parity Difference can be computed as the absolute difference 
between these probabilities to quantify the bias. The closer the value is to zero, 
the less the bias.

Error Rate Parity, on the other hand, requires that the error rates of the predic-
tion should be similar across all demographic groups. It specifically considers two 
types of errors: false positive rate (FPR) and false negative rate (FNR). FPR Parity 
is achieved when P(Ẏ  ≠ Y | A = a, Y = 0) = P(Ẏ  ≠ Y | Y = 0) for all a ∈ A, and FNR 
Parity when P(Ẏ  ≠ Y | A = a, Y = 1) = P(Ẏ  ≠ Y | Y = 1) for all a ∈ A, where Y is the 
actual outcome [25]. The disparity in these rates between the groups is measured 
using the Absolute Error Rate Difference for each type of error. The calculation of 
these metrics is central to understanding the biases embedded in machine learning 
models and contributes toward building fairer and more equitable algorithms.

Our fairness evaluation centered on sensitive racio-ethnic population groups, 
including European-American (EA), African American (AA), East-Asian-American 
(EAA), Hispanic-American (HA), and Others (OTH). The fairness of the Gerchberg-
Saxton (GS) algorithm in treating these sensitive groups was examined by training 
and testing two identical models. The benchmark model was trained on the original 
MIMIC-III dataset, whereas the second model was trained on a GS-transformed ver-
sion of the MIMIC-III dataset. Both models were evaluated based on Demographic 
Parity and Error Rate Parity, key fairness metrics used to assess the balance of posi-
tive predictions and error rates across the different race-ethnic groups [24].



233

1 3

Journal of Healthcare Informatics Research (2024) 8:225–243 

4  Results

All methods within this study have been repeated for three different population 
cohorts resulting in similar behavior and effects of Gerchberg-Saxton throughout. 
Thus, the cohort with the most concise and clear results will be shown for sim-
plicity (Fig. 1).

Fig. 1  Comparative Receiver Operating Characteristic (ROC) curves per racio-ethnic groups in Bench-
mark and GS models. Despite the acceptable results illustrated by the benchmark model, the model 
trained with the GS transformed data consistently exhibits higher AUC values and more uniform pre-
diction scores across all racio-ethnic groups, indicating enhanced predictive accuracy and less disparate 
model performances relative to the Benchmark model

Fig. 2  Mean prediction comparison of Benchmark and GS models across different racio-ethnic popula-
tions. Bars indicate the model accuracy per population groups, while the dashed lines show the overall 
model accuracies. Unlike Benchmark, the GS model exhibits more uniform performance, favoring each 
population group approximately equal as shown in previous ROC curves (Fig. 1)
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4.1  Model Performance

Two significant outcomes are observed when comparing the post-GS-trained model 
accuracy with the benchmark model. The model’s accuracy demonstrates greater 
parity across racio-ethnic groups indicating bias reduction as shown in Fig. 2. Fur-
thermore, we have observed a significant increase in prediction accuracy for the 
post-GS-trained model overall.

For a more thorough examination, the Receiver Operating Characteristics (ROC) 
curves and respective Area Under Curve (AUC) scores for each ethnicity in both 
benchmark and GS settings are measured, and results are illustrated in Fig. 1. The 
AUC score provides a more comprehensive measure of a model’s performance and 
ability to distinguish between positive and negative examples in a binary classifica-
tion task by computing the trade-off between the true positive rate (sensitivity) and 
the true negative rate (specificity). We observe every ethnicity’s AUC score not only 
improves but additionally converges to a more uniform value when GS is applied.

4.2  SHAP

Figure 3 provides a compelling visual representation of the model’s feature contri-
butions both before and after the application of the Gerchberg-Saxton (GS) transfor-
mations. The distinctions between the GS-trained model and the benchmark model 
are evident, with the GS-trained model exhibiting a notably more balanced distribu-
tion of feature importance.

While the plot on the left showcases feature contribution for True (1) predictions, 
the right side highlights the contribution for False (0) predictions. In each case, the 
blue bars map the feature contribution from the benchmark model, whereas the 
orange bars reflect the contributions post-GS transformation.

A pivotal observation from this analysis is the reshuffling of feature significance 
in the GS-trained model, pointing to the model’s enhanced capability to generalize 

Fig. 3  Comparison of Feature Importance between Benchmark and GS models. The bar graphs depict 
the distribution of feature importance for each model. For both True and False predictions of the models, 
the features preprocessed with the GS transformations have more balanced importance scores indicating 
a more equitable consideration of features during the model training and prediction phases
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across diverse racio-ethnic groups. This outcome aligns with the primary intent 
behind GS transformations: to attain a harmonious distribution of information 
among features. This not only leads to a leveling of the playing field, where features 
pertinent to minority populations gain prominence, but it also results in predictions 
that are less skewed by the dominant influence of major populations.

Further deep diving into specific features, it is intriguing to note the amplified contri-
butions of “mechanical ventilation” and “glucose scores” in the post-GS model. While 
these features were either marginal or completely absent in their influence on the bench-
mark model, post-transformation, they emerged as significant predictors. This shift 
underscores the potency of the GS transformations in spotlighting critical features that 
might have been overshadowed in the initial data representation. Hence, the overarch-
ing implication is that GS transformations not only bolster the fairness of the model but 
also enhance its predictive robustness by ensuring that no crucial feature is side-lined.

4.3  Information Entropy

Figure  4 provides a comparative analysis of Shannon entropy across the features, 
both prior and subsequent to the Gerchberg-Saxton (GS) transformations. Shannon 
entropy, fundamentally, measures the uncertainty or randomness of a dataset. The 
displayed differences between the pre- and post-GS models in this figure underscore 
the significant reduction in this uncertainty post of the GS application.

Fig. 4  Information Entropy comparison between original and GS transformed feature values. Despite 
some loss, the information contained per features are more uniformized via GS transformations. This, 
along with the feature importance results (Fig.  3), suggests that the desired information distribution 
effects have been achieved successfully via GS transformations
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The height of the bars in the graph provides insight into the information entropy 
levels of the respective features. It is evident from the graph that the range of Shan-
non entropy values for the benchmark dataset spanned from 0 to approximately 2.5, 
reflecting a more variable degree of uncertainty. Conversely, post-GS transforma-
tion, this range becomes notably narrower, with values primarily clustering within 
the 0 to 1 bracket. This narrowed range attests to the diminished uncertainty and a 
consequent enhancement in information consistency across the features.

An inference to be drawn here is the positive influence of GS transformations on 
the MIMIC-III vital signs dataset. Through these transformations, the model’s train-
ing exhibits heightened consistency. This translates into a greater reliability in the 
resulting predictions, an aspect that holds paramount importance, especially when 
these predictions pertain to mortality rates. Such predictions are intertwined with 
critical healthcare decisions, and any stride toward their accuracy is of intrinsic value.

In sum, the portrayal of Shannon entropy in Fig. 4 underscores the transformative 
potential of GS. By curbing the inherent uncertainty and amplifying the consistency 
in the features during model training, GS transformations present a promising ave-
nue for bias mitigation. This not only engenders a higher fidelity in predictions but 
also substantiates the overarching endeavor of utilizing MIMIC-III vital signs data 
for mortality rate predictions with utmost precision and reliability.

4.4  Fairness Constraints

Both the Demographic Parity and Error Rate Parity comparisons shed light on the 
improvements in fairness achieved by the GS-influenced model when juxtaposed 
with the benchmark model.

In Fig.  5, Demographic Parity comparisons illustrate that the GS-influenced 
model yielded a more evenly distributed positive prediction rate across various 
racio-ethnic groups. The benchmark model, on the other hand, demonstrated dispar-
ities in its positive predictions, particularly among minority groups. The GS model’s 
balanced prediction rate across groups underscores its potential to counteract biases 
and produce more equitable prediction outcomes among sensitive groups [26].

Shifting to Fig. 6, the Error Rate Parity comparison corroborates the GS model’s 
efficacy. A salient observation is the error rate within the European American (EA) 
group. While the benchmark model, possibly influenced by the predominance of 
EA in the dataset, already showcased a reduced error rate, the GS-influenced model 
achieved even greater accuracy for this group. The near-total eradication of error in 
the EA group is remarkable, signifying the model’s robustness, even though achiev-
ing such precision across all groups in every dataset might not always be possible. 
For the other racio-ethnic categories, namely AA (African American), EAA (East 
Asian American), HA (Hispanic American), and OTH (Other), the GS-influenced 
model consistently outperformed the benchmark by reducing error rates. This con-
sistency underpins the GS model’s proficiency in providing balanced, fair, and unbi-
ased predictions across a spectrum of groups.
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Fig. 5  The GS model exhibits less variability in positive prediction rates across different racio-ethnic 
groups, indicating its predictions are less discriminatory against any demographic groups. This suggests 
enhanced fairness in model predictions across various demographic groups

Fig. 6  The chart illustrates the two models’ error rates across various racio-ethnic groups. Lower and 
more consistent error rates in the GS-influenced model suggest improved fairness and reduced disparity 
in prediction accuracy across different demographic groups
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In summation, the incorporation of the GS algorithm into the MIMIC-III dataset 
has undeniably elevated the fairness quotient of the model’s predictions among the 
highlighted race-ethnic groups. Subsequent studies can probe deeper into the mech-
anism of the GS transformation and elucidate the precise modifications that facili-
tated these advancements in fairness.

5  Discussion

In our exploration, we employed extant tools innovatively to spotlight bias miti-
gation across diverse racio-ethnic populations in a DL model. This model was 
honed on features exhibiting high correlations, leveraging sophisticated fre-
quency domain operations. Using the MIMIC-III database, known for its inherent 
selection biases and disparities, we applied the Gerchberg-Saxton (GS) algorithm 
to pioneer the application of information distribution on data.

At its core, the GS algorithm is a model-agnostic technique, centering on data 
transformation rather than tweaking the model. This accentuates the fact that 
model alterations would not innately boost the bias-deterrence prowess of the GS 
algorithm. Given that the sampling bias discussed stems from the dataset rather 
than a specific model type or structure, the GS’s role becomes pivotal. Serving as 
a potent data transformation instrument in our research, the GS algorithm, when 
applied, acts as the forerunner of bias mitigation at the dataset level.

However, it is prudent to highlight some intrinsic limitations to our approach. 
Tackling extremely voluminous datasets poses a computational challenge. Sub-
jecting such a dataset to the GS transformation in its entirety is often unfeasible. 
Consequently, data must be segmented and processed in batches. Herein lies a 
pivotal consideration: information distribution within individual batches by GS 
does not benefit subsequent batches. Therefore, curating these batches demands 
meticulous attention, ensuring a near-equitable representation of all racio-ethnic 
groups within each batch. Although this may not guarantee a flawless, uniform 
information dissemination across the complete dataset, conscientiously distribut-
ing similar racio-ethnic samples across batches can approximate it closely.

A second limitation surfaces in the interpretability of GS-transformed data. The 
transformation outputs a structurally altered version when compared to the original. 
Particularly in biological applications, this metamorphosed data might be alien to 
conventional representations. Nevertheless, as elucidated in our results and illustrated 
graphically, these structural deviations do not impede AI models. In certain instances, 
the resultant less sparse data can even enhance the model’s efficacy. Additionally, the 
original dataset remains accessible for the purpose of biological interpretation of the 
results. It is important to note that the GS algorithm merely disseminates the informa-
tion without inducing any alterations to the content represented in the dataset.

To achieve a more even-handed and dependable model prediction rate, the GS 
algorithm’s strategy aimed to disperse information from features that predomi-
nantly informed model predictions for the European-American groups to all other 
racio-ethnic categories. Employing the GS algorithm pre-data partitioning into 
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training, testing, and validation subsets, ensured an egalitarian information dis-
semination across all subsequent data subsets.

Post-GS model analysis unveiled two paramount revelations vis-à-vis the bench-
mark model. Firstly, the GS algorithm’s prowess in equalizing feature magnitudes in 
the frequency domain acted as a bias counteragent, leveling the prediction accuracy 
and AUC scores playground across all racio-ethnicities. Secondly, the post-GS model 
showcased heightened prediction accuracy and AUC scores for all ethnic factions.

Our comparative study between benchmark and GS-influenced models, especially 
in the domains of Demographic and Error Rate Parity, sought to vouchsafe model 
fairness across sensitive demography. Figures 5 and 6 corroborate the GS model’s 
superiority, highlighting its reduced biases and enhanced fairness.

In summation, while our study lays the foundation in ethically mitigating biases 
in medical DL model applications, it is paramount to further unearth the GS algo-
rithm’s full potential in bias deterrence and its adaptability across diverse medical 
data facets, beyond just vital signs.

6  Conclusion

This study demonstrates a method for bias mitigation utilizing advanced frequency 
domain operations via the Gerchberg-Saxton algorithm on biomedical data. With the 
application of the GS algorithm on the MIMIC-III, we illustrated the effects of the 
information distribution on mortality rate prediction accuracy, which results in a more 
uniform and equitable (and in some cases increased) model prediction for various 
racio-ethnic groups. We performed SHAP calculations and utilized Shannon entropy 
for a deeper analysis of GS’s effect for validation. The results of these analyses verify 
that a more uniform feature contribution indicates a more equitable training process. 
While further research is required to investigate the full capacity and performance of 
the GS algorithm in other settings and with other modalities to explore its full potential 
in medical applications, we believe that the implications of our study are significant 
and have the potential to advance current ongoing efforts investigating bias mitigation.

Appendix

Data Comparison via Heatmap

In this section, we will be illustrating our results in terms of data usability after 
Gerchberg-Saxton transformations. As mentioned earlier, in order to determine the 
dataset usability after GS transformations, we have compared the input (benchmark) 
and output (post-GS) matrices of the Gerchberg-Saxton algorithm first overall side 
by side, and then individual feature by feature using heatmaps. We have finalized 
the usability of the output matrix based on the preservation of the local minima and 
maxima locations before and after the GS algorithm to assess the transformed data-
set’s ability to preserve essential features for predicting mortality rates. However, the 
obtained results hold true and consistent for all other feature-by-feature comparisons.
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Appendix Fig. 7 is the overall comparison for dataset before and after the Ger-
chberg-Saxton transformations. For better visual quality, we have selected the first 
50 patients from both benchmark and GS-transformed datasets. As illustrated in 
Appendix Fig. 7, in the heatmap comparison of these two datasets, the local max-
ima and minima locations are preserved for all elements confirming the usability 
of the GS-transformed dataset on model training for mortality rate prediction.

Similarly, Appendix Fig. 8 illustrates the feature-by-feature comparison of the 
dataset before and after GS transformations. We have randomly selected a feature 
among all 30 trainable features to illustrate the results. As stated above, in all 
other feature comparisons, the local maxima and minima locations are preserved, 

Fig. 7  Figure above illustrates the overall heatmap comparison of benchmark and GS-transformed train-
ing datasets to validate the preservation of local maxima and minima locations on post-GS datasets

Fig. 8  Figure above illustrates the feature-by-feature heatmap comparison of benchmark and GS-transformed 
training datasets to validate the preservation of local maxima and minima locations on post-GS datasets
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which is an additional validation criterion for the usability of the post-GS data-
sets on model training.
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