
P‑Lingua in two steps: flexibility and efficiency

Ignacio Pérez‑Hurtado1 · David Orellana‑Martín1 · Gexiang Zhang2 ·
Mario J. Pérez‑Jiménez1

Abstract
Membrane computing is a bio-inspired computing paradigm that lacks in vivo implementation. That is why software or
hardware implementations have to be used to validate models. Several tools have been created for this purpose; some
of them are created for specific purposes, such as solving a computationally hard problem; and others are more
generic, to cover a broad spectrum of possible models. The former have the advantage of being very efficient, crucial for
solving large instances of certain problems; however, this efficiency leads to a loss of generality, since algorithms are
usually hard-coded and they do not allow other models. On the contrary, the latter are perfect tools for researchers, given
that new models can be checked without much effort by defining them in the framework; since these algorithms have to
simulate as many models as possible, they lack specificities to improve the performance. P-Lingua has been widely used to
simulate membrane systems, having integrated both a language and a simulator. To obtain better results in terms of time
used to simulate models defined in this language, a new perspective is studied. The model defined in P-Lingua will be
compiled into C++ source code that will implement an ad hoc simulator. This code will consider specifications about how
rules have to be executed, that is, some simple specifications of the semantics. To show how it works, some examples of
specifications of models will be presented, which can be simulated using the new-developed GNU GPLv3 command-line
tool pcc.

Keywords P-Lingua · Membrane computing · Simulators

1 Introduction

Membrane computing is an unconventional model of com-
putation within natural computing that was introduced in
1998 by Păun [16]. The computational devices in membrane
computing, also known as membrane systems or P systems,
are non-deterministic theoretical machines inspired on the

biochemical processes that take place inside the compart-
ments of living cells.

Among the different types of membrane systems, two
main families are studied: cell-like membrane systems, char-
acterized by their rooted tree structure, where membranes act
as filters that let certain elements to pass through them [16],
and membrane systems structured as directed graphs, rep-
resenting the communication between cells within a tissue
of a living being, called tissue-like P systems [9] or between
neurons in a brain, called spiking neural P systems [7]. The
evolution of these systems is directed by a set of predefined
rewriting rules, in such a way that given a multiset of objects
present in a given compartment, they can evolve and/or be
transported to another compartment. The applicability of the
rules is given by the corresponding semantics of the system.

A configuration of a P system is defined by the structure
of the compartments at a certain moment, and the elements
(being usually objects, although other kinds of elements can
be considered, as strings, catalysts [16] and anti-matter [14],
among others) contained in each compartment, as well as
other characteristics from specific types of P systems, pro-
viding a snapshot of the system at an instant t.

 * Ignacio Pérez-Hurtado
perezh@us.es

David Orellana-Martín
dorellana@us.es

Gexiang Zhang
zhgxdylan@126.com

Mario J. Pérez-Jiménez
marper@us.es

1 Research Group on Natural Computing, Department
of Computer Science and Artificial Intelligence, University
of Seville, Seville, Spain

2 School of Electrical Engineering, Southwest Jiaotong
University, Chengdu, Sichuan, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00014-1&domain=pdf

On the one hand, in P systems with active mem-
branes [18], both objects and membranes change through
the application of evolution, communication, division, sepa-
ration, creation and dissolution. In this framework, mem-
branes can have a polarization associated with each mem-
brane. On the other hand, in tissue P systems [9], symport/
antiport rules are devoted to make objects move from a cell
to another cell or to the environment (a special compartment
where there exist an arbitrary number of objects of an alpha-
bet defined a priori), while division, separation and creation
rules allow an exponential growth in linear time.

We say that a configuration Ct yields to a configuration
Ct+1 if, by applying the rules specified in the model accord-
ing to its semantics, we can obtain Ct+1 from Ct . A com-
putation of a P system is a (finite or infinite) sequence of
instantaneous configurations.

We consider a family (or model) of P systems as the defi-
nition of a type of P systems, that is, its syntax and seman-
tics. According to the specification of a particular family
of P systems, we consider the definition of an individual P
system, that is, its working alphabet, initial membrane struc-
ture with initial multisets of objects and the set of rewriting
rules with other characteristics, such as special alphabets or
the number of environments, of the corresponding family.
By the definition of the family, we can interpret the structure
and behavior of a specific model within that family.

Membrane computing is a very flexible framework where
different types of devices can be outlined. In fact, the inter-
section between membrane computing and other fields, such
as engineering [19], biology [22] and ecology [2], as well as
a long list of other scientific lines [5, 13, 23], has generated
necessities that could only be filled by the creation of new
kinds of P systems, expanding the scope of researchers in
this area. For an exhaustive explanation of the different types
of P systems, we refer the reader to [15, 17].

Software and hardware simulators have been imple-
mented from the beginnings of membrane computing. As
generic simulators are necessary to simulate several types
of P systems, ad hoc simulators are crucial as they can be
optimized for the input design and the hardware to be used.
But the hard-coding process requires an excellent knowledge
of the hardware architecture, as well as the design to be
implemented. Debugging should be always critical and the
results are not very reusable.

In this work, we have extended the P-Lingua frame-
work [6, 24] to include semantic features specific to the
models. For this purpose, we have implemented a GNU
GPLv3 command-line tool to compile P-Lingua input files
to ad hoc source code in C++. The output files are optimized
for the input designs and the entire process can be automated
using makefiles, i.e.,files which specify how to derive the
target program.

The paper is structured as follows: In the next section,
some preliminary concepts about P-Lingua are introduced.
In Sect. 3, we propose an extension for the P-Lingua lan-
guage to directly define model constraints in P-Lingua files,
providing a more flexible and experimental framework. The
next Section is devoted to the new GNU GPLv3 software
tool to compile the input P-Lingua files and generate source
code in C++, as well as JSON code codifying the input
designs for third-party applications. Section 5 introduces
the simulation algorithm used in the generated simulators.
In Sect. 6 some examples of the new P-Lingua extension
are introduced. Finally, some conclusions and future work
are drawn.

2 Preliminaries

P-Lingua [6, 24] is a software framework that includes a
definition language for P systems (also called P-Lingua) and
a GNU GPLv3 Java library (pLinguaCore) that is able to
parse P-Lingua files and simulate computations. The library
contains three main components:

• A parser for reading input files in P-Lingua format and
checking syntactic and semantic constraints related
to predefined models. To achieve this, the first line of
a P-Lingua file should include a P system model dec-
laration using an unique identifier. There are several P
system models that can be used, each one with its own
identifier, such as transition, membrane_divi-
sion, tissue_psystems, and probabilistic.
The analysis of semantic ingredients, such as rule pat-
terns, is hard-coded for each model. Several versions of
pLinguaCore [6, 8, 10, 20] have been launched to cover
different types of models.

• For each type of model, the pLinguaCore library includes
one or more built-in simulators, each one implementing a
different simulation algorithm. For instance, Population
Dynamic P systems [1] (probabilistic identifier in
P-Lingua) can be simulated within the library by apply-
ing three different algorithms: BBB, DNDP, and DCBA [3,
11]. Software projects such as MeCoSim (Membrane
Computing Simulator) [21, 26] use the simulators inte-
grated into the library to perform P system computations
and generate relevant information as a result for custom
applications.

• Alternatively, the pLinguaCore library is able to trans-
form the input P-Lingua files to other formats such as
XML or binary format to feed external simulators. The
generated files for the given P systems are free of syn-
tactic/semantic errors since the transformation is done
after the parser analysis. Several external simulators use
this feature, for example, the PMCGPU project (Parallel

simulators for membrane computing on GPU) [12, 25]
uses definitions generated by pLinguaCore to provide the
input of CUDA GPU simulators.

The P-Lingua language is currently a standard widely used
for the scientific community since the syntax is modular,
parametric and close to the common scientific notation. The
description of the language can be found in [6, 8, 10, 20, 24].
For example, the definition of a basic transition P system
follows:

In the example, a module main is defined including an
initial membrane structure [[[]3 []4]2]1 , an initial mul-
tiset for the membrane labeled 3, and a set of seven multiset
rewriting rules. The special symbol @d is used to specify
dissolution. The last two rules include priorities as integer
numbers in parenthesis at the beginning of the left-hand side
of the rules. More complex examples can be found in the
P-Lingua web [24].

3 An extension of P‑Lingua for semantic
features

As explained above, the analysis of semantic ingredients
belonging to P systems is hard-coded in the pLinguaCore
library, i.e., the only way to define new types of models is
by implementing code inside the library. In this section, we
propose an extension to the P-Lingua language to directly
define model constraints in their own P-Lingua files, provid-
ing a more flexible and experimental framework. Two types
of semantic constraints can be defined with this extension:
rule patterns and derivation modes.

3.1 Rule patterns

The P-Lingua parser is able to recognize rules with the next
general syntax:

where

• p is a priority related to the rule given by a natural num-
ber, where a lower number means a higher rule priority.

• q is a probability related to the rule given by a real num-
ber in [0, 1].

• �i, �i,j, 1 ≤ i ≤ n, 1 ≤ j ≤ mi and �i, �i,j, 1 ≤ i ≤ s, 1 ≤ j ≤ ri
are electrical charges.

• hi, hi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ mi and gi, gi,j, 1 ≤ i ≤ s, 1 ≤ j ≤ ri
are membrane labels.

• u, vi, vi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ mi and wi,wi,j, 1 ≤ i ≤ s, 1 ≤ j ≤ ri
are multisets of objects.

Next, there is a list of P-Lingua rule examples matching the
general rule syntax:

• a,b [d,e∗ 2]’h --> [f,g]’h : : q; where
q is the probability of the rule.

• (p) [a]’h --> [b]’h; where p is the priority of
the rule.

• [a --> b]’h;, the left-hand side and right-hand side
of evolution rules can be collapsed.

• +[a]’h --> +[b]’h -[c]’h; a division rule
using electrical charges.

• [a]’h --> ; a dissolution rule.
• a[]’h --> [b]’h; a send-in rule.
• [a]’h --> b[]’h; a send-out rule.
• [a --> #]’h; the symbol # is usually used as the

empty multiset.
• [a]’1 < --> [b]’0; a symport/antiport rule in the

tissue-like framework.

The syntax of the general rule is very permissive, and so
different parsers for different models have been developed to
restrict the rules used in each one. To provide the researcher
a more flexible framework, not having to depend on the
implementation itself but acquiring the capacity of restrict-
ing the model by himself, we introduce the next syntax in
P-Lingua for rule pattern matching:

p

u[v1[v1,1]
�1,1

h1,1
…[v1,m1

]
�1,m1
h1,m1

]
�1
h1
…[vn[vn,1]

�n,1

hn,1
…[vn,mn

]
�n,mn
hn,mn

]
�n
hn

q
⟶ or

q
⟷

w0[w1[w1,1]
�1,1
g1,1

…[w1,r1
]
�1,r1
g1,r1

]
�1
g1
…[ws[ws,1]

�s,1
gs,1

…[ws,rs
]
�s,rs
gs,rs

]
�s
gs
,

where rule-type-identifier is an unique name
for the type of rule that is going to be defined and pat-
tern1, pattern2, ..., patternN are rule patterns
following the same syntax as common rules in P-Lingua,
where anonymous variables beginning with ? can be option-
ally used instead of probabilities, charges and priorities. In
the patterns, the symbols beginning with a, b or c always
mean single objects and symbols beginning with u, v and w
always mean multisets of objects. In Sect. 6, several exam-
ples of rule patterns in P-Lingua for different types of cell-
like and tissue-like models are given.

3.2 Derivation modes

From an informal point of view, we can see a derivation
mode as the way a step of a P system is performed. Seman-
tics complement syntax in such a way that they provide the
functioning of the system. Derivation modes control the
number of rules of each type that can be executed in each
transition step. An extensive study of derivation modes can
be found in [4]. To make this work self-contained, we give
a minimal definition of a derivation mode.

A derivation mode � is defined as a function that selects
different multisets of rules “really applicable” to a configu-
ration Ct of a P system depending on a specification. For
this purpose, let Π be a P system with as its set of rules,
R a multiset of compatible rules applicable to a P system at
configuration Ct , and let � = P() be the set of all multisets
applicable to a P system at configuration Ct.

In this extension of P-Lingua, we provide two main deri-
vation modes:

• Maximally parallel derivation mode (max) It is the
default mode for P systems. In this mode, we only take
multisets from R that are not extensible, that is:

The multiset of rules finally applied to Ct is selected
non-deterministically from �′.

• Bounded-by-rule maximally parallel derivation mode
(boundB1,…,Br

) Let {a, b,…} be the set of different types
of rules present in a P system, j be the set of rules appli-
cable to the j-th compartment of the system 1 in the con-
figuration Ct , where there are m membranes, (k) be the
set of rules of the type k, being k ∈ {a, b,…} and (k)

j
 the

�
� = {R ∣ R ∈ � ∧ ∄R� ∈ � ∶ R ⫋ R�}.

set of rules of type k applicable to the j-th compartment.
Bi can be of the following forms:

• Bi = j, j ∈ {a, b,…};
• Bi = �n(B1i

,… ,Bri
) , being n ∈ ℕ , and for each

Bj = �mj
(B1j

,… ,Brj
) , j ∈ {1i,… ri} , mj ≤ n;

• As a restriction, a type of rule cannot appear more
than once in the whole definition of the derivation
mode.

We say that n is the bound of Bi = �n . We say that a
type of rule (j) is in the context of Bi if:

• There exists Bi = �n(j) (we call Bi its immediate con-
text); and

• There exists Bi = �n(B1i
,… ,Bri

) such that Bj is a
context of the type of rule (j).

This mode is defined recursively, and we can under-
stand the applicability of the rules in a defined bounded-
by-rule parallel derivation mode in the following sense:

• The total number of rules within a context
�n(B1,… ,Br) , that can be applied in parallel in a P
system in a configuration Ct is n; and

• In a bounded-by-rule parallel derivation mode
boundB1,…,Br

 , i f Bi = j(j ∈ {a, b,…}) , be ing
1 ≤ i ≤ r , then rules of type j can be applied in a
maximal parallel way.

With this mode, we can define the classical mode
used in P systems with active membranes, that is, evolu-
tion rules (a) can be applied in a maximal parallel mode,
while the other types of rules (send-in communication
rules (b), send-out communication rules (c), dissolution
rules (d), division rules for elementary (e) and non-ele-
mentary (f) membranes) can be applied at most once per
membrane at each computation step. It would be defined
as bounda,�1(b,c,d,e,f) . Then, the formal definition of the
bounded-by-rule maximally parallel mode is the follow-
ing:

Thus, a model type can be defined in P-Lingua by aggregat-
ing the allowed rule patterns and its corresponding deriva-
tion modes; the syntax is as follows:

�
� = { R ∣ R ∈ � ∧ ∀j ∈ {1,… ,m}

|{r ∣ r ∈ R, r ∈
(k)

j
, for all k in the context of Bi = �n}| ≤ n

∧ ∄R� ∈ � ∶ R ⫋ R�}

1 It is important to remark that some membrane systems have a
dynamic structure, so j does not have to match with the label of the
membrane.

where id is an unique identifier for the model and
rule-type-id1 ,...,
rule-type-idN are unique identifiers for the corre-

sponding allowed rule patterns. By default, all rules behave
in maximally parallel derivation mode, but rules can be
grouped in sets to behave in bounded parallel derivation
mode as follows:

where bound is a natural number defining the maximum
number of rules in the group that can be applied to a given
configuration. In Sect. 6, several examples of model defini-
tions in P-Lingua are given.

4 A command‑line tool for generating ad
hoc simulators

A GNU GPLv3 command-line tool called pcc has been
implemented in C++ language with Flex [27] and
Bison [28]. The source code including examples and instruc-
tions can be downloaded from https ://githu b.com/RGNC/
pling ua.

The tool provides three main functionalities:

• Parsing P-Lingua files While printing the syntactic
and semantic errors to the standard error output. In this
sense, the tool acts as a conventional compiler, showing
the name of the file, as well as the number of the line
and column for each error with a short description. The
analysis of semantic errors is done using the rule patterns
and derivation modes defined in the own P-Lingua files.
Several files can be compiled together like conventional
programs; furthermore, standard makefiles can be also
used. The developer can decide to write the rule patterns
and derivation modes in a set of files and reuse them in
several projects. More explanations can be found in the
website.

• Generating JSON files The tool is able to translate the
definitions contained in P-Lingua files to JSON for-
mat [29] for compatibility with third-party simulators.
The translation is done after parsing the input files; thus,
the JSON files are free of syntactic/semantic errors and
the third-party applications do not have to check them.
Several P-Lingua files can be combined together in one
JSON file, including also the selected derivation modes.

• Generating source code The tool can generate all the
source files for a command-line executable in C++ which
is a complete ad hoc simulator optimized for the design
given by the input files. The generated program is able to
simulate computations for the defined P system following
the specified derivation modes. It interacts with the user
by the command-line as common Linux console applica-
tions. Generic front-ends could be easily implemented
because the command-line options are common to all
the simulators. The simulations could be interrupted and
resumed, since intermediate configurations can be saved
in JSON files. Initial multisets can also be defined before
the simulation, as well as setting different halting condi-
tions, such as simulating a fixed number of computation
steps or running until the execution of a rule marked in
the P-Lingua file as halting rule.

The pcc tool performs several analyses over the input
files to optimize the memory and time that is going to be
used for the simulator. The C++ structures used to rep-
resent the membrane tree are selected depending on the
type of rules that can be used. For instance, if there are
no send-in/send-out rules, then C++ pointers to parent/
child membranes are not necessary. The generated code
can be compiled with the GNU g++ tool [30] makefiles
can also be used to automate all the process from the
P-Lingua files to the Linux executable. Instructions and
examples can be found in the web page.

5 The simulation algorithm

The compiler presented in Sect. 4 generates the source code
in C++ for an ad hoc simulator which is able to reproduce
computations for the input design written in P-Lingua. The
generated code follows the scheme shown in Fig. 1. The
simulation is provided by a sequential loop where each itera-
tion simulates one step of computation. For each iteration,
the simulator determines the multiset of rules which is going
to be applied and then, it applies it to the current configura-
tion Ct obtaining the next configuration Ct+1 . The halting
condition is checked after each iteration.

The algorithm used to select rules is described in Pseu-
docode 1. It returns a multiset B of pairs (m, r) and a con-
figuration C′

t
 . One pair (m, r) means that rule r has been

selected once to be applied over membrane m in Ct . The
configuration C′

t
 contains a copy of Ct after applying the

left-hand side of the selected rules, i.e, after removing from
Ct the multisets of objects specified by the left-hand side of
the selected rules. On the other hand, the applicability func-
tion determines the maximum number of possible applica-
tions for a rule r over a membrane m in configuration C′

t
 . It

https://github.com/RGNC/plingua
https://github.com/RGNC/plingua

considers the left-hand side, the charges in the right-hand
side, as well as the derivation mode of r. A membrane m in
C′
t
 is marked as fixed if at least one pair (m, r) is contained

in B or unfixed otherwise. A rule r cannot be selected if it
would change the electrical charge of a fixed membrane.

Finally, Algorithm 2 receives the partial configuration
C′
t
 and generates the next configuration Ct+1 by applying the

right-hand side of the selected rules.

6 Examples

6.1 Transition P systems

Fig. 1 The main simulation loop

6.2 Active membranes with division rules

6.3 Tissue‑like P systems with communication
and cell division

6.4 Population dynamics P systems

7 Conclusions and future work

This paper presents for the first time a compiler for mem-
brane computing which is able to generate C++ source code
for optimized ad hoc simulators. The input P systems are

written in P-Lingua, a common language to define mem-
brane computing designs. In this paper, we have extended
the language to include semantics ingredients, such as rule
patterns and derivation modes. The compiler can recognize
the rule patterns and show syntactic/semantic errors during
the parsing process. The generated simulators are able to
simulate computations given by the derivation modes, even
if the derivation modes are experimental. Thus, the goal of
this tool is twofold: On the one hand, it purports to be a good
assistant for researchers while verifying their designs, even
working with experimental models. On the other hand, it
provides optimized simulators for real applications, such as
robotics or simulation of biological phenomena.

Several lines are open for future work. From the point of
view of the language, the semantic ingredients that can be
written in P-Lingua should be studied to cover more types
of models; for instance, defining bounds for the multiplici-
ties of objects in different compartments, such as the envi-
ronment in tissue-like P systems, where the multiplicity of
objects can be infinite. On the other hand, custom directives
could be included in P-Lingua files and translated to C pre-
processor directives for the simulator. For example, if the
design is confluent, a directive could be written to optimize
the simulation time, since it is not necessary to simulate the
non-determinism using random numbers.

From the point of view of the generated simulators, it
would be very interesting to produce optimized code for
different parallel hardware architectures such as multi-core
processors, GPUs or FPGAs. Until now, the faster simulators
for parallel architectures are relatively ad hoc, since several
optimizations should be done by analyzing the input design.
A tool able to automatize this process for a wide variety of
input designs could approximate the membrane computing
paradigm to other disciplines where efficient solutions to
hard problems are needed. In particular, it could be applied
to anytime algorithms for robotics, such as social naviga-
tion in crowdy environments or automatic driving, where
the robot should have a fast response in real time, but the
solution could be improved using more computational time.

Acknowledgements This work is supported by the research project
TIN2017-89842-P, cofinanced by Ministerio de Economía, Industria
y Competitividad (MINECO) of Spain, through the Agencia Estatal
de Investigación (AEI), and by Fondo Europeo de Desarrollo Regional
(FEDER) of the European Union. The authors also acknowledge the
Grants No 61320106005 of the National Natural Science Foundation
of China.

References

1. Colomer, M., Margalida, A., & Pérez-Jiménez, M. J. (2013). Pop-
ulation dynamics P system (PDP) models: A standardized protocol
for describing and applying novel bio-inspired computing tools.
PLoS One, 8(14), 1–13.

2. Cardona, M., Colomer, M. A., Pérez-Jiménez, M. J., Sanuy, D.,
& Margalida, A. (2008). Modeling ecosystems using P systems:
The bearded vulture, a case study. In Membrane computing, 9th
international workshop, WMC. Edinburgh, UK, July 28–31, 2008,
Revised selected and invited papers. Lecture notes in computer
science (2009) (Vol. 5391, pp. 137–156).

3. Colomer, M., Pérez-Hurtado, I., Pérez Jiménez, M. J., & Riscos-
Núñez, A. (2012). Comparing simulation algorithms for multien-
vironment probabilistic P system over a standard virtual ecosys-
tem. Natural Computing, 11, 369–379.

4. Freund, R., & Verlan, S. (2007). A formal framework for static
(tissue) P systems. In G. Eleftherakis, P. Kefalas, G. Păun, G.
Rozenberg, & A. Salomaa (Eds.), Membrane Computing. WMC
2007. Lecture Notes in Computer Science, (Vol. 4860, pp. 271–
284). Berlin, Heidelberg: Springer. https ://doi.org/10.1007/978-
3-540-77312 -2_17.

5. Frisco, P., Gheorghe, M., & Pérez-Jiménez, M. J. (2014). Applica-
tions of membrane computing in systems and synthetic biology.
In Emergence, complexity and computation (series ISSN 2194-
7287), Vol. 7. Berlin: Springer International Publishing. eBook
ISBN 978-3-319-03191-0, Hardcover ISBN 978-3-319-03190-3.
https ://doi.org/10.1007/978-3-319-03191 -0.

6. García-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado,
I., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2010). An overview
of P-Lingua 2.0. In G. Păun, M. J. Pérez-Jiménez, A. Riscos-
Núñez, G. Rozenberg, & A. Salomaa (Eds.) Membrane Com-
puting. WMC 2009. Lecture Notes in Computer Science, (Vol.
5957, pp. 264–288). Berlin, Heidelberg: Springer. https ://doi.
org/10.1007/978-3-642-11467 -0_20

7. Ionescu, M., Păun, Gh, & Yokomori, T. (2006). Spiking neural P
systems. Fundamenta Informaticae, 71(2–3), 279–308.

8. Macías, L. F., Pérez-Hurtado, I., García-Quismondo, M., Valencia,
L., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2012). A P-Lingua
based simulator for spiking neural P systems. In M. Gheorghe, G.
Păun, G. Rozenberg, A. Salomaa, & S. Verlan (Eds.) Membrane
Computing Lecture notes in computer science, CMC 2011 (Vol.
7184, pp. 257–281). Berlin, Heidelberg: Springer. https ://doi.
org/10.1007/978-3-642-28024 -5_18.

9. Martín-Vide, C., Păun, Gh, Pazos, J., & Rodríghez-Patón, A.
(2003). Tissue P systems. Theoretical Computer Science, 296(2),
295–326.

 10. Martínez-del-Amor, M. A., Pérez-Hurtado, I., Pérez-Jiménez, M.
J., & Riscos-Núñez, A. (2010). A P-Lingua based simulator for
tissue P systems. Journal of Logic and Algebraic Programming,
79(6), 374–382. https ://doi.org/10.1016/j.jlap.2010.03.009

 11. Martínez-del-Amor, M. A., Pérez-Hurtado, I., García-Quismondo,
M., et al. (2013). DCBA: Simulating population dynamics P sys-
tems with proportional objects distribution. Lecture notes in com-
puter science, Vol. 7762, pp. 257–276.

 12. Martínez-del-Amor, M. A., García-Quismondo, M., Macías-
Ramos, L. F., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-
Jiménez, M. J. (2015). Simulating P systems on GPU devices: A
survey. Fundamenta Informaticae, 136(3), 269–284.

 13. Pan, L., Paun, Gh., Pérez-Jiménez, M. J., & Song, T. Bio-inspired
computing: Theories and applications. Communications in com-
puter and information science (series ISSN 1865-0929), Vol. 472.
Berlin: Springer. Print ISBN 978-3-662-45048-2, Online ISBN
978-3-662-45049-9, 2014. https ://doi.org/10.1007/978-3-662-
45049 -9.

 14. Pan, L., & Păun, Gh. (2009). Spiking neural P systems with anti-
matter. International Journal of Computers Communications &
Control, 4(3), 273–282.

 15. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford handbook of membrane computing. Oxford: Oxford Uni-
versity Press.

https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-319-03191-0
https://doi.org/10.1007/978-3-642-11467-0_20
https://doi.org/10.1007/978-3-642-11467-0_20
https://doi.org/10.1007/978-3-642-28024-5_18
https://doi.org/10.1007/978-3-642-28024-5_18
https://doi.org/10.1016/j.jlap.2010.03.009
https://doi.org/10.1007/978-3-662-45049-9
https://doi.org/10.1007/978-3-662-45049-9

 16. Păun, Gh. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143 and Turku Center for
CS-TUCS Report No. 208, 1998.

 17. Păun, Gh. (2002). Membrane computing. An introduction. Berlin:
Springer.

 18. Păun, Gh. (2001). P systems with active membranes: Attacking
NP-complete problems. Journal of Automata, Languages and
Combinatorics, 6, 75–90.

 19. Peng, H., Wang, J., Ming, J., Shi, P., Pérez-Jiménez, M. J., Yu,
W., & Tao, Ch. (2017). Fault diagnosis of power systems using
intuitionistic fuzzy spiking neural P systems. IEEE Transactions on
Smart Grid. https ://doi.org/10.1109/TSG.2017.26706 02(in press).

 20. Pérez-Hurtado, I., Valencia-Cabrera, L., Chacón, J. M., Riscos-
Núñez, A., & Pérez-Jiménez, M. J. (2014). A P-Lingua based
simulator for tissue P systems with cell separation. Romanian
Journal of Information Science and Technology, 17(1), 89–102.

 21. Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M. J.,
Colomer, M., & Riscos-Núñez, A. (2010). MeCoSim: A general pur-
pose software tool for simulating biological phenomena by means
of P Systems. In IEEE fifth international conference on bio-inpired
computing: Theories and applications (BIC-TA 2010), pp. 637–643.

 22. Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). A model
of the quorum sensing system in Vibrio Fischeri using P sys-
tems. Artificial Life, 14(1), 95–109. https ://doi.org/10.1162/
artl.2008.14.1.95.

 23. Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-
life applications with membrane computing. In Emergence,
complexity and computation (series ISSN 2194-7287), Vol. 25.
Berlin: Springer International Publishing. Online ISBN 978-
3-319-55989-6, Print ISBN 978-3-319-55987-2. https ://doi.
org/10.1007/978-3-319-55989 -6.

 24. The P-Lingua web page: http://www.p-lingu a.org. Accessed 15
Dec 2018.

 25. The PMCGPU web page: https ://sourc eforg e.net/proje cts/pmcgp
u/. Accessed 15 Dec 2018.

 26. The MeCoSim web page: http://www.p-lingu a.org/mecos im/.
Accessed 15 Dec 2018.

 27. The Flex web page: https ://githu b.com/weste s/flexl . Accessed 15
Dec 2018.

 28. The Bison web page: https ://www.gnu.org/softw are/bison /.
Accessed 15 Dec 2018.

 29. The JSON web page: https ://www.json.org/. Accessed 15 Dec
2018.

 30. The GNU g++ compiler: https ://gcc.gnu.org/. Accessed 15 Dec
2018.

https://doi.org/10.1109/TSG.2017.2670602
https://doi.org/10.1162/artl.2008.14.1.95
https://doi.org/10.1162/artl.2008.14.1.95
https://doi.org/10.1007/978-3-319-55989-6
https://doi.org/10.1007/978-3-319-55989-6
http://www.p-lingua.org
https://sourceforge.net/projects/pmcgpu/
https://sourceforge.net/projects/pmcgpu/
http://www.p-lingua.org/mecosim/
https://github.com/westes/flexl
https://www.gnu.org/software/bison/
https://www.json.org/
https://gcc.gnu.org/

	P-Lingua in two steps: flexibility and efficiency
	Abstract
	1 Introduction
	2 Preliminaries
	3 An extension of P-Lingua for semantic features
	3.1 Rule patterns
	3.2 Derivation modes

	4 A command-line tool for generating ad hoc simulators
	5 The simulation algorithm
	6 Examples
	6.1 Transition P systems
	6.2 Active membranes with division rules
	6.3 Tissue-like P systems with communication and cell division
	6.4 Population dynamics P systems

	7 Conclusions and future work
	Acknowledgements
	References

