
Vol:.(1234567890)

Journal of Membrane Computing (2019) 1:178–197
https://doi.org/10.1007/s41965-019-00019-w

1 3

SURVEY PAPER

P colonies

Survey

Lucie Ciencialová1 · Erzsébet Csuhaj‑Varjú2 · Luděk Cienciala1 · Petr Sosík1

Received: 23 December 2018 / Accepted: 20 July 2019 / Published online: 6 August 2019
© Springer Nature Singapore Pte Ltd. 2019

Abstract
P colonies are abstract computing devices modelling communities of very simple reactive agents living and acting in a joint
shared environment. The concept was motivated by so-called colonies, grammar systems based on interplay of very simple
agents, on one hand, and by membrane systems, massively parallel computational models inspired by cell biology, on the
other hand. Some variants of P colonies also allow the environment to participate actively in the system’s evolution. In this
paper we summarize the most important results on P colonies, present open problems concerning these constructs, and sug-
gest new research directions in their study.

Keywords  P colony · Membrane systems · PCol automata · 2D P colonies

1  Introduction

In contemporary computer science, there has been a grow-
ing demand for reliable and efficient computing devices
to describe the behaviour of communities of dynamically
changing agents which are in interaction with their shared
environment. Multi-agent systems with very simple reac-
tive agents are of special interest, in particular with respect
to their emerging behaviour and the limits of their power.

P colonies, introduced in [44], were motivated by these
problems. They are variants of very simple tissue-like P sys-
tems, where the agents (the cells) have only one region and
they interact with their shared environment using programs

(collections of rules of special form). P systems (or mem-
brane systems), introduced in [51], are a family of comput-
ing devices inspired by biology and biochemistry of cells.
Colonies of simple formal grammars, also motivating P
colonies, were introduced in [42].

During the years, P colonies have been studied in detail;
a summary of results can be found in [45].

Although several variants of P colonies have been devel-
oped, all of them have some common basic features. Inside
each agent (each cell) there is a finite multiset of objects.
These objects are processed by a finite set of programs
associated to the agent. The number of objects inside each
agent is constant (does not change) during the functioning
of the agent community and it is called the capacity of the
P colony. The agents share an environment which is repre-
sented by a multiset of objects. One type of these objects,
called the environmental object, is distinguished, and it is
supposed to be in a countably infinite number of copies in
the environment. (In the literature, the reader may also find
that the environmental symbol appears in an arbitrarily large
number of copies in the environment).

Using their programs, the agents can change the objects
present at their disposal and can exchange some of their
objects with objects present in the environment. These syn-
chronized actions correspond to a configuration change (a
transition) of the P colony; a finite sequence of consecutive
configuration changes starting from the initial configuration

 *	 Lucie Ciencialová
	 lucie.ciencialova@fpf.slu.cz

	 Erzsébet Csuhaj‑Varjú
	 csuhaj@inf.elte.hu

	 Luděk Cienciala
	 ludek.cienciala@fpf.slu.cz

	 Petr Sosík
	 petr.sosik@fpf.slu.cz

1	 Institute of Computer Science and Research Institute
of the IT4Innovations Centre of Excellence, Silesian
University in Opava, Opava, Czech Republic

2	 Department of Algorithms and Their Applications, Faculty
of Informatics, Eötvös Loránd University, Budapest, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00019-w&domain=pdf

179P colonies﻿	

1 3

is a computation. The result of the computation is the num-
ber of copies of a distinguished object, called the final
object, present in the environment in a final configuration
of the P colony.

It can easily be seen that the environment is both a com-
munication channel for the agents and a storage for the
objects. It plays strategic role in synchronizing the work of
the agents during the computation.

One major research topic in the theory of P colonies is the
study of their computational power related to their descrip-
tional complexity. These investigations focus on the question
of identifying how many components are necessary and to
what extent the programs can be simplified to obtain a cer-
tain computational power. In addition to these problems, the
working modes of P colonies have obtained attention as well,
whether or not parallelism in the joint work of the agents
plays significant role in increasing the expressive power of
P colonies.

The rules of P colonies demonstrate strong similarities
with instructions or rules of some well-known computing
devices (register machines, rewriting systems based on point
mutations, other variants of membrane systems), thus com-
parisons of these constructs with other classical and non-
classical computing devices are also of interest.

P colonies, due to their original motivation, model multi-
agent systems (complex systems) acting in an environment.
According to the basic definitions, the objects present in the
environment have significant role in the change of the states
of the agents. Therefore, one of the research directions in
the theory is devoted to studying the role of the dynamics of
the environment in the behaviour of P colonies, i.e., the case
when the objects in the environment are provided step-by-
step not only by the actions of the agents but by some special
object provider device.

Due to their simplicity and distributed nature, P colonies
are convenient tools for modelling complex systems as robot
collections, sender and consumer systems, eco-systems. We
expect several new areas of applications in the future.

This paper is an extended and revised version of survey
[11].

2 � Notations

We assume that the reader is familiar with formal language
and automata theory, computability, and the basics of mem-
brane computing [50, 54].

Throughout the paper we use the following notions and
notations. Let � be the alphabet and let �∗ be the set of all
words over � (including the empty word � ). The length of
a word w ∈ �∗ is denoted by |w| and the number of occur-
rences of the symbol a ∈ � in w by |w|a.

A multiset of objects M is a pair M = (V , f) , where V
is an arbitrary (not necessarily finite) set of objects and f
is a mapping f ∶ V → N ; f assigns to each object in V its
multiplicity in M. Each multiset of objects M with the set
of objects V � = {a1,… , an} can be represented as a string w
over alphabet V ′ , where |w|ai = f (ai); 1 ≤ i ≤ n . Obviously,
all words obtained from w by permuting the letters repre-
sent the same multiset M. Symbol � represents the empty
multiset. The set of all multisets with the set of objects V
is denoted by V∗ . The cardinality of M, denoted by |M|, is
defined by �M� = ∑

a∈V f (a).
The set of all non-negative integers is denoted by N. We

use REG, CF and RE as notations for the families of regu-
lar, context-free and recursively enumerable languages. The
family of languages accepted by matrix grammars without
appearance checking and with erasing rules is denoted by
MAT� and the family of languages generated by interaction-
less L systems is denoted by 0L. NRE denotes the family of
recursively enumerable set of non-negative integers.

Definition 1  [48] A register machine is a construct
M = (m,H, l0, lh,P) where:

•	 m is the number of registers,
•	 H is the set of instruction labels,
•	 l0 is the start label,
•	 lh is the final label,
•	 P is a finite set of instructions injectively labelled with

the elements from the set H.

The instructions of the register machine are of the fol-
lowing forms:

l1 ∶ (ADD(r), l2, l3)	� Add 1 to the content of the regis-
ter r and proceed to the instruction
(labelled with) l2 or l3.

l1 ∶ (SUB(r), l2, l3)	� If the register r stores a value differ-
ent from zero, then subtract 1 from its
content and go to instruction l2 , oth-
erwise proceed to instruction l3.

lh ∶ HALT	� Halt the machine. The final label lh is
only assigned to this instruction.

Without loss of generality, one can assume that in each
ADD-instruction l1 ∶ (ADD(r), l2, l3) and in each SUB
-instruction l1 ∶ (SUB(r), l2, l3) the labels l1, l2, l3 are mutu-
ally distinct.

The register machine M computes a set N(M) of num-
bers in the following way: it starts with all registers empty
(hence storing the number zero) with the instruction labelled
l0 and it proceeds to apply the instructions as indicated by
the labels (and made possible by the contents of registers). If
it reaches the halt instruction, then the number stored at that

180	 L. Ciencialová et al.

1 3

time in the register 1 is said to be computed by M and hence
it is introduced in N(M). It is known (see e.g. [48]) that in
this way we compute all Turing computable sets of numbers.

The register machine is called partially blind if the SUB
-instruction is executed as follows: if register r stores a non-
zero value then this value is decreased by one and the next
instruction will be l2 or l3 , otherwise the computation aborts.
When the partially blind register machine enters the final
state, the result obtained in the first register is only taken
into account if the remaining registers store value zero. The
family of sets of non-negative integers generated by partially
blind register machines is denoted by NRMpb . The partially
blind register machines accept a proper subfamily of NRE.

3 � The basic models of P colonies

In this section we provide the generic version of a P colony
and some of its important variants.

3.1 � P colonies with rewriting and communication
rules

The original concept of a P colony was introduced in [44]
and presented in a developed form in [31, 43].

Definition 2  A P colony of capacity k, k ≥ 1 , is a construct
� = (A, e, f , vE,B1,… ,Bn) , where

•	 A is an alphabet, its elements are called objects;
•	 e ∈ A is the basic (or environmental) object of the colony;
•	 f ∈ A is the final object of the colony;
•	 vE is a finite multiset over A − {e} , called the initial state

(or initial content) of the environment;
•	 Bi, 1 ≤ i ≤ n , are agents, where each agent Bi =

(
oi,Pi

)

is defined as follows:

•	 oi is a multiset over A consisting of k objects, the
initial state (or the initial content) of the agent;

•	 Pi =
{
pi,1,… , pi,ki

}
 is a finite set of programs, where

each program consists of k rules, which are in one of
the following forms each:

•	 a → b , a, b ∈ A , called an evolution rule;
•	 c ↔ d , c, d ∈ A , called a communication rule;
•	 r1∕r2 , called a checking rule; r1, r2 are both evolu-

tion rules or both communication rules.

We add some brief explanations to the components of
the P colony.

We first note that throughout the paper, we use term
“object a inside agent B” and term “ a ∈ w , where w is the
state of agent B” as equivalent.

The first type of rules associated to the programs of the
agents, the evolution rules, are of the form a → b . This
means that object a inside the agent is rewritten to (evolved
to be) object b.

The second type of rules, the communication rules, are
of the form c ↔ d . If a communication rule is performed,
then object c inside the agent and object d in the envi-
ronment swap their location. Thus, after executing the rule,
object d appears inside the agent and object c is located in
the environment.

The third type of rules are the checking rules. A check-
ing rule is formed from two rules of one of the two previous
types. If a checking rule r1∕r2 is performed, then the rule
r1 has higher priority to be executed over the rule r2 . This
means that the agent checks whether or not rule r1 is applica-
ble. If the rule can be executed, then the agent must use this
rule. If rule r1 cannot be applied, then the agent uses rule r2.

We note that these types of rules are the basic ones; in
some variants of P colonies other types of rules have been
also considered. We will discuss them in later sections.

The program determines the activity of the agent: the
agent can change its state and/or the state of the environment.

The environment is represented by a finite number (zero
included) of copies of non-environmental objects and a
countably infinite copies of the environmental object e.

When an agent executes a program, then each object
inside the agent is affected. Depending on the rules in the
program, the program execution may affect the environment
as well. This interaction between the agents and the environ-
ment is the key factor of the functioning of the P colony.

The functioning of the P colony starts from its initial con-
figuration (initial state).

The initial configuration of a P colony is an (n + 1)-
tuple of multisets of objects present in the P colony at the
beginning of the computation. It is given by the multisets
oi for 1 ≤ i ≤ n and by multiset vE . Formally, the configura-
tion of the P colony � is given by (w1,… ,wn,wE) , where
|wi| = k, 1 ≤ i ≤ n , wi represents all the objects present
inside the ith agent, and wE ∈ (A − {e})∗ represents all the
objects in the environment different from the object e.

At each step of the computation (at each transition), the
state of the environment and that of the agents changes in
the following manner: in the maximally parallel deriva-
tion mode, each agent which can use any of its programs
should use one (non-deterministically chosen), whereas in
the sequential derivation mode, only one agent at a time is
allowed to use one of its programs (non-deterministically
chosen). If the number of applicable programs for an agent
is higher than one, then the agent non-deterministically
chooses one of the programs.

A sequence of transitions is called a computation. A
computation is said to be halting, if a configuration is
obtained where no program can be applied anymore. With

181P colonies﻿	

1 3

a halting computation, we associate a result which is given
as the number of copies of the objects f present in the
environment in the halting configuration.

Because of the non-determinism in choosing the pro-
grams, starting from the initial configuration we obtain
several computations, hence, with a P colony we can asso-
ciate a set of numbers, denoted by N(�) , computed by all
possible halting computations of given P colony.

In the original model (see [44]) the number of objects
inside each agent is set to two, and the programs were
formed from only two rules. Moreover, the initial con-
figuration was defined as (n + 1)-tuple (ee,… , ee, �) so at
the beginning of the computation the environment of the
P colony is “empty”, it is without an input information.

The number of agents in a given P colony is called
the degree of �  ; the maximal number of programs of
an agent of � is called the height of � and the num-
ber of the objects inside an agent is the capacity of �  .
The family of all sets of numbers N(�) computed as
above by P colonies of capacity at most c ≥ 0 , degree at
most n ≥ 0 and height at most h ≥ 0 , using checking pro-
grams, and working in the sequential mode is denoted by
NPCOLseqK(c, n, h) ; whereas the corresponding families
of P colonies working in the maximally parallel way are
denoted by NPCOLparK(c, n, h) . If one of the parameters
n or h is not bounded, then we replace it with ∗ . If only P
colonies using programs without checking rules are con-
sidered, then we omit the K.

Although P colonies are very simple computing devices,
due to their (mainly parallel) working mode and distrib-
uted nature they demonstrate large expressive (computa-
tional) power. In most cases, computational completeness
can be obtained with these constructs even with very few
components and very few restrictions on the programs. In
this section, we briefly summarize some important results
concerning their expressive power. Most of the statements
are based on simulations of register machines, thus pro-
viding further knowledge on the nature of these classical
computing devices as well.

To demonstrate a connection between P colonies and
register machines, we add an example how the ADD-
instruction of a register machine can be simulated by a
P colony.

Example 1  Let � = (A, e, f , vE,B) be the P colony with
capacity two and let the current content of the agent be
l1e . Let M = (m,H, l0, lh,P) be a non-deterministic reg-
ister machine with m registers. The ADD-instruction
l1 = (ADD(r), l2, l3) of M can be simulated by the following
programs associated with the agent:

At the beginning, objects l1 and e are placed inside the agent.
The content of register r is encoded to the number of objects
ar placed in the environment. The computation is done in
such a way that the agent rewrites its content to l′

1
ar using

the first program (there are two rewriting rules in it). In the
second step the agent rewrites l′

1
 to object corresponding to

the label of the next instruction l2 (or l3 ) to be executed and
it puts object ar into the environment.

3.1.1 � Restricted P colonies

By [44], P colonies of capacity two are computationally
complete. Furthermore, their programs have special forms:
one of the rules is an evolution rule and the other one is
either a communication rule or a checking rule with two
communication rules.

These variants of P colonies are called restricted P
colonies.

The family of all sets of numbers computed by restricted
P colonies without checking rules and with parameters
c, n, h and working modes par and seq, see above, is
denoted by NPCOLparR(c, n, h) or NPCOLseqR(c, n, h) ,
respectively. If the restricted P colonies are with checking
rules, then we add K in front of R.

Let us have one more example.

Example 2  Let � = (A, e, f , vE,B) be the P colony with
capacity two and let the current contents of the agent be
l1e . Let M = (m,H, l0, lh,P) be a non-deterministic reg-
ister machine with m registers. The ADD-instruction
l1 = (ADD(r), l2, l3) can be simulated by the following pro-
grams associated with the agent:

At the beginning, objects l1 and e are inside the agent. The
content of register r is encoded to the number of objects ar
placed in the environment. The computation is done in such
a way that at one computational step the agent must rewrite
one of the objects inside it and should exchange the other
one with an object from the environment. At the first step

P ∶

1 ∶
⟨
l1 → l�

1
;e → ar

⟩
;

2 ∶
⟨
l�
1
→ l2;ar ↔ e

⟩
;

3 ∶
⟨
l�
1
→ l3;ar ↔ e

⟩
.

P ∶

1 ∶ ⟨e → ar;l1 ↔ e⟩; 3 ∶ ⟨l1 → l2;d ↔ e⟩;
2 ∶ ⟨e → d;ar ↔ l1⟩; 4 ∶ ⟨l1 → l3;d ↔ e⟩.

182	 L. Ciencialová et al.

1 3

the agent rewrites e to object ar and sends object l1 into the
environment. In the second step it rewrites e to auxiliary
object d and exchanges object ar and l1 from the environ-
ment. At the last step the agent rewrites object l1 to the object
corresponding to the label of the next instruction l2 (or l3 ) to
be executed and it puts object d into the environment.

For restricted P colonies, using the maximally parallel
working mode, the following results hold:

•	 NPCOLparKR(2, ∗, 5) = NRE in [31, 44],
•	 NPCOLparR(2, ∗, 5) = NRE in [35],
•	 NPCOLparK(2, ∗, 4) = NRE in [31],
•	 NPCOLparKR(2, 1, ∗) = NRE in [35],
•	 NPCOLparR(2, 2, ∗) = NRE in [16].

The reader can easily see that the family of sets of natural
numbers computed by restricted P colonies with or without
the use of checking rules having at most five programs asso-
ciated with agent equals to NRE. If we remove the restriction
on the type of rules in the programs, P colonies need only
at most four programs associated with every agent to obtain
computational completeness. The difference in the last two
results demonstrates the power of checking rules and the
power of synchronized cooperation. To generate NRE, the
restricted P colonies need only one agent if the agent can
use checking rules and two agents if they are not equipped
with checking rules.

The maximally parallel application of rules does not nec-
essarily add power, as the following results demonstrate:

•	 NPCOLseqKR(2, ∗, 5) = NRE in [35],
•	 NPCOLseqKR(2, 1, ∗) = NRE in [35],
•	 NPCOLseqK(3, ∗, 6) = NRE in [31, 43].

However, if only restricted P colonies with the sequential
working modes are considered, the maximal computation
power to be obtained is equal to the recognition power of
blind counter machines, thus significantly reduced, irre-
spectively from the number of programs and agents in the
P colony.

Notice that the property “restricted” demonstrates strong
similarity to some normal forms of variants of regulated
grammars, where some of the production is used for pro-
gramming the action and some other production is respon-
sible for its execution. Using some well-organized synchro-
nizing mechanisms, simulation of standard P colonies with
restricted ones can be demonstrated, thus, we may consider
restricted P colonies as “normal forms” for the family of P
colonies.

We note that the idea of restriction can be extended, with
prescribing the ratio of evolution and communication rules
in the programs of capacity k, k ≥ 2.

3.1.2 � Homogeneous P colonies

If each program in the P colony consists of rules of the same
type, then we can call the P colony homogeneous. For a
P colony with capacity two, this means that the program
is formed from two evolution rules, or two communication
rules, or two checking rules of the same type.

Indicating by symbol H that homogeneous P colonies are
considered, the following results were obtained:

•	 NPCOLparKH(2, ∗, 4) = NRE in [17],
•	 NPCOLparKH(2, 1, ∗) = NRE in [17].

As for the previous variants, we provide an example.

Example 3  Let � = (A, e, f , vE,B) be the P colony with
capacity two and let the current content of the agent be
l1e . Let M = (m,H, l0, lh,P) be a non-deterministic reg-
ister machine with m registers. The ADD-instruction
l1 = (ADD(r), l2, l3) can be simulated by the following pro-
grams associated with the agent:

At the beginning, objects l1 and e are placed inside the
agent. The content of register r is encoded to the number
of objects ar placed in the environment. The computation
is done in such a way that the agent at one computational
step must rewrite all object inside it or must exchange all of
its objects with objects from the environment. At the first
step, the agent rewrites multiset l1e to multiset l′

1
ar . In the

second step, it sends both objects of multiset l′
1
ar into the

environment. At the third step, it consumes objects of mul-
tiset l′

1
e and at the last step the agent rewrites object l1 to the

object corresponding to the label of the next instruction to
be executed, namely, l2 (or l3).

The results that have been recalled so far concern mainly
P colonies with agents of capacity at least two. It is a chal-
lenging question, whether the work of agents with capacity
one, i.e., with agents having only one object inside can be
organized in such way that they obtain the same power as
P colonies in the general sense. Notice that in this case the
objects play more important role in the synchronization of
the work of the agents. The following results give positive
answer to this question.

•	 NPCOLparK(1, ∗, 5) = NRE in [18],
•	 NPCOLparKH(1, ∗, 6) = NRE in [17],

P ∶

1 ∶
⟨
l1 → l�

1
;e → ar

⟩
; 4 ∶

⟨
l�
1
→ l2;e → e

⟩
;

2 ∶
⟨
l�
1
↔ e;ar ↔ e

⟩
; 5 ∶

⟨
l�
1
→ l3;e → e

⟩
.

3 ∶
⟨
e ↔ l�

1
;e ↔ e

⟩
;

183P colonies﻿	

1 3

•	 NPCOLparK(1, 4, ∗) = NRE in [16],
•	 NPCOLpar(1, 6, ∗) = NRE in [23].

Finally, we provide two more interesting results dealing with
P colonies with capacity three [8, 31].

•	 NPCOLparK(3, ∗, 3) = NRE in [31],
•	 NPCOLparH(3, 2, ∗) = NRE in [8].

In Table 1 the reader can find a summarized list of results
concerning the computational complete variants of P
colonies.

3.2 � P colonies with senders and consumers

In [23] new types of programs for P colonies with two
objects inside each agent were introduced. The first of them

is a deletion program—⟨ain; bc → d⟩; using this program an
agent consumes one object (a) from the environment and
transforms the two objects (b, c) inside the agent into a new
one (d). The second type is an insertion program in the form
⟨aout; b → cd⟩ . By executing this program, the agent sends
to the environment one object (a) and generates two new
objects (c, d) from the other object (b). The concept resem-
bles to the provider/customer architecture.

Example 4  [23] (a) A P colony with one sender cell can
generate the Parikh set of a regular language L ⊆ T∗ . Let
G = (N, T ,P, S) be a regular grammar such that L(G) = L.

For generating the Parikh vectors of the words
in L , we use, for each S → aB of P , the pro-
g r a m s ⟨e, out; e → eS⟩, ⟨e, out; S → aB⟩ a n d t h e n
⟨x, out;A → aB⟩, x ∈ T fo r eve r y A → aB i n P .
Finally, for every rule of the form A → a we need
⟨x, out;A → aF⟩, x ∈ T , ⟨a, out;F → FF⟩, where F ∉ T ∪ N.

Table 1   Computational
complete classes of P colonies

No. Mode of comp. Capacity Degree Height Checking rules/restricted programs/
homogeneous programs

Results with one * parameter
1. par 1 * 5 K in [18]
2. par 1 * 6 K H in [17]
3. par 1 4 * K in [16]
4. par 1 6 * in [23]
5. par 2 * 8 in [31]
6. par 2 * 5 K R in [31, 44]
7. seq 2 * 5 K R in [35]
8. par 2 * 5 R in [35]
9. par 2 * 4 K in [31]
10. par 2 * 4 K H in [17]
11. seq 2 * 4 K in [43]
12. seq/par 2 1 * K R in [31, 35]
13. par 2 2 * R in [16]
14. seq/par 2 1 * K H in [17]
15. seq/par 3 * 3 K in [31, 43]
16. par 3 2 * H in [8]
Results with all parameters bounded
17. par 1 3 325 K H in [9]
18. par 2 23 5 K R in [32]
19. par 2 22 6 K R in [32]
20. par 2 22 5 K in [32]
21. par 2 92 3 H in [9]
22. par 2 70 5 H in [9]
23. seq/par 2 1 74 K R in [9]
24. seq/par 2 1 66 K in [9]
25. par 2 2 163 H in [9]
26. par 2 35 8 in [32]
27. par 2 57 8 R in [32]
28. par 3 35 7 in [32]

184	 L. Ciencialová et al.

1 3

(b) A P colony with one consumer cell can “consume”
the Parikh set of a regular language L. To see this, let
M = (Q,T , �, q0,F) be a deterministic finite automaton such
that L(M) = L.

We need the program ⟨e, in; ee → q0⟩, and to
every transition �(qi, a) = qj in M , we introduce
⟨a, in; xqi → qj⟩, x ∈ T ∪ {e}. If qj ∈ F in �(qi, a) = qj we
have to add the programs ⟨a, in; xqi → E⟩, x ∈ T , where
E ∉ Q ∪ T .

In [8] the authors showed that P colonies with one sender
and one consumer and some initial content in the environ-
ment are computationally complete. In [23] the authors
proved that P colonies with senders and consumers with
three agents and with only environmental objects in the ini-
tial configuration can generate every recursively enumerable
set of natural numbers.

•	 NPCOLsc(3, ∗) = NRE in [23].
•	 NPCOLsc(2, ∗, ini) = NRE in [8, 24].

3.3 � P colonies with evolving environment
and generalized P colonies

The environment is static in the basic model, it can be
changed only by the activity of the agents. Eco-P colonies
were constructed as a natural extension of P colonies with
dynamically evolving environment, the evolution does
not depend only on the activity of agents. The mechanism
of evolution in the environment is based on an 0L scheme.
An 0L scheme is a pair (�,P) , where � is the alphabet of 0L
scheme and P is the set of context-free rules. It fulfils the
following condition: for all a ∈ � there exists � ∈ �∗ such
that (a → �) ∈ P . For w1,w2 ∈ �∗ we write w1 ⇒ w2 if
w1 = a1a2 … an,w2 = �1�2 … �n , for ai → �i ∈ P, 1 ≤ i ≤ n.

Definition 3  A generalized P colony with capacity k ≥ 1 is
a construct

•	 A is the alphabet of the generalized P colony, its elements
are called objects,

•	 e is the basic (environmental) object of the generalized P
colony, e ∈ A,

•	 f is the final object of the generalized P colony, f ∈ A,
•	 vE is the initial content of the environment,

vE ∈ (A − {e})∗,
•	 DE is an 0L scheme (A,PE) , where PE is the set of con-

text-free rules,

� = (A, e, f , vE,DE,B1,… ,Bn), where

•	 Bi, 1 ≤ i ≤ n , are the agents, every agent is a construct
Bi =

(
oi,Pi

)
 , where oi is a multiset over A, it defines

the initial state (content) of agent Bi and |oi| = k and
Pi =

{
pi,1,… , pi,ki

}
 is the finite set of programs of three

types ( a, b, c, d ∈ A):

1.	 generating program with generating rules a → bc
and transporting rules d out - the number of gener-
ating rules is the same as the number of transporting
rules.

2.	 consuming program with consuming rules ab → c
and transporting rules d in - the number of consum-
ing rules is the same as the number of transporting
rules.

3.	 rewriting/communication program which can con-
tain three types of rules:

⋄ a → b , called a rewriting rule,
⋄ c ↔ d , called a communication rule,
⋄ r1∕r2 , called a checking rule; each of r1, r2 is a
rewriting or a communication rule.

Every agent has only one type of programs. The agent
with generating programs is called sender and the agent
with consuming programs is called consumer. The capac-
ity of a P colony with senders and consumers must be an
even number.

The initial configuration of a P colony is the (n + 1)-tuple
(o1,… , on, vE), with the same interpretation of the symbols
o1,… , on, vE as in Definition 3. In general, the configuration
of the P colony � is defined as (n + 1)-tuple (w1,… ,wn,wE) ,
where wi represents the multiset of objects inside the i-th
agent, |wi| = k, 1 ≤ i ≤ n , and wE ∈ (A − {e})∗ is the mul-
tiset of objects different from e placed in the environment.

By applying programs, the generalized P colony passes
from one configuration to some other configuration.
Objects in the environment unaffected by any program in
the given step are rewritten by the 0L scheme DE. (Notice
that in this case the 0L scheme is considered as a multiset
rewriting mechanism). At each step, every agent tries to
find one of its programs to apply. If the number of applica-
ble programs is higher than one, then the agent non-deter-
ministically chooses one program. At each step of, the set
of active agents executing a program must be maximal,
i.e., no further agent can be added to it.

A sequence of consecutive configurations starting
from the initial configuration is called a computation. A
configuration is halting if the P colony has no applicable
program. Each halting computation has an associated a
result – the number of copies of the final object placed in
the environment in a halting configuration.

N(�) = {||wE
||f ∣

(
o1,… , on, vE

)
⇒∗

(
w1,… ,wn,wE

)
},

185P colonies﻿	

1 3

where
(
o1,… , on, vE

)
 is the initial configuration, (

w1,… ,wn,wE

)
 is the final configuration, and ⇒∗ denotes

reflexive and transitive closure of ⇒.
Let NEPCOL(i, j, h, u, v,w) be the family of the sets of

numbers computed by generalized P colonies with at most
j ≥ 1 agents with i ≥ 1 objects inside the agent and with at
most h ≥ 1 programs associated with each agent such that:

u = check	� if the P colony uses rewriting/communica-
tion rules with checking rules

u = no-check	� if the P colony uses rewriting/communica-
tion rules without checking rules

u = s/c/sc	� if the P colony contains only sender / only
consumer / both sender and consumer
agents

v = pas	� if the rules of 0L scheme are of type a → a
only,

v = act	� if the set of rules of 0L scheme disposes of
at least one rule of another type than a → a,

w = ini	� if the environment or agents contain ini-
tially objects different from e, otherwise w
is omitted,

If a numerical parameter is not bounded, we use nota-
tion ∗.

Example 5  Let M = (m,H, l0, lh,P) be a non-deterministic
register machine with m registers. The ADD-instruction
l1 = (ADD(r), l2, l3) will be simulated by the following rules:

The computation is done in such a way that the 0L scheme
works in the environment, it adds one to the contents of
register r (generates one copy of object ar - the rule number
1) and generates objects l2 and l3 , labels of all instructions
which will be possibly executed in the next steps of compu-
tation of the register machine M (the rule 2). In the next step,
consumer agent B takes one of these objects inside the agent
- the rule 5 or 6. Then, instruction l2 or l3 will be simulated.

Generalized P colonies with two agents (senders and
consumers) with passive environment (0L scheme contains
the rules of type a → a only) are computationally complete.
If the environment is active, then the family of generalized

ENV ∶

1 ∶ l1i → arl
�
1
D;

2 ∶ l�
1
→ l2l3D;

3 ∶ l2 → l2D;

4 ∶ l3 → l3D.

B ∶

5 ∶
⟨
Pe → P;l2 in

⟩
;

6 ∶
⟨
Pe → P;l3 in

⟩
;

7 ∶
⟨
Pl2 → P;e in

⟩
;

8 ∶
⟨
Pl3 → P;e in

⟩
.

P colonies is computationally complete if the systems have
two consumers and the initial contents of their environment
is different from e.

•	 NEPCOL(2, 2, ∗, sc,pas,ini) = NRE in [24],
•	 NEPCOL(2, 2, ∗, c,act,ini) = NRE in [7],
•	 NRMpb ⊆ NEPCOL(2, 1, ∗, c,act,ini) in [25],
•	 NEPCOL(1, 2, ∗, no-check , act,ini) = NRE in [25],
•	 NRMpb ⊆ NEPCOL(1, 1, ∗, check, act,ini) in [25].

3.4 � Relation of P colonies and other P systems

Generalized P colonies have been related to other variants of
P systems. We briefly summarize their main features, with
only the necessary details.

Catalytic P systems are an important type of symbol-
object P systems (already considered in the original defini-
tion of a membrane system, due to the relevance of chemi-
cal catalysts, see [50], chapter 4). In these systems a set of
objects is distinguished, called catalysts, that do not change
during the functioning of the P system, but their presence
is necessary to perform some of the rules. If each rule has
occurrence of at least one catalyst, then we speak of purely
catalytic P systems, and in case of multi-stable catalytic P
systems catalysts are allowed to change only to some other,
distinguished catalysts. A catalytic P system is extended
if the catalytic objects are not counted to the result of a
computation.

In [25] it was shown that for an arbitrary extended cata-
lytic P system with one catalyst there exists a generalized
P colony with checking rules and one agent containing one
object such that the two constructs determine the same set of
numbers. In [34], P colonies and P systems with multi-stable
catalysts are compared to each other. It is shown that, using
a general framework of P systems [33], both models have
identical representation, and therefore both models can be
related using a bi-simulation.

P colonies have also been interpreted in terms of kernel
P systems [28]. Kernel P systems are a framework integrat-
ing the most commonly used features of membrane systems
(compartments, dynamically changing structure, rules with
application conditions, execution strategies, etc.) The con-
cept has obtained recently much interest, due to its broad
scope of applicability. In [28] connections among several
classes of P colonies and kernel have been demonstrated,
and P colonies have been represented as kernel P systems. In
particular, the famous producer/consumer problem has also
been approached, namely its representation using P colony
with components having sender programs and/or consumer
programs and with kP systems has been presented.

186	 L. Ciencialová et al.

1 3

3.5 � Logical representation of P colonies

In [12] the authors introduce an approach how to express
computation in P colonies in terms of propositional logic.
To represent if object is present in P colony we use value
1 (or 0 if it is not present). Let a be an object in P colony,
a ∈ O and there are three copies of such object placed in the
environment. We construct a stack called “a” and put value
0 into the bottom of stack. For every copy of object a in the
environment we push one copy of 1 to the stack. The pres-
ence of object a can be expressed as literal a interpreted as
TRUE, otherwise it is FALSE.

a 1 1 1 0

An agent of capacity k is represented by an array of |O|
stacks. The sum of 1s in all stacks is k. For example agent A1
with capacity 3 working with alphabet O = {e, a, b} and with
objects bba inside the agent has following representation:

A1 : a 1 0

b 1 1 0

e 0

The presence of object a inside the agent Ai can be
expressed as as an interpretation of literal Ai[a].

A rewriting rule a → b is applicable if there is an object
a inside the agent Ai . It means that the rule is applicable if
literal Ai[a] is true. The communication rule a ↔ b is appli-
cable if there is an object a inside the agent and object b
in the environment. In the terms of logic we can write the
condition as A1[a] ∧ b . If b = e we omit b in condition (there
is always some copy of e in the environment). A condition
of application of rewriting or communication rule is called
elementary condition of application. Let r1∕r2 be a checking
rule, where r1, r2 are rewriting or communication rules with
conditions of application c1, c2 then we can express condi-
tion of application for the checking rule as c1 ∨ c2.

The condition of applicability of the program pi,l of i-th
agent is ci,l ∶ c1 ∧ c2 ∧⋯ ∧ ck, where cx is the condition of
application of the x-th rule in the program. A condition is in
the form: Ai[a] (rewriting rule), Ai[a] ∧ b (communication
rule), cx1 ∨ cx2 (checking rule).

If the program contains a checking rule, we can write
the condition ci,l in the disjunctive normal form (DNF)
ci,l ∶ (c1 ∧ c2 ∧⋯ ∧ cj1 ∧ cj+1 ∧⋯ ∧ ck) ∨ (c1 ∧ c2 ∧⋯ ∧ cj2
∧cj+1 ∧⋯ ∧ ck).

Furthermore, consider a k-tuple of elementary rules cor-
responding to a conjunction. Generally, j rules ( 1 ≤ j ≤ k )

may depend on the presence of the same object a inside
the agent, hence the program is applicable only if the agent
contains at least j objects a. Therefore, we introduce a literal
Ai[a][j], 1 ≤ j ≤ k, which is TRUE when the j-th position in
the stack “a” of the agent Ai exists and contains 1. Similarly,
b[j] is the literal which is TRUE when the j-th position in
stack “b” is 1, i.e., when the environment contains at least j
objects b. Therefore, in each conjunction in the final DNF of
the condition ci,l, literals Ai[a] must be substituted/indexed
for Ai[a][j], where j is the order of occurrence of Ai[a] in the
conjunction. Similarly, each literal b is substituted for b[j].

Since DNF is represented as a string, we can order the
conjunctions in DNF due to decreasing priority among rules.
The first will be the conjunction with elementary conditions
for the first rule in checking programs, then we can take
conjunctions with one second rule from checking rules in
random order followed by conjunctions with three second
rules from checking order etc.

Clearly, the logical condition whether an agent Ai can be
active (i.e., apply some of its programs) can be expressed as
a disjunction of conditions for all programs of that agent:
ci = ci,1 ∨ ci,2 ∨⋯ ∨ ci,ki , where ki is the number of programs
of the agent Ai.

Given a P colony � , the condition whether � can per-
form a computational step can be expressed in a disjunctive
normal form with

∑n

i=1

∑ki
j=1

2di,j conjunctions, where di,j is
the number of checking rules in the program pi,j.

The process of logical representation of one computa-
tional step of the P colony under maximally parallel mode
is demonstrated on the following example ([12]).

Let � = (O, e, f ,VE,A1) be a P colony with capacity two
and one agent and with O = {a, b, c, d, e, f } , � , A1 = (ee,
{⟨a ↔ c∕c ↔ d; c ↔ f∕a ↔ e⟩; ⟨a → b; e ↔ b⟩}).

Let us construct a condition of application of the program
⟨a → b; e ↔ b⟩ : It is formed from one rewriting and one
communication rule.

The condition of application of the program after the sub-
stitution (indexing) of literals is A1[a][1] ∧ A1[e][1] ∧ b[1].

The condition of application of the program
⟨a ↔ c∕c ↔ d; c ↔ f∕a ↔ e⟩ is formed from two checking
rules, each formed from two communication rules.

Rule Elementary condition of application

a → b A1[a]

e ↔ b A1[e] ∧ b

Rule Elementary condition of application

a ↔ c c11 ∶ A1[a] ∧ c

c ↔ d c12 ∶ A1[c] ∧ d

c ↔ f c21 ∶ A1[c] ∧ f

a ↔ e c22 ∶ A1[a]

a ↔ c∕c ↔ d (A1[a] ∧ c) ∨ (A1[c] ∧ d)

c ↔ f∕a ↔ e (A1[c] ∧ f) ∨ A1[a]

187P colonies﻿	

1 3

The condition of application of the program is formed from
four conjunctions: c11 ∧ c21 with highest priority, c12 ∧ c21
and c11 ∧ c22 , and c12 ∧ c22 with lowest priority. After index-
ing of literals we obtain

The execution of a multiset of rules can be understood as an
action of a rule-based production system: as sensory precon-
dition we use condition of application and an action can be
constructed from functions push and pop as it is usual for
stacks. Function push(x) means put 1 to the top of stack x.
Function pop(x) means remove 1 from the top of stack x.
Rules for execution of programs in our example are:

•	 �� A1[a][1] ∧ c[1] ∧ A1[c][1] ∧ f [1] ���� (���(A1[a])∧

����(A1[c]) ∧ ���(c) ∧ ����(a) ∧ ���(A1[c])∧

����(A1[f]) ∧ ���(f) ∧ ����(c))
•	 �� A1[c][1] ∧ d[1] ∧ A1[c][2] ∧ f [1] ���� (���(A1[c])∧

����(A1[d]) ∧ ���(d) ∧ ����(c) ∧ ���(A1[c])∧

����(A1[f]) ∧ ���(f) ∧ ����(c))

•	 �� A1[a][1] ∧ c[1] ∧ A1[a][2] ���� (���(A1[a])∧

����(A1[c]) ∧ ���(c) ∧ ����(a) ∧ ���(A1[a])∧

����(A1[e]) ∧ ����(a))
•	 �� A1[c][1] ∧ d[1] ∧ A1[a][1] ���� (���(A1[c])∧

����(A1[d]) ∧ ���(d) ∧ ����(c) ∧ ���(A1[a])∧

����(A1[e]) ∧ ����(a))

In [12] the authors showed that if a P colony does not use
checking rules the problem whether configuration is a halt-
ing configuration is in P while if P colony uses checking
rules the problem whether configuration is a halting con-
figuration is in NP.

4 � P colony models related to automata

The concept of P colonies has been extended to automaton-
like computing devices.

4.1 � PCol automata

The basic motivation of P colonies was to model multi-agent
systems with very simple agents interacting with their shared
environment. The interaction was realized in communicat-
ing objects, and the description of the result of the activity
of the P colony was defined as the multiset of distinguished
objects in the environment when no more action could be
performed.

(A1[a][1] ∧ c[1] ∧ A1[c][1] ∧ f [1])∨

∨ (A1[c][1] ∧ d[1] ∧ A1[c][2] ∧ f [1])∨

∨ (A1[a][1] ∧ c[1] ∧ A1[a][2])∨

∨ (A1[c][1] ∧ d[1] ∧ A1[a][1])

Interaction of the environment and the collection of
agents can also be described as the sequence of multisets of
non-environmental agents that are found in the environment
during the computation, i.e., the sequence of computational
steps. From this point of view, the concept of a P colony can
be extended to the notion of a PCol automaton (a P colony
automaton), motivated by P automata from membrane com-
puting [50] and classical finite automata [55].

In reference to the finite automaton, the concept of the
P colony was extended by an input tape and the generating
device was changed to an accepting one [13]. The agents
of the P colony work according to the actual symbol read
from the input tape. To do this, they have rules which can
“read” the input tape, we call them tape rules or T-rules.
The other rules, which are rules of standard P colonies,
are called non-tape rules or N-rules. An input symbol is
said to be read if at least one agent processed it (using its
corresponding T-rule).

Now we recall the notion of a PCol automaton.

Def in it io n 4   A PCo l au toma ton o f c apac -
ity k and with n agents, k, n ≥ 1, is a construct
� = (A, e, vE, (o1,P1),… , (on,Pn),F) where

•	 A is an alphabet, the alphabet of the PCol automaton,
its elements are called objects;

•	 e ∈ A is the environmental object of the PCol automa-
ton; vE ∈ (A − {e})∗ is a string representing the multiset
of objects different from e, called the initial state of the
environment ;

•	 (oi,Pi), 1 ≤ i ≤ n , is the i-th agent; where

•	 oi is a multiset over V, the initial state (contents)
of the agent,

•	 Pi is a set of programs, where every program con-
sists of k rules, each of them is one of the following
types:

•	 tape rules of the form a
T
−→b or a

T
↔b , called

rewriting tape rules and communication tape
rules, respectively; or

•	 non-tape rules of the form a → b , or c ↔ d ,
called rewriting (non-tape) rules and communi-
cation (non-tape) rules, respectively.

	  and
•	 F is a set of accepting configurations of the PCol

automaton.

For each i, 1 ≤ i ≤ n , we distinguish tape programs and
non-tape programs. The set of tape programs (T-pro-
grams), denoted by PT

i
 , are formed from one tape rule

and k − 1 non-tape rules, the set of non-tape programs

188	 L. Ciencialová et al.

1 3

(N-programs) which contain only non-tape rules, is
denoted by PN

i
 , thus, Pi = PT

i
∪ PN

i
 and PT

i
∩ PN

i
= �.

The computation starts in the initial configuration, i.e.,
when the input word is on the input tape and all agents are
in initial state.

For a configuration (wE,w1,… ,wn) and an input symbol
a, the sets of applicable programs, P , can be constructed.
To pass from one configuration to some other one in one
step we define the following types of transitions:

•	 t-transition ⇒a
t
 : There exists at least one set of applica-

ble programs P ∈ P such that every p ∈ P is T-program
with T-rule in the form x

T
−→a or x

T
↔a, x ∈ A and the set

P is maximal.
•	 n-transition ⇒n : There exists at least one set of applicable

programs P ∈ P such that every pi ∈ P is N-program and
the set P is maximal.

•	 tmin-transition ⇒a
tmin

 : There exists at least one set
of applicable programs P ∈ P such that there is at least
one T-program in P in the form x

T
−→a or x

T
↔a, x ∈ A and

possibly N-programs. The set P is maximal.
•	 tmax-transition ⇒a

tmax
 : There exists at least one set

of applicable programs P ∈ P such that P contain as
many T-programs (they are in a form x

T
−→a or x

T
↔a, x ∈ A)

as possible, P can contain N-programs too, and the set
P is maximal.

We say that a PCol automaton works in t (tmax, tmin) mode
of computation if it uses only t- (tmax-, tmin-) transitions.
It works in nt (ntmax or ntmin) working mode if it uses
t-(tmax- or tmin-) transitions and if there is no set of appli-
cable T-programs it can use n-transition. PCol automaton
works in init mode if it performs only t-transitions and after
reading all the input symbols it makes n-transitions.

If the PCol automaton works in t, tmax or tmin mode, then
it reads one input symbol in every step of computation. Con-
sequently, the length of the computation equals to the length
of the input string. Notice that this property strongly resem-
bles to some property of �-free finite automata.

The computation by a PCol automaton may end in a final
state. It is successful if the whole input tape is read and the
PCol automaton is in some configuration in F.

Let M = {t, nt,tmax,ntmax,tmin,ntmin,init}.
The language accepted by a PCol automaton � , given

as above, is defined as the set of strings which can be read
during a successful computation:

L(� , mode) ={w ∈ A∗|(w;vE, o1,… , on)

can be transformed by�

into (�;wE,w1,… ,wn) ∈ F

with a computation in mode mode ∈ M}.

Let L(PColA,mode) denote the class of languages accepted
by PCol automata in the computational mode mode ∈ M.

Language classes of the Chomsky hierarchy can be
described by PCol automata as follows [13].

•	 For every regular language L there exists a PCol automa-
ton working in the t-mode having only one agent accept-
ing all words from L.

•	 There exists a context-free language that can be accepted
by a PCol automaton with only one agent and working in
the t-mode.

•	 The family of languages accepted by PCol automata with
one agent working in the t-mode is a subfamily of the
family of context-sensitive languages.

It is open question whether the family of context-sensitive
languages is equal to the family of languages accepted by
PCol automata with one agent working in the t-mode. Notice
that unlike other variants of P colonies PCol automata work-
ing in the t-mode are not computationally complete.

In [13], it was shown that class of languages accepted
by PCol automata working in the nt, ntmin or ntmax mode
equals to the class of recursively enumerable languages,
respectively. The workspace needed to obtain this compu-
tational power is provided by the interaction between the
agents and the environment.

•	 L(PColA,nt) = RE in [13],
•	 L(PColA,ntmin) = RE in [13],
•	 L(PColA,ntmax) = RE in [13],
•	 L(PColA,init) = RE in [8].

4.2 � Generalized PCol automaton

In [39] a model, called generalized P colony automaton
(genPCol automaton, for short) was introduced that com-
bines features of P colonies and P automata. (For detailed
information on P automata consult [50]). In the following we
describe the main features of this construct, for the technical
details the reader is referred to [39, 41].

In case of P colony automata there is an input string
given, while in case of P automata the accepted string is
defined as a map of the sequence of multisets entering the P
system during the successful (usually halting) computation.
An idea similar to P automaton is employed in the concept
of generalized P colony automaton, namely, determining
the accepted strings through the sequences of multisets
processed during computations. The computations of the P
colony define accepted multiset sequences, which are turned
into accepted strings by mapping the multiset sequences to
strings over some previously given alphabet. The rules of
the underlying P colony that describes the communication
with the environment are of two types: standard rules and

189P colonies﻿	

1 3

so-called tape rules. The application of a tape rule also rep-
resents the reading of the processed symbol from the input,
but unlike the original model, the P colony automaton is
allowed to read more than one such symbol in a single com-
putational step. This means that during a computation con-
sisting of a sequence of computational steps, a sequence of
multisets is read from the input. This sequence of multisets
then can be mapped into a string (a sequence of symbols) in
a similar way as in P automata.

In [39] the so-called permutation mapping (also known
from the field of P automata) is used to create the accepted
strings from the accepted multiset sequences. Some basic
variants of the model were introduced and studied.

In [41] the authors considered three possible ways of
dealing with tape rules in the programs: the unrestricted
case, the case when each program contains at least one tape
rule (all-tape programs), and the case when all communica-
tion rules are tape rules (com-tape programs). It was shown
that in the unrestricted case, even systems with capacity
one are able to characterize the class of recursively enu-
merable languages. For capacities greater than two, all-tape
and com-tape genPCol automata behave differently: all-tape
systems describe the class of recursively enumerable lan-
guages, while the power of com-tape systems is bounded by
the power of so-called restricted logarithmic space Turing
machines. (For these variants of a Turing machines see
[29]). It is also shown that com-tape systems of capacity
two are already able to accept languages that are not possible
to be accepted by P automata.

4.3 � APCol systems

In [10] the authors make one step further in combining prop-
erties of P colonies and automata. While the behaviour of
the agents of PCol automata is determined both by the string
to be processed and the environment consisting of multisets
of symbols, in the case of APCol systems (Automaton-like
P colonies), the agents act only on the input string. This
interaction between the agents of the P colony and the input
string is realized by exchanging symbols between the objects
of the agents and that of the string (communication rules),
and the states of the agents can change both by communi-
cation and evolution; the latter one is an application of a
rewriting rule to an object. The distinguished symbol, e (in
the previous models the environmental symbol) has a special
role: whenever it is exchanged by a symbol in the environ-
mental string, this symbol is erased. An evolution rule is
of the form a → b . It means that object a inside the agent is
rewritten (evolved) to the object b. The second type of rules
are called communication rules. A communication rule is
in the form c ↔ d . When this rule is performed, the object c
inside the agent and a symbol d in the string are exchanged,

so, we can say that the agent rewrites symbol d to symbol c
in the input string. If c = e , then the agent erases d from the
input string and if d = e , symbol c is inserted into the string.

The computation in APCol systems starts with an input
string, representing the environment, and with each of the
agents having only symbols e in their state. (Note that the
initial states of the agents can be chosen not to consist of
only e.)

A computational step means a maximally parallel action
of the active agents, i.e., agents that can apply their rules.
Every symbol can be object of the action of only one agent.
The computation ends if the input string is reduced to the
empty word, there are no more applicable programs in the
system, and meantime at least one of the agents is in so-
called final state.

Definition 5  An Automaton-like P colony (an APCol sys-
tem, for short) is a construct

•	 A is an alphabet; its elements are called the objects,
•	 e ∈ A , called the basic object,
•	 Bi, 1 ≤ i ≤ n , are agents. Each agent is a triplet

Bi =
(
oi,Pi,Fi

)
 , where

•	 oi is a multiset over A, describing the initial state
(content) of the agent, |oi| = 2,

•	 Pi =
{
pi,1,… , pi,ki

}
 is a finite set of programs associ-

ated with the agent, where each program is a pair of
rules. Each rule is in one of the following forms:

•	 a → b , where a, b ∈ A , called an evolution rule,
•	 c ↔ d , where c, d ∈ A , called a communication

rule,

•	 Fi ⊆ A∗ is a finite set of final states (contents) of
agent Bi.

As in the case of other variants of P colonies, the number
of objects inside the agents are called the capacity of the
APCol system, which is 2.

During the work of the APCol system, the agents perform
programs. Since both rules in a program can be commu-
nication rules, an agent can work with two objects in the
string in one step of the computation. In the case of program
⟨a ↔ b;c ↔ d⟩ , a substring bd of the input string is replaced
by string ac. If the program is of the form ⟨c ↔ d; a ↔ b⟩ ,
then a substring db of the input string is replaced by string
ca. That is, the agent can act only in one place in one step
of the computation and the change of the string depends
both on the order of the rules in the program and on the

� = (A, e,B1,… ,Bn), n ≥ 1, where

190	 L. Ciencialová et al.

1 3

interacting objects. In particular, we have the following types
of programs with two communication rules:

•	 ⟨a ↔ b; c ↔ e⟩ - b in the string is replaced by ac,
•	 ⟨c ↔ e; a ↔ b⟩ - b in the string is replaced by ca,
•	 ⟨a ↔ e; c ↔ e⟩ - ac is inserted in a non-deterministically

chosen place in the string,
•	 ⟨e ↔ b; e ↔ d⟩ - bd is erased from the string,
•	 ⟨e ↔ d; e ↔ b⟩ - db is erased from the string,
•	 ⟨e ↔ e; e ↔ d⟩ ; ⟨e ↔ e; c ↔ d⟩ , ...- these programs can

be replaced by programs of type ⟨e → e; c ↔ d⟩.

At the beginning of the computation of the APCol system
the environment is given by a string � of objects which
are different from e. Consequently, an initial configuration
of the APCol system is an (n + 1)-tuple c = (�; o1,… , on)
where � is the input string and the other n components are
multisets of strings of objects, given in the form of strings,
the initial states of the agents.

A configuration of an APCol system � is given by
(w;w1,… ,wn) , where |wi| = 2, 1 ≤ i ≤ n , wi represents
the state of the i-th agent and w ∈ (A − {e})∗ is the string
to be processed.

The language Lacc(�) accepted by � is the set of
words over (A − {e}) which are accepted by �  . A string
� is accepted by the APCol � if there exists a computa-
tion by � such that it starts in the initial configuration (
�;o1,… , on

)
 and the computation ends by halting in the

configuration
(
�;w1,… ,wn

)
 , where at least one of wi ∈ Fi

for 1 ≤ i ≤ n.
APCol systems are powerful computational devices as

it is shown in [10]:
Let A be an alphabet and let L ⊆ A∗ be a recursively

enumerable language. Let L� = S ⋅ L ⋅ E , where S,E ∉ A .
Then there exists an APCol system � with two agents such
that L� = L(�) holds.

APCol systems can also be used not only for accept-
ing but generating strings. A string wF is generated by an
APCol system � if there exists a computation starting in
an initial configuration (�;ee,… , ee) and the computation
ends by halting in configuration

(
wF;w1,… ,wn

)
 , where

wi ∈ Fi for at least one wi , 1 ≤ i ≤ n . The language Lgen(�)
generated by � is the set of words over (A − {e}) which
are generated by �.

Particularly important are those variants, where the pro-
grams are restricted (as defined for standard P colonies).

We denote by APColaccR(n) (or APColacc(n) ) the family
of languages accepted by APCol systems having at most
n agents, n ≥ 1 , with restricted programs only (or without
this restriction). Analogously, we denote by APColgenR(n)
the family of languages generated by APCol systems hav-
ing at most n agents, n ≥ 1 , with restricted programs only,

and APColgen(n) denotes the case when the programs are
without any restriction.

We may associate sets of numbers to APCol systems
working in the generating or the accepting mode in the
usual manner.

For an APCol system � , NLacc(�) and NLgen(�) denote
the length sets of Lacc(�) and Lgen(�) , respectively. The
family of length sets of languages accepted or generated
by restricted APCol systems with at most n agents, n ≥ 1 ,
is denoted by NAPColxR(n) , x ∈ {acc,gen} , respectively,
and NAPColx(n) denotes the case when the programs are
without any restriction.

The following results were obtained in [10]:

•	 NAPColgenR(2) = NRE.
•	 NRMpb ⊆ NAPColgenR(1).

•	 APColgenR(1) ⊆ MAT𝜀.

In case of the original concept of APCol systems, the input
string is accepted if it can be reduced to the empty word.
Recently, a new variant of acceptance by APCol systems
has been introduced where the agents explore and verify
their common environment, i.e. the input the string. The
notion was introduced as verifying APCol system (or APCol
systems with verifier agents) [14, 15]. In this case, an input
string of length n is accepted if there is a halting computation
c such that the length of the environmental string remains
unchanged during the computation and for every agent and
for each position each i, 1 ≤ i ≤ n , there is an environmental
string obtained by c such that the agent applies a rule to posi-
tion i. It is shown that APCol systems with verifier agents
simulate nondeterministic two-way multihead automata. The
result implies that any language in NSPACE(log n)can be
accepted by an APCol system with verifier agents.

4.3.1 � APCol systems with teams

In [21] the authors introduced the concept of APCol systems
with coloured teams. The concept of teams in P colonies was
first proposed in [27]. APCol systems with teams function
in the following manner: in every computation step only
one team is allowed to work (only one team is active) and
all of its components (agents) should perform a program
in parallel. Each team is associated with a colour. A string
is accepted by an APCol system with coloured teams, if
starting with the string as initial string the computation is
unbounded and its teams with the final colour are active
in an infinite number of steps and the teams of the other
colours are active only in a finite number of steps. By this
the APCol systems join unconventional Turing equivalent
computing devices and computational models which “go
beyond” Turing, i.e., which are able to compute more than
recursively enumerable sets of strings or numbers.

191P colonies﻿	

1 3

Red-green Turing machines were introduced in [47] and
they exceed the power of Turing machines since they rec-
ognize exactly the �2-sets of the Arithmetical Hierarchy.
These machines are deterministic and their state sets are
divided into two disjoint sets, called the set of red states and
the set of green states. Red-green Turing machines work
on finite input words with the following recognition crite-
rion on infinite runs: no red state is visited infinitely often
and one or more green states are visited infinitely often. A
change from a green state to a red state or reversely is called
a mind change. In [47], it is shown that every recursively
enumerable language can be recognized by a red-green
Turing machine with one mind change. It is also proved
that if more than one mind changes may take place, then
red-green Turing machines are able to recognize the comple-
ment of any recursively enumerable language. In the anal-
ogy of the concept of red-green Turing machines, red-green
counter machines (red-green register machines) were defined
and examined [1]. The authors proved that the computations
of a red-green Turing machine TM can be simulated by a
red-green register machine RM with two registers and with
string input in such a way that during the simulation of a
transition of TM leading from a state p with colour c to a
state p′ with colour c′ the simulating register machine uses
instructions with labels (states) of colour c and only in the
last step of the simulation changes the label (state) to colour
c′ . They showed that the reverse simulation works as well.

In [21] the authors showed that any red-green counter
machine can be simulated with an APCol system with col-
oured teams with two colours. The teams either consist of
only one agent and then the system works sequentially, or
the APCol system has teams of at most two agents acting
in parallel.

4.3.2 � APCol systems with agent creation

In [20], the author introduced the programs for agent crea-
tion. For this purpose, a new special object @ was defined. If
an agent contains object @, the agent makes a copy of itself.
This action is done by executing a program formed from two
rewriting rules. The order of rules in a program determines
whether the rewriting rule without @ is used before or after
the creation of the child-agent. Let x@ be a contents of agent
A with program p1 = ⟨@ → b;x → y⟩ . After execution of
the program p1 there is one new child-agent in the APCol
system with the same label and the same set of programs
as the parent-agent A has. The contents of the parent-agent
after the execution of the program is by while the contents
of the child-agent is bx. If the parent-agent has a program
p2 = ⟨x → y;@ → b⟩ , then after the execution of the pro-
gram p2 the contents of parent-agent is by and the contents
of the child-agent is by, too.

When an agent contains the object @ the agent must cre-
ate a new agent in the next step of the computation if there
is some applicable program in its set of programs.

Here we provided the main ideas, for the technical details
the reader is referred to [20].

In [20] the author showed that APCol systems with agent
creation can solve 3SAT in linear time (3SAT is a famous
NP complete problem).

5 � Other models raised from P colonies

In this section we focus to the models related to P colonies
and using different type of rules.

5.1 � P colonies with prescribed teams

P colonies with prescribed teams were introduced in [36].
Unlike the original variants of P colonies, the agents use
finite sets of rules called teams instead of programs; with
each agent a finite set of teams is given, with priorities
(pri) among them. The used rules can be communicat-
ing (com), rewriting (rew), and so-called membrane rules
(mem). The membrane rules are in a form a ↣ b (a goes
out and becomes b) or b ↢ a (a goes in and becomes b).

The P colony can work in sequential (seq) or parallel
(par) manner. The rules are applied by the team in parallel
manner with various stop conditions: ∗ (stop after arbitrary
number of derivation steps), ≤ l , ≥ l , resp. = l (stop after at
most l, at least l resp. after exactly l derivation steps) and
t0 (the team becomes inactive when it is no longer able to
work as a team.)

At each step of the computation, the contents of the
environment and the contents of every agent changes in the
following way: in the maximally parallel derivation mode,
each agent which can use any of its teams should use one
(non-deterministically chosen) in the mode d, while in
the sequential derivation mode, one agent uses one of its
teams in the mode d at a time (non-deterministically cho-
sen). As in the usual case, any copy of an object can be
involved in only one rule. Using the teams as described
above, with all agents acting simultaneously or sequen-
tially, non-deterministically choosing the team(s) to be
applied, the P colony changes its configuration.

In [36], the authors showed that the families of P colo-
nies with prescribed teams are computationally complete
if some conditions hold. These conditions concern, for
example, the working mode, the number of objects in the
agents using rewriting and communication rules, the prior-
ity among the teams, the number of teams.

192	 L. Ciencialová et al.

1 3

The following table summarizes the list of results on
computational completeness of P colonies with prescribed
teams which use rewriting and communication rules [36].

In the tables, below, d indicates that the results hold for
any of the modes.

Com-
puta-
tional
mode

Capac-
ity

Max.
num-
ber of
sets
in the
team

Max.
num-
ber of
rules
in the
set

Num-
ber of
agents

Num-
ber of
teams

Priori-
ties

Mode

seq 2 2 1 * 6 pri d
par 2 2 1 * 5 d
seq 2 2 1 1 * pri d
seq 2 2 2 1 * t0

The following table contains a list of results from [36]
concerning P colonies using membrane rules only.

Com-
puta-
tional
mode

Capac-
ity

Max.
num-
ber of
sets
in the
team

Max.
num-
ber of
rules
in the
set

Num-
ber of
agents

Num-
ber of
teams

Priori-
ties

Mode

seq 2 2 1 * 12 pri d
seq 2 2 1 1 * pri d
par 2 3 1 * 10 d
par 2 3 2 * 5 d
seq 1 2 2 1 * t0

seq 1 2 1 1 * pri t0

5.2 � 2D P colonies

In [19] a new model, called 2D P colony was introduced.
As in the original model, the P colony is of capacity two
and the agents are equipped with sets of the programs
formed from rules—communication and evolution. The
main change is in the environment. Namely, the authors
put the agents into the 2D grid of square cells and they
provide the agent with the possibility to move—the motion
rule. The direction of the movement of the agent is deter-
mined by the contents of cells surrounding the cell in
which the agent is placed.

The program can contain at most one motion rule. To
achieve the greatest simplicity in agent behaviour, one
other condition was set. If the agent moves, it cannot com-
municate with the environment. So if the program contains
a motion rule, then the other rule is an evolution rule.

Definition 6  A 2D P colony is a construct

•	 A is an alphabet of the colony, its elements are called
objects,

•	 e ∈ A is the basic environmental object of the 2D P
colony,

•	 Env is a pair (m × n,wE) , where m × n,m, n ∈ N is the
size of the environment and wE is the initial contents
of environment, it is a matrix of size m × n of multisets
of objects over A − {e}.

•	 Bi, 1 ≤ i ≤ k , are agents, each agent is a construct
Bi =

(
oi,Pi, [o, p]

)
, 0 ≤ o ≤ m, 0 ≤ p ≤ n , where

•	 oi is a multiset over A, it determines the initial state
(contents) of the agent, |oi| = 2,

•	 Pi =
{
pi,1,… , pi,li

}
, l ≥ 1, 1 ≤ i ≤ k is a finite set of

programs, where each program contains exactly 2
rules, which are in one of the following forms each:

•	 a → b , called the evolution rule, a, b ∈ A,
•	 c ↔ d , called the communication rule, c, d ∈ A,
•	

[
aq,r

]
→ s, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓} , called

the motion rule,

•	 f ∈ A is the final object of the colony.

A configuration of the 2D P colony is given by the state
of the environment—matrix of type m × n with multisets
of objects over A − {e} as its elements—and by the state
of all agents—pairs of objects from alphabet A and the
coordinates of the agents. An initial configuration is given
by the definition of the 2D P colony.

A computational step consists of three parts. The first
part lies in determining the set of applicable programs
according to the current configuration of the 2D P colony.
In the second part, we have to select from this set one
program for each agent, in such a way that there is no
collision between the communication rules belonging to
different programs. The third part is the execution of the
chosen programs.

� = (A, e,Env,B1,… ,Bk, f), k ≥ 1, where

1 2

Fig. 1   Pattern beacon changes in two consecutive steps

193P colonies﻿	

1 3

A change of the configuration is triggered by the execu-
tion of programs and it involves changing the state of the
environment, contents and placement of the agents.

A computation is non-deterministic and maximally par-
allel. The computation ends by halting when there is no
agent with applicable program.

The result of the computation is the number of copies
of the final object placed in the environment at the end of
the computation.

The aim of introducing 2D P colonies is not studying
their computational power but monitoring their behaviour
during the computation.

In [19] an example for a 2D P colony simulating a kind
of cellular automata—Conway’s Game of Life ([37]) is
presented. The following example is the pattern called
beacon (see Fig. 1).

Let �2 be 2D P colony defined as follows:
�2 = (A, e,Env,B1,… ,B16, f) , where

•	 A = {e, f ,D, S, Z,M,O,L,N},
•	 e ∈ A is the basic environmental object of the 2D P

colony,
•	 Env = (6 × 6,wE),

•	 wE =

⎡
⎢⎢⎢⎢⎢⎢⎣

D D D D D D

D S S D D D

D S S D D D

D D D S S D

D D D S S D

D D D D D D

⎤⎥⎥⎥⎥⎥⎥⎦

,

•	 B1 =
(
ee,P1, [1, 1]

)
, B2 =

(
ee,P2, [1, 2]

)
, . . . ,

B16 =
(
ee,P16, [4, 4]

)
,

•	 f ∈ A is the final object of the 2D P colony.

The states of the automata are stored inside the cells (D—
dead automaton, S—live automaton). There is only one
kind of agent in this 2D P colony, so there are 16 identical
agents located in the matrix 4 × 4 of inner cells with fol-
lowing programs:

The f irst program is to initialize the agent
< e ↔ e; e → Z >;

we sort the programs using the number of copies of
object S in the condition of the motion rule.

1.	 When neighbouring automata are dead—a single pro-
gram for both dead as well as alive automaton �⎡⎢⎢⎣

D D D

D e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
.

2.	 When there is one alive neighbouring automaton—there
are eight possible programs for dead and alive automata

�⎡⎢⎢⎣

S D D

D e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
 and seven other combina-

tions.
3.	 When there are 2 alive neighbouring automata—28 pro-

grams for alive automata

�⎡⎢⎢⎣

S S D

D S D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → O

�

and other 27 combinations.
4.	 When there are 2 alive neighbouring automata—28 pro-

grams for dead automata

�⎡⎢⎢⎣

S S D

D D D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�

and other 27 combinations.
5.	 When there are 3 alive neighbouring automata—56 pos-

sible programs for dead and alive automata �⎡⎢⎢⎣

S S S

D e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → O

�
 and other 55 combinations.

6.	 When there are 4 alive neighbouring automata—seventy
possible programs for dead and alive automata �⎡⎢⎢⎣

S S S

S e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
 and other 69 combinations.

7.	 When there are at least 5 alive neighbouring autom-
ata—56 possible programs for dead and alive automata �⎡⎢⎢⎣

S S S

S e S

e e e

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
 and other 55 combinations.

After executing one of the above programs, all agents move
one step upwards and rewrite one of their objects e to object
M (automaton will be dead) or to object O (automaton will
be live). The following programs are for downward move-
ment and for updating the state of an automaton, i.e., the
replacement of the object in the cell for an object in the agent
to change the state of the automaton.

(see Fig. 2).

6 � Applications of P colonies

Robot controllers P colonies and PCol automata were intro-
duced as robot controllers in [6]. The authors followed two
ideas of controlling a robot with use of P colonies.

�⎡
⎢⎢⎣

e e e

e e e

e e e

⎤
⎥⎥⎦
→ ⇓ ; O → S

�
;

�⎡
⎢⎢⎣

e e e

e e e

e e e

⎤
⎥⎥⎦
→ ⇓ ; M → D

�
;

⟨e → L; S ↔ S⟩; ⟨e → L; D ↔ S⟩; ⟨S → e; L → e⟩;
⟨D → e; L → e⟩;
⟨e → L; S ↔ D⟩; ⟨e → L; D ↔ D⟩.

194	 L. Ciencialová et al.

1 3

The first controller model used the PCol automaton with
instructions for the robot on the input tape. The agents have
to read the current information from the tape and together
with objects in the environment coming from the receptors,
they generate objects—commands for actuators.

The agents are assembled into modules. All the modules
are controlled by the main control unit. Each input symbol
on the input tape represents a single instruction which has
to be done by the robot, so the input string is the sequence
of the actions which guides the robot in reaching its goal;
performing all the actions. In this meaning the computation
ends by halting, and it is successful if the whole input tape
is read.

The second idea was to use original model of the P col-
ony and put all information to the environment. They also
used module-oriented structure of agents, each module per-
forms the individual functions in the control of the robot.
The authors constructed a P colony with four modules: The
control unit, the left actuator controller, the right actuator
controller and the infra-red receptors. The controller (the
P colony) is completed by the input and output filter. The
input filter codes signals from the robot receptors and spread
the coded signal into the environment. In the environment
there is the coded signal used by the agents. The output filter
decodes the signal from the environment which the actuator
controllers sent into it. Decoded signal is forwarded to the
robot actuators.

Surface runoff 2D P colonies appear to be suitable to
simulate multi-agent systems. In [5] the authors presented
hydrological modelling flow of liquid over the earth’s sur-
face using 2D P colonies.

The issue of the flow of liquid over the Earth’s sur-
face is studied by experts from two areas - hydrology and
geoinformatics. Both of these disciplines work closely

together on the issue of the so-called “surface runoff”.
Surface runoff is the water flow that occurs when the soil
is saturated to full capacity and excess water from rain,
meltwater, or other sources flows over the land.

Agents in the model have capacity 2, the agent con-
tains two objects. Each of the objects carries the informa-
tion about the state of the agent. One of the objects stores
information about the activity of the agent. At this stage of
the simulation it is the information that the agent “flows”
down the terrain or the agent is still inactive (belonging
to the future rainfall). The other object stores information
about the previous direction of flow. This information can
further modify the way of the agent as inertia.

Based on the entered data—the slope surface, a source
of fluid and quantity—they simulated the fluid distribution
in the environment.

The research continues in [22] where the model can fill
sinks (places without output).

7 � Open problems and conclusions

We recalled the idea and functioning of the basic model
of P colonies. This model was introduced in [44] in 2004.
Since that time many papers and studies about the model and
its variations have been published.

Almost all these works are focused on describing the com-
putational power of more or less restricted variants of P col-
onies. Although extensive investigations have been made in
this direction, some important questions remain open: what
about deterministic P colonies? Furthermore, how to define
determinism in P colonies? Another interesting question can
be the problem of reversibility: how to define reversible P
colonies and, thus, reversible computation in P colonies?

Fig. 2   The sequence of con-
figurations of the 2D P colony
simulating beacon




D D D D D D
D S(ee) S(ee) D(ee) D(ee) D
D S(ee) S(ee) D(ee) D(ee) D
D D(ee) D(ee) S(ee) S(ee) D
D D(ee) D(ee) S(ee) S(ee) D
D D D D D D







D D D D D D
D S(eZ) S(eZ) D(eZ) D(eZ) D
D S(eZ) S(eZ) D(eZ) D(eZ) D
D D(eZ) D(eZ) S(eZ) S(eZ) D
D D(eZ) D(eZ) S(eZ) S(eZ) D
D D D D D D








D D(eO) D(eO) D(eM) D(eM) D
D S(eO) S(eM) D(eM) D(eM) D
D S(eM) S(eM) D(eM) D(eO) D
D Ds(eM) D(eM) S(eO) S(eO) D
D D D S S D
D D D D D D









D D D D D D
D S(eS) S(eS) D(eD) D(eD) D
D S(eS) S(eD) D(eD) D(eD) D
D D(eD) D(eD) S(eD) S(eS) D
D D(eD) D(eD) S(eS) S(eS) D
D D D D D D








D D D S S D
D S(LS) S(LS) D(LD) D(LD) D
D S(LS) D(LS) D(LD) D(LD) D
D D(LD) D(LD) D(LS) S(LS) D
D D(LD) D(LD) S(LS) S(LS) D
D D D D D D







D D D D D D
D S(ee) S(ee) D(ee) D(ee) D
D S(ee) D(ee) D(ee) D(ee) D
D D(ee) D(ee) D(ee) S(ee) D
D D(ee) D(ee) S(ee) S(ee) D
D D D D D D




195P colonies﻿	

1 3

One reasonable idea is to introduce these concepts on
the analogy of deterministic and/or reversible P systems. By
[3], a P system is strongly reversible if every configuration
has in-degree at most one and it is called reversible if every
reachable configuration has in-degree at most one. We call
a P system strongly deterministic if every configuration has
out-degree at most one; and it is called deterministic if every
reachable configuration has out-degree at most one. (By a
reachable configuration we mean a configuration that is
reachable from the initial configuration; the in-degree means
all pre-images of the configuration not only the reachable.)
We note that these notions were considered for a particular
variant of (symport/antiport) P systems, but obviously, they
can be considered for other variants as well (see, for example
[2]). An extensive study of deterministic and/or reversible
P systems has been performed during the years, focusing on
the computational power of these systems, decidability ques-
tions, existence of syntactic criteria for deciding whether or
not the P system is (strongly) deterministic or reversible.
For more information, the reader is referred to [2, 3]. These
problems and questions are interesting for P colonies and its
variants as well. Furthermore, the so-called k-determinism,
where every configuration has at most k successor configura-
tions ( k > 1 ) would also be interesting. For this concept, in
the theory of P systems, we refer to [4, 49].

Automaton-like P colonies (PCol automata and their
variants) are topics of further study as well. Although they
have been compared to some classical and non-classical
automata variants, precise descriptions of their relation to
P automata and to some further variants of classical and
non-classical automata would be very useful. Comparison
of automaton-like P colonies and dP automata was initiated
in [38], pp. 564-565. P automata are variants of antiport
P systems accepting strings in an automaton-like fashion
(for a summary on P automata, see Chapter 6 [50]). The
notion of a dP automaton (distributed system of P automata)
was introduced in [52]. A dP automaton consists of a finite
number of component P automata which have their separate
inputs and which also may communicate with each other by
means of special antiport-like rules (roughly speaking, an
antiport rule exchanges multisets of objects u and v where
u is in the parent region and v is in the child region). A
string accepted by a dP automaton is the concatenation of
the strings accepted by the individual components during a
computation performed by the system. For more informa-
tion on dP automata, the interested reader is referred to the
survey [26] and to [53]. A dP automaton is called finite if it
has only a finite number of different configurations. A com-
parative study of automaton-like P colonies (APCol systems,
PCol automata) and finite dP automata with several accept-
ance modes would be especially interesting.

P colonies can also be compared to several types of P sys-
tems, e.g. tissue-like constructs. Generalized communicating

P systems, where the rules of this tissue-like membrane sys-
tems describe the move of pairs of objects from pairs of
compartments to new locations (each object of the pair is
moved to a new compartment) demonstrate functional simi-
larity to P colonies. Initial steps in this direction have been
made in [46].

2D P colonies are also important extensions of P colonies.
This model was found suitable for simulations of multi-agent
systems. One of the simulation introduced in [5] is the simu-
lation of surface runoff.

In the future, many ways appear for improving the model
of the 2D P colonies. One way is to assign the number to
objects in addition to the type. This number will indicate the
value of the parameter that the object represents. Another
possibility is to extend the environment with a mechanism
which is able to change the object in the environment inde-
pendently from the activity of the agents.

The concepts and results reported in this survey demon-
strate that P colonies (and their variants) are simple but very
powerful devices. In addition, they can serve as modelling
tools as well. The reader is welcome to contribute in explor-
ing this fruitful research area.

Acknowledgements  This work was supported by The Ministry of Edu-
cation, Youth and Sports from the National Programme of Sustainabil-
ity (NPU II) project IT4Innovations excellence in science—LQ1602,
and by the Silesian University in Opava under the Student Funding
Scheme, project SGS/11/2019. The work of E. CS-V. was supported
by NKFIH (National Research, Development, and Innovation Office),
Hungary, Grant no. K 120558.

References

	 1.	 Alhazov, A., Aman, B., Freund, R., & Păun, Gh. (2014). Mat-
ter and Anti-matter in Membrane Systems. In H. Jürgensen, J.
Karhumäki, & A. Okhotin A (Eds.) Descriptional complexity of
formal systems: 16th international workshop, DCFS 2014, Turku,
Finland, August 5-8, 2014. Proceedings (pp. 65–76). Cham:
Springer

	 2.	 Alhazov, A., Feund, R., & Morita, K. (2012). Sequential and max-
imally parallel multiset rewriting: Reversibility and determinism.
Natural Computing, 11, 95–106.

	 3.	 Alhazov, A., & Morita, K. (2010). On reversibility and determin-
ism in P systems. In G. Păun, M. J. Pérez-Jiménez, A. Riscos-
Núñez, G. Rozenberg, & A. Salomaa (Eds.), Membrane comput-
ing, 10th international workshop, WMC 2009. Lecture notes in
computer science (Vol. 5957, pp. 158–168). Berlin: Springer.

	 4.	 Cienciala, L., Ciencialová, L., Frisco, P., & Sosík, P. (2007). On
the power of deterministic and sequential communicating P sys-
tems. International Journal of Foundations of Computer Science,
18(2), 415–431.

	 5.	 Cienciala, L., Ciencialová, L., & Langer, M. (2014). Modellingof
surface run off using 2D P colonies. Modelling of surface runoff
using 2D P colonies. In A. Alhazov, S. Cojocaru, M. Gheorghe,
Y. Rogozhin, G. Rozenberg, & A. Salomaa (Eds.), Membrane
computing. CMC2013. Lecture Notes in computer science (Vol.
8340, pp. 101–116). Berlin: Springer.

196	 L. Ciencialová et al.

1 3

	 6.	 Cienciala, L., Ciencialová, L., Langer, M., & Perdek, M. (2014).
The abilities of P colony based models in robot control. The abili-
ties of P colony based models in robot control. In M. Gheorghe, G.
Rozenberg, A. Salomaa, P. Sosík, & C. Zandron (Eds.), Membrane
computing. CMC 2014. Lecture notes in computer science (Vol.
8961, pp. 179–193). Cham: Springer.

	 7.	 Cienciala, L., & Ciencialová, L. (2009). Eco-P colonies. In G.
Păun, M. Pérez-Jiménez, A. Riscos-Núñez (Eds.) Pre-proceedings
of the 10th workshop on membrane computing, Curtea de Arges,
Romania (pp. 201–209)

	 8.	 Cienciala, L., & Ciencialová, L. (2011). P colonies and their
extensions. In J. Kelemen & A. Kelemenová (Eds.), Computation,
cooperation, and life. Lecture notes in computer science (Vol.
6610, pp. 158–169). Berlin: Springer.

	 9.	 Cienciala, L., & Ciencialová, L. (2016). Some new results of P
colonies with bounded parameters. Natural Computing, 17, 1–12.

	10.	 Cienciala, L., Ciencialová, L., & Csuhaj-Varjú, E. (2014). P colo-
nies processing strings. Fundamenta Informaticae, 134(1–2),
51–65.

	11.	 Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., & Sosík, P.
(2016). P Colonies. Bulletin of the International Membrane Com-
puting Society, 2, 129–156.

	12.	 Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Sosík, P.
(2018). A logical representation of P colonies: An introduction.
In C. Graciani, A. Riscos-Núñez, G. Păun, G. Rozenberg, & A.
Salomaa (Eds.), Enjoying natural computing. Lecture notes in
computer science (Vol. 11270, pp. 66–76). Cham: Springer.

	13.	 Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Vaszil, Gy.
(2010). PCol automata: recognizing strings with P colonies. In M.
A. del Amor, G. Păun, I. P. H. de Mendoza, & A. R. Núñez (Eds.),
Eighth brainstorming week on membrane computing. Sevilla,
2010 RGNC Report 01/2010 (pp. 65–76). Sevilla: Fénix Editora.

	14.	 Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Vaszil, Gy.
(2018). Verifying APCol Systems. In Hinze, T., Behre, J. (eds.)
Proceedings of the nineteenth international conference on mem-
brane computing (CMC19), Pro BUSINESS Verlag, pp. 247–258

	15.	 Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E., & Vaszil, Gy.
(2019). APCol systems with verifier agents. In T. Hinze, G.
Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane comput-
ing. CMC 2018. Lecture notes in computer science (Vol. 11399,
pp. 95–107). Cham: Springer.

	16.	 Cienciala, L., Ciencialová, L., & Kelemenová, A. (2007). Onthe
number of agents in P colonies. In G. Eleftherakis, P. Kefalas, Gh
Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing.
WMC 2007. Lecture notes in computer science (Vol. 4860, pp.
193–208). Berlin: Springer.

	17.	 Cienciala, L., Ciencialová, L., & Kelemenová, A. (2008).
Homogeneous P colonies. Computing and Informatics, 27(3+),
481–496.

	18.	 Cienciala, L., Ciencialová, L., & Langer, M. (2012). Modulari-
tyin P colonies with checking rules. In M. Gheorghe, G. Păun, G.
Rozenberg, A. Salomaa, & S. Verlan (Eds.), Membrane comput-
ing. CMC2011. Lecture notes in computer science (Vol. 7184, pp.
104–119). Heidelberg: Springer.

	19.	 Cienciala, L., Ciencialová, L., & Perdek, M. (2012). 2D Pcolonies.
In E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, &
G. Vaszil (Eds.), Membrane computing. CMC 2012. Lecture notes
in computer science (Vol. 7762, pp. 161–172). Berlin: Springer.

	20.	 Ciencialová, L. (2019). APCol systems with agent creation. In T.
Hinze, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Mem-
brane computing. CMC 2018. Lecture notes in computer science
(Vol. 11399, pp. 84–94). Cham: Springer.

	21.	 Ciencialová, L., Cienciala, L., & Csuhaj-Varjú, E. (2018). APCol
systems with teams. In M. Gheorghe, G. Rozenberg, A. Salomaa,
& C. Zandron (Eds.), Membrane computing. CMC 2017. Lecture

notes in computer science (Vol. 10725, pp. 88–104). Cham:
Springer.

	22.	 Ciencialová, L., Cienciala, L., & Perdek, M. (2014). 2D P colonies
used in hydrology simulations. International Multidisciplinary
Scientific GeoConference Surveying Geology and Mining Ecology
Management, SGEM, 1(2), 3–10.

	23.	 Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., & Vaszil, Gy.
(2009). Variants of P colonies with very simple cell structure.
International Journal of Computers, Communications and Con-
trol, 4(3), 224–233.

	24.	 Ciencialová, L., Cienciala, L., & Sosík, P. (2016). Generalized
P colonies with passive environment. In C. Graciani, D. Orel-
lana-Martín, A. Riscos-Núñez, Á. Romero-Jiménez, L. Valencia-
Cabrera (Eds.) Fourteen brainstorming week on membrane com-
puting, pp. 151–162

	25.	 Ciencialová, L., Cienciala, L., & Sosík, P. (2017). Pcolonies with
evolving environment. In A. Leporati, G. Rozenberg, A. Salomaa,
& C. Zandron (Eds.), Membrane computing. CMC 2016. Lecture
notes in computer science (Vol. 10105, pp. 151–164). Cham:
Springer.

	26.	 Csuhaj-Varjú, E. (2003). P and dP Automata: Unconventional ver-
sus Classical Automata. International Journal of Foundations of
Computer Science, 24(7), 995–1008.

	27.	 Csuhaj-Varjú, E. (2016). Extensions of P colonies (extended
abstract). In: A. Leporati, & C. Zandron (Eds.) Proc. CMC17,
Milan, 2016. University Milano-Bicocca & IMCS, Italy, pp.
281–286

	28.	 Csuhaj-Varjú, E., Gheorghe, M., & Lefticaru, R. (2018). P colo-
nies and kernel p systems. International Journal of Advances in
Engineering Sciences and Applied Mathematics, 10(3), 181–192.

	29.	 Csuhaj-Varjú, E., Ibarra, O. H., & Vaszil, Gy. (2006). On the com-
putational complexity of P automata. Natural Computing, 5(2),
109–126.

	30.	 Csuhaj-Varjú, E., Kántor, K., & Vaszil, Gy. (2018). Deterministic
parsing with P colony automata. In C. Graciani, A. Riscos-Núñez,
Gh Păun, G. Rozenberg, & A. Salomaa (Eds.), Enjoying natural
computing. Lecture notes in computer science (Vol. 11270, pp.
88–98). Cham: Springer.

	31.	 Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, G., &
Vaszil, G. (2006). Computing with cells in environment: P colo-
nies. Journal of Multiple-Valued Logic and Soft Computing,
12(3), 201–215.

	32.	 Csuhaj-Varjú, E., Margenstern, M., & Vaszil, Gy. (2006). Pcol-
onies with a bounded number of cells and programs. In H. J.
Hoogeboom, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Mem-
brane computing. WMC 2006. Lecture notes in computer science
(Vol. 4361, pp. 352–366). Heidelberg: Springer.

	33.	 Csuhaj-Varjú, E., & Verlan, S. (2018). Computationally com-
plete generalized communicating P systems with three cells. In
M. Gheorghe, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.),
Membrane computing. CMC 2017. Lecture notes in computer sci-
ence (Vol. 10725, pp. 118–128). Cham: Springer.

	34.	 Csuhaj-Varjú, E., & Verlan, S. (2018). Bi-simulation between
PColonies and P systems with multi-stable catalysts. In M. Gheo-
rghe, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), Membrane
computing. CMC 2017. Lecture notes in computer science (Vol.
10725, pp. 88–104). Cham: Springer.

	35.	 Freund, R., & Oswald, M. (2005). P colonies working in the maxi-
mally parallel and in the sequential mode. In D. Zaharie, D. Petcu,
V. Negru, T. Jebelean, G. Ciobanu, A. Cicortas, A. Abraham, &
M. Paprzycki (Eds.), Seventh international symposium on sym-
bolic and numeric algorithms for scientific computing (SYNASC
2005), 25–29 September 2005 (pp. 419–426). Timisoara, Roma-
nia: IEEE Computer Society.

197P colonies﻿	

1 3

	36.	 Freund, R., & Oswald, M. (2006). P colonies and prescribed
teams. International Journal of Computer Mathematics, 83(7),
569–592.

	37.	 Gardner, M. (1970). Mathematical Games: The fantastic com-
binations of John Conway’s new solitaire game “life”. Scientific
American, 223, 120–123.

	38.	 Gheorghe, M., Păun, Gh, Pérez-Jiménez, M. J., & Rozenberg, G.
(2013). Research frontiers of membrane computing: Open prob-
lems and research topics. International Journal of Foundations
of Computer Science, 24(5), 547–624. (Section 5. P Colonies and
dP Automata by Erzsébet Csuhaj-Varjú).

	39.	 Kántor, K., & Vaszil, Gy. (2014). Generalized P colony autom-
ata. Jornal of Automata, Language and Combinatorics, 19(1–4),
145–156.

	40.	 Kántor, K., & Vaszil, Gy. (2018). Generalized P colony automata
and their relation to P automata. In M. Gheorghe, G. Rozenberg,
A. Salomaa, & C. Zandron (Eds.), Membrane computing. CMC
2017. Lecture notes in computer science (Vol. 10725, pp. 167–
182). Cham: Springer.

	41.	 Kántor, K., & Vaszil, G. (2018). On the classes of languages char-
acterized by generalized P colony automata. Theoretical Com-
puter Science, 724, 35–44.

	42.	 Kelemen, J., & Kelemenová, A. (1992). A grammar-theoretic
treatment of multiagent systems. Cybernetics and Systems, 23(6),
621–633.

	43.	 Kelemen, J., & Kelemenová, A. (2005). On P colonies, a biochem-
ically inspired model of computation. In Proc. of the6th Interna-
tional Symposium of Hungarian Researchers on Computational
Intelligence, Budapest TECH (pp. 40–56). Hungary

	44.	 Kelemen, J., Kelemenová, A., & Păun, G. (2004). Preview of P
colonies: A biochemically inspired computing model. In Work-
shop and tutorial proceedings. Ninth international conference
on the simulation and synthesis of living systems (Alife IX) (pp.
82–86). Boston, Massachusetts, USA

	45.	 Kelemenová, A. (2010). P Colonies, chap. 23.1, pp. 584–593. In:
[50]

	46.	 Krishna, S. N., Gheorghe, M., Ipate, F., Csuhaj-Varjú, E., & Cet-
erchi, R. (2017). Further results on generalised communicating P
systems. Theoretical Computer Science, 701, 146–160.

	47.	 van Leeuwen, J., & Wiedermann, J. (2012). Computation as an
unbounded process. Theoretical Computer Science, 429, 202–212.

	48.	 Minsky, M. L. (1967). Computation: Finite and infinite machines.
Upper Saddle River, NJ, USA: Prentice-Hall Inc.

	49.	 Oswald, M. (2003). P automata. PhD dissertation, Technological
University of Vienna, Vienna

	50.	 Păun, Gh, Rozenberg, G., & Salomaa, A. (2010). The Oxford
handbook of membrane computing. New York, NY, USA: Oxford
University Press Inc.

	51.	 Păun, Gh. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143.

	52.	 Păun, Gh, & Pérez-Jiménez, M. J. (2010). Solving problems in
a distributed way in membrane computing: dP systems. Interna-
tional Journal of Computers, Communication and Control, 5(2),
238–252.

	53.	 Păun, Gh, & Pérez-Jiménez, M. J. (2012). P automata revisited.
Theoretical Computer Science, 454, 222–230.

	54.	 Rozenberg, G., & Salomaa, A. (1997). Handbook of formal lan-
guages: Beyonds words. Handbook of formal languages. Berlin:
Springer.

	55.	 Rozenberg, G., & Salomaa, A. (Eds.). (1997). Handbook of For-
mal languages: Word, language, grammar. New York: Springer.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Lucie Ciencialová  joined Institute of Computer Science of Silesian
University in Opava in 2006 where she works as an assistant profes-
sor. She graduated in computer science at Silesian University in 2005.
She finished her Ph.D. studies at Silesian University in 2008. She
teaches theoretical computer science, mathematics, and logic. Her main
research activity is in the fields of natural and unconventional comput-
ing. In particular, she studies the computational power and efficiency
of computing models inspired from the structure and functioning of
living cells.

Erzsébet Csuhaj‑Varjú  is a full professor at the Faculty of Informat-
ics, Eötvös Loránd University, Budapest, Hungary and Head of the
Doctoral School of Informatics of the university. Her main research
interests are formal languages and applications, natural computing, in
particular, bio-inspired computing, distributed systems, and natural
language processing. In these areas she authored and co-authored more
than 200 publications (articles in international journals and edited vol-
umes and a monograph) and she was editor or co-editor of 18 volumes.
She has been co-founder of the area of grammar systems, a formal
language-theoretic counterpart of the theory of multi-agent systems.
She also has important contributions to bio-inspired computing; among
others together with her co-authors, she has launched research vistas
theory of networks of language processors and P automata (membrane
automata) theory. She has been the supervisor (principal investigator)
and participant of several Hungarian and bilateral granted research
projects, team leader or leader of EU projects. She is the chair of the
Advisory Board of the International Membrane Computing Society.
She is member of the editorial board of International Journal of Foun-
dations of Computer Science and Journal of Membrane Computing.
In the last 12 years, she has been programme committee member and
organizer of more than 50 international workshops and conferences,
among them she was programme committee co-chair and chair of the
organizing committee of FCT 2007, AFL 2008, CMC13, CiE 2014,
MFCS 2014, AFL 2017. She is serving as member in several scientific
or educational committees of the Eötvös Loránd University and she is
the chair of the Committee of Information Science, Section of Math-
ematics of the Hungarian Academy of Sciences.

Luděk Cienciala  works as an associate professor of computer science
at the Institute of Computer Science at the Faculty of Philosophy and
Science, Silesian University in Opava, Czech Republic. He graduated
at Faculty of Science in Univerzity of Ostrava in 1996. In 2006, he
received his Ph.D. in Applied Mathematics at Faculty of Science, Uni-
versity of Ostrava. He teaches logic, graph theory, computer graphics,
and mathematics. His main areas of research are theoretical computer
science, natural computing, and computer graphics.

Petr Sosík  is an associate professor of computer science at the Fac-
ulty of Philosophy and Science, Silesian University in Opava, Czech
Republic. He received his Ph.D. (1997) in computer science at Charles
University in Prague, Czech Republic. His professional experience
includes research stays at Canadian and European universities, as well
as commercial software projects at the beginning of his career. His sci-
entific work has been recognized with awards at various international
conferences in research areas such as formal languages and applica-
tions, discrete mathematics, molecular and generally nature-inspired
computing.

	P colonies
	Abstract
	1 Introduction
	2 Notations
	3 The basic models of P colonies
	3.1 P colonies with rewriting and communication rules
	3.1.1 Restricted P colonies
	3.1.2 Homogeneous P colonies

	3.2 P colonies with senders and consumers
	3.3 P colonies with evolving environment and generalized P colonies
	3.4 Relation of P colonies and other P systems
	3.5 Logical representation of P colonies

	4 P colony models related to automata
	4.1 PCol automata
	4.2 Generalized PCol automaton
	4.3 APCol systems
	4.3.1 APCol systems with teams
	4.3.2 APCol systems with agent creation

	5 Other models raised from P colonies
	5.1 P colonies with prescribed teams
	5.2 2D P colonies

	6 Applications of P colonies
	7 Open problems and conclusions
	Acknowledgements
	References

