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Abstract
P colonies are abstract computing devices modelling communities of very simple reactive agents living and acting in a joint 
shared environment. The concept was motivated by so-called colonies, grammar systems based on interplay of very simple 
agents, on one hand, and by membrane systems, massively parallel computational models inspired by cell biology, on the 
other hand. Some variants of P colonies also allow the environment to participate actively in the system’s evolution. In this 
paper we summarize the most important results on P colonies, present open problems concerning these constructs, and sug-
gest new research directions in their study.
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1  Introduction

In contemporary computer science, there has been a grow-
ing demand for reliable and efficient computing devices 
to describe the behaviour of communities of dynamically 
changing agents which are in interaction with their shared 
environment. Multi-agent systems with very simple reac-
tive agents are of special interest, in particular with respect 
to their emerging behaviour and the limits of their power.

P colonies, introduced in [44], were motivated by these 
problems. They are variants of very simple tissue-like P sys-
tems, where the agents (the cells) have only one region and 
they interact with their shared environment using programs 

(collections of rules of special form). P systems (or mem-
brane systems), introduced in [51], are a family of comput-
ing devices inspired by biology and biochemistry of cells. 
Colonies of simple formal grammars, also motivating P 
colonies, were introduced in [42].

During the years, P colonies have been studied in detail; 
a summary of results can be found in [45].

Although several variants of P colonies have been devel-
oped, all of them have some common basic features. Inside 
each agent (each cell) there is a finite multiset of objects. 
These objects are processed by a finite set of programs 
associated to the agent. The number of objects inside each 
agent is constant (does not change) during the functioning 
of the agent community and it is called the capacity of the 
P colony. The agents share an environment which is repre-
sented by a multiset of objects. One type of these objects, 
called the environmental object, is distinguished, and it is 
supposed to be in a countably infinite number of copies in 
the environment. (In the literature, the reader may also find 
that the environmental symbol appears in an arbitrarily large 
number of copies in the environment).

Using their programs, the agents can change the objects 
present at their disposal and can exchange some of their 
objects with objects present in the environment. These syn-
chronized actions correspond to a configuration change (a 
transition) of the P colony; a finite sequence of consecutive 
configuration changes starting from the initial configuration 

 *	 Lucie Ciencialová 
	 lucie.ciencialova@fpf.slu.cz

	 Erzsébet Csuhaj‑Varjú 
	 csuhaj@inf.elte.hu

	 Luděk Cienciala 
	 ludek.cienciala@fpf.slu.cz

	 Petr Sosík 
	 petr.sosik@fpf.slu.cz

1	 Institute of Computer Science and Research Institute 
of the IT4Innovations Centre of Excellence, Silesian 
University in Opava, Opava, Czech Republic

2	 Department of Algorithms and Their Applications, Faculty 
of Informatics, Eötvös Loránd University, Budapest, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00019-w&domain=pdf


179P colonies﻿	

1 3

is a computation. The result of the computation is the num-
ber of copies of a distinguished object, called the final 
object, present in the environment in a final configuration 
of the P colony.

It can easily be seen that the environment is both a com-
munication channel for the agents and a storage for the 
objects. It plays strategic role in synchronizing the work of 
the agents during the computation.

One major research topic in the theory of P colonies is the 
study of their computational power related to their descrip-
tional complexity. These investigations focus on the question 
of identifying how many components are necessary and to 
what extent the programs can be simplified to obtain a cer-
tain computational power. In addition to these problems, the 
working modes of P colonies have obtained attention as well, 
whether or not parallelism in the joint work of the agents 
plays significant role in increasing the expressive power of 
P colonies.

The rules of P colonies demonstrate strong similarities 
with instructions or rules of some well-known computing 
devices (register machines, rewriting systems based on point 
mutations, other variants of membrane systems), thus com-
parisons of these constructs with other classical and non-
classical computing devices are also of interest.

P colonies, due to their original motivation, model multi-
agent systems (complex systems) acting in an environment. 
According to the basic definitions, the objects present in the 
environment have significant role in the change of the states 
of the agents. Therefore, one of the research directions in 
the theory is devoted to studying the role of the dynamics of 
the environment in the behaviour of P colonies, i.e., the case 
when the objects in the environment are provided step-by-
step not only by the actions of the agents but by some special 
object provider device.

Due to their simplicity and distributed nature, P colonies 
are convenient tools for modelling complex systems as robot 
collections, sender and consumer systems, eco-systems. We 
expect several new areas of applications in the future.

This paper is an extended and revised version of survey 
[11].

2 � Notations

We assume that the reader is familiar with formal language 
and automata theory, computability, and the basics of mem-
brane computing [50, 54].

Throughout the paper we use the following notions and 
notations. Let � be the alphabet and let �∗ be the set of all 
words over � (including the empty word � ). The length of 
a word w ∈ �∗ is denoted by |w| and the number of occur-
rences of the symbol a ∈ � in w by |w|a.

A multiset of objects M is a pair M = (V , f ) , where V 
is an arbitrary (not necessarily finite) set of objects and f 
is a mapping f ∶ V → N ; f assigns to each object in V its 
multiplicity in M. Each multiset of objects M with the set 
of objects V � = {a1,… , an} can be represented as a string w 
over alphabet V ′ , where |w|ai = f (ai); 1 ≤ i ≤ n . Obviously, 
all words obtained from w by permuting the letters repre-
sent the same multiset M. Symbol � represents the empty 
multiset. The set of all multisets with the set of objects V 
is denoted by V∗ . The cardinality of M, denoted by |M|, is 
defined by �M� = ∑

a∈V f (a).
The set of all non-negative integers is denoted by N. We 

use REG, CF and RE as notations for the families of regu-
lar, context-free and recursively enumerable languages. The 
family of languages accepted by matrix grammars without 
appearance checking and with erasing rules is denoted by 
MAT� and the family of languages generated by interaction-
less L systems is denoted by 0L. NRE denotes the family of 
recursively enumerable set of non-negative integers.

Definition 1  [48] A  register machine is a   construct 
M = (m,H, l0, lh,P) where:

•	 m is the number of registers,
•	 H is the set of instruction labels,
•	 l0 is the start label,
•	 lh is the final label,
•	 P is a finite set of instructions injectively labelled with 

the elements from the set H.

The instructions of the register machine are of the fol-
lowing forms: 

l1 ∶ (ADD(r), l2, l3)	� Add 1 to the  content of the  regis-
ter r and proceed to the instruction 
(labelled with) l2 or l3.

l1 ∶ (SUB(r), l2, l3)	� If the register r stores a value differ-
ent from zero, then subtract 1 from its 
content and go to instruction l2 , oth-
erwise proceed to instruction l3.

lh ∶ HALT	� Halt the machine. The final label lh is 
only assigned to this instruction.

Without loss of generality, one can assume that in each 
ADD-instruction l1 ∶ (ADD(r), l2, l3) and in each SUB
-instruction l1 ∶ (SUB(r), l2, l3) the labels l1, l2, l3 are mutu-
ally distinct.

The register machine M computes a set N(M) of num-
bers in the following way: it starts with all registers empty 
(hence storing the number zero) with the instruction labelled 
l0 and it proceeds to apply the instructions as indicated by 
the labels (and made possible by the contents of registers). If 
it reaches the halt instruction, then the  number stored at that 
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time in the register 1 is said to be computed by M and hence 
it is introduced in N(M). It is known (see e.g. [48]) that in 
this way we compute all Turing computable sets of numbers.

The register machine is called partially blind if the SUB
-instruction is executed as follows: if register r stores a non-
zero value then this value is decreased by one and the next 
instruction will be l2 or l3 , otherwise the computation aborts. 
When the partially blind register machine enters the final 
state, the result obtained in the first register is only taken 
into account if the remaining registers store value zero. The 
family of sets of non-negative integers generated by partially 
blind register machines is denoted by NRMpb . The partially 
blind register machines accept a proper subfamily of NRE.

3 � The basic models of P colonies

In this section we provide the generic version of a P colony 
and some of its important variants.

3.1 � P colonies with rewriting and communication 
rules

The original concept of a P colony was introduced in [44] 
and presented in a developed form in [31, 43].

Definition 2  A P colony of capacity k, k ≥ 1 , is a construct
� = (A, e, f , vE,B1,… ,Bn) , where

•	 A is an alphabet, its elements are called objects;
•	 e ∈ A is the basic (or environmental) object of the colony;
•	 f ∈ A is the final object of the colony;
•	 vE is a finite multiset over A − {e} , called the initial state 

(or initial content) of the environment;
•	 Bi, 1 ≤ i ≤ n , are agents, where each agent Bi =

(
oi,Pi

)
 

is defined as follows:

•	 oi is a multiset over A consisting of k objects, the 
initial state (or the initial content) of the agent;

•	 Pi =
{
pi,1,… , pi,ki

}
 is a finite set of programs, where 

each program consists of k rules, which are in one of 
the following forms each:

•	 a → b , a, b ∈ A , called an evolution rule;
•	 c ↔ d , c, d ∈ A , called a communication rule;
•	 r1∕r2 , called a checking rule; r1, r2 are both evolu-

tion rules or both communication rules.

We add some brief explanations to the components of 
the P colony.

We first note that throughout the paper, we use term 
“object a inside agent B” and term “ a ∈ w , where w is the 
state of agent B” as equivalent.

The first type of rules associated to the programs of the 
agents, the evolution rules, are of  the form a → b . This 
means that object a inside the agent is rewritten to (evolved 
to be) object b.

The second type of rules, the communication rules, are 
of the form c ↔ d . If a communication rule is performed, 
then  object c inside the agent and  object d in the envi-
ronment swap their location. Thus, after executing the rule, 
object d appears inside the agent and object c is located in 
the environment.

The third type of rules are the checking rules. A check-
ing rule is formed from two rules of one of the two previous 
types. If a checking rule r1∕r2 is performed, then the rule 
r1 has higher priority to be executed over the rule r2 . This 
means that the agent checks whether or not rule r1 is applica-
ble. If the rule can be executed, then the agent must use this 
rule. If rule r1 cannot be applied, then the agent uses rule r2.

We note that these types of rules are the basic ones; in 
some variants of P colonies other types of rules have been 
also considered. We will discuss them in later sections.

The program determines the activity of the agent: the 
agent can change its state and/or the state of the environment.

The environment is represented by a finite number (zero 
included) of copies of non-environmental objects and a 
countably infinite copies of the environmental object e.

When an agent executes a program, then each object 
inside the agent is affected. Depending on the rules in the 
program, the program execution may affect the environment 
as well. This interaction between the agents and the environ-
ment is the key factor of the functioning of the P colony.

The functioning of the P colony starts from its initial con-
figuration (initial state).

The initial configuration of a P colony is an (n + 1)-
tuple of multisets of objects present in the P colony at the 
beginning of the computation. It is given by the multisets 
oi for 1 ≤ i ≤ n and by multiset vE . Formally, the configura-
tion of the P colony � is given by (w1,… ,wn,wE) , where 
|wi| = k, 1 ≤ i ≤ n , wi represents all the objects present 
inside the ith agent, and wE ∈ (A − {e})∗ represents all the 
objects in the environment different from the object e.

At each step of the computation (at each transition), the 
state of the environment and that of the agents changes in 
the following manner: in the maximally parallel deriva-
tion mode, each agent which can use any of its programs 
should use one (non-deterministically chosen), whereas in 
the sequential derivation mode, only one agent at a time is 
allowed to use one of its programs (non-deterministically 
chosen). If the number of applicable programs for an agent 
is higher than one, then the agent non-deterministically 
chooses one of the programs.

A sequence of transitions is called a computation. A 
computation is said to be halting, if a configuration is 
obtained where no program can be applied anymore. With 
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a halting computation, we associate a result which is given 
as the number of copies of the objects f present in the 
environment in the halting configuration.

Because of the non-determinism in choosing the pro-
grams, starting from the initial configuration we obtain 
several computations, hence, with a P colony we can asso-
ciate a set of numbers, denoted by N(�) , computed by all 
possible halting computations of given P colony.

In the original model (see [44]) the number of objects 
inside each agent is set to two, and the programs were 
formed from only two rules. Moreover, the initial con-
figuration was defined as (n + 1)-tuple (ee,… , ee, �) so at 
the beginning of the computation the environment of the 
P colony is “empty”, it is without an input information.

The number of agents in a given P colony is called 
the degree of �  ; the maximal number of programs of 
an agent of �  is called the height of �  and the num-
ber of the objects inside an agent is the capacity of �  . 
The family of all sets of numbers N(�) computed as 
above by P colonies of capacity at most c ≥ 0 , degree at 
most n ≥ 0 and height at most h ≥ 0 , using checking pro-
grams, and working in the sequential mode is denoted by 
NPCOLseqK(c, n, h) ; whereas the corresponding families 
of P colonies working in the maximally parallel way are 
denoted by NPCOLparK(c, n, h) . If one of the parameters 
n or h is not bounded, then we replace it with ∗ . If only P 
colonies using programs without checking rules are con-
sidered, then we omit the K.

Although P colonies are very simple computing devices, 
due to their (mainly parallel) working mode and distrib-
uted nature they demonstrate large expressive (computa-
tional) power. In most cases, computational completeness 
can be obtained with these constructs even with very few 
components and very few restrictions on the programs. In 
this section, we briefly summarize some important results 
concerning their expressive power. Most of the statements 
are based on simulations of register machines, thus pro-
viding further knowledge on the nature of these classical 
computing devices as well.

To demonstrate a connection between P colonies and 
register machines, we add an example how the ADD-
instruction of a register machine can be simulated by a 
P colony.

Example 1  Let � = (A, e, f , vE,B) be the P colony with 
capacity two and let the current content of the agent be 
l1e . Let M = (m,H, l0, lh,P) be a non-deterministic reg-
ister machine with m registers. The ADD-instruction 
l1 = (ADD(r), l2, l3) of M can be simulated by the following 
programs associated with the agent:

At the beginning, objects l1 and e are placed inside the agent. 
The content of register r is encoded to the number of objects 
ar placed in the environment. The computation is done in 
such a way that the agent rewrites its content to l′

1
ar using 

the first program (there are two rewriting rules in it). In the 
second step the agent rewrites l′

1
 to object corresponding to 

the label of the next instruction l2 ( or l3 ) to be executed and 
it puts object ar into the environment.

3.1.1 � Restricted P colonies

By [44], P colonies of capacity two are computationally 
complete. Furthermore, their programs have special forms: 
one of the rules is an evolution rule and the other one is 
either a communication rule or a checking rule with two 
communication rules.

These variants of P colonies are called restricted P 
colonies.

The family of all sets of numbers computed by restricted 
P colonies without checking rules and with parameters 
c, n, h and working modes par and seq, see above, is 
denoted by NPCOLparR(c, n, h) or NPCOLseqR(c, n, h) , 
respectively. If the restricted P colonies are with checking 
rules, then we add K in front of R.

Let us have one more example.

Example 2  Let � = (A, e, f , vE,B) be the P colony with 
capacity two and let the current contents of the agent be 
l1e . Let M = (m,H, l0, lh,P) be a non-deterministic reg-
ister machine with m registers. The ADD-instruction 
l1 = (ADD(r), l2, l3) can be simulated by the following pro-
grams associated with the agent:

At the beginning, objects l1 and e are inside the agent. The 
content of register r is encoded to the number of objects ar 
placed in the environment. The computation is done in such 
a way that at one computational step the agent must rewrite 
one of the objects inside it and should exchange the other 
one with an object from the environment. At the first step 

P ∶

1 ∶
⟨
l1 → l�

1
;e → ar

⟩
;

2 ∶
⟨
l�
1
→ l2;ar ↔ e

⟩
;

3 ∶
⟨
l�
1
→ l3;ar ↔ e

⟩
.

P ∶

1 ∶ ⟨e → ar;l1 ↔ e⟩; 3 ∶ ⟨l1 → l2;d ↔ e⟩;
2 ∶ ⟨e → d;ar ↔ l1⟩; 4 ∶ ⟨l1 → l3;d ↔ e⟩.



182	 L. Ciencialová et al.

1 3

the agent rewrites e to object ar and sends object l1 into the 
environment. In the second step it rewrites e to auxiliary 
object d and exchanges object ar and l1 from the environ-
ment. At the last step the agent rewrites object l1 to the object 
corresponding to the label of the next instruction l2 ( or l3 ) to 
be executed and it puts object d into the environment.

For restricted P colonies, using the maximally parallel 
working mode, the following results hold:

•	 NPCOLparKR(2, ∗, 5) = NRE in [31, 44],
•	 NPCOLparR(2, ∗, 5) = NRE in [35],
•	 NPCOLparK(2, ∗, 4) = NRE in [31],
•	 NPCOLparKR(2, 1, ∗) = NRE in [35],
•	 NPCOLparR(2, 2, ∗) = NRE in [16].

The reader can easily see that the family of sets of natural 
numbers computed by restricted P colonies with or without 
the use of checking rules having at most five programs asso-
ciated with agent equals to NRE. If we remove the restriction 
on the type of rules in the programs, P colonies need only 
at most four programs associated with every agent to obtain 
computational completeness. The difference in the last two 
results demonstrates the power of checking rules and the 
power of synchronized cooperation. To generate NRE, the 
restricted P colonies need only one agent if the agent can 
use checking rules and two agents if they are not equipped 
with checking rules.

The maximally parallel application of rules does not nec-
essarily add power, as the following results demonstrate:

•	 NPCOLseqKR(2, ∗, 5) = NRE in [35],
•	 NPCOLseqKR(2, 1, ∗) = NRE in [35],
•	 NPCOLseqK(3, ∗, 6) = NRE in [31, 43].

However, if only restricted P colonies with the sequential 
working modes are considered, the maximal computation 
power to be obtained is equal to the recognition power of 
blind counter machines, thus significantly reduced, irre-
spectively from the number of programs and agents in the 
P colony.

Notice that the property “restricted” demonstrates strong 
similarity to some normal forms of variants of regulated 
grammars, where some of the production is used for pro-
gramming the action and some other production is respon-
sible for its execution. Using some well-organized synchro-
nizing mechanisms, simulation of standard P colonies with 
restricted ones can be demonstrated, thus, we may consider 
restricted P colonies as “normal forms” for the family of P 
colonies.

We note that the idea of restriction can be extended, with 
prescribing the ratio of evolution and communication rules 
in the programs of capacity k, k ≥ 2.

3.1.2 � Homogeneous P colonies

If each program in the P colony consists of rules of the same 
type, then we can call the P colony homogeneous. For a 
P colony with capacity two, this means that the program 
is formed from two evolution rules, or two communication 
rules, or two checking rules of the same type.

Indicating by symbol H that homogeneous P colonies are 
considered, the following results were obtained:

•	 NPCOLparKH(2, ∗, 4) = NRE in [17],
•	 NPCOLparKH(2, 1, ∗) = NRE in [17].

As for the previous variants, we provide an example.

Example 3  Let � = (A, e, f , vE,B) be the P colony with 
capacity two and let the current content of the agent be 
l1e . Let M = (m,H, l0, lh,P) be a non-deterministic reg-
ister machine with m registers. The ADD-instruction 
l1 = (ADD(r), l2, l3) can be simulated by the following pro-
grams associated with the agent:

At the beginning, objects l1 and e are placed inside the 
agent. The content of register r is encoded to the number 
of objects ar placed in the environment. The computation 
is done in such a way that the agent at one computational 
step must rewrite all object inside it or must exchange all of 
its objects with objects from the environment. At the first 
step, the agent rewrites multiset l1e to multiset l′

1
ar . In the 

second step, it sends both objects of multiset l′
1
ar into the 

environment. At the third step, it consumes objects of mul-
tiset l′

1
e and at the last step the agent rewrites object l1 to the 

object corresponding to the label of the next instruction to 
be executed, namely, l2 (or l3).

The results that have been recalled so far concern mainly 
P colonies with agents of capacity at least two. It is a chal-
lenging question, whether the work of agents with capacity 
one, i.e., with agents having only one object inside can be 
organized in such way that they obtain the same power as 
P colonies in the general sense. Notice that in this case the 
objects play more important role in the synchronization of 
the work of the agents. The following results give positive 
answer to this question.

•	 NPCOLparK(1, ∗, 5) = NRE in [18],
•	 NPCOLparKH(1, ∗, 6) = NRE in [17],

P ∶

1 ∶
⟨
l1 → l�

1
;e → ar

⟩
; 4 ∶

⟨
l�
1
→ l2;e → e

⟩
;

2 ∶
⟨
l�
1
↔ e;ar ↔ e

⟩
; 5 ∶

⟨
l�
1
→ l3;e → e

⟩
.

3 ∶
⟨
e ↔ l�

1
;e ↔ e

⟩
;
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•	 NPCOLparK(1, 4, ∗) = NRE in [16],
•	 NPCOLpar(1, 6, ∗) = NRE in [23].

Finally, we provide two more interesting results dealing with 
P colonies with capacity three [8, 31].

•	 NPCOLparK(3, ∗, 3) = NRE in [31],
•	 NPCOLparH(3, 2, ∗) = NRE in [8].

In Table 1 the reader can find a summarized list of results 
concerning the computational complete variants of P 
colonies.

3.2 � P colonies with senders and consumers

In [23] new types of programs for P colonies with two 
objects inside each agent were introduced. The first of them 

is a deletion program—⟨ain; bc → d⟩; using this program an 
agent consumes one object (a) from the environment and 
transforms the two objects (b, c) inside the agent into a new 
one (d). The second type is an insertion program in the form 
⟨aout; b → cd⟩ . By executing this program, the agent sends 
to the environment one object (a) and generates two new 
objects (c, d) from the other object (b). The concept resem-
bles to the provider/customer architecture.

Example 4  [23] (a) A P colony with one sender cell can 
generate the Parikh set of a regular language L ⊆ T∗ . Let 
G = (N, T ,P, S) be a regular grammar such that L(G) = L.

For generating the Parikh vectors of the words 
in L ,  we use, for each S → aB of P ,  the pro-
g r a m s  ⟨e, out; e → eS⟩, ⟨e, out; S → aB⟩ a n d  t h e n 
⟨x, out;A → aB⟩, x ∈ T  fo r  eve r y  A → aB  i n  P . 
Finally, for every rule of the form A → a we need 
⟨x, out;A → aF⟩, x ∈ T , ⟨a, out;F → FF⟩, where F ∉ T ∪ N.

Table 1   Computational 
complete classes of P colonies

No. Mode of comp. Capacity Degree Height Checking rules/restricted programs/
homogeneous programs

Results with one * parameter
1. par 1 * 5 K in [18]
2. par 1 * 6 K H in [17]
3. par 1 4 * K in [16]
4. par 1 6 * in [23]
5. par 2 * 8 in [31]
6. par 2 * 5 K R in [31, 44]
7. seq 2 * 5 K R in [35]
8. par 2 * 5 R in [35]
9. par 2 * 4 K in [31]
10. par 2 * 4 K H in [17]
11. seq 2 * 4 K in [43]
12. seq/par 2 1 * K R in [31, 35]
13. par 2 2 * R in [16]
14. seq/par 2 1 * K H in [17]
15. seq/par 3 * 3 K in [31, 43]
16. par 3 2 * H in [8]
Results with all parameters bounded
17. par 1 3 325 K H in [9]
18. par 2 23 5 K R in [32]
19. par 2 22 6 K R in [32]
20. par 2 22 5 K in [32]
21. par 2 92 3 H in [9]
22. par 2 70 5 H in [9]
23. seq/par 2 1 74 K R in [9]
24. seq/par 2 1 66 K in [9]
25. par 2 2 163 H in [9]
26. par 2 35 8 in [32]
27. par 2 57 8 R in [32]
28. par 3 35 7 in [32]
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(b) A P colony with one consumer cell can “consume” 
the Parikh set of a regular language L. To see this, let 
M = (Q,T , �, q0,F) be a deterministic finite automaton such 
that L(M) = L.

We need the program ⟨e, in; ee → q0⟩, and to 
every transition �(qi, a) = qj  in M ,  we introduce 
⟨a, in; xqi → qj⟩, x ∈ T ∪ {e}. If qj ∈ F in �(qi, a) = qj we 
have to add the programs ⟨a, in; xqi → E⟩, x ∈ T , where 
E ∉ Q ∪ T .

In [8] the authors showed that P colonies with one sender 
and one consumer and some initial content in the environ-
ment are computationally complete. In [23] the authors 
proved that P colonies with senders and consumers with 
three agents and with only environmental objects in the ini-
tial configuration can generate every recursively enumerable 
set of natural numbers.

•	 NPCOLsc(3, ∗) = NRE in [23].
•	 NPCOLsc(2, ∗, ini) = NRE in [8, 24].

3.3 � P colonies with evolving environment 
and generalized P colonies

The environment is static in  the basic model, it can be 
changed only by the activity of the agents. Eco-P colonies 
were constructed as a  natural extension of P colonies with 
dynamically evolving environment, the evolution does 
not depend only on the activity of agents. The mechanism 
of evolution in the environment is based on an  0L scheme. 
An 0L scheme is a pair (�,P) , where � is the alphabet of 0L 
scheme and P is the set of context-free rules. It fulfils the 
following condition: for all a ∈ � there exists � ∈ �∗ such 
that (a → �) ∈ P . For w1,w2 ∈ �∗ we write w1 ⇒ w2 if 
w1 = a1a2 … an,w2 = �1�2 … �n , for ai → �i ∈ P, 1 ≤ i ≤ n.

Definition 3  A generalized P colony with capacity k ≥ 1 is 
a construct

•	 A is the alphabet of the generalized P colony, its elements 
are called objects,

•	 e is the basic (environmental) object of the generalized P 
colony, e ∈ A,

•	 f is the final object of the generalized P colony, f ∈ A,
•	 vE  is the initial content of the environment, 

vE ∈ (A − {e})∗,
•	 DE is an 0L scheme (A,PE) , where PE is the set of con-

text-free rules,

� = (A, e, f , vE,DE,B1,… ,Bn), where

•	 Bi, 1 ≤ i ≤ n , are the agents, every agent is a construct 
Bi =

(
oi,Pi

)
 , where oi is a multiset over A, it defines 

the initial state (content) of agent Bi and |oi| = k and 
Pi =

{
pi,1,… , pi,ki

}
 is the finite set of programs of three 

types ( a, b, c, d ∈ A):

1.	 generating program with generating rules a → bc 
and transporting rules d out - the number of gener-
ating rules is the same as the number of transporting 
rules.

2.	 consuming program with consuming rules ab → c 
and transporting rules d in - the number of consum-
ing rules is the same as the number of transporting 
rules.

3.	 rewriting/communication program which can con-
tain three types of rules:

⋄ a → b , called a rewriting rule,
⋄ c ↔ d , called a communication rule,
⋄ r1∕r2 , called a checking rule; each of r1, r2 is a 
rewriting or a communication rule.

Every agent has only one type of programs. The agent 
with generating programs is called sender and the agent 
with consuming programs is called consumer. The capac-
ity of a P colony with senders and consumers must be an 
even number.

The initial configuration of a P colony is the (n + 1)-tuple 
(o1,… , on, vE), with the same interpretation of the symbols 
o1,… , on, vE as in Definition 3. In general, the configuration 
of the P colony � is defined as (n + 1)-tuple (w1,… ,wn,wE) , 
where wi represents the multiset of objects inside the i-th 
agent, |wi| = k, 1 ≤ i ≤ n , and wE ∈ (A − {e})∗ is the mul-
tiset of objects different from e placed in the environment.

By applying programs, the generalized P colony passes 
from one configuration to some other configuration. 
Objects in the environment unaffected by any program in 
the given step are rewritten by the 0L scheme DE. (Notice 
that in this case the 0L scheme is considered as a multiset 
rewriting mechanism). At each step, every agent tries to 
find one of its programs to apply. If the number of applica-
ble programs is higher than one, then the agent non-deter-
ministically chooses one program. At each step of, the set 
of active agents executing a program must be maximal, 
i.e., no further agent can be added to it.

A sequence of consecutive configurations starting 
from the initial configuration is called a computation. A 
configuration is halting if the P colony has no applicable 
program. Each halting computation has an associated a 
result – the number of copies of the final object placed in 
the environment in a halting configuration.

N(�) = {||wE
||f ∣

(
o1,… , on, vE

)
⇒∗

(
w1,… ,wn,wE

)
},
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where 
(
o1,… , on, vE

)
 is the initial configuration, (

w1,… ,wn,wE

)
 is the final configuration, and ⇒∗ denotes 

reflexive and transitive closure of ⇒.
Let NEPCOL(i, j, h, u, v,w) be the family of the sets of 

numbers computed by generalized P colonies with at most 
j ≥ 1 agents with i ≥ 1 objects inside the agent and with at 
most h ≥ 1 programs associated with each agent such that: 

u = check	� if the P colony uses rewriting/communica-
tion rules with checking rules

u = no-check	� if the P colony uses rewriting/communica-
tion rules without checking rules

u = s/c/sc	� if the P colony contains only sender / only 
consumer / both sender and consumer 
agents

v = pas	� if the rules of 0L scheme are of type a → a 
only,

v = act	� if the set of rules of 0L scheme disposes of 
at least one rule of another type than a → a,

w = ini	� if the environment or agents contain ini-
tially objects different from e, otherwise w 
is omitted,

If a numerical parameter is not bounded, we use nota-
tion ∗.

Example 5  Let M = (m,H, l0, lh,P) be a non-deterministic 
register machine with m registers. The ADD-instruction 
l1 = (ADD(r), l2, l3) will be simulated by the following rules:

The computation is done in such a way that the 0L scheme 
works in the environment, it adds one to the contents of 
register r (generates one copy of object ar - the rule number 
1) and generates objects l2 and l3 , labels of all instructions 
which will be possibly executed in the next steps of compu-
tation of the register machine M (the rule 2). In the next step, 
consumer agent B takes one of these objects inside the agent 
- the rule 5 or 6. Then, instruction l2 or l3 will be simulated.

Generalized P colonies with two agents (senders and 
consumers) with passive environment (0L scheme contains 
the rules of type a → a only) are computationally complete. 
If the environment is active, then the family of generalized 

ENV ∶

1 ∶ l1i → arl
�
1
D;

2 ∶ l�
1
→ l2l3D;

3 ∶ l2 → l2D;

4 ∶ l3 → l3D.

B ∶

5 ∶
⟨
Pe → P;l2 in

⟩
;

6 ∶
⟨
Pe → P;l3 in

⟩
;

7 ∶
⟨
Pl2 → P;e in

⟩
;

8 ∶
⟨
Pl3 → P;e in

⟩
.

P colonies is computationally complete if the systems have 
two consumers and the initial contents of  their environment 
is different from e.

•	 NEPCOL(2, 2, ∗, sc,pas,ini) = NRE in [24],
•	 NEPCOL(2, 2, ∗, c,act,ini) = NRE in [7],
•	 NRMpb ⊆ NEPCOL(2, 1, ∗, c,act,ini) in [25],
•	 NEPCOL(1, 2, ∗, no-check , act,ini) = NRE in [25],
•	 NRMpb ⊆ NEPCOL(1, 1, ∗, check, act,ini) in [25].

3.4 � Relation of P colonies and other P systems

Generalized P colonies have been related to other variants of 
P systems. We briefly summarize their main features, with 
only the necessary details.

Catalytic P systems are an important type of symbol-
object P systems (already considered in the original defini-
tion of a membrane system, due to the relevance of chemi-
cal catalysts, see [50], chapter 4). In these systems a set of 
objects is distinguished, called catalysts, that do not change 
during the functioning of the P system, but their presence 
is necessary to perform some of the rules. If each rule has 
occurrence of at least one catalyst, then we speak of purely 
catalytic P systems, and in case of multi-stable catalytic P 
systems catalysts are allowed to change only to some other, 
distinguished catalysts. A catalytic P system is extended 
if the catalytic objects are not counted to the result of a 
computation.

In [25] it was shown that for an arbitrary extended cata-
lytic P system with one catalyst there exists a generalized 
P colony with checking rules and one agent containing one 
object such that the two constructs determine the same set of 
numbers. In [34], P colonies and P systems with multi-stable 
catalysts are compared to each other. It is shown that, using 
a general framework of P systems [33], both models have 
identical representation, and therefore both models can be 
related using a bi-simulation.

P colonies have also been interpreted in terms of kernel 
P systems [28]. Kernel P systems are a framework integrat-
ing the most commonly used features of membrane systems 
(compartments, dynamically changing structure, rules with 
application conditions, execution strategies, etc.) The con-
cept has obtained recently much interest, due to its broad 
scope of applicability. In [28] connections among several 
classes of P colonies and kernel have been demonstrated, 
and P colonies have been represented as kernel P systems. In 
particular, the famous producer/consumer problem has also 
been approached, namely its representation using P colony 
with components having sender programs and/or consumer 
programs and with kP systems has been presented.
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3.5 � Logical representation of P colonies

In [12] the authors introduce an approach how to express 
computation in P colonies in terms of propositional logic. 
To represent if object is present in P colony we use value 
1 (or 0 if it is not present). Let a be an object in P colony, 
a ∈ O and there are three copies of such object placed in the 
environment. We construct a stack called “a” and put value 
0 into the bottom of stack. For every copy of object a in the 
environment we push one copy of 1 to the stack. The pres-
ence of object a can be expressed as literal a interpreted as 
TRUE, otherwise it is FALSE. 

a 1 1 1 0

An agent of capacity k is represented by an array of |O| 
stacks. The sum of 1s in all stacks is k. For example agent A1 
with capacity 3 working with alphabet O = {e, a, b} and with 
objects bba inside the agent has following representation: 

A1 : a 1 0

b 1 1 0

e 0

The presence of object a inside the agent Ai can be 
expressed as as an interpretation of literal Ai[a].

A rewriting rule a → b is applicable if there is an object 
a inside the agent Ai . It means that the rule is applicable if 
literal Ai[a] is true. The communication rule a ↔ b is appli-
cable if there is an object a inside the agent and object b 
in the environment. In the terms of logic we can write the 
condition as A1[a] ∧ b . If b = e we omit b in condition (there 
is always some copy of e in the environment). A condition 
of application of rewriting or communication rule is called 
elementary condition of application. Let r1∕r2 be a checking 
rule, where r1, r2 are rewriting or communication rules with 
conditions of application c1, c2 then we can express condi-
tion of application for the checking rule as c1 ∨ c2.

The condition of applicability of the program pi,l of i-th 
agent is ci,l ∶ c1 ∧ c2 ∧⋯ ∧ ck, where cx is the condition of 
application of the x-th rule in the program. A condition is in 
the form: Ai[a] (rewriting rule), Ai[a] ∧ b (communication 
rule), cx1 ∨ cx2 (checking rule).

If the program contains a checking rule, we can write 
the condition ci,l in the disjunctive normal form (DNF) 
ci,l ∶ (c1 ∧ c2 ∧⋯ ∧ cj1 ∧ cj+1 ∧⋯ ∧ ck) ∨ (c1 ∧ c2 ∧⋯ ∧ cj2
∧cj+1 ∧⋯ ∧ ck).

Furthermore, consider a k-tuple of elementary rules cor-
responding to a conjunction. Generally, j rules ( 1 ≤ j ≤ k ) 

may depend on the presence of the same object a inside 
the agent, hence the program is applicable only if the agent 
contains at least j objects a. Therefore, we introduce a literal 
Ai[a][j], 1 ≤ j ≤ k, which is TRUE when the j-th position in 
the stack “a” of the agent Ai exists and contains 1. Similarly, 
b[j] is the literal which is TRUE when the j-th position in 
stack “b” is 1, i.e., when the environment contains at least j 
objects b. Therefore, in each conjunction in the final DNF of 
the condition ci,l, literals Ai[a] must be substituted/indexed 
for Ai[a][j], where j is the order of occurrence of Ai[a] in the 
conjunction. Similarly, each literal b is substituted for b[j].

Since DNF is represented as a string, we can order the 
conjunctions in DNF due to decreasing priority among rules. 
The first will be the conjunction with elementary conditions 
for the first rule in checking programs, then we can take 
conjunctions with one second rule from checking rules in 
random order followed by conjunctions with three second 
rules from checking order etc.

Clearly, the logical condition whether an agent Ai can be 
active (i.e., apply some of its programs) can be expressed as 
a disjunction of conditions for all programs of that agent: 
ci = ci,1 ∨ ci,2 ∨⋯ ∨ ci,ki , where ki is the number of programs 
of the agent Ai.

Given a P colony � , the condition whether � can per-
form a computational step can be expressed in a disjunctive 
normal form with 

∑n

i=1

∑ki
j=1

2di,j conjunctions, where di,j is 
the number of checking rules in the program pi,j.

The process of logical representation of one computa-
tional step of the P colony under maximally parallel mode 
is demonstrated on the following example ([12]).

Let � = (O, e, f ,VE,A1) be a P colony with capacity two 
and one agent and with O = {a, b, c, d, e, f } , � , A1 = (ee, 
{⟨a ↔ c∕c ↔ d; c ↔ f∕a ↔ e⟩; ⟨a → b; e ↔ b⟩}).

Let us construct a condition of application of the program 
⟨a → b; e ↔ b⟩ : It is formed from one rewriting and one 
communication rule.

The condition of application of the program after the sub-
stitution (indexing) of literals is A1[a][1] ∧ A1[e][1] ∧ b[1].

The condition of application of the program 
⟨a ↔ c∕c ↔ d; c ↔ f∕a ↔ e⟩ is formed from two checking 
rules, each formed from two communication rules.

Rule Elementary condition of application

a → b A1[a]

e ↔ b A1[e] ∧ b

Rule Elementary condition of application

a ↔ c c11 ∶ A1[a] ∧ c

c ↔ d c12 ∶ A1[c] ∧ d

c ↔ f c21 ∶ A1[c] ∧ f

a ↔ e c22 ∶ A1[a]

a ↔ c∕c ↔ d (A1[a] ∧ c) ∨ (A1[c] ∧ d)

c ↔ f∕a ↔ e (A1[c] ∧ f ) ∨ A1[a]
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The condition of application of the program is formed from 
four conjunctions: c11 ∧ c21 with highest priority, c12 ∧ c21 
and c11 ∧ c22 , and c12 ∧ c22 with lowest priority. After index-
ing of literals we obtain

The execution of a multiset of rules can be understood as an 
action of a rule-based production system: as sensory precon-
dition we use condition of application and an action can be 
constructed from functions push and pop as it is usual for 
stacks. Function push(x) means put 1 to the top of stack x. 
Function pop(x) means remove 1 from the top of stack x. 
Rules for execution of programs in our example are:

•	 �� A1[a][1] ∧ c[1] ∧ A1[c][1] ∧ f [1] ���� (���(A1[a])∧

����(A1[c]) ∧ ���(c) ∧ ����(a) ∧ ���(A1[c])∧

����(A1[f ]) ∧ ���(f ) ∧ ����(c))
•	 �� A1[c][1] ∧ d[1] ∧ A1[c][2] ∧ f [1] ���� (���(A1[c])∧

����(A1[d]) ∧ ���(d) ∧ ����(c) ∧ ���(A1[c])∧

����(A1[f ]) ∧ ���(f ) ∧ ����(c))

•	 �� A1[a][1] ∧ c[1] ∧ A1[a][2] ���� (���(A1[a])∧

����(A1[c]) ∧ ���(c) ∧ ����(a) ∧ ���(A1[a])∧

����(A1[e]) ∧ ����(a))
•	 �� A1[c][1] ∧ d[1] ∧ A1[a][1] ���� (���(A1[c])∧

����(A1[d]) ∧ ���(d) ∧ ����(c) ∧ ���(A1[a])∧

����(A1[e]) ∧ ����(a))

In [12] the authors showed that if a P colony does not use 
checking rules the problem whether configuration is a halt-
ing configuration is in P while if P colony uses checking 
rules the problem whether configuration is a halting con-
figuration is in NP.

4 � P colony models related to automata

The concept of P colonies has been extended to automaton-
like computing devices.

4.1 � PCol automata

The basic motivation of P colonies was to model multi-agent 
systems with very simple agents interacting with their shared 
environment. The interaction was realized in communicat-
ing objects, and the description of the result of the activity 
of the P colony was defined as the multiset of distinguished 
objects in the environment when no more action could be 
performed.

(A1[a][1] ∧ c[1] ∧ A1[c][1] ∧ f [1])∨

∨ (A1[c][1] ∧ d[1] ∧ A1[c][2] ∧ f [1])∨

∨ (A1[a][1] ∧ c[1] ∧ A1[a][2])∨

∨ (A1[c][1] ∧ d[1] ∧ A1[a][1])

Interaction of the environment and the collection of 
agents can also be described as the sequence of multisets of 
non-environmental agents that are found in the environment 
during the computation, i.e., the sequence of computational 
steps. From this point of view, the concept of a P colony can 
be extended to the notion of a PCol automaton (a P colony 
automaton), motivated by P automata from membrane com-
puting [50] and classical finite automata [55].

In reference to the finite automaton, the concept of the 
P colony was extended by an input tape and the generating 
device was changed to an accepting one [13]. The agents 
of the P colony work according to the actual symbol read 
from the input tape. To do this, they have rules which can 
“read” the input tape, we call them tape rules or T-rules. 
The other rules, which are rules of standard P colonies, 
are called non-tape rules or N-rules. An input symbol is 
said to be read if at least one agent processed it (using its 
corresponding T-rule).

Now we recall the notion of a PCol automaton.

Def in it io n  4   A  PCo l  au toma ton  o f   c apac -
ity k and with n agents, k, n ≥ 1, is a  construct 
� = (A, e, vE, (o1,P1),… , (on,Pn),F) where

•	 A is an alphabet, the alphabet of the PCol automaton, 
its elements are called objects;

•	 e ∈ A is the  environmental object of the PCol automa-
ton; vE ∈ (A − {e})∗ is a string representing the multiset 
of objects different from e, called the initial state of the 
environment ;

•	 (oi,Pi), 1 ≤ i ≤ n , is the i-th agent; where

•	 oi is a multiset over V, the initial state (contents) 
of the agent,

•	 Pi is a set of programs, where every program con-
sists of k rules, each of them is one of the following 
types:

•	 tape rules of  the  form a
T
−→b or a

T
↔b , called 

rewriting tape rules and communication tape 
rules, respectively; or

•	 non-tape rules of  the  form a → b , or c ↔ d , 
called rewriting (non-tape) rules and communi-
cation (non-tape) rules, respectively.

	    and
•	 F is a  set of   accepting configurations of  the PCol 

automaton.

For each i, 1 ≤ i ≤ n , we distinguish tape programs and 
non-tape programs. The set of   tape programs (T-pro-
grams), denoted by PT

i
 , are formed from one tape rule 

and k − 1 non-tape rules, the set of non-tape programs 
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(N-programs) which contain only non-tape rules, is 
denoted by PN

i
 , thus, Pi = PT

i
∪ PN

i
 and PT

i
∩ PN

i
= �.

The computation starts in the initial configuration, i.e., 
when the input word is on the input tape and all agents are 
in initial state.

For a configuration (wE,w1,… ,wn) and an input symbol 
a, the sets of applicable programs, P , can be constructed. 
To pass from one configuration to some other one in one 
step we define the following types of transitions:

•	 t-transition ⇒a
t
 : There exists at least one set of applica-

ble programs P ∈ P such that every p ∈ P is T-program 
with T-rule in the form x

T
−→a or x

T
↔a, x ∈ A and the set 

P is maximal.
•	 n-transition ⇒n : There exists at least one set of applicable 

programs P ∈ P such that every pi ∈ P is N-program and 
the set P is maximal.

•	 tmin-transition ⇒a
tmin

 : There exists at least one set 
of applicable programs P ∈ P such that there is at least 
one T-program in P in the form x

T
−→a or x

T
↔a, x ∈ A and 

possibly N-programs. The set P is maximal.
•	 tmax-transition ⇒a

tmax
 : There exists at least one set 

of applicable programs P ∈ P such that P contain as 
many T-programs (they are in a form x

T
−→a or x

T
↔a, x ∈ A)  

as possible, P can contain N-programs too, and the set 
P is maximal.

We say that a PCol automaton works in t (tmax, tmin) mode 
of computation if it uses only t- (tmax-, tmin-) transitions. 
It works in nt (ntmax or ntmin) working mode if it uses 
t-(tmax- or tmin-) transitions and if there is no set of appli-
cable T-programs it can use n-transition. PCol automaton 
works in  init mode if it performs only t-transitions and after 
reading all the input symbols it makes n-transitions.

If the PCol automaton works in t, tmax or tmin mode, then 
it reads one input symbol in every step of computation. Con-
sequently, the length of the computation equals to the length 
of the input string. Notice that this property strongly resem-
bles to some property of �-free finite automata.

The computation by a PCol automaton may end in a final 
state. It is successful if the whole input tape is read and the 
PCol automaton is in some configuration in F.

Let M = {t, nt,tmax,ntmax,tmin,ntmin,init}.
The language accepted by a PCol automaton � , given 

as above, is defined as the set of strings which can be read 
during a successful computation:

L(� , mode) ={w ∈ A∗|(w;vE, o1,… , on)

can be transformed by�

into (�;wE,w1,… ,wn) ∈ F

with a computation in mode mode ∈ M}.

Let L(PColA,mode) denote the class of languages accepted 
by PCol automata in the computational mode mode ∈ M.

Language classes of the Chomsky hierarchy can be 
described by PCol automata as follows [13].

•	 For every regular language L there exists a PCol automa-
ton working in the t-mode having only one agent accept-
ing all words from L.

•	 There exists a context-free language that can be accepted 
by a PCol automaton with only one agent and working in 
the t-mode.

•	 The family of languages accepted by PCol automata with 
one agent working in the t-mode is a subfamily of the 
family of context-sensitive languages.

It is open question whether the family of context-sensitive 
languages is equal to the family of languages accepted by 
PCol automata with one agent working in the t-mode. Notice 
that unlike other variants of P colonies PCol automata work-
ing in the t-mode are not computationally complete.

In [13], it was shown that class of languages accepted 
by PCol automata working in the nt, ntmin or ntmax mode 
equals to the class of recursively enumerable languages, 
respectively. The workspace needed to obtain this compu-
tational power is provided by the interaction between the 
agents and the environment.

•	 L(PColA,nt) = RE in [13],
•	 L(PColA,ntmin) = RE in [13],
•	 L(PColA,ntmax) = RE in [13],
•	 L(PColA,init) = RE in [8].

4.2 � Generalized PCol automaton

In [39] a model, called generalized P colony automaton 
(genPCol automaton, for short) was introduced that com-
bines features of P colonies and P automata. (For detailed 
information on P automata consult [50]). In the following we 
describe the main features of this construct, for the technical 
details the reader is referred to [39, 41].

In case of P colony automata there is an input string 
given, while in case of P automata the accepted string is 
defined as a map of the sequence of multisets entering the P 
system during the successful (usually halting) computation. 
An idea similar to P automaton is employed in the concept 
of generalized P colony automaton, namely, determining 
the accepted strings through the sequences of multisets 
processed during computations. The computations of the P 
colony define accepted multiset sequences, which are turned 
into accepted strings by mapping the multiset sequences to 
strings over some previously given alphabet. The rules of 
the underlying P colony that describes the communication 
with the environment are of two types: standard rules and 
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so-called tape rules. The application of a tape rule also rep-
resents the reading of the processed symbol from the input, 
but unlike the original model, the P colony automaton is 
allowed to read more than one such symbol in a single com-
putational step. This means that during a computation con-
sisting of a sequence of computational steps, a sequence of 
multisets is read from the input. This sequence of multisets 
then can be mapped into a string (a sequence of symbols) in 
a similar way as in P automata.

In [39] the so-called permutation mapping (also known 
from the field of P automata) is used to create the accepted 
strings from the accepted multiset sequences. Some basic 
variants of the model were introduced and studied.

In [41] the authors considered three possible ways of 
dealing with tape rules in the programs: the unrestricted 
case, the case when each program contains at least one tape 
rule (all-tape programs), and the case when all communica-
tion rules are tape rules (com-tape programs). It was shown 
that in the unrestricted case, even systems with capacity 
one are able to characterize the class of recursively enu-
merable languages. For capacities greater than two, all-tape 
and com-tape genPCol automata behave differently: all-tape 
systems describe the class of recursively enumerable lan-
guages, while the power of com-tape systems is bounded by 
the power of so-called restricted logarithmic space Turing 
machines. (For these variants of a Turing machines see 
[29]). It is also shown that com-tape systems of capacity 
two are already able to accept languages that are not possible 
to be accepted by P automata.

4.3 � APCol systems

In [10] the authors make one step further in combining prop-
erties of P colonies and automata. While the behaviour of 
the agents of PCol automata is determined both by the string 
to be processed and the environment consisting of multisets 
of symbols, in the case of APCol systems (Automaton-like 
P colonies), the agents act only on the input string. This 
interaction between the agents of the P colony and the input 
string is realized by exchanging symbols between the objects 
of the agents and that of the string (communication rules), 
and the states of the agents can change both by communi-
cation and evolution; the latter one is an application of a 
rewriting rule to an object. The distinguished symbol, e (in 
the previous models the environmental symbol) has a special 
role: whenever it is exchanged by a symbol in the environ-
mental string, this symbol is erased. An evolution rule is 
of the form a → b . It means that object a inside the agent is 
rewritten (evolved) to the object b. The second type of rules 
are called communication rules. A communication rule is 
in the form c ↔ d . When this rule is performed, the object c 
inside the agent and a symbol d in the string are exchanged, 

so, we can say that the agent rewrites symbol d to symbol c 
in the input string. If c = e , then the agent erases d from the 
input string and if d = e , symbol c is inserted into the string.

The computation in APCol systems starts with an input 
string, representing the environment, and with each of the 
agents having only symbols e in their state. (Note that the 
initial states of the agents can be chosen not to consist of 
only e.)

A computational step means a maximally parallel action 
of the active agents, i.e., agents that can apply their rules. 
Every symbol can be object of the action of only one agent. 
The computation ends if the input string is reduced to the 
empty word, there are no more applicable programs in the 
system, and meantime at least one of the agents is in so-
called final state.

Definition 5  An Automaton-like P colony (an APCol sys-
tem, for short) is a construct

•	 A is an alphabet; its elements are called the objects,
•	 e ∈ A , called the basic object,
•	 Bi, 1 ≤ i ≤ n , are agents. Each agent is a triplet 

Bi =
(
oi,Pi,Fi

)
 , where

•	 oi is a multiset over A, describing the initial state 
(content) of the agent, |oi| = 2,

•	 Pi =
{
pi,1,… , pi,ki

}
 is a finite set of programs associ-

ated with the agent, where each program is a pair of 
rules. Each rule is in one of the following forms:

•	 a → b , where a, b ∈ A , called an evolution rule,
•	 c ↔ d , where c, d ∈ A , called a communication 

rule,

•	 Fi ⊆ A∗ is a finite set of final states (contents) of 
agent Bi.

As in the case of other variants of P colonies, the number 
of objects inside the agents are called the capacity of the 
APCol system, which is 2.

During the work of the APCol system, the agents perform 
programs. Since both rules in a program can be commu-
nication rules, an agent can work with two objects in the 
string in one step of the computation. In the case of program 
⟨a ↔ b;c ↔ d⟩ , a substring bd of the input string is replaced 
by string ac. If the program is of the form ⟨c ↔ d; a ↔ b⟩ , 
then a substring db of the input string is replaced by string 
ca. That is, the agent can act only in one place in one step 
of the computation and the change of the string depends 
both on the order of the rules in the program and on the 

� = (A, e,B1,… ,Bn), n ≥ 1, where
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interacting objects. In particular, we have the following types 
of programs with two communication rules:

•	 ⟨a ↔ b; c ↔ e⟩ - b in the string is replaced by ac,
•	 ⟨c ↔ e; a ↔ b⟩ - b in the string is replaced by ca,
•	 ⟨a ↔ e; c ↔ e⟩ - ac is inserted in a non-deterministically 

chosen place in the string,
•	 ⟨e ↔ b; e ↔ d⟩ - bd is erased from the string,
•	 ⟨e ↔ d; e ↔ b⟩ - db is erased from the string,
•	 ⟨e ↔ e; e ↔ d⟩ ; ⟨e ↔ e; c ↔ d⟩ , ...- these programs can 

be replaced by programs of type ⟨e → e; c ↔ d⟩.

At the beginning of the computation of the APCol system 
the environment is given by a string � of objects which 
are different from e. Consequently, an initial configuration 
of the APCol system is an (n + 1)-tuple c = (�; o1,… , on) 
where � is the input string and the other n components are 
multisets of strings of objects, given in the form of strings, 
the initial states of the agents.

A configuration of an APCol system �  is given by 
(w;w1,… ,wn) , where |wi| = 2, 1 ≤ i ≤ n , wi represents 
the state of the i-th agent and w ∈ (A − {e})∗ is the string 
to be processed.

The language Lacc(�) accepted by �  is the set of 
words over (A − {e}) which are accepted by �  . A string 
� is accepted by the APCol � if there exists a computa-
tion by �  such that it starts in the initial configuration (
�;o1,… , on

)
 and the computation ends by halting in the 

configuration 
(
�;w1,… ,wn

)
 , where at least one of wi ∈ Fi 

for 1 ≤ i ≤ n.
APCol systems are powerful computational devices as 

it is shown in [10]:
Let A be an alphabet and let L ⊆ A∗ be a recursively 

enumerable language. Let L� = S ⋅ L ⋅ E , where S,E ∉ A . 
Then there exists an APCol system � with two agents such 
that L� = L(�) holds.

APCol systems can also be used not only for accept-
ing but generating strings. A string wF is generated by an 
APCol system � if there exists a computation starting in 
an initial configuration (�;ee,… , ee) and the computation 
ends by halting in configuration 

(
wF;w1,… ,wn

)
 , where 

wi ∈ Fi for at least one wi , 1 ≤ i ≤ n . The language Lgen(�) 
generated by �  is the set of words over (A − {e}) which 
are generated by �.

Particularly important are those variants, where the pro-
grams are restricted (as defined for standard P colonies).

We denote by APColaccR(n) (or APColacc(n) ) the family 
of languages accepted by APCol systems having at most 
n agents, n ≥ 1 , with restricted programs only (or without 
this restriction). Analogously, we denote by APColgenR(n) 
the family of languages generated by APCol systems hav-
ing at most n agents, n ≥ 1 , with restricted programs only, 

and APColgen(n) denotes the case when the programs are 
without any restriction.

We may associate sets of numbers to APCol systems 
working in the generating or the accepting mode in the 
usual manner.

For an APCol system � , NLacc(�) and NLgen(�) denote 
the length sets of Lacc(�) and Lgen(�) , respectively. The 
family of length sets of languages accepted or generated 
by restricted APCol systems with at most n agents, n ≥ 1 , 
is denoted by NAPColxR(n) , x ∈ {acc,gen} , respectively, 
and NAPColx(n) denotes the case when the programs are 
without any restriction.

The following results were obtained in [10]:

•	 NAPColgenR(2) = NRE.
•	 NRMpb ⊆ NAPColgenR(1).

•	 APColgenR(1) ⊆ MAT𝜀.

In case of the original concept of APCol systems, the input 
string is accepted if it can be reduced to the empty word. 
Recently, a new variant of acceptance by APCol systems 
has been introduced where the agents explore and verify 
their common environment, i.e. the input the string. The 
notion was introduced as verifying APCol system (or APCol 
systems with verifier agents) [14, 15]. In this case, an input 
string of length n is accepted if there is a halting computation 
c such that the length of the environmental string remains 
unchanged during the computation and for every agent and 
for each position each i, 1 ≤ i ≤ n , there is an environmental 
string obtained by c such that the agent applies a rule to posi-
tion i. It is shown that APCol systems with verifier agents 
simulate nondeterministic two-way multihead automata. The 
result implies that any language in NSPACE(log n)can be 
accepted by an APCol system with verifier agents.

4.3.1 � APCol systems with teams

In [21] the authors introduced the concept of APCol systems 
with coloured teams. The concept of teams in P colonies was 
first proposed in [27]. APCol systems with teams function 
in the following manner: in every computation step only 
one team is allowed to work (only one team is active) and 
all of its components (agents) should perform a program 
in parallel. Each team is associated with a colour. A string 
is accepted by an APCol system with coloured teams, if 
starting with the string as initial string the computation is 
unbounded and its teams with the final colour are active 
in an infinite number of steps and the teams of the other 
colours are active only in a finite number of steps. By this 
the APCol systems join unconventional Turing equivalent 
computing devices and computational models which “go 
beyond” Turing, i.e., which are able to compute more than 
recursively enumerable sets of strings or numbers.
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Red-green Turing machines were introduced in [47] and 
they exceed the power of Turing machines since they rec-
ognize exactly the �2-sets of the Arithmetical Hierarchy. 
These machines are deterministic and their state sets are 
divided into two disjoint sets, called the set of red states and 
the set of green states. Red-green Turing machines work 
on finite input words with the following recognition crite-
rion on infinite runs: no red state is visited infinitely often 
and one or more green states are visited infinitely often. A 
change from a green state to a red state or reversely is called 
a mind change. In [47], it is shown that every recursively 
enumerable language can be recognized by a red-green 
Turing machine with one mind change. It is also proved 
that if more than one mind changes may take place, then 
red-green Turing machines are able to recognize the comple-
ment of any recursively enumerable language. In the anal-
ogy of the concept of red-green Turing machines, red-green 
counter machines (red-green register machines) were defined 
and examined [1]. The authors proved that the computations 
of a red-green Turing machine TM can be simulated by a 
red-green register machine RM with two registers and with 
string input in such a way that during the simulation of a 
transition of TM leading from a state p with colour c to a 
state p′ with colour c′ the simulating register machine uses 
instructions with labels (states) of colour c and only in the 
last step of the simulation changes the label (state) to colour 
c′ . They showed that the reverse simulation works as well.

In [21] the authors showed that any red-green counter 
machine can be simulated with an APCol system with col-
oured teams with two colours. The teams either consist of 
only one agent and then the system works sequentially, or 
the APCol system has teams of at most two agents acting 
in parallel.

4.3.2 � APCol systems with agent creation

In [20], the author introduced the programs for agent crea-
tion. For this purpose, a new special object @ was defined. If 
an agent contains object @, the agent makes a copy of itself. 
This action is done by executing a program formed from two 
rewriting rules. The order of rules in a program determines 
whether the rewriting rule without @ is used before or after 
the creation of the child-agent. Let x@ be a contents of agent 
A with program p1 = ⟨@ → b;x → y⟩ . After execution of 
the program p1 there is one new child-agent in the APCol 
system with the same label and the same set of programs 
as the parent-agent A has. The contents of the parent-agent 
after the execution of the program is by while the contents 
of the child-agent is bx. If the parent-agent has a program 
p2 = ⟨x → y;@ → b⟩ , then after the execution of the pro-
gram p2 the contents of parent-agent is by and the contents 
of the child-agent is by, too.

When an agent contains the object @ the agent must cre-
ate a new agent in the next step of the computation if there 
is some applicable program in its set of programs.

Here we provided the main ideas, for the technical details 
the reader is referred to [20].

In [20] the author showed that APCol systems with agent 
creation can solve 3SAT in linear time (3SAT is a famous 
NP complete problem).

5 � Other models raised from P colonies

In this section we focus to the models related to P colonies 
and using different type of rules.

5.1 � P colonies with prescribed teams

P colonies with prescribed teams were introduced in [36]. 
Unlike the original variants of P colonies, the agents use 
finite sets of rules called teams instead of programs; with 
each agent a finite set of teams is given, with priorities 
(pri) among them. The used rules can be communicat-
ing (com), rewriting (rew), and so-called membrane rules 
(mem). The membrane rules are in a form a ↣ b (a goes 
out and becomes b) or b ↢ a (a goes in and becomes b).

The P colony can work in sequential (seq) or parallel 
(par) manner. The rules are applied by the team in parallel 
manner with various stop conditions: ∗ (stop after arbitrary 
number of derivation steps), ≤ l , ≥ l , resp. = l (stop after at 
most l, at least l resp. after exactly l derivation steps) and 
t0 (the team becomes inactive when it is no longer able to 
work as a team.)

At each step of the computation, the contents of the 
environment and the contents of every agent changes in the 
following way: in the maximally parallel derivation mode, 
each agent which can use any of its teams should use one 
(non-deterministically chosen) in the mode d, while in 
the sequential derivation mode, one agent uses one of its 
teams in the mode d at a time (non-deterministically cho-
sen). As in the usual case, any copy of an object can be 
involved in only one rule. Using the teams as described 
above, with all agents acting simultaneously or sequen-
tially, non-deterministically choosing the team(s) to be 
applied, the P colony changes its configuration.

In [36], the authors showed that the families of P colo-
nies with prescribed teams are computationally complete 
if some conditions hold. These conditions concern, for 
example, the working mode, the number of objects in the 
agents using rewriting and communication rules, the prior-
ity among the teams, the number of teams.
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The following table summarizes the list of results on 
computational completeness of P colonies with prescribed 
teams which use rewriting and communication rules [36].

In the tables, below, d indicates that the results hold for 
any of the modes.

Com-
puta-
tional 
mode

Capac-
ity

Max. 
num-
ber of 
sets 
in the 
team

Max. 
num-
ber of 
rules 
in the 
set

Num-
ber of 
agents

Num-
ber of 
teams

Priori-
ties

Mode

seq 2 2 1 * 6 pri d
par 2 2 1 * 5 d
seq 2 2 1 1 * pri d
seq 2 2 2 1 * t0

The following table contains a list of results from [36] 
concerning P colonies using membrane rules only. 

Com-
puta-
tional 
mode

Capac-
ity

Max. 
num-
ber of 
sets 
in the 
team

Max. 
num-
ber of 
rules 
in the 
set

Num-
ber of 
agents

Num-
ber of 
teams

Priori-
ties

Mode

seq 2 2 1 * 12 pri d
seq 2 2 1 1 * pri d
par 2 3 1 * 10 d
par 2 3 2 * 5 d
seq 1 2 2 1 * t0

seq 1 2 1 1 * pri t0

5.2 � 2D P colonies

In [19] a new model, called 2D P colony was introduced. 
As in the original model, the P colony is of capacity two 
and the agents are equipped with sets of the programs 
formed from rules—communication and evolution. The 
main change is in the environment. Namely, the authors 
put the agents into the 2D grid of square cells and they 
provide the agent with the possibility to move—the motion 
rule. The direction of the movement of the agent is deter-
mined by the contents of cells surrounding the cell in 
which the agent is placed.

The program can contain at most one motion rule. To 
achieve the greatest simplicity in agent behaviour, one 
other condition was set. If the agent moves, it cannot com-
municate with the environment. So if the program contains 
a motion rule, then the other rule is an evolution rule.

Definition 6  A 2D P colony is a construct

•	 A is an alphabet of the colony, its elements are called 
objects,

•	 e ∈ A is the basic environmental object of the 2D P 
colony,

•	 Env is a pair (m × n,wE) , where m × n,m, n ∈ N  is the 
size of the environment and wE is the initial contents 
of environment, it is a matrix of size m × n of multisets 
of objects over A − {e}.

•	 Bi, 1 ≤ i ≤ k , are agents, each agent is a construct 
Bi =

(
oi,Pi, [o, p]

)
, 0 ≤ o ≤ m, 0 ≤ p ≤ n , where

•	 oi is a multiset over A, it determines the initial state 
(contents) of the agent, |oi| = 2,

•	 Pi =
{
pi,1,… , pi,li

}
, l ≥ 1, 1 ≤ i ≤ k is a finite set of 

programs, where each program contains exactly 2 
rules, which are in one of the following forms each:

•	 a → b , called the evolution rule, a, b ∈ A,
•	 c ↔ d , called the communication rule, c, d ∈ A,
•	

[
aq,r

]
→ s, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓} , called 

the motion rule,

•	 f ∈ A is the final object of the colony.

A configuration of the 2D P colony is given by the state 
of the environment—matrix of type m × n with multisets 
of objects over A − {e} as its elements—and by the state 
of all agents—pairs of objects from alphabet A and the 
coordinates of the agents. An initial configuration is given 
by the definition of the 2D P colony.

A computational step consists of three parts. The first 
part lies in determining the set of applicable programs 
according to the current configuration of the 2D P colony. 
In the second part, we have to select from this set one 
program for each agent, in such a way that there is no 
collision between the communication rules belonging to 
different programs. The third part is the execution of the 
chosen programs.

� = (A, e,Env,B1,… ,Bk, f ), k ≥ 1, where

1 2

Fig. 1   Pattern beacon changes in two consecutive steps
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A change of the configuration is triggered by the execu-
tion of programs and it involves changing the state of the 
environment, contents and placement of the agents.

A computation is non-deterministic and maximally par-
allel. The computation ends by halting when there is no 
agent with applicable program.

The result of the computation is the number of copies 
of the final object placed in the environment at the end of 
the computation.

The aim of introducing 2D P colonies is not studying 
their computational power but monitoring their behaviour 
during the computation.

In [19] an example for a 2D P colony simulating a kind 
of cellular automata—Conway’s Game of Life ( [37]) is 
presented. The following example is the pattern called 
beacon (see Fig. 1).

Let �2 be 2D P colony defined as follows: 
�2 = (A, e,Env,B1,… ,B16, f ) , where

•	 A = {e, f ,D, S, Z,M,O,L,N},
•	 e ∈ A is the basic environmental object of the 2D P 

colony,
•	 Env = (6 × 6,wE),

•	 wE =

⎡
⎢⎢⎢⎢⎢⎢⎣

D D D D D D

D S S D D D

D S S D D D

D D D S S D

D D D S S D

D D D D D D

⎤⎥⎥⎥⎥⎥⎥⎦

,

•	 B1 =
(
ee,P1, [1, 1]

)
,  B2 =

(
ee,P2, [1, 2]

)
, . . . , 

B16 =
(
ee,P16, [4, 4]

)
,

•	 f ∈ A is the final object of the 2D P colony.

The states of the automata are stored inside the cells (D—
dead automaton, S—live automaton ). There is only one 
kind of agent in this 2D P colony, so there are 16 identical 
agents located in the matrix 4 × 4 of inner cells with fol-
lowing programs:

The f irst  program is to initialize the agent 
< e ↔ e; e → Z >;

we sort the programs using the number of copies of 
object S in the condition of the motion rule.

1.	 When neighbouring automata are dead—a single pro-
gram for both dead as well as alive automaton �⎡⎢⎢⎣

D D D

D e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
.

2.	 When there is one alive neighbouring automaton—there 
are eight possible programs for dead and alive automata 

�⎡⎢⎢⎣

S D D

D e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
 and seven other combina-

tions.
3.	 When there are 2 alive neighbouring automata—28 pro-

grams for alive automata 

�⎡⎢⎢⎣

S S D

D S D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → O

�
 

and other 27 combinations.
4.	 When there are 2 alive neighbouring automata—28 pro-

grams for dead automata 

�⎡⎢⎢⎣

S S D

D D D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
 

and other 27 combinations.
5.	 When there are 3 alive neighbouring automata—56 pos-

sible programs for dead and alive automata �⎡⎢⎢⎣

S S S

D e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → O

�
 and other 55 combinations.

6.	 When there are 4 alive neighbouring automata—seventy 
possible programs for dead and alive automata �⎡⎢⎢⎣

S S S

S e D

D D D

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
 and other 69 combinations.

7.	 When there are at least 5 alive neighbouring autom-
ata—56 possible programs for dead and alive automata �⎡⎢⎢⎣

S S S

S e S

e e e

⎤⎥⎥⎦
→ ⇑ ; Z → M

�
 and other 55 combinations.

After executing one of the above programs, all agents move 
one step upwards and rewrite one of their objects e to object 
M (automaton will be dead) or to object O (automaton will 
be live). The following programs are for downward move-
ment and for updating the state of an automaton, i.e., the 
replacement of the object in the cell for an object in the agent 
to change the state of the automaton.

(see Fig. 2).

6 � Applications of P colonies

Robot controllers P colonies and PCol automata were intro-
duced as robot controllers in [6]. The authors followed two 
ideas of controlling a robot with use of P colonies.

�⎡
⎢⎢⎣

e e e

e e e

e e e

⎤
⎥⎥⎦
→ ⇓ ; O → S

�
;

�⎡
⎢⎢⎣

e e e

e e e

e e e

⎤
⎥⎥⎦
→ ⇓ ; M → D

�
;

⟨e → L; S ↔ S⟩; ⟨e → L; D ↔ S⟩; ⟨S → e; L → e⟩;
⟨D → e; L → e⟩;
⟨e → L; S ↔ D⟩; ⟨e → L; D ↔ D⟩.
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The first controller model used the PCol automaton with 
instructions for the robot on the input tape. The agents have 
to read the current information from the tape and together 
with objects in the environment coming from the receptors, 
they generate objects—commands for actuators.

The agents are assembled into modules. All the modules 
are controlled by the main control unit. Each input symbol 
on the input tape represents a single instruction which has 
to be done by the robot, so the input string is the sequence 
of the actions which guides the robot in reaching its goal; 
performing all the actions. In this meaning the computation 
ends by halting, and it is successful if the whole input tape 
is read.

The second idea was to use original model of the P col-
ony and put all information to the environment. They also 
used module-oriented structure of agents, each module per-
forms the individual functions in the control of the robot. 
The authors constructed a P colony with four modules: The 
control unit, the left actuator controller, the right actuator 
controller and the infra-red receptors. The controller (the 
P colony) is completed by the input and output filter. The 
input filter codes signals from the robot receptors and spread 
the coded signal into the environment. In the environment 
there is the coded signal used by the agents. The output filter 
decodes the signal from the environment which the actuator 
controllers sent into it. Decoded signal is forwarded to the 
robot actuators.

Surface runoff 2D P colonies appear to be suitable to 
simulate multi-agent systems. In [5] the authors presented 
hydrological modelling flow of liquid over the earth’s sur-
face using 2D P colonies.

The issue of the flow of liquid over the Earth’s sur-
face is studied by experts from two areas - hydrology and 
geoinformatics. Both of these disciplines work closely 

together on the issue of the so-called “surface runoff”. 
Surface runoff is the water flow that occurs when the soil 
is saturated to full capacity and excess water from rain, 
meltwater, or other sources flows over the land.

Agents in the model have capacity 2, the agent con-
tains two objects. Each of the objects carries the informa-
tion about the state of the agent. One of the objects stores 
information about the activity of the agent. At this stage of 
the simulation it is the information that the agent “flows” 
down the terrain or the agent is still inactive (belonging 
to the future rainfall). The other object stores information 
about the previous direction of flow. This information can 
further modify the way of the agent as inertia.

Based on the entered data—the slope surface, a source 
of fluid and quantity—they simulated the fluid distribution 
in the environment.

The research continues in [22] where the model can fill 
sinks (places without output).

7 � Open problems and conclusions

We recalled the idea and functioning of the basic model 
of P colonies. This model was introduced in [44] in 2004. 
Since that time many papers and studies about the model and 
its variations have been published.

Almost all these works are focused on describing the com-
putational power of more or less restricted variants of P col-
onies. Although extensive investigations have been made in 
this direction, some important questions remain open: what 
about deterministic P colonies? Furthermore, how to define 
determinism in P colonies? Another interesting question can 
be the problem of reversibility: how to define reversible P 
colonies and, thus, reversible computation in P colonies?

Fig. 2   The sequence of con-
figurations of the 2D P colony 
simulating beacon
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One reasonable idea is to introduce these concepts on 
the analogy of deterministic and/or reversible P systems. By 
[3], a P system is strongly reversible if every configuration 
has in-degree at most one and it is called reversible if every 
reachable configuration has in-degree at most one. We call 
a P system strongly deterministic if every configuration has 
out-degree at most one; and it is called deterministic if every 
reachable configuration has out-degree at most one. (By a 
reachable configuration we mean a configuration that is 
reachable from the initial configuration; the in-degree means 
all pre-images of the configuration not only the reachable.) 
We note that these notions were considered for a particular 
variant of (symport/antiport) P systems, but obviously, they 
can be considered for other variants as well (see, for example 
[2]). An extensive study of deterministic and/or reversible 
P systems has been performed during the years, focusing on 
the computational power of these systems, decidability ques-
tions, existence of syntactic criteria for deciding whether or 
not the P system is (strongly) deterministic or reversible. 
For more information, the reader is referred to [2, 3]. These 
problems and questions are interesting for P colonies and its 
variants as well. Furthermore, the so-called k-determinism, 
where every configuration has at most k successor configura-
tions ( k > 1 ) would also be interesting. For this concept, in 
the theory of P systems, we refer to [4, 49].

Automaton-like P colonies (PCol automata and their 
variants) are topics of further study as well. Although they 
have been compared to some classical and non-classical 
automata variants, precise descriptions of their relation to 
P automata and to some further variants of classical and 
non-classical automata would be very useful. Comparison 
of automaton-like P colonies and dP automata was initiated 
in [38], pp. 564-565. P automata are variants of antiport 
P systems accepting strings in an automaton-like fashion 
(for a summary on P automata, see Chapter 6 [50]). The 
notion of a dP automaton (distributed system of P automata) 
was introduced in [52]. A dP automaton consists of a finite 
number of component P automata which have their separate 
inputs and which also may communicate with each other by 
means of special antiport-like rules (roughly speaking, an 
antiport rule exchanges multisets of objects u and v where 
u is in the parent region and v is in the child region). A 
string accepted by a dP automaton is the concatenation of 
the strings accepted by the individual components during a 
computation performed by the system. For more informa-
tion on dP automata, the interested reader is referred to the 
survey [26] and to [53]. A dP automaton is called finite if it 
has only a finite number of different configurations. A com-
parative study of automaton-like P colonies (APCol systems, 
PCol automata) and finite dP automata with several accept-
ance modes would be especially interesting.

P colonies can also be compared to several types of P sys-
tems, e.g. tissue-like constructs. Generalized communicating 

P systems, where the rules of this tissue-like membrane sys-
tems describe the move of pairs of objects from pairs of 
compartments to new locations (each object of the pair is 
moved to a new compartment) demonstrate functional simi-
larity to P colonies. Initial steps in this direction have been 
made in [46].

2D P colonies are also important extensions of P colonies. 
This model was found suitable for simulations of multi-agent 
systems. One of the simulation introduced in [5] is the simu-
lation of surface runoff.

In the future, many ways appear for improving the model 
of the 2D P colonies. One way is to assign the number to 
objects in addition to the type. This number will indicate the 
value of the parameter that the object represents. Another 
possibility is to extend the environment with a mechanism 
which is able to change the object in the environment inde-
pendently from the activity of the agents.

The concepts and results reported in this survey demon-
strate that P colonies (and their variants) are simple but very 
powerful devices. In addition, they can serve as modelling 
tools as well. The reader is welcome to contribute in explor-
ing this fruitful research area.
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