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Abstract. It is well known that the kind of P systems involved in the
definition of the P conjecture is able to solve problems in the complexity
class P by leveraging the uniformity condition. Here we show that these
systems are indeed able to simulate deterministic Turing machines working
in polynomial time with a weaker uniformity condition and using only one
level of membrane nesting. This allows us to embed this construction into
more complex membrane structures, possibly showing that constructions
similar to the one performed in [1] for P systems with charges can be
carried out also in this case.

1 Introduction

The construction of P systems simulating Turing machines (TM) using as few
membranes (or cells) as possible and limiting the depth of the system is one
of the “tricks” that allowed the nesting of multiple machines to solve problems
in large complexity classes. For example, nesting of non-deterministic machines
(where the non-determinism was simulated by membrane division) and a counting
mechanism allows to characterize P#P, the class of all problems solvable by a
deterministic TM with access to a #P oracle [1,3]. The same ideas can be applied
to tissue P systems [4], where the different communication topology makes even
more important to keep TM simulations compact [2].

The P conjecture is a long-standing open problem in membrane computing
first presented in 2005 [7, Problem F] that, in its essence, asks what is the power
of one charge when compared to two charges. We feel that one important step to
determine the computational power of active membrane systems without charges
and with membrane dissolution is to see which is the minimal system able to
simulate a deterministic polynomial-time TM. Here we show that a shallow
system is sufficient to perform such a simulation without delegating everything to
the machine of the uniformity condition. Hopefully, this construction will allow
us to define systems in which different TM can be “embedded” at different levels
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in a large membrane structure, thus making possible to mimic the construction
performed in [1] for P systems with charges.

This paper is organized as follows: Section 2 will recall some basic notions
on P systems. The main construction and result is presented in Section 3, while
ideas for further research are presented in Section 4.

2 Basic Notions

For an introduction to membrane computing and the related notions of formal
language theory and multiset processing, we refer the reader to The Oxford
Handbook of Membrane Computing [8]. Here we recall the formal definition of
P systems with active membranes using weak non-elementary division rules [6,9].

Definition 1. A P system with active membranes with dissolution rules of
initial degree d ≥ 1 is a tuple

Π = (Γ,Λ, µ, wh1 , . . . , whd
, R)

where:

– Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
– Λ is a finite set of labels;
– µ is a membrane structure (i.e., a rooted unordered tree, usually represented
by nested brackets) consisting of d membranes labelled by elements of Λ in a
one-to-one way;

– wh1
, . . . , whd

, with h1, . . . , hd ∈ Λ, are multisets (finite sets with multiplicity)
of objects in Γ , describing the initial contents of each of the d regions of µ;

– R is a finite set of rules.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a→ w]h.
They can be applied inside a membrane labelled by h and containing an
occurrence of the object a; the object a is rewritten into the multiset w (i.e., a
is removed from the multiset in h and replaced by the objects in w).

(b) Send-in communication rules, of the form a [ ]h → [b]h.
They can be applied to a membrane labelled by h and such that the external
region contains an occurrence of the object a; the object a is sent into h
becoming b.

(c) Send-out communication rules, of the form [a]h → [ ]h b.
They can be applied to a membrane labelled by h and containing an occurrence
of the object a; the object a is sent out from h to the outer region becoming b.

(d) Dissolution rules, of the form [a]h → b.
They can be applied to a non-skin membrane labelled by h and containing
an occurrence of the object a; the object a is sent out from h to the outer
region becoming b, the membrane h ceases to exist and all the other objects
it contains are sent into the outer region.



A computation step changes the current configuration according to the fol-
lowing principles:

– The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, or division rules must be subject
to exactly one of them. Analogously, each membrane can only be subject
to one communication or dissolution rule (types (b)–(d)) per computation
step; for this reason, these rules will be called blocking rules in the rest of
the paper. As a result, the only objects and membranes that do not evolve
are those associated with no rule.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously
in an atomic way. However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps whereby each membrane evolves only after its internal configuration
(including, recursively, the configurations of the membrane substructures it
contains) has been updated.

– The outermost membrane (the root of the membrane structure) cannot be
divided, and any object sent out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence C = (C0, . . . , Ck)
of configurations, where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable in Ck.

P systems can be used as language recognisers by employing two distinguished
objects yes and no: we assume that all computations are halting, and that either
one copy of object yes or one of object no is sent out from the outermost membrane,
and only in the last computation step, in order to signal acceptance or rejection,
respectively. If all computations starting from the same initial configuration are
accepting, or all are rejecting, the P system is said to be confluent.

In order to solve decision problems (or, equivalently, decide languages), we use
families of recogniser P systems Π = {Πx : x ∈ Σ?}. Each input x is associated
with a P system Πx deciding the membership of x in a language L ⊆ Σ? by
accepting or rejecting. The mapping x 7→ Πx must be efficiently computable for
inputs of any length, as discussed in detail in [5].

Definition 2. A family of P systems Π = {Πx : x ∈ Σ?} is (polynomial-
time) uniform if the mapping x 7→ Πx can be computed by two polynomial-time
deterministic Turing machines E and F as follows:

– F (1n) = Πn, where n is the length of the input x and Πn is a common
P system for all inputs of length n, with a distinguished input membrane.

– E(x) = wx, where wx is a multiset encoding the specific input x.
– Finally, Πx is simply Πn with wx added to a specific membrane, called the

input membrane.



The family Π is said to be (polynomial-time) semi-uniform if there exists a
single deterministic polynomial-time Turing machine H such that H(x) = Πx

for each x ∈ Σ?.

Any explicit encoding of Πx is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced in order to mimic a (hypothetical) realistic process of
construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual
physical space proportional to their number; see also [5] for further details on
the encoding of P systems.

3 Simulation of Polynomial-time Turing machines

In this section we provide a simulation of a deterministic TM working in polyno-
mial time by a P system that uses only one level of nesting. Any information
exchange between objects can happen only via dissolution. By applying different
evolution rules, it is possible for an object to detect whether it is inside or outside
an elementary membrane (i.e., to “know” if the elementary membrane where it
was has been dissolved). By combining this mechanism with a timer, it is also
possible to encode the time when the membrane was dissolved, thus allowing to
evolve in different ways according to this additional information.

Let M be a polynomial-time deterministic TM having alphabet Σ, set of
states Q, and transition function δ : Q × Σ → Q × Σ × {−1,+1}. We assume
that, for an input of length n machine M halts in time p(n) and, thus, it uses no
more than p(n) + 1 cells. We are going to define a P system Π that simulates
the computation of M in O(p(n)|Σ|) steps. That is, the simulation of every step
of M will require a number of steps in Π that is proportional to the size of the
alphabet of M , thus providing an efficient simulation.

The P system Π has (p(n) + 1)2 + p(n)2 + p(n) + 1 labels, one for the skin
membrane and two for each pair of time and position in the TM tape:

Λ ={0} ∪ {(i, j) | i, j ∈ {0, . . . , p(n)}}
∪ {(i, j)′ | i ∈ {0, . . . , p(n)}, j ∈ {0, . . . , p(n)− 1}} .

Since we assume that no kind of membrane division is present, in the following
we can identify membranes with labels, since each label is used by exactly one
membrane. The semantics of the labels is that a membrane with label (i, j) will
represent the i-th cell of the TM tape at time j. The additional membrane (i, j)′

is used in performing the transition between time steps j and j + 1, which also
explains why the label is not present for time p(n).



The set of objects of the simulating P system will be:

Γ ={ai,j,k | i, j ∈ {0, . . . , p(n)}, 0 ≤ k < m+ 5, a ∈ Σ}
∪ {qi,j,k | i, j ∈ {0, . . . , p(n)}, 0 ≤ k ≤ m+ 5, q ∈ Q}
∪ {qi,j,k,a | i, j ∈ {0, . . . , p(n)}, 0 ≤ k ≤ m+ 5, q ∈ Q, a ∈ Σ}
∪ {ai | a ∈ Σ, i ∈ {0, . . . , p(n)}} ∪ {qI}

where m = |Σ| and qI is the initial state of the TM. The first three sets of the
union represent, respectively, the symbols on the tape, the states of the TM, and
the states of the TM together with the symbol currently present under the tape
head. The last two sets are only used to encode the initial configuration of the
TM. The value of k ranges from 0 to m+ 5 because each step of the TM will be
simulated in m+ 5 time steps.

Let a1, a2, . . . , ap(n) be the initial contents of the TM tape. It is encoded in
the initial configuration of Π as the objects a1,1, a2,2, . . . , ap(n),p(n) inside the
skin membrane. As an example, if the initial content of the tape is abba, then it
will be encoded by the multiset a1b2b3a4. The initial state qI is encoded by the
object qI . The following rules send the objects representing the TM tape inside
the corresponding membranes: the object ai is sent into the membrane (i, 0) and
is rewritten as ai,0,0. At the same time the object qI is rewritten as qI0,0,0:

ai [ ](i,0) → [ai,0,0](i,0) for a ∈ Σ

[qI → qI0,0,0]0

These rules will not be further applied during the simulation. After this first
“bookkeeping” step the actual simulation of one TM step can start; see Fig. 1 for
an example.

Let ϕ be a bijection from Σ to {1, . . . ,m} providing a total ordering of the
TM alphabet. The main idea is to have each object representing the symbol a
written on position i at time j on the TM tape dissolving the membrane (i, j)
when its subscript is i, j, ϕ(a). This means that any other object present in the
same membrane (in our case, the object representing the current state of the TM)
can infer the symbol under the tape head and act accordingly. The evolution of
the objects representing the tape content for the first m+ 1 time steps of each
TM step simulation is described by the following rules:

[ai,j,k → ai,j,k+1](i,j) for 0 ≤ k < ϕ(a) and a ∈ Σ
[ai,j,k](i,j) → ai,j,k+1 for k = ϕ(a) and a ∈ Σ
[ai,j,k → ai,j,k+1]0 for ϕ(a) < k ≤ m and a ∈ Σ

Notice how the objects simply “count” in the subscript, except that when k = ϕ(a)
the membrane in which they are contained is dissolved.

At the same time the object representing the TM state enters the membrane
(i, j), representing that the tape head at time j is in position i and starts to count.
When membrane (i, j) is dissolved it is possible to infer the object that dissolved
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Fig. 1. The simulation of one computation step of the TM M by means of a P system
Π. The alphabet Σ is {a, b} and the tape contains four cells.



it, and thus the symbol on the tape under the tape head, which is represented by
ϕ−1(a) (which is well defined since ϕ is a bijection between Σ and {1, . . . ,m}.
The corresponding rules are:

qi,j,0 [ ](i,j) → [qi,j,1](i,j) for q ∈ Q
[qi,j,k → qi,j,k+1](i,j) for 1 ≤ k ≤ m and q ∈ Q
[qi,j,k → qi,j,k+1,ϕ−1(k)]0 for 1 ≤ k ≤ m, and q ∈ Q
[qi,j,k,a → qi,j,k+1,a]0 for 1 ≤ k ≤ m, a ∈ Σ, and q ∈ Q

At time step m + 1 in the simulation of the current TM step, all membranes
with label (i, j) (for all i and with j the current TM step being simulated) have
been dissolved. Now the object representing the TM state continues to wait in
the skin membrane while all the objects representing the TM tape are sent in
into the corresponding membranes (i, j)′. These membranes will be employed to
delete the current content of the cell under the TM head and to replace it with
the new symbol. The rules applied at time step m+ 1 are the following ones:

ai,j,m+1 [ ](i,j)′ → [ai,j,m+2](i,j)′ for a ∈ Σ
[qi,j,m+1,a → qi,j,m+2,a]0 for q ∈ Q and for a ∈ Σ

Ones all the objects of the form ai,j,k have entered the membranes (i, j)′, they
wait for the object representing the TM state to enter:

[ai,j,m+2 → ai,j,m+3](i,j)′ for a ∈ Σ
qi,j,m+2,a [ ](i,j)′ → [qi,j,m+3,a](i,j)′ for q ∈ Q and a ∈ Σ

At time step m+ 3 the membrane containing the object representing the TM
state is dissolved. In all other membranes the objects representing the TM tape
wait for one more step:

[ai,j,m+3 → ai,j,m+4](i,j)′ for a ∈ Σ
[qi,j,m+3,a](i,j)′ → qi,j,m+4,a for q ∈ Q and a ∈ Σ

One of the focal point of this simulation algorithm happens at time step m+ 4
(always relative to the start of the simulation of the current TM step). Here, all
the objects representing the tape content dissolve the membrane (i, j)′ in which
they are in. The only object not performing this step is the one that was sent into
the skin membrane by the dissolution triggered by the object representing the
TM state. That object is deleted (by being rewritten into the empty multiset ε)
and the state object produces its replacement according to the transition function
δ of the TM:

[ai,j,m+4](i,j)′ → ai,j,m+5 for a ∈ Σ
[ai,j,m+4 → ε]0 for a ∈ Σ
[qi,j,m+4,a → qi,j,m+5,abi+d,j,m+5]0 for q ∈ Q, a ∈ Σ,

and δ(q, a) = (r, b, i+ d)



Notice that the state object will be actually rewritten from q to r during the next
time step. Finally, the simulation of the next TM step can start by sending in all
the objects representing the TM tape to the membranes (i, j + 1) and resetting
the last component of their subscript. At the same time the object representing
the TM state actually applies the transition function δ and rewrites itself:

ai,j,m+5 [ ](i,j+1) → [ai,j+1,0](i,j+1) for a ∈ Σ
[qi,j,m+5,a → ri+d,j+1,0]0 for q ∈ Q, a ∈ Σ,

and δ(q, a) = (r, b, i+ d)

Notice that all rules, labels, and objects can be constructed by a logarithmic
space TM. In fact, most of them are constructed by iterating either a constant
or a polynomial number of times to produce the necessary subscripts. Since the
counters are all at most polynomial in the number that they contain, they can
be encoded in a logarithmic number of bits.

We can thus state the main result:

Theorem 1. (, )-uniform families of confluent shallow P systems with active
membranes with dissolution and without division can solve all problems in P.

The result was already known for non-shallow system [5] but here there are
two main innovations: the systems here are shallow, i.e., of depth 1, and the
construction is via a direct simulation of a Turing machine, which allows one to
embed this construction into more complex membrane structures.

Notice that the construction presented here can be modified to simulate a
non-deterministic TM by replacing the only two types of rules involving the
transition function of the TM in a way to allow for a non-deterministic choice
(due to having multiple rules in conflict):

[qi,j,m+4,a → qi,j,m+5,(r,b,i+d)bi+d,j,m+5]0 for q ∈ Q, a ∈ Σ,
and (r, b, i+ d) ∈ δ(q, a)

[qi,j,m+5,(r,b,i+d) → ri+d,j+1,0]0 for q ∈ Q and a ∈ Σ

In the first rule the non-deterministic choice is remembered by writing it in the
subscript. In this way, the only rule of the second kind that can fire is the one
corresponding to the non-deterministic choice performed. We can then state the
following theorem showing that a weaker uniformity condition is still sufficient
to solve all NP problems with non-confluent systems:

Theorem 2. (, )-uniform families of non-confluent shallow P systems with active
membranes with dissolution and without division can solve all problems in NP.

4 Conclusions

In this paper we showed that P systems without charges can still solve any
decision problem in the complexity class P even when the power of the Turing



machines involved in the uniformity conditions is reduced. The TM simulation
presented here is quite modular and can be embedded in more complex membrane
structures. The resulting simulation is also efficient, requiring a slowdown of only
a constant multiplicative factor.

However, some problems remain open, and the most prominent one is to study
if the construction presented in [1] can be replicated for systems with charges,
possibly adding an additional nesting level to accommodate for the different TM
simulation technique. Such a result would show that even without charges the
entire counting hierarchy can be computed in constant depth. This is another
step in trying to understand what are the features that actually grant P systems
the power to go beyond the complexity class P and, in some cases, beyond the
entire polynomial hierarchy.
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