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Abstract
Uniform families of shallow P systems with active membranes and charges are known to characterize the complexity 
class 
P
#� , since this kind of P systems are able to “count” the number of objects sent out by the dividing membranes. Such a 

power is absent in monodirectional systems, where no send-in rules are allowed: in this case, only languages in P��

∥
 can be 

recognized. Here, we show that even a tiny amount of communication (namely, allowing only a single send-in per membrane 
during the computation) is sufficient to achieve the ability to count and solve all problems in the class P#�

∥
 , where all queries 

are performed independently.
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1 Introduction

It is already known that bidirectional communication is nec-
essary for uniform families of P systems with charges and 
only one level of membrane nesting, i.e. shallow, to solve 
problems in P#� in polynomial time [1]. With monodirec-
tional communication, only problems in P��

∥
 can be solved 

and, even if polynomial depth in the membrane structure is 
allowed, only P�� can be reached [3]. There exists, however, 
an entire spectrum of possibilities between monodirectional 

and full bidirectional communication; in particular, there are 
multiple ways of limiting the amount of bidirectional com-
munication, for example by limiting the number of send-in 
rules that a membrane or its descendants (i.e. the membranes 
obtained from it by division) might apply during the com-
putation. This is exactly the kind of limitation that we are 
imposing here, where each membrane is allowed only one 
send-in rule during the entire computation. Once the rule has 
been applied, neither that membrane nor any of the mem-
branes obtained from it by division will apply another send-
in rule in any future time step. We call P systems respecting 
this restriction laconic. Notice that we are not forbidding 
the application of multiple send-in rules; laconic P systems 
are a subclass of all P systems in which in every reachable 
computation at most one send-in rule is applied for each 
membrane or one of its descendants.

Laconic P systems use, in some sense, the minimum 
amount of bidirectional communication; the inner mem-
branes can “talk” with their ancestors (i.e. apply send-out 
rules) as much as they want, but the response that they 
will get from the outer membranes is limited to only one 
symbol. While this restriction is quite strong, we show that 
the remaining communication power is sufficient to allow 
the process of counting, thus enabling uniform families of 
shallow laconic P systems to solve problems in P#�

∥
 , a class 

that entirely includes the polynomial hierarchy [9]. This 
class is supposedly larger than the class P��

∥
 of problems 

solvable by uniform families of shallow monodirectional 
P systems with active membranes. Therefore, even a small 
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amount of communication produces a significant increase 
of the computational power of P systems. Contrarily to 
many other models, where P#� is reached (see, for exam-
ple, [1, 2, 4]), in this case we are only able to reach the 
conjecturally smaller complexity class P#�

∥
.

One interesting aspect of this result is that the construc-
tion used to build a system simulating a Turing machine 
remains practically unchanged with respect to the one 
employed for monodirectional P systems. The only step 
when send-in is actually used is in the process of count-
ing, which is actually the one described in detail in the 
following. This shows that forbidding any kind of bidi-
rectional communication does not hinder the ability of 
performing the simulation of a large number of paral-
lel computations, but the seemingly “trivial” process of 
counting objects which is, instead, not trivial at all for a 
P system since it requires a minimal amount of bidirec-
tional communication.

The results presented here are another step in our explo-
ration of the computational power of bidirectional commu-
nication inside P systems, with the aim of understanding 
the “communication flows” of P systems and how they 
influence the ability to efficiently solve decision problems.

This paper is organized as follows: in Sect. 2 we recall 
some basic notions and we formally define laconic P sys-
tems. Section  3 describes the construction employed 
to prove the main result of the paper. In particular, the 
simulation of Turing machines employed for monodi-
rectional systems is recalled in Sect. 3.1; the most deli-
cate technical construction (and the main difference with 
respect to monodirectional systems) is the counting pro-
cess described in Sect. 3.2; the main result is stated in 
Sect. 3.3. Finally, some directions of further investigation 
are detailed in Sect. 4.

2  Basic notions

In this section, we briefly recall some basic definitions 
about P systems and complexity classes; we also introduce 
the notion of laconic P systems.

For an introduction to membrane computing and the 
related notions of formal language theory and multiset pro-
cessing, we refer the reader to The Oxford Handbook of 
Membrane Computing [8], whereas for the definitions of the 
complexity classes used in this paper we refer to [6]. Here, 
we just recall the formal definition of P systems with active 
membranes using weak elementary division rules [7, 10].

Definition 1 A P system with active membranes of initial 
degree d ≥ 1 is a tuple

where:

• �  is a finite alphabet, i.e. a finite non-empty set of sym-
bols, which are usually called objects;

• � is a finite set of labels;
• � is a membrane structure, that is, a rooted unordered

tree, usually represented by nested brackets, consisting
of d membranes uniquely labelled by elements of �;

• wh1
,… ,whd

 , with h1,… , hd ∈ � , are multisets (finite sets
with multiplicity) of objects in �  , describing the initial
contents of each of the d regions of �;

• R is a finite set of rules.

Each membrane possesses, besides its label and position
in � , another attribute called electrical charge, which can be 
either neutral (0), positive (+ ) or negative (−) and is always 
neutral at the beginning of the computation.

The rules in R are of the following types: 

(a) Object evolution rules, of the form [a → w]�
h
.

They can be applied inside a membrane labelled
by h, having charge � and containing an occurrence of
the object a; the object a is rewritten into the multiset w
(i.e. a is removed from the multiset in h and replaced
by the objects in w).

(b) Send-in communication rules, of the form a [ ]�
h
→ [b]

�

h
.

They can be applied to a membrane labelled by h,
having charge � and such that the external membrane
contains an occurrence of the object a; the object a is
sent into such membrane becoming b and, simultane-
ously, the charge of h is changed to �.

(c) Send-out communication rules, of the form [a]�
h
→ [ ]

�

h
b.

They can be applied to a membrane labelled by h,
having charge � and containing an occurrence of the
object a; the object a is sent out from h to the outside
region becoming b and, simultaneously, the charge of h
becomes �.

(e) Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h
.

 They can be applied to a membrane labelled by h, 
having charge � , containing an occurrence of the 
object a but having no other membrane inside (an 
elementary membrane); the membrane is divided into 
two membranes having label h and charges � and � , 
respectively; the object a is replaced, respectively, by b 
and c, while the other objects of the multiset contained 
in membrane h are replicated in both membranes.

� = (� ,�,�,wh1
,… ,whd

,R),
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The instantaneous configuration of a membrane of label h 
consists of its charge � and the multiset w of objects it 
contains at a given time. It is denoted by [w]�

h
 . The (full) 

configuration C of a P system � at a given time is a rooted, 
unordered tree; the root is a node corresponding to the 
external environment of � , and has a single subtree cor-
responding to the current membrane structure of � . Fur-
thermore, the root is labelled by the multiset located in the 
environment, and the remaining nodes by the configura-
tions [w]�

h
 of the corresponding membranes. In the initial 

configuration of � , the configurations of the membranes 
are [wh1

]0
h1
,… , [whd

]0
hd

.
A P system is shallow if it contains at most one level of 

membranes inside the outermost membrane. This means 
that all the membranes contained in the outermost mem-
brane are elementary, i.e. they do not contain any other 
nested membrane.

A computation step changes the current configuration 
according to the following set of principles:

• Each object and membrane can be subject to at most
one rule per step, except for object evolution rules:
inside each membrane, several evolution rules can be
applied simultaneously.

• The application of rules is maximally parallel: each
object appearing on the left-hand side of an applica-
ble evolution, communication, or division rule must
be subject to exactly one of them. Analogously, each
membrane can only be subject to one communication
or division rule (types (b)–(e)) per computation step;
these rules will be called blocking rules in the rest of
the paper. In other words, the only objects and mem-
branes that do not evolve are those associated with no
rule, or only to rules that are not applicable due to the
electrical charges or the application of further conflict-
ing blocking rules.

• When several conflicting rules can be applied at the
same time, a nondeterministic choice is performed; this
implies that, in general, multiple possible configura-
tions can be reached after a computation step.

• In each computation step, all the chosen rules are
applied simultaneously (in an atomic way). However,
to clarify the operational semantics, each computa-
tion step is conventionally described as a sequence
of micro-steps, whereby each membrane evolves only
after its internal configuration (including, recursively,
the configurations of the membrane substructures it
contains) has been updated. In particular, before a
membrane division occurs, all chosen object evolution
rules must be applied inside it; this way, the objects
that are duplicated during the division are already the
final ones.

• The outermost membrane cannot be divided, and any
object sent out from it cannot re-enter the system again.
Hence, the environment only has a passive role and acts
mainly as a place where the result of the computation
can be collected.

A halting computation of a P  system  �  is a finite 
sequence C = (C0,… , Ck) of configurations, where C0 is the 
initial configuration, every Ci+1 is reachable from Ci via a 
single computation step, and no rules of � are applicable 
in Ck . A non-halting computation C = (Ci ∶ i ∈ ℕ) consists 
of infinitely many configurations, again starting from the 
initial one and generated by successive computation steps, 
where the applicable rules are never exhausted.

P  systems can be used as language recognizers by 
employing two distinguished objects ��� and �� : in this case 
we assume that all computations are halting, and that either 
one copy of object ��� or one of object �� is sent out from the 
outermost membrane, and only in the last computation step, 
to signal acceptance or rejection, respectively. In this paper 
we deal with confluent P systems, for which all computa-
tions starting from the same initial configuration are either 
all accepting or all are rejecting.

To solve decision problems (or, equivalently, decide 
languages) over an alphabet � , we use families of recog-
nizer P systems � = {𝛱x ∶ x ∈ 𝛴⋆} . Each input x is asso-
ciated with a P system �x deciding the membership of x 
in a language L ⊆ 𝛴⋆ by accepting or rejecting. The map-
ping x ↦ �x must be efficiently computable for inputs of 
any length, as discussed in detail in [5].

Definition 2 A family of P systems � = {𝛱x ∶ x ∈ 𝛴⋆} 
is (polynomial-time) uniform if the mapping x ↦ �x can 
be computed by two polynomial-time deterministic Turing 
machines E and F as follows:

• F(1n) = �n , where n is the length of the input x and �n

is a common P system for all inputs of length n, with a
distinguished input membrane.

• E(x) = wx , where wx is a multiset encoding the specific
input x.

• Finally, �x is simply �n with wx added to its input mem-
brane.

The family � is said to be (polynomial-time) semi-uniform 
if there exists a single deterministic polynomial-time Turing 
machine H such that H(x) = �x for each x ∈ 𝛴⋆.

Any explicit encoding of �x is allowed as output of the 
construction, as long as the number of membranes and 
objects represented by it does not exceed the length of that 
encoding of �x (e.g. the number of objects is not expressed 
in binary), and the rules are listed one by one. This 
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restriction is enforced to mimic a (hypothetical) realistic 
process of construction of the P systems, where membranes 
and objects are presumably placed in a constant amount dur-
ing each construction step and require actual physical space 
proportional to their number; see also [5] for further details 
on the encoding of P systems.

Informally, a P system is said to be laconic if, in all its 
possible computations, the number of applications of send-in 
communication rules by each membrane is bounded above 
by one.

Let � be a P system with active membranes with initial 
configuration C0 . Let us associate to each membrane [ ]h in 
C0 a value IN([ ]h) which is initially 0. The value IN([ ]h) for 
any membrane in configuration Ci is defined recursively in 
the following way:

• If in the transition from Ci−1 to Ci membrane [ ]h has
applied a send-in rule, then its IN([ ]h) value is increased
by one.

• If [ ]h has been obtained by a membrane division applied
in the step from Ci−1 to Ci, then its IN([ ]h) value is the
same as the membrane that originated it.

• In all other cases the value of IN([ ]h) remains unchanged.

With this notion, it is now possible to formally define a 
laconic P system.

Definition 3 Let � be a P system with active membranes 
and initial configuration C0 . � is said to be laconic if, for 
every possible configuration Ci attainable from C0 , all mem-
branes [ ]h that it contains are such that IN([ ]h) ≤ 1.

Let us recall [6] that, for an oracle O , the class PO cor-
responds to the class of all decision problems solvable by 
a Turing machine working in polynomial time with access 
to the oracle O . The class PO[1] limits the number of oracle 
queries to one, while in PO

∥
 the Turing machine can per-

form a polynomial number of queries, but they must all be 
independent, that is, they can all be performed in parallel. 
Clearly, PO[1] ⊆ PO

∥
⊆ PO , where the equality of the inclu-

sions depends on the specific oracle chosen. As shown in [4], 
the complexity class P#�[1] is the same as P#�

∥
 . That is, per-

forming one oracle query or a polynomial number of them 
in parallel does not change the computational power of these 
systems, working with #� oracles.

3  Simulation of Turing machines 
with counting oracles

To show that shallow laconic P systems are able to solve 
all problems in P#�[1] and, consequently, all problems in 
P#�
∥

 , we will simulate a deterministic Turing machine M 

with access to an oracle for a problem in #� , which is itself 
simulated in two steps. First of all, to answer the oracle 
queries we simulate a non-deterministic TM M′ in the 
elementary membranes. This latter simulation, in which 
non-determinism is obtained by membrane division, pro-
duces as many ��� objects as there are accepting computa-
tions. The number of ��� objects might be exponential with 
respect to the size of the input and of the tape of machine 
M, which must be able to read the answer of its oracle 
query. Therefore, the P system will perform a conversion 
from unary to binary to write the query answer into the 
tape of machine M.

Without loss of generality, we assume that the first action 
performed by M is an oracle query. In fact, if this is not the 
case, the machine E of the uniformity condition can per-
form the simulation of M up to the point where the first (and 
only) query is performed. This allows us to simplify the 
construction of the simulation of M that takes place into the 
outermost membrane, as we do not need to specify all the 
operations necessary to start the query procedure. We also 
assume that both M and M′ have a binary alphabet. This 
allows us to reuse the same TM simulation described in [3].

The P  system will contain the following types of 
membranes:

• Membrane with label M is the skin membrane where the
simulation of M is performed.

• Membranes with label M′ perform the simulation of the
oracle query by simulating M′.

• Membranes with label Ci are used for counting; in par-
ticular, the i-th digit being one in the result will be deter-
mined using membranes with label Ci.

• Membranes with label Bi are used to actually produce
the i-th bit of the results by checking if all membranes
of type Ci have been filled, while at least one object of
type ���i still remains in the skin membrane. Here, for
the conversion from unary to binary, we rewrite each ���
object into as many subscripted objects as the number of
binary digits needed to represent the query answer.

The initial membrane structure of the P system is shown in 
Fig. 1. In the following, we will describe the role and initial 
content of all the membranes, starting from the input mem-
brane M′ , which simulates the oracle, and we will describe 
in details how the other elementary membranes perform the 
counting.

3.1  Turing machine simulation

To simulate a TM, we employ the same construction used for 
monodirectional P systems in [3]. Here, we just briefly recall 
the inner computing mechanism and the encoding used. Let 
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Q be the set of states of the TM; without loss of generality, 
we assume that � = {0, 1} is the alphabet of the TM, and 
that 𝛿 ∶ Q × 𝛴 → Q × 𝛴 × {⊲,⊳} is the transition function.

As with the construction employed by monodirectional 
systems, we assume that we have a unique TM tape where in 
the even positions the tape of M is present, while odd ones 
contain the tape of M′ ; we will call this machine ��� . In the 
following, when we refer to either M or M′, we are actually 
referring to ��� in a state where it simulates either M or 
M′ and uses only half of the positions in the tape. Initially, 
membrane M′ contains the entire initial configuration of the 
system, i.e. the objects encoding ��� , with the encoding of 
the tape of M′ already containing the oracle query. A copy 
of the initial encoding of ��� is then sent out into the skin 
membrane M to simulate the TM M. For the details of how 
this send-out process can be performed, we refer the reader 
to [3], which employs a very similar method. We assume 
that M already has � predefined positions (the size of the 
oracle answer to the query) named s0,… , s

�−1 that are set to 
zero and where M expects to find the answer to the oracle 
query, with s0 the position of the least significant digit and 
s
�−1 the position of the most significant one. After this initial 

send-out process has been completed, the simulation of M′ 
performed by ��� can start.

We now describe how ��� can be simulated by the rules 
in membrane M. The rules for the simulation of ��� inside 
membrane M′ are the same except, obviously, for the mem-
brane label and the addition of the weak elementary division 
rules corresponding to the non-deterministic transitions of 
M′ , as will be detailed in the following.

If x1,… , xn is the content of the tape of the machine, q its 
state, and the tape head is located in position i of the tape, then 
the configuration of the TM will be encoded in the following 
way: the state q is represented by the object q; if xj is 0 then 
no object will be present (i.e. 0 is represented by the absence 
of an object), and if xj is 1 then it will be represented by the 
object 1j−i . That is, the subscript of the object 1j−1 represents 
the relative position of the cell j with respect to the tape head. 
More specifically, the initial configuration of the machine is 
also encoded as the initial content of the membrane with the 
aforementioned encoding. Each step of the TM is simulated 
by 7 steps of the P system by employing only evolution and 

send-out rules, according to the following procedure: first of 
all, the simulation of one step of the TM is triggered by the 
change of the membrane polarization from neutral to negative 
performed when the object ⊖ (initially contained in membrane 
M) is sent out by the following rule:

Once the charge of M has been changed to negative, all the 
objects representing the content of the TM tape are primed 
except for the one that might be present with subscript 0 (i.e. 
the one under the tape head):

In the same time step, the object under the tape head is sent 
out:

If there is no object 10 in M, i.e. the symbol under the tape 
head was 0, then the previous rule cannot be applied, and the 
charge of M will remain negative. Therefore, by observing 
the polarization of the membrane, the object representing the 
state of the TM will be able to determine whether the symbol 
under the tape head was zero or one. This is performed by 
first rewriting the object:

and then checking the charge of M by using two different 
kinds of evolution rules:

At the same time, the object ⊙ restores the neutral charge 
of M:

Since all the information needed to perform the TM transi-
tion is now stored inside a single object, either of the form 
(q, 0) or (q, 1), it is now possible to simulate the application 
of the transition function � (as specified in detail in [3]):

[⊖]0
M
→ [ ]−

M
#.

[1i → 1�
i
]−
M

for i ≠ 0.

[10]
−
M
→ [ ]+

M
#.

[q → q�⊙]−
M

for q ∈ Q

[q� → (q, 0)]−
M

for q ∈ Q

[q� → (q, 1)]+
M

for q ∈ Q.

[⊙]𝛼
M
→ [ ]0

M
# for 𝛼 ∈ {+,−}.

Fig. 1  The initial membrane 
structure of the P system
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Simultaneously, the objects on the tape are primed again:

The object of the form (r, b, d) is now “unpacked” into its 
components by one of the following four kinds of rules:

Each rule produces the new object representing the state, 
the new symbol on the tape (only if it is one, since zeros 
are encoded by the absence of objects), and the direction 
used to modify the subscripts of all the symbols encoding 
the TM tape.

The symbol ⊕ or ⊖ that is now contained in M is sent 
out, changing the charge of M to either positive or negative, 
respectively:

At the same time, objects of type r̂ are rewritten:

Once the charge of M has changed to either positive or nega-
tive, the subscripts of the objects encoding the TM tape can 
be rewritten:

The charge of M is now set back to neutral:

In the same step, object r̂′ is rewritten into r and the object 
⊖ is recreated:

This completes the simulation of one computation step of 
the TM. Notice that by replacing the previous rule by one not 
producing ⊖ , we can stop the TM simulation. Acceptance 
(resp., rejection) is then simply accomplished by sending 
out r̂′ as ��� (resp., �� ) when r is an accepting (resp., reject-
ing) state.

Non-deterministic choices are simulated, as usual, by 
performing membrane division instead of object evolution. 
This also allows to perform the simulation of machine M′ by 
a similar set of rules. We remark that, once the simulation 

[(q, a) → (r, b, d)]0
M

where �(q, a) = (r, b, d).

[1�
i
→ 1��

i
]0
M

for i ≠ 0 .

[(r, 0,⊲) → r̂⊕]0
M

for r ∈ Q

[(r, 0,⊳) → r̂⊖]0
M

for r ∈ Q

[(r, 1,⊲) → r̂1��
0
⊕]0

M
for r ∈ Q

[(r, 1,⊳) → r̂1��
0
⊖]0

M
for r ∈ Q

.

[⊕]0
M
→ [ ]+

M
#

[⊖]0
M
→ [ ]−

M
#.

[r̂ → r̂�⊙]0
M

for r ∈ Q

[1
��

i
→ 1

i−1]
−
M

for − (n − 1) ≤ i ≤ n − 1

[1
��

i
→ 1

i+1]
+
M

for − (n − 1) ≤ i ≤ n − 1
.

[⊙]𝛼
M
→ [ ]0

M
# for 𝛼 ∈ {+,−}.

[r̂� → r⊖]𝛼
M

for r ∈ Q and 𝛼 ∈ {+,−}.

of a step has been completed, the simulation of the next 
step does not start as long as the charge of the simulating 
membrane remains neutral. This feature is useful to stop 
the simulation of the TM until a certain condition has been 
verified, such as having the result of an oracle query written 
on the TM tape.

We assume that, if a computation of M′ accepts, then 
the object ���O is sent out to the skin membrane, represent-
ing the fact that the corresponding computation of machine 
M′ has accepted. Notice that this might not be the first 
object sent out from the skin membrane, since “garbage” 
objects used to modify the charge of the skin membrane 
are used during the simulation of M. Finally, the simula-
tion of machine M remains blocked until the skin membrane 
assumes negative charge, which happens when the result 
of the oracle query has been written into the TM tape, thus 
completing the query procedure.

3.2  Unary to binary conversion

The membranes M′ simulating the nondeterministic TM, as 
described in the previous section and, in more detail, in [3], 
send out as many ���O objects as the number of accepting 
computations. However, this means that the number is rep-
resented in unary and cannot be directly employed by the 
TM simulated in the skin membrane unless it can be written 
on the TM tape, which is only polynomial in length. There-
fore, once all the ���O objects have reached the skin mem-
brane, the system � converts the number of those objects 
into binary.

Let m be the number of binary digits necessary to repre-
sent the maximum number of accepting computations of M. 
For example, m = log2 2

p(n) = p(n) suffices. We now need 
to devise a simple technique to convert a unary number in 
the range from 0 to 2m to a binary number of m bits. Let 
p = bm−1bm−2 ⋯ b1b0 be the m-bit binary number represent-
ing the quantity of objects of type ���O present in the skin 
membrane. To find the value of bi we need to check whether 
there are at least 2i objects of type ���O once 

∑m

j=i+1
bj2

j 
objects have been removed.

To check if at least 2i objects are present, it is possible 
to use 2i − 1 membranes with the same label, in our case 
Ci , send-in one ���O object in each of them, and check if at 
least one object ���O still remains in the skin membrane after 
that. The most complex part of this process is the removal 
of k =

∑m

j=i+1
bj2

j objects. To perform this step, we will set 
all bits bj for j > i to one, to have the value of k known when 
we read the i-th bit. If, during this conversion procedure, 
we encounter a bit bj that is zero, we will write 0 to the tape 
of machine M, and then we will generate 2j objects ���O to 
“set” the bit to one. Therefore, to check if the bit bi is one, 
we can use k + 2i − 1 membranes where objects of type ���O 
are sent-in and check if, after that, at least one object ���O 
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still remains in the outermost membrane. Notice that, under 
our assumption, k + 2i − 1 is represented in binary as a m-bit 
number with all bits set to one except the i-th one. We will 
use this property to define the rules that generate exactly 
k + 2i − 1 copies of the same membrane. Furthermore, since 
we have to repeat the binary conversion procedure detailed 
above for each bit, we will start by duplicating each object 
���O into the objects ���0,… , ���m−1 , each used for deter-
mining the value of the corresponding bit of p. This means 
that the number of steps needed to perform this conversion is 
m times the maximum number of steps needed to determine 
a single digit of p, which is itself linear w.r.t. m, thus obtain-
ing a quadratic upper bound w.r.t. m.

In the initial configuration, each membrane with label 
Ci contains a corresponding object having label dw with 
w = 1m−i−101i which represents, in binary, the number of 
membranes of label Ci that will be created by membrane 
division. The first step is accomplished by the following 
rules:

where w = 0h1v , w� = 0h+1v , w�� = 0h10m−h−1 for h ≥ 0 , and 
v ∈ {0, 1}m−h−1 respects the regular expression 1∗01∗ , since 
those are the only valid suffixes of strings of m bits where 
all but one bit are set to one. Rule (1) “splits” the bits of the 
subscript of d in such a way that, once no further rule of 
type (1) is applicable, the system applies

where w = 0h10k and w� = 0h+110k−1 with h + k + 1 = m and 
k > 0 . That is, rules of type (2) perform a division and a 
binary shift of the bits in the subscript until the subscript 
becomes 0m−11 . This means that if dw with w = 0h10k is pre-
sent inside membrane Ci, then the repeated application of the 

(1)[dw]
0
Ci
→ [dw� ]

0
Ci
[dw�� ]

0
Ci
,

(2)[dw]
0
Ci
→ [dw� ]

0
Ci
[dw� ]

0
Ci
,

rules of type (2) will produce 2k copies of Ci . A graphical 
depiction of this process is presented in Fig. 2. We want to 
recall that the number of distinct types of objects of the form 
dw is polynomially bounded w.r.t. m:

• In rule (1), the word w has h zeros, followed by one or
more ones, a zero, and, finally zero or more ones, for a
total length of m. The word is uniquely determined by
h and the length of the first “run” of ones, and the total
number of words of this form is quadratic w.r.t. m.

• In rule (2), the word w has the form 0h10k and a total
length of m. Since the entire word is determined by the
choice of h, the number of words of this form is linear
w.r.t. m.

Since rules (1) and (2) are uniquely determined by their left 
hand side, for each membrane label Ci there is a number of 
rules of these two kinds that are polynomially bounded by m.

Once membranes with label M′ have sent out as many 
objects of type ���O as the number of accepting computa-
tions, the following rules become applicable:

Using rule (3) each copy of the object ���O is rewritten into 
m subscripted copies corresponding to the different binary 
digits that we are going to produce. Each of the resulting 
copies is then sent-in into a membrane with label Ci (cor-
responding to the i-th digit of the result) by rules of type (4), 
which also change the charge of the membranes to + , to 
avoid further applications of the same rule: since the system 
we are producing is laconic, we must forbid multiple send-
ins in the same membrane.

(3)[𝗒𝖾𝗌O → 𝗒𝖾𝗌0𝗒𝖾𝗌1 … 𝗒𝖾𝗌m−1]
0
M

(4)𝗒𝖾𝗌i[ ]
0
Ci
→ [#]+

Ci
for 0 ≤ i < m.

Fig. 2  How membrane division 
is used to create the correct 
number of membranes for 
the counting. Here, the time 
increases from top to bottom 
and the arrows show if mem-
brane division was applied (two 
arrows exiting a membrane) 
or not (a single arrow). In the 
case of 110,  the subscript is 
“split” into single bits, and then 
additional membrane divisions 
are performed to obtain a total 
of six (110 in binary) identical 
membranes
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If all membranes with label Ci were “filled” and at least 
one object of type ���i remains in the skin membrane, then 
the i-th bit of the result should be set to one. This task will 
be performed by the object contained in the membrane Bi , 
which will find if at least one object of type ���i is still 
present in the environment thanks to the application of 
the rules:

Notice that the rule of type (5) for membrane Bi can be 
applied only after all possible applications of rules of 
type  (4) have been performed, since membrane Bi only 
assumes negative charge after that. This is accomplished 
with the following rules:

Each of the membranes Bi contains a timer object ti,j that 
counts down from a predefined value ki , which will be 
detailed later, to 0 using rules of type (6) for all steps except 
the last, and of type (7) for the last step. When the timer 
reaches 0,  it changes the charge of Bi to negative using an 
auxiliary object and send-out rules of type (8). The follow-
ing rules are then used to detect the presence or absence of 
objects of type ���i in the skin membrane:

The timer waits with rules of types (9), which is applied at 
the same time the corresponding rule of type (8), and (10), 
which is applied simultaneously with the corresponding rule 
of type (5), before observing if the charge has changed to 
positive. If this is the case, then an object of type ���i has 
entered the membrane and thus the i-th binary digit of the 
result should be 1: this is accomplished by using rules of 
type (11). Otherwise, it should be 0 and rules of type (12) 
are applied to allow the further bookkeeping operations that 
are necessary to actually allow the correct determination of 
further digits of the result.

(5)𝗒𝖾𝗌i[ ]
−
Bi
→ [#]+

Bi
for 0 ≤ i < m.

(6)[ti,j → ti,j−1]
0
Bi

for 1 < j ≤ ki and 0 ≤ i < m,

(7)[ti,1 → ti,0N]
0
Bi

for 0 ≤ i < m,

(8)[N]0
Bi
→ [ ]−

Bi
# for 0 ≤ i < m.

(9)[ti,0 → t�
i,1
]0
Bi

for 0 ≤ i < m,

(10)[t�
i,1

→ t�
i,0
]−
Bi

for 0 ≤ i < m,

(11)[t�
i,0
]+
Bi
→ [ ]+

Bi
𝗒𝖾𝗌

�
i

for 0 ≤ i < m,

(12)[t�
i,0
]−
Bi
→ [ ]−

Bi
𝗇𝗈

�
i

for 0 ≤ i < m.

If the bit bi of p is set to zero, then, according to the conver-
sion procedure, we must set it to one. This is accomplished by 
generating 2i objects of each of the types ���i−1,… , ���0 by 
rewriting the object ��′

i
 with the following rules:

After the first rewriting step by rules of type (13), the actual 
duplication procedure is performed by the repeated applica-
tion of rules of type (14). At the end of the duplication pro-
cess, rules of type (15) produce the objects ���i−1,… , ���0.

To determine the values of ki necessary for the timer 
objects, there are two facts to take into account: each timer 
starts counting at the beginning of the computation and, before 
reaching 0 and changing the charge of the membrane Bi , the 
timer has to wait for all objects of type ���i to enter membranes 
Ci to allow the application of rules of type (4). Assuming that 
the simulation of machine M′ by the inner membranes of the 
same label requires q(n) steps (which include the runtime p(n) 
of M′ and the slowdown needed to perform the simulation), 
after q(n) steps the objects of type ��� are present in the skin 
membrane. They must then be rewritten into ���m−1,… , ���0 
and enter into membranes Cm−1,… ,C0 , respectively. There-
fore, membrane Bm−1 can assume negative charge after 
q(m) + 2 steps, which will be the value of km−1 . Before chang-
ing the charge of membrane Bi , all membranes Bj for j > i 
must have already produced their bit of answer. Each of them, 
once it acquires a negative charge must wait one step for an 
object of type ���j to be sent-in, one step to produce either ���′

j
 

or ��′
j
 , and one step to possibly rewrite ��′

j
 to fj,0 . Then, j steps 

are required to produce the objects fj,j , another step to produce 
the objects ���j−1,… , ���0 and finally one step to allow those 
objects to be sent-in into membranes Cj−1,… ,C0 , for a total 
of 5 + j steps. Therefore, ki can be defined as 
q(n) + 2 +

∑m−1

j=i+1
(5 + j).

To complete the conversion from unary to binary, we need 
to write the resulting binary number into the tape of M and 
change the charge of the skin membrane to negative to start 
the simulation of M. Both these tasks can be accomplished via 
the following rules:

(13)[𝗇𝗈�
i
→ fi,0]

0
M

for 0 < i < m,

(14)[fi,j → fi,j+1fi,j+1]
0
M

for 0 < i < m and 0 ≤ j < i,

(15)[fi,i → 𝗒𝖾𝗌i−1𝗒𝖾𝗌i−2 … 𝗒𝖾𝗌0]
0
M

for 0 < i < m.

(16)[𝗒𝖾𝗌�
i
→ 1ri]

0
M

for 0 < i < m,

(17)[𝗒𝖾𝗌�
0
→ 1r0N]

0
M
,

(18)[𝗇𝗈�
0
→ N]0

M
,
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The rules of type (16) generate from the objects ���′
i
 the 

corresponding values 1ri that must appear on the TM tape. 
Notice that we do not need to perform any action for the 
bits that are 0,  since they are encoded as the absence of an 
object. For the least significant bit, rule (17) is applied if it 
is one and rule (18) if it is set to zero. The additional object 
N is also produced, which is used by rule (19) to restart the 
simulation of machine M inside the skin membrane once the 
result of the oracle query is written into the TM tape.

3.3  Main result

Let us notice that the previous construction enriches the one 
used for monodirectional systems with a way of counting 
the number of objects of a certain type inside the skin mem-
brane. The construction of the rules, objects, and the initial 
membrane structure can be performed in polynomial time, 
thus allowing us to state the following result:

Theorem 1 Uniform families of confluent laconic shallow P 
systems with active membranes with charges, using object 
evolution, send-in, send-out, and weak membrane division 
rules can solve all problems in P#�[1] = P#�

∥
 .   ◻

4  Conclusions

We have introduced a constrained class of P systems, called 
laconic P systems, which are an intermediate model between 
monodirectional P systems with active membranes and tra-
ditional P systems with active membranes where bidirec-
tional communication is not limited. Even if the amount of 
communication allowed in this kind of systems is extremely 
limited (at most one send-in rule per membrane is permitted 
during the computation), uniform families of confluent shal-
low laconic P systems can solve at least all problems in P#�

∥
 , 

which is supposedly larger than the class P��

∥
 solved by their 

monodirectional counterpart. This shows that for this kind 
of systems, the ability to “count” is deeply linked with the 
presence of bidirectional communication, which is a step in 
the direction of understanding the flows of communications 
inside P systems.

Possible future avenues of research include the complete 
characterization of the computational power of shallow 
laconic P systems and the study of their power in the case 
of deeper membrane structures, such as those having con-
stant or linear depth. In particular, in the last case “classical” 
P systems characterize pspace, while monodirectional ones 

(19)[N]0
M
→ [ ]−

M
#. characterize P�� and, while we expect laconic systems to be 

in the higher end of this spectrum, we still do not known in 
that case how being laconic influences the computational 
power. Another interesting research direction is exploring 
what problems can be solved with different bounds of IN . 
A bound of 0 implies monodirectionality, while the case 
of a bound of 1 has been explored in this paper. Can larger 
bounds allow to reach intermediate classes of problems 
between P�� and pspace?
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