
Shallow laconic P systems can count

Alberto Leporati1 · Luca Manzoni3 · Giancarlo Mauri1 · Antonio E. Porreca2 · Claudio Zandron1

Abstract
Uniform families of shallow P systems with active membranes and charges are known to characterize the complexity
class
P
#� , since this kind of P systems are able to “count” the number of objects sent out by the dividing membranes. Such a

power is absent in monodirectional systems, where no send-in rules are allowed: in this case, only languages in P��

∥
 can be

recognized. Here, we show that even a tiny amount of communication (namely, allowing only a single send-in per membrane
during the computation) is sufficient to achieve the ability to count and solve all problems in the class P#�

∥
 , where all queries

are performed independently.

Keywords  Shallow P systems · Laconic P systems · Send-in rules · Counting

1  Introduction

It is already known that bidirectional communication is nec-
essary for uniform families of P systems with charges and
only one level of membrane nesting, i.e. shallow, to solve
problems in P#� in polynomial time [1]. With monodirec-
tional communication, only problems in P��

∥
 can be solved

and, even if polynomial depth in the membrane structure is
allowed, only P�� can be reached [3]. There exists, however,
an entire spectrum of possibilities between monodirectional

and full bidirectional communication; in particular, there are
multiple ways of limiting the amount of bidirectional com-
munication, for example by limiting the number of send-in
rules that a membrane or its descendants (i.e. the membranes
obtained from it by division) might apply during the com-
putation. This is exactly the kind of limitation that we are
imposing here, where each membrane is allowed only one
send-in rule during the entire computation. Once the rule has
been applied, neither that membrane nor any of the mem-
branes obtained from it by division will apply another send-
in rule in any future time step. We call P systems respecting
this restriction laconic. Notice that we are not forbidding
the application of multiple send-in rules; laconic P systems
are a subclass of all P systems in which in every reachable
computation at most one send-in rule is applied for each
membrane or one of its descendants.

Laconic P systems use, in some sense, the minimum
amount of bidirectional communication; the inner mem-
branes can “talk” with their ancestors (i.e. apply send-out
rules) as much as they want, but the response that they
will get from the outer membranes is limited to only one
symbol. While this restriction is quite strong, we show that
the remaining communication power is sufficient to allow
the process of counting, thus enabling uniform families of
shallow laconic P systems to solve problems in P#�

∥
 , a class

that entirely includes the polynomial hierarchy [9]. This
class is supposedly larger than the class P��

∥
 of problems

solvable by uniform families of shallow monodirectional
P systems with active membranes. Therefore, even a small

This is an extended version of a paper presented at CMC20.

 * Alberto Leporati
alberto.leporati@unimib.it

Luca Manzoni
lmanzoni@units.it

Giancarlo Mauri
giancarlo.mauri@unimib.it

Antonio E. Porreca
antonio.porreca@lis‑lab.fr

Claudio Zandron
claudio.zandron@unimib.it

1	 Dipartimento di Informatica, Sistemistica e Comunicazione
(DISCo), Università degli Studi di Milano-Bicocca, Viale
Sarca 336, 20126 Milan, Italy

2	 Aix Marseille Université, Université de Toulon, CNRS, LIS,
Marseille, France

3	 Dipartimento di Matematica e Geoscienze, Università degli
Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy

1

http://orcid.org/0000-0002-8105-4371
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00032-4&domain=pdf

A. Leporati et al.

amount of communication produces a significant increase
of the computational power of P systems. Contrarily to
many other models, where P#� is reached (see, for exam-
ple, [1, 2, 4]), in this case we are only able to reach the
conjecturally smaller complexity class P#�

∥
.

One interesting aspect of this result is that the construc-
tion used to build a system simulating a Turing machine
remains practically unchanged with respect to the one
employed for monodirectional P systems. The only step
when send-in is actually used is in the process of count-
ing, which is actually the one described in detail in the
following. This shows that forbidding any kind of bidi-
rectional communication does not hinder the ability of
performing the simulation of a large number of paral-
lel computations, but the seemingly “trivial” process of
counting objects which is, instead, not trivial at all for a
P system since it requires a minimal amount of bidirec-
tional communication.

The results presented here are another step in our explo-
ration of the computational power of bidirectional commu-
nication inside P systems, with the aim of understanding
the “communication flows” of P systems and how they
influence the ability to efficiently solve decision problems.

This paper is organized as follows: in Sect. 2 we recall
some basic notions and we formally define laconic P sys-
tems. Section 3 describes the construction employed
to prove the main result of the paper. In particular, the
simulation of Turing machines employed for monodi-
rectional systems is recalled in Sect. 3.1; the most deli-
cate technical construction (and the main difference with
respect to monodirectional systems) is the counting pro-
cess described in Sect. 3.2; the main result is stated in
Sect. 3.3. Finally, some directions of further investigation
are detailed in Sect. 4.

2 Basic notions

In this section, we briefly recall some basic definitions
about P systems and complexity classes; we also introduce
the notion of laconic P systems.

For an introduction to membrane computing and the
related notions of formal language theory and multiset pro-
cessing, we refer the reader to The Oxford Handbook of
Membrane Computing [8], whereas for the definitions of the
complexity classes used in this paper we refer to [6]. Here,
we just recall the formal definition of P systems with active
membranes using weak elementary division rules [7, 10].

Definition 1 A P system with active membranes of initial
degree d ≥ 1 is a tuple

where:

• � is a finite alphabet, i.e. a finite non-empty set of sym-
bols, which are usually called objects;

• � is a finite set of labels;
• � is a membrane structure, that is, a rooted unordered

tree, usually represented by nested brackets, consisting
of d membranes uniquely labelled by elements of �;

• wh1
,… ,whd

 , with h1,… , hd ∈ � , are multisets (finite sets
with multiplicity) of objects in �  , describing the initial
contents of each of the d regions of �;

• R is a finite set of rules.

Each membrane possesses, besides its label and position
in � , another attribute called electrical charge, which can be
either neutral (0), positive (+ ) or negative (−) and is always
neutral at the beginning of the computation.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a → w]�
h
.

They can be applied inside a membrane labelled
by h, having charge � and containing an occurrence of
the object a; the object a is rewritten into the multiset w
(i.e. a is removed from the multiset in h and replaced
by the objects in w).

(b) Send-in communication rules, of the form a []�
h
→ [b]

�

h
.

They can be applied to a membrane labelled by h,
having charge � and such that the external membrane
contains an occurrence of the object a; the object a is
sent into such membrane becoming b and, simultane-
ously, the charge of h is changed to �.

(c) Send-out communication rules, of the form [a]�
h
→ []

�

h
b.

They can be applied to a membrane labelled by h,
having charge � and containing an occurrence of the
object a; the object a is sent out from h to the outside
region becoming b and, simultaneously, the charge of h
becomes �.

(e) Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h
.

	  They can be applied to a membrane labelled by h,
having charge � , containing an occurrence of the
object a but having no other membrane inside (an
elementary membrane); the membrane is divided into
two membranes having label h and charges � and � ,
respectively; the object a is replaced, respectively, by b
and c, while the other objects of the multiset contained
in membrane h are replicated in both membranes.

� = (� ,�,�,wh1
,… ,whd

,R),

2

The instantaneous configuration of a membrane of label h
consists of its charge � and the multiset w of objects it
contains at a given time. It is denoted by [w]�

h
 . The (full)

configuration C of a P system � at a given time is a rooted,
unordered tree; the root is a node corresponding to the
external environment of � , and has a single subtree cor-
responding to the current membrane structure of � . Fur-
thermore, the root is labelled by the multiset located in the
environment, and the remaining nodes by the configura-
tions [w]�

h
 of the corresponding membranes. In the initial

configuration of � , the configurations of the membranes
are [wh1

]0
h1
,… , [whd

]0
hd

.
A P system is shallow if it contains at most one level of

membranes inside the outermost membrane. This means
that all the membranes contained in the outermost mem-
brane are elementary, i.e. they do not contain any other
nested membrane.

A computation step changes the current configuration
according to the following set of principles:

• Each object and membrane can be subject to at most
one rule per step, except for object evolution rules:
inside each membrane, several evolution rules can be
applied simultaneously.

• The application of rules is maximally parallel: each
object appearing on the left-hand side of an applica-
ble evolution, communication, or division rule must
be subject to exactly one of them. Analogously, each
membrane can only be subject to one communication
or division rule (types (b)–(e)) per computation step;
these rules will be called blocking rules in the rest of
the paper. In other words, the only objects and mem-
branes that do not evolve are those associated with no
rule, or only to rules that are not applicable due to the
electrical charges or the application of further conflict-
ing blocking rules.

• When several conflicting rules can be applied at the
same time, a nondeterministic choice is performed; this
implies that, in general, multiple possible configura-
tions can be reached after a computation step.

• In each computation step, all the chosen rules are
applied simultaneously (in an atomic way). However,
to clarify the operational semantics, each computa-
tion step is conventionally described as a sequence
of micro-steps, whereby each membrane evolves only
after its internal configuration (including, recursively,
the configurations of the membrane substructures it
contains) has been updated. In particular, before a
membrane division occurs, all chosen object evolution
rules must be applied inside it; this way, the objects
that are duplicated during the division are already the
final ones.

• The outermost membrane cannot be divided, and any
object sent out from it cannot re-enter the system again.
Hence, the environment only has a passive role and acts
mainly as a place where the result of the computation
can be collected.

A halting computation of a P system � is a finite
sequence C = (C0,… , Ck) of configurations, where C0 is the
initial configuration, every Ci+1 is reachable from Ci via a
single computation step, and no rules of � are applicable
in Ck . A non-halting computation C = (Ci ∶ i ∈ ℕ) consists
of infinitely many configurations, again starting from the
initial one and generated by successive computation steps,
where the applicable rules are never exhausted.

P systems can be used as language recognizers by
employing two distinguished objects ��� and �� : in this case
we assume that all computations are halting, and that either
one copy of object ��� or one of object �� is sent out from the
outermost membrane, and only in the last computation step,
to signal acceptance or rejection, respectively. In this paper
we deal with confluent P systems, for which all computa-
tions starting from the same initial configuration are either
all accepting or all are rejecting.

To solve decision problems (or, equivalently, decide
languages) over an alphabet � , we use families of recog-
nizer P systems � = {𝛱x ∶ x ∈ 𝛴⋆} . Each input x is asso-
ciated with a P system �x deciding the membership of x
in a language L ⊆ 𝛴⋆ by accepting or rejecting. The map-
ping x ↦ �x must be efficiently computable for inputs of
any length, as discussed in detail in [5].

Definition 2  A family of P systems � = {𝛱x ∶ x ∈ 𝛴⋆}
is (polynomial-time) uniform if the mapping x ↦ �x can
be computed by two polynomial-time deterministic Turing
machines E and F as follows:

• F(1n) = �n , where n is the length of the input x and �n

is a common P system for all inputs of length n, with a
distinguished input membrane.

• E(x) = wx , where wx is a multiset encoding the specific
input x.

• Finally, �x is simply �n with wx added to its input mem-
brane.

The family � is said to be (polynomial-time) semi-uniform
if there exists a single deterministic polynomial-time Turing
machine H such that H(x) = �x for each x ∈ 𝛴⋆.

Any explicit encoding of �x is allowed as output of the
construction, as long as the number of membranes and
objects represented by it does not exceed the length of that
encoding of �x (e.g. the number of objects is not expressed
in binary), and the rules are listed one by one. This

3

A. Leporati et al.

restriction is enforced to mimic a (hypothetical) realistic
process of construction of the P systems, where membranes
and objects are presumably placed in a constant amount dur-
ing each construction step and require actual physical space
proportional to their number; see also [5] for further details
on the encoding of P systems.

Informally, a P system is said to be laconic if, in all its
possible computations, the number of applications of send-in
communication rules by each membrane is bounded above
by one.

Let � be a P system with active membranes with initial
configuration C0 . Let us associate to each membrane []h in
C0 a value IN([]h) which is initially 0. The value IN([]h) for
any membrane in configuration Ci is defined recursively in
the following way:

• If in the transition from Ci−1 to Ci membrane []h has
applied a send-in rule, then its IN([]h) value is increased
by one.

• If []h has been obtained by a membrane division applied
in the step from Ci−1 to Ci, then its IN([]h) value is the
same as the membrane that originated it.

• In all other cases the value of IN([]h) remains unchanged.

With this notion, it is now possible to formally define a
laconic P system.

Definition 3  Let � be a P system with active membranes
and initial configuration C0 . � is said to be laconic if, for
every possible configuration Ci attainable from C0 , all mem-
branes []h that it contains are such that IN([]h) ≤ 1.

Let us recall [6] that, for an oracle O , the class PO cor-
responds to the class of all decision problems solvable by
a Turing machine working in polynomial time with access
to the oracle O . The class PO[1] limits the number of oracle
queries to one, while in PO

∥
 the Turing machine can per-

form a polynomial number of queries, but they must all be
independent, that is, they can all be performed in parallel.
Clearly, PO[1] ⊆ PO

∥
⊆ PO , where the equality of the inclu-

sions depends on the specific oracle chosen. As shown in [4],
the complexity class P#�[1] is the same as P#�

∥
 . That is, per-

forming one oracle query or a polynomial number of them
in parallel does not change the computational power of these
systems, working with #� oracles.

3 � Simulation of Turing machines
with counting oracles

To show that shallow laconic P systems are able to solve
all problems in P#�[1] and, consequently, all problems in
P#�
∥

 , we will simulate a deterministic Turing machine M

with access to an oracle for a problem in #� , which is itself
simulated in two steps. First of all, to answer the oracle
queries we simulate a non-deterministic TM M′ in the
elementary membranes. This latter simulation, in which
non-determinism is obtained by membrane division, pro-
duces as many ��� objects as there are accepting computa-
tions. The number of ��� objects might be exponential with
respect to the size of the input and of the tape of machine
M, which must be able to read the answer of its oracle
query. Therefore, the P system will perform a conversion
from unary to binary to write the query answer into the
tape of machine M.

Without loss of generality, we assume that the first action
performed by M is an oracle query. In fact, if this is not the
case, the machine E of the uniformity condition can per-
form the simulation of M up to the point where the first (and
only) query is performed. This allows us to simplify the
construction of the simulation of M that takes place into the
outermost membrane, as we do not need to specify all the
operations necessary to start the query procedure. We also
assume that both M and M′ have a binary alphabet. This
allows us to reuse the same TM simulation described in [3].

The P system will contain the following types of
membranes:

• Membrane with label M is the skin membrane where the
simulation of M is performed.

• Membranes with label M′ perform the simulation of the
oracle query by simulating M′.

• Membranes with label Ci are used for counting; in par-
ticular, the i-th digit being one in the result will be deter-
mined using membranes with label Ci.

• Membranes with label Bi are used to actually produce
the i-th bit of the results by checking if all membranes
of type Ci have been filled, while at least one object of
type ���i still remains in the skin membrane. Here, for
the conversion from unary to binary, we rewrite each ���
object into as many subscripted objects as the number of
binary digits needed to represent the query answer.

The initial membrane structure of the P system is shown in
Fig. 1. In the following, we will describe the role and initial
content of all the membranes, starting from the input mem-
brane M′ , which simulates the oracle, and we will describe
in details how the other elementary membranes perform the
counting.

3.1 � Turing machine simulation

To simulate a TM, we employ the same construction used for
monodirectional P systems in [3]. Here, we just briefly recall
the inner computing mechanism and the encoding used. Let

4

Q be the set of states of the TM; without loss of generality,
we assume that � = {0, 1} is the alphabet of the TM, and
that 𝛿 ∶ Q × 𝛴 → Q × 𝛴 × {⊲,⊳} is the transition function.

As with the construction employed by monodirectional
systems, we assume that we have a unique TM tape where in
the even positions the tape of M is present, while odd ones
contain the tape of M′ ; we will call this machine ��� . In the
following, when we refer to either M or M′, we are actually
referring to ��� in a state where it simulates either M or
M′ and uses only half of the positions in the tape. Initially,
membrane M′ contains the entire initial configuration of the
system, i.e. the objects encoding ��� , with the encoding of
the tape of M′ already containing the oracle query. A copy
of the initial encoding of ��� is then sent out into the skin
membrane M to simulate the TM M. For the details of how
this send-out process can be performed, we refer the reader
to [3], which employs a very similar method. We assume
that M already has � predefined positions (the size of the
oracle answer to the query) named s0,… , s

�−1 that are set to
zero and where M expects to find the answer to the oracle
query, with s0 the position of the least significant digit and
s
�−1 the position of the most significant one. After this initial

send-out process has been completed, the simulation of M′
performed by ��� can start.

We now describe how ��� can be simulated by the rules
in membrane M. The rules for the simulation of ��� inside
membrane M′ are the same except, obviously, for the mem-
brane label and the addition of the weak elementary division
rules corresponding to the non-deterministic transitions of
M′ , as will be detailed in the following.

If x1,… , xn is the content of the tape of the machine, q its
state, and the tape head is located in position i of the tape, then
the configuration of the TM will be encoded in the following
way: the state q is represented by the object q; if xj is 0 then
no object will be present (i.e. 0 is represented by the absence
of an object), and if xj is 1 then it will be represented by the
object 1j−i . That is, the subscript of the object 1j−1 represents
the relative position of the cell j with respect to the tape head.
More specifically, the initial configuration of the machine is
also encoded as the initial content of the membrane with the
aforementioned encoding. Each step of the TM is simulated
by 7 steps of the P system by employing only evolution and

send-out rules, according to the following procedure: first of
all, the simulation of one step of the TM is triggered by the
change of the membrane polarization from neutral to negative
performed when the object ⊖ (initially contained in membrane
M) is sent out by the following rule:

Once the charge of M has been changed to negative, all the
objects representing the content of the TM tape are primed
except for the one that might be present with subscript 0 (i.e.
the one under the tape head):

In the same time step, the object under the tape head is sent
out:

If there is no object 10 in M, i.e. the symbol under the tape
head was 0, then the previous rule cannot be applied, and the
charge of M will remain negative. Therefore, by observing
the polarization of the membrane, the object representing the
state of the TM will be able to determine whether the symbol
under the tape head was zero or one. This is performed by
first rewriting the object:

and then checking the charge of M by using two different
kinds of evolution rules:

At the same time, the object ⊙ restores the neutral charge
of M:

Since all the information needed to perform the TM transi-
tion is now stored inside a single object, either of the form
(q, 0) or (q, 1), it is now possible to simulate the application
of the transition function � (as specified in detail in [3]):

[⊖]0
M
→ []−

M
#.

[1i → 1�
i
]−
M

for i ≠ 0.

[10]
−
M
→ []+

M
#.

[q → q�⊙]−
M

for q ∈ Q

[q� → (q, 0)]−
M

for q ∈ Q

[q� → (q, 1)]+
M

for q ∈ Q.

[⊙]𝛼
M
→ []0

M
for 𝛼 ∈ {+,−}.

Fig. 1   The initial membrane
structure of the P system

5

54	 A. Leporati et al.

Simultaneously, the objects on the tape are primed again:

The object of the form (r, b, d) is now “unpacked” into its
components by one of the following four kinds of rules:

Each rule produces the new object representing the state,
the new symbol on the tape (only if it is one, since zeros
are encoded by the absence of objects), and the direction
used to modify the subscripts of all the symbols encoding
the TM tape.

The symbol ⊕ or ⊖ that is now contained in M is sent
out, changing the charge of M to either positive or negative,
respectively:

At the same time, objects of type r̂ are rewritten:

Once the charge of M has changed to either positive or nega-
tive, the subscripts of the objects encoding the TM tape can
be rewritten:

The charge of M is now set back to neutral:

In the same step, object r̂′ is rewritten into r and the object
⊖ is recreated:

This completes the simulation of one computation step of
the TM. Notice that by replacing the previous rule by one not
producing ⊖ , we can stop the TM simulation. Acceptance
(resp., rejection) is then simply accomplished by sending
out r̂′ as ��� (resp., �� ) when r is an accepting (resp., reject-
ing) state.

Non-deterministic choices are simulated, as usual, by
performing membrane division instead of object evolution.
This also allows to perform the simulation of machine M′ by
a similar set of rules. We remark that, once the simulation

[(q, a) → (r, b, d)]0
M

where �(q, a) = (r, b, d).

[1�
i
→ 1��

i
]0
M

for i ≠ 0 .

[(r, 0,⊲) → r̂⊕]0
M

for r ∈ Q

[(r, 0,⊳) → r̂⊖]0
M

for r ∈ Q

[(r, 1,⊲) → r̂1��
0
⊕]0

M
for r ∈ Q

[(r, 1,⊳) → r̂1��
0
⊖]0

M
for r ∈ Q

.

[⊕]0
M
→ []+

M
#

[⊖]0
M
→ []−

M
#.

[r̂ → r̂�⊙]0
M

for r ∈ Q

[1
��

i
→ 1

i−1]
−
M

for − (n − 1) ≤ i ≤ n − 1

[1
��

i
→ 1

i+1]
+
M

for − (n − 1) ≤ i ≤ n − 1
.

[⊙]𝛼
M
→ []0

M
for 𝛼 ∈ {+,−}.

[r̂� → r⊖]𝛼
M

for r ∈ Q and 𝛼 ∈ {+,−}.

of a step has been completed, the simulation of the next
step does not start as long as the charge of the simulating
membrane remains neutral. This feature is useful to stop
the simulation of the TM until a certain condition has been
verified, such as having the result of an oracle query written
on the TM tape.

We assume that, if a computation of M′ accepts, then
the object ���O is sent out to the skin membrane, represent-
ing the fact that the corresponding computation of machine
M′ has accepted. Notice that this might not be the first
object sent out from the skin membrane, since “garbage”
objects used to modify the charge of the skin membrane
are used during the simulation of M. Finally, the simula-
tion of machine M remains blocked until the skin membrane
assumes negative charge, which happens when the result
of the oracle query has been written into the TM tape, thus
completing the query procedure.

3.2 � Unary to binary conversion

The membranes M′ simulating the nondeterministic TM, as
described in the previous section and, in more detail, in [3],
send out as many ���O objects as the number of accepting
computations. However, this means that the number is rep-
resented in unary and cannot be directly employed by the
TM simulated in the skin membrane unless it can be written
on the TM tape, which is only polynomial in length. There-
fore, once all the ���O objects have reached the skin mem-
brane, the system � converts the number of those objects
into binary.

Let m be the number of binary digits necessary to repre-
sent the maximum number of accepting computations of M.
For example, m = log2 2

p(n) = p(n) suffices. We now need
to devise a simple technique to convert a unary number in
the range from 0 to 2m to a binary number of m bits. Let
p = bm−1bm−2 ⋯ b1b0 be the m-bit binary number represent-
ing the quantity of objects of type ���O present in the skin
membrane. To find the value of bi we need to check whether
there are at least 2i objects of type ���O once

∑m

j=i+1
bj2

j
objects have been removed.

To check if at least 2i objects are present, it is possible
to use 2i − 1 membranes with the same label, in our case
Ci , send-in one ���O object in each of them, and check if at
least one object ���O still remains in the skin membrane after
that. The most complex part of this process is the removal
of k =

∑m

j=i+1
bj2

j objects. To perform this step, we will set
all bits bj for j > i to one, to have the value of k known when
we read the i-th bit. If, during this conversion procedure,
we encounter a bit bj that is zero, we will write 0 to the tape
of machine M, and then we will generate 2j objects ���O to
“set” the bit to one. Therefore, to check if the bit bi is one,
we can use k + 2i − 1 membranes where objects of type ���O
are sent-in and check if, after that, at least one object ���O

6

55Shallow laconic P systems can count﻿	

still remains in the outermost membrane. Notice that, under
our assumption, k + 2i − 1 is represented in binary as a m-bit
number with all bits set to one except the i-th one. We will
use this property to define the rules that generate exactly
k + 2i − 1 copies of the same membrane. Furthermore, since
we have to repeat the binary conversion procedure detailed
above for each bit, we will start by duplicating each object
���O into the objects ���0,… , ���m−1 , each used for deter-
mining the value of the corresponding bit of p. This means
that the number of steps needed to perform this conversion is
m times the maximum number of steps needed to determine
a single digit of p, which is itself linear w.r.t. m, thus obtain-
ing a quadratic upper bound w.r.t. m.

In the initial configuration, each membrane with label
Ci contains a corresponding object having label dw with
w = 1m−i−101i which represents, in binary, the number of
membranes of label Ci that will be created by membrane
division. The first step is accomplished by the following
rules:

where w = 0h1v , w� = 0h+1v , w�� = 0h10m−h−1 for h ≥ 0 , and
v ∈ {0, 1}m−h−1 respects the regular expression 1∗01∗ , since
those are the only valid suffixes of strings of m bits where
all but one bit are set to one. Rule (1) “splits” the bits of the
subscript of d in such a way that, once no further rule of
type (1) is applicable, the system applies

where w = 0h10k and w� = 0h+110k−1 with h + k + 1 = m and
k > 0 . That is, rules of type (2) perform a division and a
binary shift of the bits in the subscript until the subscript
becomes 0m−11 . This means that if dw with w = 0h10k is pre-
sent inside membrane Ci, then the repeated application of the

(1)[dw]
0
Ci
→ [dw�]

0
Ci
[dw��]

0
Ci
,

(2)[dw]
0
Ci
→ [dw�]

0
Ci
[dw�]

0
Ci
,

rules of type (2) will produce 2k copies of Ci . A graphical
depiction of this process is presented in Fig. 2. We want to
recall that the number of distinct types of objects of the form
dw is polynomially bounded w.r.t. m:

• In rule (1), the word w has h zeros, followed by one or
more ones, a zero, and, finally zero or more ones, for a
total length of m. The word is uniquely determined by
h and the length of the first “run” of ones, and the total
number of words of this form is quadratic w.r.t. m.

• In rule (2), the word w has the form 0h10k and a total
length of m. Since the entire word is determined by the
choice of h, the number of words of this form is linear
w.r.t. m.

Since rules (1) and (2) are uniquely determined by their left
hand side, for each membrane label Ci there is a number of
rules of these two kinds that are polynomially bounded by m.

Once membranes with label M′ have sent out as many
objects of type ���O as the number of accepting computa-
tions, the following rules become applicable:

Using rule (3) each copy of the object ���O is rewritten into
m subscripted copies corresponding to the different binary
digits that we are going to produce. Each of the resulting
copies is then sent-in into a membrane with label Ci (cor-
responding to the i-th digit of the result) by rules of type (4),
which also change the charge of the membranes to + , to
avoid further applications of the same rule: since the system
we are producing is laconic, we must forbid multiple send-
ins in the same membrane.

(3)[𝗒𝖾𝗌O → 𝗒𝖾𝗌0𝗒𝖾𝗌1 … 𝗒𝖾𝗌m−1]
0
M

(4)𝗒𝖾𝗌i[]
0
Ci
→ [#]+

Ci
for 0 ≤ i < m.

Fig. 2   How membrane division
is used to create the correct
number of membranes for
the counting. Here, the time
increases from top to bottom
and the arrows show if mem-
brane division was applied (two
arrows exiting a membrane)
or not (a single arrow). In the
case of 110, the subscript is
“split” into single bits, and then
additional membrane divisions
are performed to obtain a total
of six (110 in binary) identical
membranes

7

If all membranes with label Ci were “filled” and at least
one object of type ���i remains in the skin membrane, then
the i-th bit of the result should be set to one. This task will
be performed by the object contained in the membrane Bi ,
which will find if at least one object of type ���i is still
present in the environment thanks to the application of
the rules:

Notice that the rule of type (5) for membrane Bi can be
applied only after all possible applications of rules of
type (4) have been performed, since membrane Bi only
assumes negative charge after that. This is accomplished
with the following rules:

Each of the membranes Bi contains a timer object ti,j that
counts down from a predefined value ki , which will be
detailed later, to 0 using rules of type (6) for all steps except
the last, and of type (7) for the last step. When the timer
reaches 0, it changes the charge of Bi to negative using an
auxiliary object and send-out rules of type (8). The follow-
ing rules are then used to detect the presence or absence of
objects of type ���i in the skin membrane:

The timer waits with rules of types (9), which is applied at
the same time the corresponding rule of type (8), and (10),
which is applied simultaneously with the corresponding rule
of type (5), before observing if the charge has changed to
positive. If this is the case, then an object of type ���i has
entered the membrane and thus the i-th binary digit of the
result should be 1: this is accomplished by using rules of
type (11). Otherwise, it should be 0 and rules of type (12)
are applied to allow the further bookkeeping operations that
are necessary to actually allow the correct determination of
further digits of the result.

(5)𝗒𝖾𝗌i[]
−
Bi
→ [#]+

Bi
for 0 ≤ i < m.

(6)[ti,j → ti,j−1]
0
Bi

for 1 < j ≤ ki and 0 ≤ i < m,

(7)[ti,1 → ti,0N]
0
Bi

for 0 ≤ i < m,

(8)[N]0
Bi
→ []−

Bi
for 0 ≤ i < m.

(9)[ti,0 → t�
i,1
]0
Bi

for 0 ≤ i < m,

(10)[t�
i,1

→ t�
i,0
]−
Bi

for 0 ≤ i < m,

(11)[t�
i,0
]+
Bi
→ []+

Bi
𝗒𝖾𝗌

�
i

for 0 ≤ i < m,

(12)[t�
i,0
]−
Bi
→ []−

Bi
𝗇𝗈

�
i

for 0 ≤ i < m.

If the bit bi of p is set to zero, then, according to the conver-
sion procedure, we must set it to one. This is accomplished by
generating 2i objects of each of the types ���i−1,… , ���0 by
rewriting the object ��′

i
 with the following rules:

After the first rewriting step by rules of type (13), the actual
duplication procedure is performed by the repeated applica-
tion of rules of type (14). At the end of the duplication pro-
cess, rules of type (15) produce the objects ���i−1,… , ���0.

To determine the values of ki necessary for the timer
objects, there are two facts to take into account: each timer
starts counting at the beginning of the computation and, before
reaching 0 and changing the charge of the membrane Bi , the
timer has to wait for all objects of type ���i to enter membranes
Ci to allow the application of rules of type (4). Assuming that
the simulation of machine M′ by the inner membranes of the
same label requires q(n) steps (which include the runtime p(n)
of M′ and the slowdown needed to perform the simulation),
after q(n) steps the objects of type ��� are present in the skin
membrane. They must then be rewritten into ���m−1,… , ���0
and enter into membranes Cm−1,… ,C0 , respectively. There-
fore, membrane Bm−1 can assume negative charge after
q(m) + 2 steps, which will be the value of km−1 . Before chang-
ing the charge of membrane Bi , all membranes Bj for j > i
must have already produced their bit of answer. Each of them,
once it acquires a negative charge must wait one step for an
object of type ���j to be sent-in, one step to produce either ���′

j

or ��′
j
 , and one step to possibly rewrite ��′

j
 to fj,0 . Then, j steps

are required to produce the objects fj,j , another step to produce
the objects ���j−1,… , ���0 and finally one step to allow those
objects to be sent-in into membranes Cj−1,… ,C0 , for a total
of 5 + j steps. Therefore, ki can be defined as
q(n) + 2 +

∑m−1

j=i+1
(5 + j).

To complete the conversion from unary to binary, we need
to write the resulting binary number into the tape of M and
change the charge of the skin membrane to negative to start
the simulation of M. Both these tasks can be accomplished via
the following rules:

(13)[𝗇𝗈�
i
→ fi,0]

0
M

for 0 < i < m,

(14)[fi,j → fi,j+1fi,j+1]
0
M

for 0 < i < m and 0 ≤ j < i,

(15)[fi,i → 𝗒𝖾𝗌i−1𝗒𝖾𝗌i−2 … 𝗒𝖾𝗌0]
0
M

for 0 < i < m.

(16)[𝗒𝖾𝗌�
i
→ 1ri]

0
M

for 0 < i < m,

(17)[𝗒𝖾𝗌�
0
→ 1r0N]

0
M
,

(18)[𝗇𝗈�
0
→ N]0

M
,

8

The rules of type (16) generate from the objects ���′
i
 the

corresponding values 1ri that must appear on the TM tape.
Notice that we do not need to perform any action for the
bits that are 0, since they are encoded as the absence of an
object. For the least significant bit, rule (17) is applied if it
is one and rule (18) if it is set to zero. The additional object
N is also produced, which is used by rule (19) to restart the
simulation of machine M inside the skin membrane once the
result of the oracle query is written into the TM tape.

3.3 � Main result

Let us notice that the previous construction enriches the one
used for monodirectional systems with a way of counting
the number of objects of a certain type inside the skin mem-
brane. The construction of the rules, objects, and the initial
membrane structure can be performed in polynomial time,
thus allowing us to state the following result:

Theorem 1  Uniform families of confluent laconic shallow P
systems with active membranes with charges, using object
evolution, send-in, send-out, and weak membrane division
rules can solve all problems in P#�[1] = P#�

∥
 . 	� ◻

4 � Conclusions

We have introduced a constrained class of P systems, called
laconic P systems, which are an intermediate model between
monodirectional P systems with active membranes and tra-
ditional P systems with active membranes where bidirec-
tional communication is not limited. Even if the amount of
communication allowed in this kind of systems is extremely
limited (at most one send-in rule per membrane is permitted
during the computation), uniform families of confluent shal-
low laconic P systems can solve at least all problems in P#�

∥
 ,

which is supposedly larger than the class P��

∥
 solved by their

monodirectional counterpart. This shows that for this kind
of systems, the ability to “count” is deeply linked with the
presence of bidirectional communication, which is a step in
the direction of understanding the flows of communications
inside P systems.

Possible future avenues of research include the complete
characterization of the computational power of shallow
laconic P systems and the study of their power in the case
of deeper membrane structures, such as those having con-
stant or linear depth. In particular, in the last case “classical”
P systems characterize pspace, while monodirectional ones

(19)[N]0
M
→ []−

M
#. characterize P�� and, while we expect laconic systems to be

in the higher end of this spectrum, we still do not known in
that case how being laconic influences the computational
power. Another interesting research direction is exploring
what problems can be solved with different bounds of IN .
A bound of 0 implies monodirectionality, while the case
of a bound of 1 has been explored in this paper. Can larger
bounds allow to reach intermediate classes of problems
between P�� and pspace?

References

1. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zan-
dron, C. (2014). Simulating elementary active membranes, with
an application to the P conjecture. In M. Gheorghe, G. Rozen-
berg, P. Sosík, & C. Zandron (Eds.), Membrane Computing, 15th
International Conference, CMC 2014 Lecture Notes in Computer
Science (Vol. 8961, pp. 284–299). Berlin: Springer. https​://doi.
org/10.1007/978-3-319-14370​-5_18.

2. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2015). Tissue P systems can be simulated efficiently with
counting oracles. In G. Rozenberg, A. Salomaa, J. M. Sempere,
& C. Zandron (Eds.), Membrane Computing, 16th International
Conference, CMC 2015 Lecture Notes in Computer Science (Vol.
9504, pp. 251–261). Berlin: Springer. https​://doi.org/10.1007/978-
3-319-28475​-0_17.

3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2016). Monodirectional P systems. Natural Computing, 15(4),
551–564. https​://doi.org/10.1007/s1104​7-016-9565-2.

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zan-
dron, C. (2017). The counting power of P systems with antimat-
ter. Theoretical Computer Science, 701, 161–173. https​://doi.
org/10.1016/j.tcs.2017.03.045.

5. Murphy, N., & Woods, D. (2011). The computational power
of membrane systems under tight uniformity conditions. Natu-
ral Computing, 10(1), 613–632. https​://doi.org/10.1007/s1104​
7-010-9244-7.

6. Papadimitriou, C. H. (1993). Computational Complexity. Boston:
Addison-Wesley.

7. Păun, Gh. (2001). P systems with active membranes: Attacking
NP-complete problems. Journal of Automata, Languages and
Combinatorics, 6(1), 75–90.

8. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford handbook of membrane computing. Oxford: Oxford Uni-
versity Press.

9. Toda, S. (1991). PP is as hard as the polynomial-time hierar-
chy. SIAM Journal on Computing, 20(5), 865–877. https​://doi.
org/10.1137/02200​53.

	10. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., & Pérez-Jimé-
nez, M.J. (2008). On the computational efficiency of polarization-
less recognizer P systems with strong division and dissolution.
Fundamenta Informaticae 87, 79–91. http://conte​nt.iospr​ess.com/
artic​les/funda​menta​-infor​matic​ae/fi87-1-06

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

9

https://doi.org/10.1007/978-3-319-14370-5_18
https://doi.org/10.1007/978-3-319-14370-5_18
https://doi.org/10.1007/978-3-319-28475-0_17
https://doi.org/10.1007/978-3-319-28475-0_17
https://doi.org/10.1007/s11047-016-9565-2
https://doi.org/10.1016/j.tcs.2017.03.045
https://doi.org/10.1016/j.tcs.2017.03.045
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1137/0220053
https://doi.org/10.1137/0220053
http://content.iospress.com/articles/fundamenta-informaticae/fi87-1-06
http://content.iospress.com/articles/fundamenta-informaticae/fi87-1-06

Alberto Leporati,  Ph.D., is an
Associate Professor at the Uni-
versity of Milano-Bicocca, at the
Department of Informatics, Sys-
tems and Communication. His
research activity concerns the
theory of computational com-
plexity. In particular, he studies
the computational power of
models of computation which
are inspired by the working of
living cells (Membrane Comput-
ing) and the laws of quantum
mechanics (Quantum Comput-
ing). On these subjects, he pub-
lished more than 90 papers on

international journals and in peer-reviewed proceedings of international
conferences. He is also a member of the Steering Committee for the
CMC and ACMC international conference series, and he serves as
Vice-President of the International Membrane Computing Society.

Luca Manzoni  is an Assistant
Professor at the University of
Trieste, Italy. He obtained his
Ph.D. in computer science at the
University of Milano-Bicocca in
2013. In 2012, he obtained a
JSPS postdoctoral fellowship. In
2017 and alsoan award as the
best young postdoc in computer
science and mathematics at the
University of Milano-Bicocca.
He has published more than 80
papers in international journal,
conferences, and workshops. His
interests are in the areas of natu-
ral computing models, like P

systems, reactions systems, and cellular automata and in the area of
evolutionary computation, and genetic programming in particular.

Giancarlo Mauri  is Full Professor
of computer science at the Uni-
versity of Milano-Bicocca. His
research interests include: natu-
ral computing and unconven-
tional computing models, in par-
ticular membrane systems and
splicing systems; bioinformatics,
in particular algorithms for NGS
data analysis; computational sys-
tems biology, in particular sto-
chastic modeling and simulation
of biological systems and pro-
cesses. On these subjects, he
published about 350 scientific
papers in international journals,

contributed volumes, and conference proceedings. He is/has been a
member of the steering committees of the International Conferences
on DNA Computing, on Membrane Computing, on Unconventional
Computing and Natural Computing on Developments in Language
Theory, and of the International workshop on Cellular Automata.

Antonio E. Porreca  is a maître de
conférences (lecturer) in com-
puter science at Aix-Marseille
Université and a member of the
CANA research group on natural
computing at Laboratoire
d’Informatique et Systèmes,
Marseille, France. His main
research topic is the computa-
tional complexity theory of bio-
inspired computing devices and
discrete dynamical systems.

Claudio Zandron  got a Ph.D. in
computer science from the Uni-
versity of Milan in 2002. Since
2006, he has been an Associate
Professor at the Department of
Informatics, Systems and Com-
munication of the University of
Milano-Bicocca, Italy. His
research interests concern the
areas of formal languages,
molecular computing models,
dna computing, membrane com-
puting, and computational
complexity.

10

	Shallow laconic P systems can count
	Abstract
	1 Introduction
	2 Basic notions
	3 Simulation of Turing machines with counting oracles
	3.1 Turing machine simulation
	3.2 Unary to binary conversion
	3.3 Main result

	4 Conclusions
	References

