
Vol.:(0123456789)1 3

Journal of Membrane Computing (2021) 3:87–96
https://doi.org/10.1007/s41965-021-00074-2

REGULAR PAPER

Alternative space definitions for P systems with active membranes

Artiom Alhazov1  · Alberto Leporati2  · Luca Manzoni3  · Giancarlo Mauri2  · Claudio Zandron2 

Received: 5 November 2020 / Accepted: 25 February 2021 / Published online: 16 April 2021
© The Author(s) 2021

Abstract
The first definition of space complexity for P systems was based on a hypothetical real implementation by means of bio-
chemical materials, and thus it assumes that every single object or membrane requires some constant physical space. This is
equivalent to using a unary encoding to represent multiplicities for each object and membrane. A different approach can also
be considered, having in mind an implementation of P systems in silico; in this case, the multiplicity of each object in each
membrane can be stored using binary numbers, thus reducing the amount of needed space. In this paper, we give a formal
definition for this alternative space complexity measure, we define the corresponding complexity classes and we compare
such classes both with standard space complexity classes and with complexity classes defined in the framework of P systems
considering the original definition of space.

Keywords  Membrane Systems · Computational Complexity · Space Complexity

1  Introduction

P systems with active membranes have been introduced in
[27], considering the idea of generating new membranes
through the division of existing ones. The exponential
amount of resources that can be obtained in this way, in a
polynomial number of computation steps, naturally leads

to the definition of new complexity classes to be compared
with the standard ones.

Initially, the research activity focused on the investiga-
tion of time complexity. It was proved that, to go beyond
the complexity class P , the creation of new membranes is
a necessary feature to gain enough computation efficiency
[40], unless non-confluent systems are used [34]. In [35] it
was proved that P systems with active membranes can solve
all problems in the class PSPACE in polynomial time, a
result which is valid also for uniform systems, as proved in
[6]. Relations with the classes EXP and EXPSPACE were
investigated in [33].

A series of works then defined various complexity classes
characterized by P systems that make use of different fea-
tures. For instance, the works [12, 13] focused on the crucial
role of membrane dissolution; polarizationless systems have
been investigated in [4, 5, 11, 14]; constraints on membrane
division [22] or on the depth of membrane structure [16]
have been the subjects of other works, while [37, 38] focused
on the role of cooperation.

More recently, other aspects have also been studied.
In [1, 25] a different kind of membrane division, called
separation (since objects are separated between new mem-
branes, rather than duplicated) is considered in the frame-
work of P systems with active membranes; in [24] such
kind of rules are applied in a different variant of P sys-
tems, having proteins on membranes. In [7, 10] solutions

 *	 Claudio Zandron
	 claudio.zandron@unimib.it

	 Artiom Alhazov
	 artiom@math.md

	 Alberto Leporati
	 alberto.leporati@unimib.it

	 Luca Manzoni
	 lmanzoni@units.it

	 Giancarlo Mauri
	 giancarlo.mauri@unimib.it

1	 Vladimir Andrunachievici Institute of Mathematics
and Computer Science, Academiei 5, Chişinău 2028,
Moldova

2	 Dipartimento di Informatica, Sistemistica e Comunicazione
(DISCo), Università degli Studi di Milano-Bicocca, Viale
Sarca 336, 20126 Milan, Italy

3	 Dipartimento di Matematica e Geoscienze, Università degli
Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy

https://orcid.org/0000-0002-6184-3971
http://orcid.org/0000-0002-8105-4371
https://orcid.org/0000-0001-6312-7728
http://orcid.org/0000-0003-3520-4022
http://orcid.org/0000-0002-2163-7639
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-021-00074-2&domain=pdf

88	 A. Alhazov et al.

1 3

for SAT are proposed which use different strategies than
previously proposed solutions. Systems of a shallow depth
are the subject of [17–19]. A recent survey on different
strategies to approach computationally hard problems by
P systems with active membranes can be found in [36].

A natural research topic that has been approached after
the first works on time complexity concerns space com-
plexity, a notion introduced for the first time in the frame-
work of P systems in [29]. The definition was based on a
hypothetical real implementation by means of biochemical
materials such as cellular membranes and chemical mol-
ecules. Under this assumption, it was assumed that every
single object or membrane requires some constant physical
space, and this is equivalent to using a unary encoding to
represent multiplicities. The relations between standard
computational complexity classes and the space complex-
ity classes defined in these terms have been studied, both
when at least a linear amount of space is used [30, 31], as
well as when only sublinear [32] or even constant amount
of space [15] is available. A recent survey concerning
results obtained by considering different bounds on space
can be found in [39].

When defining space complexity for P systems, a different
approach can also be considered, focusing the definition of
space on the simulative point of view. In fact, by consider-
ing an implementation of P systems in silico (like the ones
in, e.g., [8, 9]), it is not strictly necessary to store informa-
tion concerning every single object: the multiplicity of each
object in each membrane can be stored using binary num-
bers, thus reducing the amount of needed space.

In this paper, we consider this option: we introduce a
formal definition for this alternative space complexity meas-
ure, we define the corresponding complexity classes and we
compare such classes both with standard space complexity
classes defined for Turing machines and with complexity
classes defined in the framework of P systems considering
the original definition of space [29]. We will give results
concerning the use of a constant, polynomial or exponential
amount of space, respectively, trying to understand whether
or not the classes of solvable problems differ.

The paper is organized as follows. In Section 2 we recall
some definitions concerning P systems with active mem-
branes and space requirements in P systems computations. In
Section 3, we introduce a different definition for measuring
space (which we call binary space to underline that infor-
mation concerning objects is stored in binary) and we give
some results following immediately from this definition.
In Section 4 we compare the new binary space complex-
ity classes with standard complexity classes and with space
complexity classes for P systems based on the standard defi-
nition of space. Finally Section 5 draws some conclusions
and presents some future research topics on this subject.

2 � Basic definitions

In this section, we shortly recall some definitions that will
be useful while reading the rest of the paper. For a com-
plete introduction to P systems, we refer the reader to The
Oxford Handbook of Membrane Computing [28].

Definition 1  A P system with active membranes having
initial degree d ≥ 1 is a tuple � = (� ,�,�,wh1

,… ,whd
,R) ,

where:

•	 � is an alphabet, i.e., a finite non-empty set of symbols,
usually called objects; in the following, we assume
� = {O1,O2,… ,On};

•	 � is a finite set of labels for the membranes;
•	 � is a membrane structure (i.e., a rooted unordered tree,

usually represented by nested brackets) consisting of d
membranes, labelled by elements of � in a one-to-one
way, defining regions (the space between a membrane
and all membranes immediately inside it, if any);

•	 wh1
,… ,whd

 , with h1,… , hd ∈ � , are strings over �
describing the initial multisets of objects placed in the
d regions of �;

•	 R is a finite set of rules over � .

Membranes are polarized, that is, they have an attribute
called electrical charge, which can be neutral (0), posi-
tive (+ ) or negative (−).

A P system can make a computation step by applying its
rules to modify the membrane structure and/or the mem-
brane content. The following types of rules can be used
during the computation:

•	 Object evolution rules, of the form [a → w]�
h

	  They can be applied inside a membrane labelled by
h, having charge � and containing at least an occur-
rence of the object a; the copy of the object a to which
the rule is applied is rewritten into the multiset w (i.e.,
a is removed from the multiset in h and replaced by the
objects in w).

•	 Send-in communication rules, of the form a []�
h
→ [b]

�

h

	  They can be applied to a membrane labelled by h, hav-
ing charge � and such that the external region contains at
least an occurrence of the object a; the copy of the object
a to which the rule is applied is sent into h becoming b
and, simultaneously, the charge of h is changed to �.

•	 Send-out communication rules, of the form [a]�
h
→ []

�

h
b

	  They can be applied to a membrane labelled by h, hav-
ing charge � and containing at least an occurrence of the
object a; the copy of the object a to which the rule is
applied is sent out from h to the outside region becoming
b and, simultaneously, the charge of h is changed to �.

89Alternative space definitions for P systems with active membranes﻿	

1 3

•	 Dissolution rules, of the form [a]�
h
→ b

	  They can be applied to a membrane labelled by h,
having charge � and containing at least an occurrence
of the object a; the copy of the object a to which the
rule is applied is replaced by b, the membrane h is
dissolved and its contents are left in the surrounding
region.

•	 Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h

	  They can be applied to a membrane labelled by h, hav-
ing charge � , containing at least an occurrence of the
object a but having no other membrane inside (in this
case the membrane is said to be elementary); the mem-
brane is divided into two membranes having both label h
and charges � and � , respectively; the copy of the object a
to which the rule is applied is replaced, respectively, by b
and c in the two new membranes, while the other objects
in the initial multiset are copied to both membranes.

•	 (Weak) Non-elementary division rules, of the
form [a]�

h
→ [b]

�

h
[c]

�

h

	  These rules operate just like division for elementary
membranes, but they can be applied to non–elementary
membranes, containing membrane substructures and hav-
ing label h. Like the objects, the substructures inside the
dividing membrane are replicated in the two new copies
of it.

A configuration of a P system with active membranes is
described by the current membrane structure (including
the electrical charge of each membrane) and the multisets
located in the corresponding regions. A computation step
changes the current configuration according to the following
set of principles:

•	 Each object and membrane can be subject to at most one
rule per step, except for object evolution rules: this means
that inside each membrane several evolution rules can
be applied simultaneously, but each membrane can be
involved only in a single communication, dissolution, or
division rule per step.

•	 The application of rules is maximally parallel: each
object appearing on the left-hand side of evolution, com-
munication, dissolution or division rules must be subject
to exactly one of them (unless the current charge of the
membrane prohibits it, and according to the fact that a
membrane can be involved in a single communication,
dissolution, or division rule per step). The same principle
applies to each membrane that can be involved in com-
munication, dissolution, or division rules. In other words,
the only objects and membranes that do not evolve are
those associated with no rule, or only to rules that are not
applicable due to the electrical charges.

•	 When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies

that, in general, multiple possible configurations can be
reached as a result of a computation step.

•	 In each computation step, all the chosen rules are applied
simultaneously (in an atomic way). However, to clarify
the operational semantics, each computation step is
conventionally described as a sequence of micro-steps
as follows. First, all evolution rules are applied inside
the elementary membranes, followed by all commu-
nication, dissolution and division rules involving the
membranes themselves; this process is then repeated on
the membranes containing them, and so on towards the
root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has
been updated. For instance, before a membrane division
occurs, all chosen object evolution rules must be applied
inside it; in this way, the objects that are duplicated dur-
ing the division are already the final ones.

•	 The outermost membrane cannot be divided or dissolved,
and any object sent out from it cannot re-enter the system
again.

A halting computation of the P system � is a finite sequence
of configurations C = (C0,… , Ck) , where C0 is the initial con-
figuration, every Ci+1 is reachable from Ci via a single com-
putation step, and no rules of � are applicable in Ck . If this
last condition is never reached (that is, in each configuration
of the sequence there is at least one applicable rule), then a
non-halting computation C = (Ci ∶ i ∈ ℕ) is obtained, that
consists of infinitely many configurations, again starting
from the initial one and generated by successive computa-
tion steps.

P systems can be used as language recognizers by
employing two distinguished objects yes and no ; exactly one
of these must be sent out from the outermost membrane, and
only in the last step of each computation, to signal accept-
ance or rejection, respectively; we also assume that all com-
putations are halting.

In order to solve decision problems (i.e., recognize lan-
guages over an alphabet � ), we use families of recognizer
P systems � = {𝛱x ∶ x ∈ 𝛴⋆} . Each input x is associated
with a P system �x in the family � that decides the member-
ship of x in the language L ⊆ 𝛴⋆ by accepting or rejecting.
The mapping x ↦ �x must be efficiently computable for
each input length [23].

These families of recognizer P systems can be used to
solve decision problems as follows.

Definition 2  Let � be a P system whose alphabet contains
two distinct objects yes and no , such that every computation
of � is halting and during each computation exactly one of
the objects yes, no is sent out from the skin to signal accept-
ance or rejection. If all the computations of � agree on the
result, then � is said to be confluent; if this is not necessarily

90	 A. Alhazov et al.

1 3

the case, then it is said to be non-confluent and the global
result is acceptance if and only if there exists an accepting
computation.

Definition 3  Let L ⊆ 𝛴⋆ be a language, D a class of
P systems (i.e. a set of P systems using a specific subset
of features) and let � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D be a family of
P systems, either confluent or non-confluent. We say that �
decides L when, for each x ∈ 𝛴⋆ , x ∈ L if and only if �x
accepts.

Complexity classes for P systems are defined by imposing
a uniformity condition on � and restricting the amount of
time or space available for deciding a language.

Definition 4  Consider a language L ⊆ 𝛴⋆ , a class of rec-
ognizer P systems D , and let f ∶ ℕ → ℕ be a proper com-
plexity function (i.e. a “reasonable” one, see [26, Definition
7.1]). We say that L belongs to the complexity class MC

⋆

D
(f)

if and only if there exists a family of confluent P systems
� = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is semi-uniform, i.e. there exists a deterministic Turing
machine which, for each input x ∈ 𝛴⋆ , constructs the
P system �x in polynomial time with respect to |x|;

•	 � operates in time f, i.e. for each x ∈ 𝛴⋆ , every computa-
tion of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity
class PMC

⋆

D
 if and only if there exists a semi-uniform family

of confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L
in polynomial time.

The analogous complexity classes for non-confluent
P systems are denoted by NMC

⋆

D
(f) and NPMC

⋆

D
.

Another set of complexity classes is defined in terms of
uniform families of recognizer P systems:

Definition 5  Consider a language L ⊆ 𝛴⋆ , a class of rec-
ognizer P systems D , and let f ∶ ℕ → ℕ be a proper com-
plexity function. We say that L belongs to the complexity
class MCD(f) if and only if there exists a family of confluent
P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is uniform, i.e. for each x ∈ 𝛴⋆ deciding whether x ∈ L
is performed as follows: first, a polynomial-time deter-
ministic Turing machine, given the length n = |x| as a
unary integer, constructs a P system �n with a distin-
guished input membrane; then, another polynomial-time
deterministic Turing machine computes an encoding of
the string x as a multiset wx , which is finally added to the
input membrane of �n , thus obtaining a P system �x that
accepts if and only if x ∈ L.

•	 � operates in time f, i.e. for each x ∈ 𝛴⋆ , every com-
putation of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity
class PMCD if and only if there exists a uniform family of
confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L
in polynomial time.

The analogous complexity classes for non-confluent
P systems are denoted by NMCD(f) and NPMCD.

As stated in the Introduction, the first definition of space
complexity for P systems introduced in [29] considered a
possible real implementation with biochemical materi-
als, thus assuming that every single object and membrane
requires some constant physical space. Such a definition
(in the improved version from [20], taking into account
also the space required by the labels for membranes and
the alphabet of symbols) is the following:

Definition 6  Considering a configuration C of a P sys-
tem � , its size |C| is the number of membranes in the cur-
rent membrane structure multiplied by log |�| , plus the total
number of objects from � they contain multiplied by log |� | .
If C = (C0,… , Ck) is a computation of � , then the space
required by C is defined as

The space required by � itself is defined as the supremum
of the space required by all computations of �:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer
P systems, and let s ∶ ℕ → ℕ . We say that � operates within
space bound s if and only if |�x| ≤ s(|x|) for each x ∈ 𝛴⋆.

Following what has been done for time complex-
ity classes, we can define space complexity classes. By
MCSPACED(f (n)) (resp. MCSPACE

⋆

D
(f (n)) ) we denote the

class of languages which can be decided by uniform (resp.
semi-uniform) families, � , of confluent P systems of type
D (for example, when we refer to P systems with active
membranes, we denote this by setting D = AM ), where
each �x ∈ � operates within space bound f(|x|).

In particular, the class of problems solvable in poly-
nomial space by uniform confluent systems is denoted by
PMCSPACED , and the class of problems solvable in expo-
nential space by uniform confluent systems is denoted by
EXPMCSPACED (adding a star in case of semi–uniform
classes).

The corresponding classes for non-confluent systems
are NPMCSPACED and NEXPMCSPACED.

|C| = max{|C0|,… , |Ck|}.

|�| = sup{|C| ∶ C is a computation of �}.

91Alternative space definitions for P systems with active membranes﻿	

1 3

3 � An alternative definition of space
complexity for P systems

In this section, we first give a different definition of space
complexity for P systems with active membranes. This
definition considers the information stored in the objects
of the systems, and not the single objects themselves. In
other words, we store, using binary numbers, the multi-
plicity of each object in each membrane, thus reducing
the amount of needed space with respect to the definition
of space given in the previous section.

We will do this considering, for each region, a sequence
of couples, describing how many occurrences of each
object are present (only for objects having at least one
occurrence in the region). As an example, consider-
ing an (ordered) alphabet � = {a, b, c, d} , a multiset
a2, b5, d6 can be described by the sequence of couples
(010, 00), (101, 01), (110, 11) (where (010,00) corre-
sponds to 2 occurrences of the first symbol in �  , that is a,
(101,01) to 5 occurrences of the second symbol b, etc.).
Of course, different descriptions can also be considered:
for instance, the bits describing the object can be avoided
if we give, in order, the amount of each object, including
objects having zero occurrences (sometimes this would
allow to save space, but sometimes this would require
more space, like in the case of sparse information - see,
e.g., [21]). We leave as an open research topic the question
whether or not different descriptions allow improvements
in space usage.

We will refer to this definition of space by binary space,
and we will add a symbol B where appropriate, to distin-
guish between the definitions referring to this new measure
and the definitions recalled in the previous section.

Definition 7  Consider a configuration C of a P system � .
Let us denote by h1, h2, ..., hz the membranes of the current
membrane structure (we stress the fact that z can be smaller,
equal, or greater than the initial number of membranes d,
due to dissolution and duplication of membranes; we also
stress the fact that we do not need to store unique IDs for
membranes having the same label as we can, for example,
indicate multisets of objects inside a string-like bracketed
expression), and by |Oi,j| the multiplicity of object i within
region j. The binary size |C|B of a configuration C is defined
as:

that is the number of membranes in the current membrane
structure multiplied by log |�| , plus the number of bits
required to store the description of the multiset in each
region.

�C�B = z ⋅ log ��� +
z�

j=1

n�

i=1

�
⌈log(�Oi,j� + 1)⌉ + log �� �

�

If C = (C0,… , Ck) is a computation of � , then the binary
space required by C is defined as

The binary space required by � itself is then obtained by
computing the binary space required by all computations
of � and taking the supremum:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer
P systems, and let s ∶ ℕ → ℕ . We say that � operates
within binary space bound s if and only if |�x|B ≤ s(|x|) for
each x ∈ 𝛴⋆.

We can thus define space complexity classes consid-
ering this newly introduced size measure, like we did
in the previous section. By MCBSPACED(f (n)) (resp.
MCBSPACE

∗

D
(f (n)) ) we denote the class of languages

which can be decided by uniform (resp. semi–uniform)
families, � , of confluent P systems of type D, where each
�x ∈ � operates within space bound f(|x|), considering
this new definition of binary space. Similarly, we can
define the usual complexity classes like we did in the
previous section, simply adding a B to underline the use
of this new definition of space. For instance, the class
of problems solvable by uniform (resp. semi–uniform)
systems in polynomial binary space will be denoted by
PMCBSPACED (resp. PMCBSPACE

∗

D
).

Once these notions have been defined, we are ready to
state some results obtained by considering various com-
plexity classes defined in terms of binary space. Just like
it happens with the classes based on the original definition
of space given in [29], some results follow immediately
from the definitions (we denote a result that holds for both
semi-uniform and uniform systems by [⋆]):

Proposition 1  The following inclusions hold:

Proposition 2  MCBSPACE
[⋆]

D
(f) ⊆ NMCBSPACE

[⋆]

D
(f)

for each f ∶ ℕ → ℕ , and in particular

The results describing closure properties and providing
an upper bound for time requirements of P systems operat-
ing in bounded binary space are still valid, too:

|C|B = max{|C0|B,… , |Ck|B}.

|�|B = sup{|C|B ∶ C is a computation of �}.

PMCBSPACE
[⋆]

D
⊆ EXPMCBSPACE

[⋆]

D

NPMCBSPACE
[⋆]

D
⊆ NEXPMCBSPACE

[⋆]

D
.

PMCBSPACE
[⋆]

D
⊆ NPMCBSPACE

[⋆]

D

EXPMCBSPACE
[⋆]

D
⊆ NEXPMCBSPACE

[⋆]

D
.

92	 A. Alhazov et al.

1 3

Proposition 3  The complexity classes PMCBSPACE
[⋆]

D
 ,

NPMCBSPACE
[⋆]

D
 , EXPMCBSPACE

[⋆]

D
 , a n d

NEXPMCBSPACE
[⋆]

D
 are all closed under polynomial-time

reductions.

Proof  Consider a language L ∈ PMCBSPACE
⋆

D
 and let

M be the Turing machine constructing the family � that
decides L. Let L′ be reducible to L via a polynomial-time
computable function f.

We can build a Turing machine M′ working as follows:
on input x of length n, M′ computes f(x); then it behaves like
M on input f(x), thus constructing �f (x) (we stress the fact
that, for the corresponding result concerning the uniform
case, the construction of the P system involves two Turing
machines, both operating in polynomial time; in this case,
we simulate the composition of the two machines). Since
|f (x)| is bounded by a polynomial, M′ operates in polyno-
mial time and �f (x) in polynomial binary space; it follows
that �� = {𝛱f (x) ∣ x ∈ 𝛴⋆} is a polynomially semi-uniform
family of P systems deciding L′ in polynomial binary space.
Thus L� ∈ PMCBSPACE

⋆

D
.

The proofs for the three other classes and for the corre-
sponding uniform classes are analogous. 	� ◻

Proposition 4  MCBSPACE
[⋆]

D
(f) is closed under comple-

ment for each function f ∶ ℕ → ℕ.

Proof  By reversing the roles of objects yes and no , the com-
plement of a language can be decided. 	� ◻

Proposition 5  For each function f ∶ ℕ → ℕ

Proof  Let L ∈ MCBSPACE
⋆

D
(f (n)) be decided by the semi-

uniform family � of recognizer P systems in binary space f;
let �x ∈ � with |x| = n and let C be a configuration of �x.

The configuration C is described by the membrane struc-
ture and the objects inside it. The information concerning
objects is stored using bits, as described above. The mem-
brane structure can be stored directly using a bracketed
expression. For z membranes the binary space allocated
requires z × log(|�|) bits; even by adding a constant number
of bits for each bracket corresponding to each membrane, the
space required is O(z × log(|�|)) . The binary space required
by �x is then O

�
z ⋅ log ��� +

z�

j=1

n�

i=1

�
⌈log(�Oi,j� + 1)⌉ + log �� �

��

= O(f (n)).
Since �x is a recognizer P system, by definition every

computation halts: then it must halt within 2O(f (n)) steps in
order to avoid repeating a configuration.

MCBSPACE
[⋆]

D
(f (n)) ⊆ MC

[⋆]

D

(
2O(f (n)

)

NMCBSPACE
[⋆]

D
(f (n)) ⊆ NMC

[⋆]

D

(
2O(f (n)

)
.

The same argument, with only some small differences,
also works in the non-confluent case. All possible computa-
tions halt, even if not necessarily agreeing on the answer.
Due to non-confluence, each computation can also contain
repeated configurations. Nonetheless, for each computation
containing a repeated configuration, there exists an equiva-
lent one obtained by removing cycles in the computation
path.

The proof for the uniform classes is analogous. 	� ◻

4 � Comparison with standard computational
complexity classes

In this section, we compare the standard computational com-
plexity classes with the complexity classes defined in the
framework of P systems working in binary space.

Most results are an immediate consequence of
the results given in [29], simply considering that
MCSPACED(f (n)) ⊆ MCBSPACED(f (n)).

Thus, recalling various results from [29], we have:

Proposition 6  Let us denote by EAM and AM
0 the classes

of P systems with active membranes using only elementary
membrane division and without polarizations, respectively.
The following results hold:

A n i n t e r e s t i n g r e s e a r c h t o p i c c o n -
cer ns t he c lasses fo r which the inc lus ion
MCSPACED(f (n)) ⊆ MCBSPACED(f (n)) is proper and,
considering the above inclusions, whether or not the same
results can be obtained with stricter binary space classes,
by exploiting the improved information storage related to
objects with respect to the standard space definition.

By considering a constant amount of space, in the semi-
uniform case, the following result holds:

Theorem 7  P = MCSPACE
⋆

AM
(O(1)) = MCBSPACE

⋆

AM
(O(1)).

�� ∪ ���� ⊆ ����������
⋆

EAM

⊆ �����������
⋆

EAM

������ ⊆ ����������
⋆

AM

⊆ �����������
⋆

AM

������ ⊆ ����������AM

⊆ �����������
⋆

AM

������ ⊆ ����������
[⋆]

AM
0

⊆ �����������
[⋆]

AM
0

93Alternative space definitions for P systems with active membranes﻿	

1 3

Proof  The inclusion P ⊆ MCSPACE
⋆

AM
(O(1)) follows

immediately from the definition of semiuniform P systems.
Consider a language L in P and a string x; a deterministic
Turing machine can create in polynomial time a P system
having a single membrane and one single object yes or no ,
directly answering the question whether or not x ∈ L . The
inclusion MCSPACE

⋆

AM
(O(1)) ⊆ MCBSPACE

⋆

AM
(O(1))

follows, as stated above, from the definition of binary space.
For the converse, we simply need to recall that a conflu-

ent semiuniform P system without membrane division can
be simulated, in polynomial time, by a deterministic Turing
machine, like it was shown in [40]. It is easy to see that the
proof works both considering the standard space definition
as well as the binary space definition for P systems. Even
when the division of membranes is allowed, but the system
can only use an amount of space that is limited to a con-
stant, the total number of membranes is limited by a constant
and, as a consequence, the total number of configurations is
polynomially bounded. Hence, the same simulation is still
valid. 	� ◻

It follows that, for semiuniform systems, when we
allow only a constant amount of space, the improved stor-
age allowed by binary space does not lead to improved
efficiency.

Another interesting result concerning the standard defi-
nition of space in the framework of P systems was pre-
sented in [30], and it focuses on the type of resources used.
In particular, a solution for the PSPACE-complete problem
Quantified 3SAT was given, for uniform systems using
only communication rules (hence no evolution, membrane
division and dissolution rules were used), thus proving the
inclusion of PSPACE in this class. Once again, since the
definition of binary space allows a more efficient alloca-
tion of space, the result is still valid:

Proposition 8  Let us denote by AM(-ev,+com,-dis,-div)
the class of P systems with active membranes using only
communication rules (while rules for object evolution, dis-
solution, and division of membranes are not used). Then
PSPACE ⊆ PMCBSPACE

[⋆]

AM(-ev,+com,-dis,-div)
.

Once again, it would be interesting to understand
whether or not the result remains valid for a smaller binary
space class. In this case, the question can be answered
negatively, by considering a result presented in [31]. In
the article, it was shown that recognizer P systems with
active membranes using polynomial space characterize
the complexity class PSPACE . The result holds for both
confluent and nonconfluent systems, and even in the case
that non-elementary division is used. In particular, it was
pointed out that such systems can be simulated by polyno-
mial space Turing machines.

By considering the alternative definition for binary
space, we can thus obtain the corresponding theorem:

Theorem 9  Let � be a nonconfluent P system with active
membranes, running in binary space S. Then, it can be simu-
lated by a deterministic Turing machine in space O(S2).

Proof  We simulate � by means of a non-deterministic
Turing machine N. The current configuration of � can be
stored explicitly by N: the membrane structure is represented
directly by using a bracketed expression, while multisets of
objects inside each region are stored by means of tuples of
integers encoded in binary. Of course, the same considera-
tions we made in the proof of Proposition 5 hold also in
this case.

For the simulation, we can use the same algorithm as in
[31]: the space required by N to store further information
needed to carry on the simulation is then limited by S. It
follows that the total amount of space required by N is of the
same order as the one required by � , that is, O(S).

Using Savitch’s theorem [26], it is straightforward to see
that N (and thus � ) can be simulated by a deterministic
Turing machine in space O(S2) . 	� ◻

It follows immediately from this theorem, from the results
in [31], and from Proposition 8:

Theorem 10  Let D be a class of P systems with active mem-
branes using at least communication rules. Then

 where [N] denotes optional nonconfluence, and [⋆] optional
semi-uniformity.

Hence, even when a polynomial amount of space is used,
the complexity classes defined on the basis of the definition
of binary space coincide with the complexity classes defined
in terms of the original definition of space (for systems using
at least communication rules).

In [3] it was shown that exponential space Turing
machines can be simulated by polynomially uniform expo-
nential-space P systems with active membranes. In view of
this result and of Theorem 9, and of the definition of binary
space, we have the following:

Theorem 11  The following equivalences hold for an expo-
nential amount of space:

[N]PMCBSPACE
[⋆]

D
= [N]PMCSPACE

[⋆]

D
= PSPACE,

EXPSPACE = EXPMCBSPACEAM

= EXPMCBSPACE
⋆

AM

= NEXPMCBSPACE
⋆

AM
.

94	 A. Alhazov et al.

1 3

Proof  The following inclusions hold by definition:

 F o r w h a t c o n c e r n s t h e i n c l u s i o n
NEXPMCBSPACE

⋆

AM
⊆ EXPSPACE , it is an immediate

corollary of Theorem 9.
F i n a l ly, t h e i n c l u s i o n o f EXPSPACE i n

EXPMCSPACEAM is proved in [3, Theorem 8]. Recalling
that EXPMCSPACEAM ⊆ EXPMCBSPACEAM , it follows
EXPSPACE ⊆ EXPMCBSPACEAM . 	� ◻

Also in this case, considering binary space instead of the
standard one does not result in improved efficiency. In fact,
considering the theorem just proved and recalling [2, Corol-
lary 1] proving the same results for classes with the original
definition of space for P systems, we can prove that such
classes are equal to EXPSPACE:

Corollary 12 

.

5 � Conclusions

We have proposed an alternative space complexity meas-
ure for P systems with active membranes, where the multi-
plicity of each object in each membrane is stored by using
binary numbers. We have defined the corresponding com-
plexity classes and we have compared some of them both
with standard space complexity classes and with complexity
classes defined in the framework of P systems considering
the original definition of space [29].

It turned out that, for various considered systems, the
computational classes defined on the basis of binary space
do not differ from the corresponding classes defined on the
basis of the original space definition for P systems. Among
the various systems for which we proved such a result, we
underline in particular that this is the case when we consider
systems using all features of P systems with active mem-
branes and a polynomial or exponential amount of space,
as well as for semiuniform systems working in a constant
space.

It would be interesting to find other classes for which the
improved store efficiency obtained by considering binary
space does not make any difference in computational

EXPMCBSPACEAM

⊆ EXPMCBSPACE
⋆

AM

⊆ NEXPMCBSPACE
⋆

AM
.

EXPSPACE = EXPMCSPACEAM = EXPMCSPACE
⋆

AM

= NEXPMCSPACE
⋆

AM
= EXPMCBSPACEAM

= EXPMCBSPACE
⋆

AM
= NEXPMCBSPACE

⋆

AM

efficiency, and to understand which features can be used/
are necessary to obtain the same result. It also remains as
an open problem to find, on the contrary, specific classes
where this difference exists, thus proving that storing the
information concerning objects in an efficient way can really
be exploited in some cases. We conjecture, for instance, that
this is the case for complexity classes defined by systems
using a logarithmic amount of space.

Another possible research direction is to consider fur-
ther variants of definition for space, and compare them with
standard and binary space, or to consider the space required
to describe the whole system executing the computation, that
is including not only the data (object and membranes, in our
case) but also the program (the rules, in our case).

Acknowledgements  This work was partially supported by Università
degli Studi di Milano-Bicocca, Fondo di Ateneo per la Ricerca 2018,
project 2018-ATE-0527.

Funding  Open access funding provided by Università degli Studi di
Milano - Bicocca within the CRUI-CARE Agreement.

Compliance with ethical standards 

Conflict of interest  Artiom Alhazov, Alberto Leporati, Luca Manzoni,
Giancarlo Mauri and Claudio Zandron state that there is no conflict
of interest

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alhazov, A., & Ishdorj, T. (2004). Membrane operations in P sys-
tems with active membranes. In: Păun, Gh., Riscos-Núñez, A.,
Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brain-
storming Week on Membrane Computing. pp. 37–44. No. 1/2004
in RGNC Reports, Fénix Editora.

	 2.	 Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., & Zandron, C.
(2012). The computational power of exponential-space P systems
with active membranes. In: Martínez-del-Amor, M.A., Păun, Gh.,
Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Tenth Brainstorm-
ing Week on Membrane Computing, Volume I. pp. 35–60. No.
1/2012 in RGNC Reports, Fénix Editora, http://​www.​gcn.​us.​es/​
icdmc​2012_​proce​edings.

	 3.	 Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron,
C. (2014). Space complexity equivalence of P systems with active
membranes and Turing machines. Theoretical Computer Science,
529, 69–81. https://​doi.​org/​10.​1016/j.​tcs.​2013.​11.​015.

http://creativecommons.org/licenses/by/4.0/
http://www.gcn.us.es/icdmc2012_proceedings
http://www.gcn.us.es/icdmc2012_proceedings
https://doi.org/10.1016/j.tcs.2013.11.015

95Alternative space definitions for P systems with active membranes﻿	

1 3

	 4.	 Alhazov, A., & Pan, L. (2004). Polarizationless P systems with
active membranes. Grammars, 7, 141–159.

	 5.	 Alhazov, A., Pan, L., & Păun, Gh. (2004). Trading polarizations
for labels in P systems with active membranes. Acta Informatica,
41(2–3), 111–144. https://​doi.​org/​10.​1007/​s00236-​004-​0153-z.

	 6.	 Alhazov, A., & Pérez-Jiménez, M.J. (2007). Uniform solution to
QSAT using polarizationless active membranes. In: Durand-Lose,
J., Margenstern, M. (eds.) Machines, Computations, and Univer-
sality, 5th International Conference, MCU 2007, Lecture Notes
in Computer Science, vol. 4664, pp. 122–133. Springer, https://​
doi.​org/​10.​1007/​978-3-​540-​74593-8_​11.

	 7.	 Buño, K., & Adorna, H. (2020). Distributed computation of a kP
system with active membranes for SAT using clause completion.
Journal of Membrane Computing, 2(2), 108–120. https://​doi.​org/​
10.​1007/​s41965-​020-​00040-4.

	 8.	 Cecilia, J., García, J., Guerrero, G., Martínez-del Amor, M.,
Pérez-Hurtado, I., & Pérez-Jiménez, M. (2010). Simulating a P
system based efficient solution to SAT by using GPUs. Journal of
Logic and Algebraic Programming, 79(6), 317–325.

	 9.	 García-Quismondo, M., Gutiérrez-Escudero, R., Martínez-del
Amor, M.A., Orejuela-Pinedo, E., & Pérez-Hurtado, I. (2009).
P-Lingua 2.0: A software framework for cell-like P systems. Inter-
national Journal of Computers, Communications & Control 4(3),
234–243.

	10.	 Gazdag, Z., & Kolonits, G. (2013). A new approach for solv-
ing SAT by P systems with active membranes. In: Csuhaj-Varjú,
E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.)
Membrane Computing, 13th International Conference, CMC
2012. Lecture Notes in Computer Science, vol. 7762, pp. 195–
207. Springer.

	11.	 Gazdag, Z., & Kolonits, G. (2019). A new method to simulate
restricted variants of polarizationless P systems with active mem-
branes. Journal of Membrane Computing, 1(4), 251–261.

	12.	 Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez,
A., & Romero-Campero, F.J. (2006). On the power of dissolu-
tion in P systems with active membranes. In: Freund, R., Păun,
Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing,
6th International Workshop, WMC 2005. Lecture Notes in Com-
puter Science, vol. 3850, pp. 224–240. Springer, https://​doi.​org/​
10.​1007/​11603​047.

	13.	 Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Nuñez,
A., & Romero-Campero, F. J. (2006). Computational efficiency of
dissolution rules in membrane systems. International Journal of
Computer Mathematics, 83(7), 593–611. https://​doi.​org/​10.​1080/​
00207​16060​10654​13.

	14.	 Leporati, A., Ferretti, C., Mauri, G., & Zandron, C. (2008). Com-
plexity aspects of polarizationless membrane systems. Natural
Computing, 4(8), 703–717.

	15.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2014). Constant-space P systems with active membranes.
Fundamenta Informaticae, 134(1–2), 111–128. https://​doi.​org/​
10.​3233/​FI-​2014-​1094.

	16.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2015). Membrane division, oracles, and the counting hierar-
chy. Fundamenta Informaticae, 138(1–2), 97–111. https://​doi.​org/​
10.​3233/​FI-​2015-​1201.

	17.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2019). Characterizing PSPACE with shallow non-confluent P
systems. Journal of Membrane Computing, 1(2), 75–84. https://​
doi.​org/​10.​1007/​s41965-​019-​00011-4.

	18.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zan-
dron, C. (2020). Shallow laconic P systems can count. Journal
of Membrane Computing, 2(1), 49–58. https://​doi.​org/​10.​1007/​
s41965-​020-​00032-4.

	19.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2020). A Turing machine simulation by P systems without

charges. Journal of Membrane Computing, 2(2), 71–79. https://​
doi.​org/​10.​1007/​s41965-​020-​00031-5.

	20.	 Leporati, A., Mauri, G., Porreca, A.E., & Zandron, C. (2014). A
gap in the space hierarchy of P systems with active membranes.
Journal of Automata, Languages and Combinatorics 19(1–4),
173–184, http://​theo.​cs.​ovgu.​de/​jalc/​search/​j19_i.​html.

	21.	 Martinez del Amor, M., Orellana Martín, D., Cabarle, F.G.,
Pérez Jiménez, M.D., & Adorna, H.N. (2017). Sparse-matrix rep-
resentation of spiking neural P systems for GPUs. In: Proceedings
of BWMC 2017: 15th Brainstorming Week on Membrane Com-
puting. pp. 161–170, https://​idus.​us.​es/​handle/​11441/​67895.

	22.	 Murphy, N., & Woods, D. (2007). Active membrane systems with-
out charges and using only symmetric elementary division char-
acterise P. In: Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg,
G., Salomaa, A. (eds.) Membrane Computing, 8th International
Workshop, WMC 2007. Lecture Notes in Computer Science,
vol. 4860, pp. 367–384, https://​doi.​org/​10.​1007/​978-3-​540-​77312-
2_​23.

	23.	 Murphy, N., & Woods, D. (2011). The computational power
of membrane systems under tight uniformity conditions. Nat-
ural Computing, 10(1), 613–632. https://​doi.​org/​10.​1007/​
s11047-​010-​9244-7.

	24.	 Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez,
A., & Pérez-Jiménez, M. J. (2019). P systems with proteins: a
new frontier when membrane division disappears. Journal of
Membrane Computing, 1(1), 29–39. https://​doi.​org/​10.​1007/​
s41965-​018-​00003-w.

	25.	 Pan, L., Alhazov, A., & Ishdorj, T. O. (2005). Further remarks
on P systems with active membranes, separation, merging, and
release rules. Soft Computing, 9(9), 686–690. https://​doi.​org/​10.​
1007/​s00500-​004-​0399-y.

	26.	 Papadimitriou, C. H. (1993). Computational Complexity. New
York: Addison-Wesley.

	27.	 Păun, Gh. (2001). P systems with active membranes: Attacking
NP-complete problems. Journal of Automata, Languages and
Combinatorics, 6(1), 75–90.

	28.	 Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford Handbook of Membrane Computing. Oxford: Oxford
University Press.

	29.	 Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2009).
Introducing a space complexity measure for P systems. Interna-
tional Journal of Computers, Communications & Control 4(3),
301–310, http://​univa​gora.​ro/​jour/​index.​php/​ijccc/​artic​le/​view/​
2779.

	30.	 Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011).
P systems with active membranes: Trading time for space.
Natural Computing, 10(1), 167–182. https://​doi.​org/​10.​1007/​
s11047-​010-​9189-x.

	31.	 Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011).
P systems with active membranes working in polynomial space.
International Journal of Foundations of Computer Science, 22(1),
65–73. https://​doi.​org/​10.​1142/​S0129​05411​10078​36.

	32.	 Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2013).
Sublinear-space P systems with active membranes. In: Csuhaj-
Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil,
G. (eds.) Membrane Computing, 13th International Conference,
CMC 2012. Lecture Notes in Computer Science, vol. 7762, pp.
342–357. Springer, https://​doi.​org/​10.​1007/​978-3-​642-​36751-9_​
23.

	33.	 Porreca, A. E., Mauri, G., & Zandron, C. (2006). Complexity
classes for membrane systems. RAIRO Theoretical Informatics
and Applications, 40(2), 141–162. https://​doi.​org/​10.​1051/​ita:​
20060​01.

	34.	 Porreca, A. E., Mauri, G., & Zandron, C. (2010). Non-confluence
in divisionless P systems with active membranes. Theoretical

https://doi.org/10.1007/s00236-004-0153-z
https://doi.org/10.1007/978-3-540-74593-8_11
https://doi.org/10.1007/978-3-540-74593-8_11
https://doi.org/10.1007/s41965-020-00040-4
https://doi.org/10.1007/s41965-020-00040-4
https://doi.org/10.1007/11603047
https://doi.org/10.1007/11603047
https://doi.org/10.1080/00207160601065413
https://doi.org/10.1080/00207160601065413
https://doi.org/10.3233/FI-2014-1094
https://doi.org/10.3233/FI-2014-1094
https://doi.org/10.3233/FI-2015-1201
https://doi.org/10.3233/FI-2015-1201
https://doi.org/10.1007/s41965-019-00011-4
https://doi.org/10.1007/s41965-019-00011-4
https://doi.org/10.1007/s41965-020-00032-4
https://doi.org/10.1007/s41965-020-00032-4
https://doi.org/10.1007/s41965-020-00031-5
https://doi.org/10.1007/s41965-020-00031-5
http://theo.cs.ovgu.de/jalc/search/j19_i.html
https://idus.us.es/handle/11441/67895
https://doi.org/10.1007/978-3-540-77312-2_23
https://doi.org/10.1007/978-3-540-77312-2_23
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1007/s41965-018-00003-w
https://doi.org/10.1007/s41965-018-00003-w
https://doi.org/10.1007/s00500-004-0399-y
https://doi.org/10.1007/s00500-004-0399-y
http://univagora.ro/jour/index.php/ijccc/article/view/2779
http://univagora.ro/jour/index.php/ijccc/article/view/2779
https://doi.org/10.1007/s11047-010-9189-x
https://doi.org/10.1007/s11047-010-9189-x
https://doi.org/10.1142/S0129054111007836
https://doi.org/10.1007/978-3-642-36751-9_23
https://doi.org/10.1007/978-3-642-36751-9_23
https://doi.org/10.1051/ita:2006001
https://doi.org/10.1051/ita:2006001

96	 A. Alhazov et al.

1 3

Computer Science, 411(6), 878–887. https://​doi.​org/​10.​1016/j.​
tcs.​2009.​07.​032.

	35.	 Sosík, P. (2003). The computational power of cell division in P
systems: Beating down parallel computers? Natural Computing,
2(3), 287–298. https://​doi.​org/​10.​1023/A:​10254​01325​428.

	36.	 Sosík, P. (2019). P systems attacking hard problems beyond NP: a
survey. Journal of Membrane Computing, 1(3), 198–208. https://​
doi.​org/​10.​1007/​s41965-​019-​00017-y.

	37.	 Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor,
M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Com-
putational efficiency of minimal cooperation and distribution in
polarizationless P systems with active membranes. Fundamenta
Informaticae, 153(1–2), 147–172. https://​doi.​org/​10.​3233/​
FI-​2017-​1535.

	38.	 Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor,
M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Reach-
ing efficiency through collaboration in membrane systems:

Dissolution, polarization and cooperation. Theoretical Computer
Science, 701, 226–234. https://​doi.​org/​10.​1016/j.​tcs.​2017.​04.​015.

	39.	 Zandron, C. (2020). Bounding the space in P systems with active
membranes. Journal of Membrane Computing, 2(2), 137–145.
https://​doi.​org/​10.​1007/​s41965-​020-​00039-x.

	40.	 Zandron, C., Ferretti, C., & Mauri, G. (2001). Solving NP-
complete problems using P systems with active membranes. In:
Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional
Models of Computation, UMC’2K, Proc. Second Int. Conference,
pp. 289–301. Springer, https://​doi.​org/​10.​1007/​978-1-​4471-​0313-
4_​21.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.tcs.2009.07.032
https://doi.org/10.1016/j.tcs.2009.07.032
https://doi.org/10.1023/A:1025401325428
https://doi.org/10.1007/s41965-019-00017-y
https://doi.org/10.1007/s41965-019-00017-y
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.1016/j.tcs.2017.04.015
https://doi.org/10.1007/s41965-020-00039-x
https://doi.org/10.1007/978-1-4471-0313-4_21
https://doi.org/10.1007/978-1-4471-0313-4_21

	Alternative space definitions for P systems with active membranes
	Abstract
	1 Introduction
	2 Basic definitions
	3 An alternative definition of space complexity for P systems
	4 Comparison with standard computational complexity classes
	5 Conclusions
	Acknowledgements
	References

