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Abstract
The first definition of space complexity for P systems was based on a hypothetical real implementation by means of bio-
chemical materials, and thus it assumes that every single object or membrane requires some constant physical space. This is 
equivalent to using a unary encoding to represent multiplicities for each object and membrane. A different approach can also 
be considered, having in mind an implementation of P systems in silico; in this case, the multiplicity of each object in each 
membrane can be stored using binary numbers, thus reducing the amount of needed space. In this paper, we give a formal 
definition for this alternative space complexity measure, we define the corresponding complexity classes and we compare 
such classes both with standard space complexity classes and with complexity classes defined in the framework of P systems 
considering the original definition of space.

Keywords  Membrane Systems · Computational Complexity · Space Complexity

1  Introduction

P systems with active membranes have been introduced in 
[27], considering the idea of generating new membranes 
through the division of existing ones. The exponential 
amount of resources that can be obtained in this way, in a 
polynomial number of computation steps, naturally leads 

to the definition of new complexity classes to be compared 
with the standard ones.

Initially, the research activity focused on the investiga-
tion of time complexity. It was proved that, to go beyond 
the complexity class P , the creation of new membranes is 
a necessary feature to gain enough computation efficiency 
[40], unless non-confluent systems are used [34]. In [35] it 
was proved that P systems with active membranes can solve 
all problems in the class PSPACE in polynomial time, a 
result which is valid also for uniform systems, as proved in 
[6]. Relations with the classes EXP and EXPSPACE were 
investigated in [33].

A series of works then defined various complexity classes 
characterized by P systems that make use of different fea-
tures. For instance, the works [12, 13] focused on the crucial 
role of membrane dissolution; polarizationless systems have 
been investigated in [4, 5, 11, 14]; constraints on membrane 
division [22] or on the depth of membrane structure [16] 
have been the subjects of other works, while [37, 38] focused 
on the role of cooperation.

More recently, other aspects have also been studied. 
In [1, 25] a different kind of membrane division, called 
separation (since objects are separated between new mem-
branes, rather than duplicated) is considered in the frame-
work of P systems with active membranes; in [24] such 
kind of rules are applied in a different variant of P sys-
tems, having proteins on membranes. In [7, 10] solutions 

 *	 Claudio Zandron 
	 claudio.zandron@unimib.it

	 Artiom Alhazov 
	 artiom@math.md

	 Alberto Leporati 
	 alberto.leporati@unimib.it

	 Luca Manzoni 
	 lmanzoni@units.it

	 Giancarlo Mauri 
	 giancarlo.mauri@unimib.it

1	 Vladimir Andrunachievici Institute of Mathematics 
and Computer Science, Academiei 5, Chişinău 2028, 
Moldova

2	 Dipartimento di Informatica, Sistemistica e Comunicazione 
(DISCo), Università degli Studi di Milano-Bicocca, Viale 
Sarca 336, 20126 Milan, Italy

3	 Dipartimento di Matematica e Geoscienze, Università degli 
Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy

https://orcid.org/0000-0002-6184-3971
http://orcid.org/0000-0002-8105-4371
https://orcid.org/0000-0001-6312-7728
http://orcid.org/0000-0003-3520-4022
http://orcid.org/0000-0002-2163-7639
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-021-00074-2&domain=pdf


88	 A. Alhazov et al.

1 3

for SAT are proposed which use different strategies than 
previously proposed solutions. Systems of a shallow depth 
are the subject of [17–19]. A recent survey on different 
strategies to approach computationally hard problems by 
P systems with active membranes can be found in [36].

A natural research topic that has been approached after 
the first works on time complexity concerns space com-
plexity, a notion introduced for the first time in the frame-
work of P systems in [29]. The definition was based on a 
hypothetical real implementation by means of biochemical 
materials such as cellular membranes and chemical mol-
ecules. Under this assumption, it was assumed that every 
single object or membrane requires some constant physical 
space, and this is equivalent to using a unary encoding to 
represent multiplicities. The relations between standard 
computational complexity classes and the space complex-
ity classes defined in these terms have been studied, both 
when at least a linear amount of space is used [30, 31], as 
well as when only sublinear [32] or even constant amount 
of space [15] is available. A recent survey concerning 
results obtained by considering different bounds on space 
can be found in [39].

When defining space complexity for P systems, a different 
approach can also be considered, focusing the definition of 
space on the simulative point of view. In fact, by consider-
ing an implementation of P systems in silico (like the ones 
in, e.g., [8, 9]), it is not strictly necessary to store informa-
tion concerning every single object: the multiplicity of each 
object in each membrane can be stored using binary num-
bers, thus reducing the amount of needed space.

In this paper, we consider this option: we introduce a 
formal definition for this alternative space complexity meas-
ure, we define the corresponding complexity classes and we 
compare such classes both with standard space complexity 
classes defined for Turing machines and with complexity 
classes defined in the framework of P systems considering 
the original definition of space [29]. We will give results 
concerning the use of a constant, polynomial or exponential 
amount of space, respectively, trying to understand whether 
or not the classes of solvable problems differ.

The paper is organized as follows. In Section 2 we recall 
some definitions concerning P systems with active mem-
branes and space requirements in P systems computations. In 
Section 3, we introduce a different definition for measuring 
space (which we call binary space to underline that infor-
mation concerning objects is stored in binary) and we give 
some results following immediately from this definition. 
In Section 4 we compare the new binary space complex-
ity classes with standard complexity classes and with space 
complexity classes for P systems based on the standard defi-
nition of space. Finally Section 5 draws some conclusions 
and presents some future research topics on this subject.

2 � Basic definitions

In this section, we shortly recall some definitions that will 
be useful while reading the rest of the paper. For a com-
plete introduction to P systems, we refer the reader to The 
Oxford Handbook of Membrane Computing [28].

Definition 1  A P system with active membranes having 
initial degree d ≥ 1 is a tuple � = (� ,�,�,wh1

,… ,whd
,R) , 

where:

•	 �  is an alphabet, i.e., a finite non-empty set of symbols, 
usually called objects; in the following, we assume 
� = {O1,O2,… ,On};

•	 � is a finite set of labels for the membranes;
•	 � is a membrane structure (i.e., a rooted unordered tree, 

usually represented by nested brackets) consisting of d 
membranes, labelled by elements of � in a one-to-one 
way, defining regions (the space between a membrane 
and all membranes immediately inside it, if any);

•	 wh1
,… ,whd

 , with h1,… , hd ∈ � , are strings over �  
describing the initial multisets of objects placed in the 
d regions of �;

•	 R is a finite set of rules over � .

Membranes are polarized, that is, they have an attribute 
called electrical charge, which can be neutral (0), posi-
tive (+ ) or negative (−).

A P system can make a computation step by applying its 
rules to modify the membrane structure and/or the mem-
brane content. The following types of rules can be used 
during the computation:

•	 Object evolution rules, of the form [a → w]�
h

	   They can be applied inside a membrane labelled by 
h, having charge � and containing at least an occur-
rence of the object a; the copy of the object a to which 
the rule is applied is rewritten into the multiset w (i.e., 
a is removed from the multiset in h and replaced by the 
objects in w).

•	 Send-in communication rules, of the form a [ ]�
h
→ [b]

�

h

	   They can be applied to a membrane labelled by h, hav-
ing charge � and such that the external region contains at 
least an occurrence of the object a; the copy of the object 
a to which the rule is applied is sent into h becoming b 
and, simultaneously, the charge of h is changed to �.

•	 Send-out communication rules, of the form [a]�
h
→ [ ]

�

h
b

	   They can be applied to a membrane labelled by h, hav-
ing charge � and containing at least an occurrence of the 
object a; the copy of the object a to which the rule is 
applied is sent out from h to the outside region becoming 
b and, simultaneously, the charge of h is changed to �.
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•	 Dissolution rules, of the form [a]�
h
→ b

	   They can be applied to a membrane labelled by h, 
having charge � and containing at least an occurrence 
of the object a; the copy of the object a to which the 
rule is applied is replaced by b, the membrane h is 
dissolved and its contents are left in the surrounding 
region.

•	 Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h

	   They can be applied to a membrane labelled by h, hav-
ing charge � , containing at least an occurrence of the 
object a but having no other membrane inside (in this 
case the membrane is said to be elementary); the mem-
brane is divided into two membranes having both label h 
and charges � and � , respectively; the copy of the object a 
to which the rule is applied is replaced, respectively, by b 
and c in the two new membranes, while the other objects 
in the initial multiset are copied to both membranes.

•	 (Weak) Non-elementary division rules, of the 
form [a]�

h
→ [b]

�

h
[c]

�

h

	   These rules operate just like division for elementary 
membranes, but they can be applied to non–elementary 
membranes, containing membrane substructures and hav-
ing label h. Like the objects, the substructures inside the 
dividing membrane are replicated in the two new copies 
of it.

A configuration of a P system with active membranes is 
described by the current membrane structure (including 
the electrical charge of each membrane) and the multisets 
located in the corresponding regions. A computation step 
changes the current configuration according to the following 
set of principles:

•	 Each object and membrane can be subject to at most one 
rule per step, except for object evolution rules: this means 
that inside each membrane several evolution rules can 
be applied simultaneously, but each membrane can be 
involved only in a single communication, dissolution, or 
division rule per step.

•	 The application of rules is maximally parallel: each 
object appearing on the left-hand side of evolution, com-
munication, dissolution or division rules must be subject 
to exactly one of them (unless the current charge of the 
membrane prohibits it, and according to the fact that a 
membrane can be involved in a single communication, 
dissolution, or division rule per step). The same principle 
applies to each membrane that can be involved in com-
munication, dissolution, or division rules. In other words, 
the only objects and membranes that do not evolve are 
those associated with no rule, or only to rules that are not 
applicable due to the electrical charges.

•	 When several conflicting rules can be applied at the same 
time, a nondeterministic choice is performed; this implies 

that, in general, multiple possible configurations can be 
reached as a result of a computation step.

•	 In each computation step, all the chosen rules are applied 
simultaneously (in an atomic way). However, to clarify 
the operational semantics, each computation step is 
conventionally described as a sequence of micro-steps 
as follows. First, all evolution rules are applied inside 
the elementary membranes, followed by all commu-
nication, dissolution and division rules involving the 
membranes themselves; this process is then repeated on 
the membranes containing them, and so on towards the 
root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has 
been updated. For instance, before a membrane division 
occurs, all chosen object evolution rules must be applied 
inside it; in this way, the objects that are duplicated dur-
ing the division are already the final ones.

•	 The outermost membrane cannot be divided or dissolved, 
and any object sent out from it cannot re-enter the system 
again.

A halting computation of the P system � is a finite sequence 
of configurations C = (C0,… , Ck) , where C0 is the initial con-
figuration, every Ci+1 is reachable from Ci via a single com-
putation step, and no rules of � are applicable in Ck . If this 
last condition is never reached (that is, in each configuration 
of the sequence there is at least one applicable rule), then a 
non-halting computation C = (Ci ∶ i ∈ ℕ) is obtained, that 
consists of infinitely many configurations, again starting 
from the initial one and generated by successive computa-
tion steps.

P  systems can be used as language recognizers by 
employing two distinguished objects yes and no ; exactly one 
of these must be sent out from the outermost membrane, and 
only in the last step of each computation, to signal accept-
ance or rejection, respectively; we also assume that all com-
putations are halting.

In order to solve decision problems (i.e., recognize lan-
guages over an alphabet � ), we use families of recognizer 
P systems � = {𝛱x ∶ x ∈ 𝛴⋆} . Each input x is associated 
with a P system �x in the family � that decides the member-
ship of x in the language L ⊆ 𝛴⋆ by accepting or rejecting. 
The mapping x ↦ �x must be efficiently computable for 
each input length [23].

These families of recognizer P systems can be used to 
solve decision problems as follows.

Definition 2  Let � be a P system whose alphabet contains 
two distinct objects yes and no , such that every computation 
of � is halting and during each computation exactly one of 
the objects yes, no is sent out from the skin to signal accept-
ance or rejection. If all the computations of � agree on the 
result, then � is said to be confluent; if this is not necessarily 
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the case, then it is said to be non-confluent and the global 
result is acceptance if and only if there exists an accepting 
computation.

Definition 3  Let L ⊆ 𝛴⋆ be a language, D a class of 
P systems (i.e. a set of P systems using a specific subset 
of features) and let � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D be a family of 
P systems, either confluent or non-confluent. We say that � 
decides L when, for each x ∈ 𝛴⋆ , x ∈ L if and only if �x 
accepts.

Complexity classes for P systems are defined by imposing 
a uniformity condition on � and restricting the amount of 
time or space available for deciding a language.

Definition 4  Consider a language L ⊆ 𝛴⋆ , a class of rec-
ognizer P systems D , and let f ∶ ℕ → ℕ be a proper com-
plexity function (i.e. a “reasonable” one, see [26, Definition 
7.1]). We say that L belongs to the complexity class MC

⋆

D
(f ) 

if and only if there exists a family of confluent P systems 
� = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is semi-uniform, i.e. there exists a deterministic Turing 
machine which, for each input x ∈ 𝛴⋆ , constructs the 
P system �x in polynomial time with respect to |x|;

•	 � operates in time f, i.e. for each x ∈ 𝛴⋆ , every computa-
tion of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity 
class PMC

⋆

D
 if and only if there exists a semi-uniform family 

of confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L 
in polynomial time.

The analogous complexity classes for non-confluent 
P systems are denoted by NMC

⋆

D
(f ) and NPMC

⋆

D
.

Another set of complexity classes is defined in terms of 
uniform families of recognizer P systems:

Definition 5  Consider a language L ⊆ 𝛴⋆ , a class of rec-
ognizer P systems D , and let f ∶ ℕ → ℕ be a proper com-
plexity function. We say that L belongs to the complexity 
class MCD(f ) if and only if there exists a family of confluent 
P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is uniform, i.e. for each x ∈ 𝛴⋆ deciding whether x ∈ L 
is performed as follows: first, a polynomial-time deter-
ministic Turing machine, given the length n = |x| as a 
unary integer, constructs a P system �n with a distin-
guished input membrane; then, another polynomial-time 
deterministic Turing machine computes an encoding of 
the string x as a multiset wx , which is finally added to the 
input membrane of �n , thus obtaining a P system �x that 
accepts if and only if x ∈ L.

•	 � operates in time f, i.e. for each x ∈ 𝛴⋆ , every com-
putation of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity 
class PMCD if and only if there exists a uniform family of 
confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L 
in polynomial time.

The analogous complexity classes for non-confluent 
P systems are denoted by NMCD(f ) and NPMCD.

As stated in the Introduction, the first definition of space 
complexity for P systems introduced in [29] considered a 
possible real implementation with biochemical materi-
als, thus assuming that every single object and membrane 
requires some constant physical space. Such a definition 
(in the improved version from [20], taking into account 
also the space required by the labels for membranes and 
the alphabet of symbols) is the following:

Definition 6  Considering a configuration C of a P sys-
tem � , its size |C| is the number of membranes in the cur-
rent membrane structure multiplied by log |�| , plus the total 
number of objects from �  they contain multiplied by log |� | . 
If C = (C0,… , Ck) is a computation of � , then the space 
required by C is defined as

The space required by � itself is defined as the supremum 
of the space required by all computations of �:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer 
P systems, and let s ∶ ℕ → ℕ . We say that � operates within 
space bound s if and only if |�x| ≤ s(|x|) for each x ∈ 𝛴⋆.

Following what has been done for time complex-
ity classes, we can define space complexity classes. By 
MCSPACED(f (n)) (resp. MCSPACE

⋆

D
(f (n)) ) we denote the 

class of languages which can be decided by uniform (resp. 
semi-uniform) families, � , of confluent P systems of type 
D (for example, when we refer to P systems with active 
membranes, we denote this by setting D = AM ), where 
each �x ∈ � operates within space bound f(|x|).

In particular, the class of problems solvable in poly-
nomial space by uniform confluent systems is denoted by 
PMCSPACED , and the class of problems solvable in expo-
nential space by uniform confluent systems is denoted by 
EXPMCSPACED (adding a star in case of semi–uniform 
classes).

The corresponding classes for non-confluent systems 
are NPMCSPACED and NEXPMCSPACED.

|C| = max{|C0|,… , |Ck|}.

|�| = sup{|C| ∶ C is a computation of �}.
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3 � An alternative definition of space 
complexity for P systems

In this section, we first give a different definition of space 
complexity for P systems with active membranes. This 
definition considers the information stored in the objects 
of the systems, and not the single objects themselves. In 
other words, we store, using binary numbers, the multi-
plicity of each object in each membrane, thus reducing 
the amount of needed space with respect to the definition 
of space given in the previous section.

We will do this considering, for each region, a sequence 
of couples, describing how many occurrences of each 
object are present (only for objects having at least one 
occurrence in the region). As an example, consider-
ing an (ordered) alphabet � = {a, b, c, d} , a multiset 
a2, b5, d6 can be described by the sequence of couples 
(010, 00),  (101, 01),  (110, 11) (where (010,00) corre-
sponds to 2 occurrences of the first symbol in �  , that is a, 
(101,01) to 5 occurrences of the second symbol b, etc.). 
Of course, different descriptions can also be considered: 
for instance, the bits describing the object can be avoided 
if we give, in order, the amount of each object, including 
objects having zero occurrences (sometimes this would 
allow to save space, but sometimes this would require 
more space, like in the case of sparse information - see, 
e.g., [21]). We leave as an open research topic the question 
whether or not different descriptions allow improvements 
in space usage.

We will refer to this definition of space by binary space, 
and we will add a symbol B where appropriate, to distin-
guish between the definitions referring to this new measure 
and the definitions recalled in the previous section.

Definition 7  Consider a configuration C of a P system � . 
Let us denote by h1, h2, ..., hz the membranes of the current 
membrane structure (we stress the fact that z can be smaller, 
equal, or greater than the initial number of membranes d, 
due to dissolution and duplication of membranes; we also 
stress the fact that we do not need to store unique IDs for 
membranes having the same label as we can, for example, 
indicate multisets of objects inside a string-like bracketed 
expression), and by |Oi,j| the multiplicity of object i within 
region j. The binary size |C|B of a configuration C is defined 
as:

that is the number of membranes in the current membrane 
structure multiplied by log |�| , plus the number of bits 
required to store the description of the multiset in each 
region.

�C�B = z ⋅ log ��� +
z�

j=1

n�

i=1

�
⌈log(�Oi,j� + 1)⌉ + log �� �

�

If C = (C0,… , Ck) is a computation of � , then the binary 
space required by C is defined as

The binary space required by � itself is then obtained by 
computing the binary space required by all computations 
of � and taking the supremum:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer 
P  systems, and let  s ∶ ℕ → ℕ . We say that � operates 
within binary space bound s if and only if |�x|B ≤ s(|x|) for 
each x ∈ 𝛴⋆.

We can thus define space complexity classes consid-
ering this newly introduced size measure, like we did 
in the previous section. By MCBSPACED(f (n)) (resp. 
MCBSPACE

∗

D
(f (n)) ) we denote the class of languages 

which can be decided by uniform (resp. semi–uniform) 
families, � , of confluent P systems of type D, where each 
�x ∈ � operates within space bound f(|x|), considering 
this new definition of binary space. Similarly, we can 
define the usual complexity classes like we did in the 
previous section, simply adding a B to underline the use 
of this new definition of space. For instance, the class 
of problems solvable by uniform (resp. semi–uniform) 
systems in polynomial binary space will be denoted by 
PMCBSPACED (resp. PMCBSPACE

∗

D
).

Once these notions have been defined, we are ready to 
state some results obtained by considering various com-
plexity classes defined in terms of binary space. Just like 
it happens with the classes based on the original definition 
of space given in [29], some results follow immediately 
from the definitions (we denote a result that holds for both 
semi-uniform and uniform systems by [⋆]):

Proposition 1  The following inclusions hold:

Proposition 2  MCBSPACE
[⋆]

D
(f ) ⊆ NMCBSPACE

[⋆]

D
(f ) 

for each f ∶ ℕ → ℕ , and in particular

The results describing closure properties and providing 
an upper bound for time requirements of P systems operat-
ing in bounded binary space are still valid, too:

|C|B = max{|C0|B,… , |Ck|B}.

|�|B = sup{|C|B ∶ C is a computation of �}.

PMCBSPACE
[⋆]

D
⊆ EXPMCBSPACE

[⋆]

D

NPMCBSPACE
[⋆]

D
⊆ NEXPMCBSPACE

[⋆]

D
.

PMCBSPACE
[⋆]

D
⊆ NPMCBSPACE

[⋆]

D

EXPMCBSPACE
[⋆]

D
⊆ NEXPMCBSPACE

[⋆]

D
.
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Proposition 3  The complexity classes PMCBSPACE
[⋆]

D
 , 

NPMCBSPACE
[⋆]

D
 ,  EXPMCBSPACE

[⋆]

D
 ,  a n d 

NEXPMCBSPACE
[⋆]

D
 are all closed under polynomial-time 

reductions.

Proof  Consider a language L ∈ PMCBSPACE
⋆

D
 and let 

M be the Turing machine constructing the family � that 
decides L. Let L′ be reducible to L via a polynomial-time 
computable function f.

We can build a Turing machine M′ working as follows: 
on input x of length n, M′ computes f(x); then it behaves like 
M on input f(x), thus constructing �f (x) (we stress the fact 
that, for the corresponding result concerning the uniform 
case, the construction of the P system involves two Turing 
machines, both operating in polynomial time; in this case, 
we simulate the composition of the two machines). Since 
|f (x)| is bounded by a polynomial, M′ operates in polyno-
mial time and �f (x) in polynomial binary space; it follows 
that �� = {𝛱f (x) ∣ x ∈ 𝛴⋆} is a polynomially semi-uniform 
family of P systems deciding L′ in polynomial binary space. 
Thus L� ∈ PMCBSPACE

⋆

D
.

The proofs for the three other classes and for the corre-
sponding uniform classes are analogous. 	�  ◻

Proposition 4  MCBSPACE
[⋆]

D
(f ) is closed under comple-

ment for each function f ∶ ℕ → ℕ.

Proof  By reversing the roles of objects yes and no , the com-
plement of a language can be decided. 	�  ◻

Proposition 5  For each function f ∶ ℕ → ℕ

Proof  Let L ∈ MCBSPACE
⋆

D
(f (n)) be decided by the semi-

uniform family � of recognizer P systems in binary space f; 
let �x ∈ � with |x| = n and let C be a configuration of �x.

The configuration C is described by the membrane struc-
ture and the objects inside it. The information concerning 
objects is stored using bits, as described above. The mem-
brane structure can be stored directly using a bracketed 
expression. For z membranes the binary space allocated 
requires z × log(|�|) bits; even by adding a constant number 
of bits for each bracket corresponding to each membrane, the 
space required is O(z × log(|�|)) . The binary space required 
by �x is then O

�
z ⋅ log ��� +

z�

j=1

n�

i=1

�
⌈log(�Oi,j� + 1)⌉ + log �� �

��

= O(f (n)).
Since �x is a recognizer P system, by definition every 

computation halts: then it must halt within 2O(f (n)) steps in 
order to avoid repeating a configuration.

MCBSPACE
[⋆]

D
(f (n)) ⊆ MC

[⋆]

D

(
2O(f (n)

)

NMCBSPACE
[⋆]

D
(f (n)) ⊆ NMC

[⋆]

D

(
2O(f (n)

)
.

The same argument, with only some small differences, 
also works in the non-confluent case. All possible computa-
tions halt, even if not necessarily agreeing on the answer. 
Due to non-confluence, each computation can also contain 
repeated configurations. Nonetheless, for each computation 
containing a repeated configuration, there exists an equiva-
lent one obtained by removing cycles in the computation 
path.

The proof for the uniform classes is analogous. 	�  ◻

4 � Comparison with standard computational 
complexity classes

In this section, we compare the standard computational com-
plexity classes with the complexity classes defined in the 
framework of P systems working in binary space.

Most results are an immediate consequence of 
the results given in [29], simply considering that 
MCSPACED(f (n)) ⊆ MCBSPACED(f (n)).

Thus, recalling various results from [29], we have:

Proposition 6  Let us denote by EAM and AM
0 the classes 

of P systems with active membranes using only elementary 
membrane division and without polarizations, respectively. 
The following results hold:

A n  i n t e r e s t i n g  r e s e a r c h  t o p i c  c o n -
cer ns  t he  c lasses  fo r  which  the  inc lus ion 
MCSPACED(f (n)) ⊆ MCBSPACED(f (n)) is proper and, 
considering the above inclusions, whether or not the same 
results can be obtained with stricter binary space classes, 
by exploiting the improved information storage related to 
objects with respect to the standard space definition.

By considering a constant amount of space, in the semi-
uniform case, the following result holds:

Theorem 7  P = MCSPACE
⋆

AM
(O(1)) = MCBSPACE

⋆

AM
(O(1)).

�� ∪ ���� ⊆ ����������
⋆

EAM

⊆ �����������
⋆

EAM

������ ⊆ ����������
⋆

AM

⊆ �����������
⋆

AM

������ ⊆ ����������AM

⊆ �����������
⋆

AM

������ ⊆ ����������
[⋆]

AM
0

⊆ �����������
[⋆]

AM
0
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Proof  The inclusion P ⊆ MCSPACE
⋆

AM
(O(1)) follows 

immediately from the definition of semiuniform P systems. 
Consider a language L in P and a string x; a deterministic 
Turing machine can create in polynomial time a P system 
having a single membrane and one single object yes or no , 
directly answering the question whether or not x ∈ L . The 
inclusion MCSPACE

⋆

AM
(O(1)) ⊆ MCBSPACE

⋆

AM
(O(1)) 

follows, as stated above, from the definition of binary space.
For the converse, we simply need to recall that a conflu-

ent semiuniform P system without membrane division can 
be simulated, in polynomial time, by a deterministic Turing 
machine, like it was shown in [40]. It is easy to see that the 
proof works both considering the standard space definition 
as well as the binary space definition for P systems. Even 
when the division of membranes is allowed, but the system 
can only use an amount of space that is limited to a con-
stant, the total number of membranes is limited by a constant 
and, as a consequence, the total number of configurations is 
polynomially bounded. Hence, the same simulation is still 
valid. 	�  ◻

It follows that, for semiuniform systems, when we 
allow only a constant amount of space, the improved stor-
age allowed by binary space does not lead to improved 
efficiency.

Another interesting result concerning the standard defi-
nition of space in the framework of P systems was pre-
sented in [30], and it focuses on the type of resources used. 
In particular, a solution for the PSPACE-complete problem 
Quantified 3SAT was given, for uniform systems using 
only communication rules (hence no evolution, membrane 
division and dissolution rules were used), thus proving the 
inclusion of PSPACE in this class. Once again, since the 
definition of binary space allows a more efficient alloca-
tion of space, the result is still valid:

Proposition 8  Let us denote by AM(-ev,+com,-dis,-div) 
the class of P systems with active membranes using only 
communication rules (while rules for object evolution, dis-
solution, and division of membranes are not used). Then 
PSPACE ⊆ PMCBSPACE

[⋆]

AM(-ev,+com,-dis,-div)
.

Once again, it would be interesting to understand 
whether or not the result remains valid for a smaller binary 
space class. In this case, the question can be answered 
negatively, by considering a result presented in [31]. In 
the article, it was shown that recognizer P systems with 
active membranes using polynomial space characterize 
the complexity class PSPACE . The result holds for both 
confluent and nonconfluent systems, and even in the case 
that non-elementary division is used. In particular, it was 
pointed out that such systems can be simulated by polyno-
mial space Turing machines.

By considering the alternative definition for binary 
space, we can thus obtain the corresponding theorem:

Theorem 9  Let � be a nonconfluent P system with active 
membranes, running in binary space S. Then, it can be simu-
lated by a deterministic Turing machine in space O(S2).

Proof  We simulate �  by means of a non-deterministic 
Turing machine N. The current configuration of � can be 
stored explicitly by N: the membrane structure is represented 
directly by using a bracketed expression, while multisets of 
objects inside each region are stored by means of tuples of 
integers encoded in binary. Of course, the same considera-
tions we made in the proof of Proposition 5 hold also in 
this case.

For the simulation, we can use the same algorithm as in 
[31]: the space required by N to store further information 
needed to carry on the simulation is then limited by S. It 
follows that the total amount of space required by N is of the 
same order as the one required by � , that is, O(S).

Using Savitch’s theorem [26], it is straightforward to see 
that N (and thus � ) can be simulated by a deterministic 
Turing machine in space O(S2) . 	�  ◻

It follows immediately from this theorem, from the results 
in [31], and from Proposition 8:

Theorem 10  Let D be a class of P systems with active mem-
branes using at least communication rules. Then 

 where [N] denotes optional nonconfluence, and [⋆] optional 
semi-uniformity.

Hence, even when a polynomial amount of space is used, 
the complexity classes defined on the basis of the definition 
of binary space coincide with the complexity classes defined 
in terms of the original definition of space (for systems using 
at least communication rules).

In [3] it was shown that exponential space Turing 
machines can be simulated by polynomially uniform expo-
nential-space P systems with active membranes. In view of 
this result and of Theorem 9, and of the definition of binary 
space, we have the following:

Theorem 11  The following equivalences hold for an expo-
nential amount of space: 

[N]PMCBSPACE
[⋆]

D
= [N]PMCSPACE

[⋆]

D
= PSPACE,

EXPSPACE = EXPMCBSPACEAM

= EXPMCBSPACE
⋆

AM

= NEXPMCBSPACE
⋆

AM
.
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Proof  The following inclusions hold by definition: 

 F o r  w h a t  c o n c e r n s  t h e  i n c l u s i o n 
NEXPMCBSPACE

⋆

AM
⊆ EXPSPACE , it is an immediate 

corollary of Theorem 9.
F i n a l ly,  t h e  i n c l u s i o n  o f  EXPSPACE  i n 

EXPMCSPACEAM is proved in [3, Theorem 8]. Recalling 
that EXPMCSPACEAM ⊆ EXPMCBSPACEAM , it follows 
EXPSPACE ⊆ EXPMCBSPACEAM . 	�  ◻

Also in this case, considering binary space instead of the 
standard one does not result in improved efficiency. In fact, 
considering the theorem just proved and recalling [2, Corol-
lary 1] proving the same results for classes with the original 
definition of space for P systems, we can prove that such 
classes are equal to EXPSPACE:

Corollary 12 

.

5 � Conclusions

We have proposed an alternative space complexity meas-
ure for P systems with active membranes, where the multi-
plicity of each object in each membrane is stored by using 
binary numbers. We have defined the corresponding com-
plexity classes and we have compared some of them both 
with standard space complexity classes and with complexity 
classes defined in the framework of P systems considering 
the original definition of space [29].

It turned out that, for various considered systems, the 
computational classes defined on the basis of binary space 
do not differ from the corresponding classes defined on the 
basis of the original space definition for P systems. Among 
the various systems for which we proved such a result, we 
underline in particular that this is the case when we consider 
systems using all features of P systems with active mem-
branes and a polynomial or exponential amount of space, 
as well as for semiuniform systems working in a constant 
space.

It would be interesting to find other classes for which the 
improved store efficiency obtained by considering binary 
space does not make any difference in computational 

EXPMCBSPACEAM

⊆ EXPMCBSPACE
⋆

AM

⊆ NEXPMCBSPACE
⋆

AM
.

EXPSPACE = EXPMCSPACEAM = EXPMCSPACE
⋆

AM

= NEXPMCSPACE
⋆

AM
= EXPMCBSPACEAM

= EXPMCBSPACE
⋆

AM
= NEXPMCBSPACE

⋆

AM

efficiency, and to understand which features can be used/
are necessary to obtain the same result. It also remains as 
an open problem to find, on the contrary, specific classes 
where this difference exists, thus proving that storing the 
information concerning objects in an efficient way can really 
be exploited in some cases. We conjecture, for instance, that 
this is the case for complexity classes defined by systems 
using a logarithmic amount of space.

Another possible research direction is to consider fur-
ther variants of definition for space, and compare them with 
standard and binary space, or to consider the space required 
to describe the whole system executing the computation, that 
is including not only the data (object and membranes, in our 
case) but also the program (the rules, in our case).
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