
Vol.:(0123456789)1 3

Journal of Membrane Computing (2021) 3:133–148
https://doi.org/10.1007/s41965-021-00075-1

REGULAR PAPER

Spiking neural P systems: matrix representation and formal
verification

Marian Gheorghe1 · Raluca Lefticaru1  · Savas Konur1 · Ionuţ Mihai Niculescu2 · Henry N. Adorna3

Received: 19 November 2020 / Accepted: 24 March 2021 / Published online: 27 April 2021
© The Author(s) 2021

Abstract
Structural and behavioural properties of models are very important in development of complex systems and applications. In
this paper, we investigate such properties for some classes of SN P systems. First, a class of SN P systems associated to a set
of routing problems are investigated through their matrix representation. This allows to make certain connections amongst
some of these problems. Secondly, the behavioural properties of these SN P systems are formally verified through a natural
and direct mapping of these models into kP systems which are equipped with adequate formal verification methods and tools.
Some examples are used to prove the effectiveness of the verification approach.

Keywords  Membrane computing · Spiking neural P systems · Petri nets · Kernel P systems · kPWorkbench · Formal
verification

1  Introduction

Membrane computing is a research field initiated by Gh.
Păun [48, 49]. This computation paradigm is inspired by the
structure and functioning of the living cells. The key models
are called membrane systems or P systems. The field has
developed very fast and many classes of membrane systems
(P systems) have been investigated. These may be classi-
fied as cell-like, tissue-like and neural-like P systems. A

presentation of the most important such models is available
in [50] and [51].

A class of neural-like P systems, called Spiking Neural
P systems (SN P systems, for short), has been introduced
in [30], inspired by the neurophysiological behaviour of
neurons (in brain) sending electrical impulses along axons
to other neurons. Significant results have been reported in
the literature with respect to SN P systems, in particular,
generating or recognising elements of a set (see the survey
paper [47]).

Matrices have been used to represent SN P systems with-
out delays [55] and later SN P systems with delays [15].
These matrix representations have been useful in implement-
ing SN P systems in silico [8, 18, 19, 31]. A thorough pres-
entation on these matrix representations and further research
directions have been discussed in [2], including the idea of
periodicity in SN P systems (without delays) started by [29].
Some Petri net-like properties of SN P systems are also pro-
vided in [2].

Another type of P systems, called kernel P systems (kP
systems, for short), has been introduced [23] in order to
capture in a unified approach features of various membrane
computing models, making it more amenable for describing
various problems, including complex applications. kP sys-
tems have an expressive formal language, allowing models
to be simulated with a software framework, called kPWork-
bench [12], which also includes a verification component

 *	 Raluca Lefticaru
	 r.lefticaru@bradford.ac.uk

	 Marian Gheorghe
	 m.gheorghe@bradford.ac.uk

	 Savas Konur
	 s.konur@bradford.ac.uk

	 Ionuţ Mihai Niculescu
	 ionutmihainiculescu@gmail.com

	 Henry N. Adorna
	 hnadorna@dcs.upd.edu.ph

1	 Department of Computer Science, University of Bradford,
West Yorkshire, Bradford BD7 1DP, UK

2	 Faculty of Science, University of Piteşti, Str. Târgul din Vale
nr. 1, 110040 Piteşti, Romania

3	 Department of Computer Science (Algorithms
and Complexity), University of Philippines Diliman,
1101 Quezon City, Philippines

http://orcid.org/0000-0001-5289-0162
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-021-00075-1&domain=pdf

134	 M. Gheorghe et al.

1 3

[25]. A thorough presentation of this tool has been made
in [42]. The modelling, simulation, verification and testing
aspects of kP systems have been presented in [21, 22] and
applications in synthetic biology in [24, 40, 41].

In this paper we investigate structural and behavioural
properties of some classes of SN P systems. First, the over-
all structure and configurations of SN P systems associated
to a set of routing problems are investigated through their
matrix representation. This allows to make certain con-
nections amongst some of these problems. Secondly, the
behavioural properties of these SN P systems are simulated
and formally verified through a natural and direct mapping
of these models into kP systems, which are equipped with
adequate formal verification methods and tools. Some exam-
ples are used to prove the effectiveness of the verification
approach.

This paper is structured as follows: Sect. 2 presents the
preliminaries regarding SN P systems and kP systems. Sec-
tion 3 discusses the matrix representation introduced in [15]
for SN P systems for some Petri net-like properties. Some
connections between SN P systems and kP systems are pre-
sented in Sect. 4. Simulation and formal verification of the
kP systems obtained from the SN P systems, by examining
two examples, are discussed in Sect. 5. Finally, conclusions
are presented in Sect. 6.

2 � Preliminaries

This section briefly presents the notations used, then gives
the basic definitions regarding spiking neural P systems (SN
P systems, for short) and kernel P systems (kP systems, for
short).

For a finite alphabet A = {a1, ..., ap} , A∗ represents the set
of all strings (sequences) over A. The empty string is denoted
by � and A+ = A∗ ⧵ {�} denotes the set of non-empty strings.

A multiset over A is a mapping f ∶ A → ℕ , represented
as a string af (a1)

1
⋯ a

f (ap)

p  , where the order is not important,
and where elements which are not in the support (i.e., ele-
ments aj , with 1 ≤ j ≤ p, having f (aj) = 0 ) are omitted. In
the sequel, multisets will be represented by such strings.

2.1 � Spiking neural P systems

The definition and other concepts related to SN P systems
are from [2, 55]. In this paper, we consider only SN P sys-
tems without delay rules.

Definition 1  An SN P system of degree m, m ≥ 1 , is a tuple

where

Π = (O, �1,… , �m, syn, in, out),

•	 O = {a} is a singleton alphabet (a is called spike);
•	 �i, 1 ≤ i ≤ m, are neurons, �i = (ni,Ri), 1 ≤ i ≤ m, where

–	 ni ≥ 0 is the number of spikes in �i;
–	 Ri is a finite set of rules of the following forms:

(Type (1); spiking rules)
E∕ac → ap; where E is a regular expression over
{a} , and c ≥ 1, p ≥ 1, such that c ≥ p;

(Type (2); forgetting rules)
as → �, for s ≥ 1, such that for each rule
E∕ac → ap of type (1) from Ri , as ∉ L(E);

•	 syn = {(i, j)|1 ≤ i, j ≤ m, i ≠ j} (synapses between dis-
tinct neurons);

•	 in, out ∈ {1,… .m} indicate the input and output neurons
respectively.

Remark 1  The in neuron will not be distinguished in what
follows and, when specified, out will be also not considered.

The SN P system Π computes by applying one rule from
each neuron.

A configuration of SN P system Π is an m-size vector
of integers

where aj , 1 ≤ j ≤ m, represents the number of spikes in neu-
ron �j.

A configuration at time k, k ≥ 0, of an SN P system Π,
as above, is a vector

where a(k)
j

∈ ℤ
+ ∪ {0}, 1 ≤ j ≤ m , is the number of spikes

present at time k in neuron �j.
The vector C(0) = (a

(0)

1
, a

(0)

2
,… , a(0)

m
) is the initial configu-

ration vector of SN P system Π, where a(0)
j
, 1 ≤ j ≤ m, rep-

resents the initial number of spikes, nj , in neuron �j.
We say a rule rx ∈ Rj, 1 ≤ j ≤ m, of neuron �j is applica-

ble at time k, k ≥ 0, if and only if the multiset an satisfies Ex
(or an ∈ L(Ex)), where n = a

(k)

j
. At some time k, we can have

in neuron �j, an ∈ L(Ex) ∩ L(Ey), for some rules rx and ry,
x ≠ y. In this case one of the two rules will be chosen to be
applied. This is how the non-determinism1 of the system is
realised, whereas several neurons with their chosen applica-
ble rules can fire (or spike) simultaneouly at time k, dem-
onstrating parallelism.

C = (a1, a2,… , am),

C(k) = (a
(k)

1
, a

(k)

2
,… , a(k)

m
),

1  In [53] there is a normal form for SN P systems where
L(Ex) ∩ L(Ey) is either L(Ex) or empty, hence in order to find all non-
deterministic rules is sufficient to verify if their regular expressions
are the same.

135Spiking neural P systems: matrix representation and formal verification﻿	

1 3

A rule of type 2 from Rj removes spike(s) from the neu-
ron at some time k when applied. Such a rule could only be
applied if and only if the number of spikes in �j is exactly the
amount of spikes it needs to be applied. Formally, if there
exists a rule as → � ∈ Rj, then there cannot exist any rule
E∕ac → ap of type 1 in Rj such that as ∈ L(E).

In defining rules in SN P systems, we follow the standard
convention of simply not specifying E whenever the left-
hand side of the rule is equal to E.

The sequence of configurations defines a computation of
the system. SN P systems obtain inputs from outside the sys-
tem (environment) through the designated input neuron(s).
We say that a computation halts or reaches a halting con-
figuration if it reaches a configuration where no more appli-
cable rules are available. We could represent the output of
the system as the number of steps lapse between the first
two spikes of the designated output neuron. Another out-
put representation of SN P system is a sequence of (coded)
spikes. This sequence is called a spike train, which is a
(combinatorial) sequence of spikes and no spikes (silence)
made by the systems.

2.2 � Kernel P systems

In the following, we will give a formal definition of kP sys-
tems; for more details, see [23].

First, we introduce a compartment type utilised later in
defining the compartments of a kP system.

Definition 2  T is a set of compartment types, T = {t1,… , ts},
where ti = (Ri, �i) , 1 ≤ i ≤ s , consists of a set of rules, Ri , and
an execution strategy, �i , defined over Lab(Ri) , the labels of
the rules of Ri.

The definition of a kP system uses the concept of com-
partment type.

Definition 3  A kP system of degree n, n ≥ 1 , is a tuple

where

•	 A is a finite set of elements called objects;
•	 � defines the membrane structure, which is a graph,

(V, L), where V is a set of vertices representing compart-
ments (or components), and L is a set of edges, i.e., links
between compartments;

•	 Ci = (ti,wi,0) , 1 ≤ i ≤ n , is a compartment of the sys-
tem consisting of a compartment type, ti , from a set T,
and an initial multiset, wi,0, over A; the type ti = (Ri, �i)

kΠ = (A,�,C1,… ,Cn, i0),

consists of a set of evolution rules, Ri , and an execution
strategy, �i;

•	 i0 is the output compartment where the result is
obtained.

The kP systems presented in this paper will only use
rewriting and communication rules. A more general dis-
cussion regarding all types of rules of a kP system, includ-
ing structure changing rules, i.e., membrane division,
membrane dissolution, link creation and link destruction
rules, can be found in [23].

A rewriting and communication rule of a compartment
Ci , 1 ≤ i ≤ n , has the form: x → y{g} , where g represents
a guard (this will be formally explained in Definition 5),
x ∈ A+ and y ∈ (A × T)∗ , where y is a multiset,
y = (a1, t1)… (ah, th) , where h ≥ 0 , and for each 1 ≤ j ≤ h ,
aj ∈ A and tj indicates a compartment type from T. If sev-
eral compartments, Cj1

,…Cjp
, p > 1, linked to Ci , have the

same compartment type, tj, then one of them will be non-
deterministically chosen to receive aj.

For the next definitions, we make the following nota-
tions. For a multiset w over A and an element a ∈ A , we
denote by |w|a the number of objects a occurring in w.
Rel = {<,≤,=,≠,≥,>} denotes the set of relational opera-
tors, � ∈ Rel , a relational operator. We introduce now an
abstract relational expression.

Definition 4  If g is the abstract relational expression
denoted by �an and w a multiset, then the guard g applied to
w denotes the relational expression |w|a�n.

The abstract relational expression g is true for the mul-
tiset w, if |w|a�n is true.

We consider now the following Boolean operators
¬ (negation), ∧ (conjunction) and ∨ (disjunction). An
abstract Boolean expression is defined by one of the fol-
lowing conditions:

•	 any abstract relational expression is an abstract Boolean
expression;

•	 if g and h are abstract Boolean expressions then ¬g ,
g ∧ h and g ∨ h are abstract Boolean expressions.

Definition 5  If g is an abstract Boolean expression con-
taining gi, 1 ≤ i ≤ q, abstract relational expressions and w a
multiset, then g applied to w means the Boolean expression
obtained from g by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression,
the guard g is true with respect to the multiset w, if the
abstract Boolean expression g applied to w is true.

136	 M. Gheorghe et al.

1 3

In each compartment type, apart from rules, there is
an execution strategy, as mentioned by Definition 2. In
this paper we only refer to one execution strategy, namely
choice or alternative. For an exhaustive discussion we refer
to [23].

Definition 6  For a compartment type t = (R, �) from T and
r1,… , rs ∈ Lab(R) , the choice (alternative) execution strat-
egy, � , is defined by the following notation {r1,… , rs}, with
the meaning: one of the rules applicable will be non-deter-
ministically chosen and executed; if none is applicable then
nothing is executed.

Definition 7  A configuration of a kP system, kΠ , with n
compartments, is a tuple c = (c1,… , cn) , where ci ∈ A∗ ,
1 ≤ i ≤ n , is the multiset from compartment Ci . The initial
configuration is (w1,… ,wn) , where wi ∈ A∗ is the initial
multiset of the compartment Ci , 1 ≤ i ≤ n.

A transition (or computation step), introduced by the
next definition, is the process of passing from one configu-
ration to another.

Definition 8  Given two configurations c = (c1,… , cn) and
c� = (c�

1
,… , c�

n
) of a kP system, kΠ , with n compartments,

and a multiset of rules Mi, 1 ≤ i ≤ n , applicable to ci (as �i is
a choice, Mi consists either of a rule from the compartment
Ci or is empty), a transition or a computation step is the
process of obtaining c′ from c by using the multisets of rules
Mi , 1 ≤ i ≤ n , denoted by c ⟹(M1,…,Mn) c� . The multiset c′

i
,

1 ≤ i ≤ n , is obtained from ci by removing all the objects that
are on the left-hand side of the rule of Mi from ci and then
adding objects a that appear as (a, ti) on the right-hand side
of each rule of Mj, 1 ≤ j ≤ n , and do not go to other compart-
ments with the same type ti as Ci.

A computation in a P system is a sequence of transi-
tions (computation steps). A configuration is called final
configuration, if no rule can be applied to it. As usual
in P systems, we only consider terminal computations,
i.e., those arriving in a final configuration. The result of a
terminal computation is the number of objects appearing
in the output compartment of a final configuration.

3 � Matrix representation of spiking neural P
systems and applications

We express with matrices SN P systems, as suggested
in [2, 55]. Structural and behavioural properties of SN
P systems considered in [13] are then investigated using
matrices.

3.1 � Basics on matrix representation of spiking
neural P systems

We restrict our SN P systems not to have any neuron with
self-loop, that is synapse directly connecting to itself when
defining its matrix representation.

Definition 9  (Spiking transition matrix) [55] Let Π be an SN
P system with the total number of rules n and m neurons.
Let the rules in the systems follow some precise ordering.
The spiking transition matrix of Π is MΠ = [bij]n×m, where

The matrix MΠ is (almost) a natural representation of
the SN P system Π. Each row i, 1 ≤ i ≤ n , corresponds to a
rule ri ∶ Ei∕a

ci → api in some neuron �j, with bi,j, 1 ≤ j ≤ m,
defined as above. Each column j, 1 ≤ j ≤ m, corresponds to
a neuron �j.

Example 1  An SN P system for ℕ − {1} [55]. Let
Π = ({a}, �1, �2, �3, �4, syn, out), where �1 = (2,R1), with
R1 = {a2∕a → a, a2 → a}; �2 = (1,R2), with R2 = {a → a};
�3 = (1,R3), with R3 = {a → a, a2 → �}; and �4 = (0, {});
syn = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 4)}; out = �4.

The SN P system in Example 1, generating ℕ − {1}, has
n = 5 rules and m = 4 neurons and its spiking transition

matrix is MΠ =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 1 0

−2 1 1 0

1 − 1 1 0

0 0 − 1 1

0 0 − 2 0

⎞
⎟⎟⎟⎟⎟⎠

.

Some more details regarding the properties of this matrix,
MΠ, are presented in [55]. The initial configuration of Π,
introduced in Example 1, is C(0) = (2, 1, 1). The next con-
figuration C(k+1) to C(k) can be computed using the following
identity [55],

where s(k) = (s
(k)

1
, s

(k)

2
,… , s(k)

n
) ∈ {0, 1}n is some valid spiking

vector with respect to C(k) and MΠ is the spiking transition
matrix of Π.

A valid spiking vector s(k) indicates the rules that could
be used at time k with respect to C(k) and the regular expres-
sion governing the usability of rules in each neuron. s(k)

i
= 1

whenever the multiset in �j is in L(Ei) of rule ri in neuron �j,
else s(k)

i
= 0. Note that C(k) has non-negative entries. These

bij =

⎧
⎪⎪⎨⎪⎪⎩

−ci, if the left-hand side rule of ri in �j is a
ci

(ci spikes are consumed)

pi, if the right-hand side of the rule ri in �s
(s ≠ j and (s, j) ∈ syn) is api

0, otherwise

(1)C(k+1) = C(k) + s(k) ⋅MΠ,

137Spiking neural P systems: matrix representation and formal verification﻿	

1 3

entries represent only the amount of multisets in each neu-
ron in the system. Checking if the multiset in every neuron
belongs to L(Ei), for each i is a must to define a valid spiking
vector. If there exist at least two possible rules in a neuron
that can be used, then we non-deterministically choose one
of them for that time instance.

A valid configuration is one that is either an initial
configuration or any configuration obtained from a valid
configuration using a valid spiking vector or (sum of)
sequence of valid spiking vectors [2]. It is not hard to see
that

where for each i, 1 ≤ i ≤ k − 1, s(i) is a valid spiking vector.
Any configuration C(k) that satisfies Eq. (2) is called a

reachable configuration. In particular, we define

the set of all reachable configurations from C(0) in Π . We
call C(k) a reachable configuration of Π from C(0), for each
k ≥ 0.

3.2 � Properties of SN P systems

In this section, we look into some structural and behavioural
properties of SN P systems [13] which resemble some prop-
erties of transition systems such as Petri nets. SN P sys-
tems transmit and route spikes in processing information.
First, we consider basic routing blocks, namely AND-join,
AND-split, OR-join and 2-way OR-split. Then we focus on
types of routing spikes via synapses in the systems that can
be identified as follows: sequential, conditional, parallel,
and iteration routing type. We will show some relationships
amongst some basic routing blocks and some routing types.
To demonstrate these routing blocks and routing types, we
have SN P systems to emulate the behaviour of spike trans-
mission with respect to the structures of the synapses con-
necting neurons. In the following illustrations, neurons emit
only at most 2 spikes. Boundedness and liveness of SN P
systems are consider at the end of this section.

3.2.1 � Basic routing blocks

One can check correctness of the matrices below, rep-
resenting basic routing blocks by performing the matrix
computation by SN P systems using equation (1) and
observing the appropriate entries in the configuration vec-
tor that indicate the desired output.

(2)C(k) = C(0) +

(
k−1∑
i=0

s(i)

)
⋅MΠ,

R(Π,C(0)) = {C(k) ∣ C(k)satisfies (2)},

1.	 AND-join: spikes are transmitted from two source neu-
rons to a neuron, which sends the processed accumu-
lated spikes to next neuron connected from it.

	  Le t t he SN P sys t em ΠAND-join∶ g iven
b y ({a}, �1, �2, �3, �4, syn), w h e r e
�1 = �2 = (1, {a+∕a → a}), �3 = (0, {(a2)+∕a2 → a}),
�4 = (0, {}), and syn = {(1, 3), (2, 3), (3, 4)} . The spik-
ing transition matrix is

	  MΠAND-join
=

⎛
⎜⎜⎜⎝

−1 0 1 0

0 − 1 1 0

0 0 − 2 1

0 0 0 0

⎞
⎟⎟⎟⎠
 with C(0) = (1, 1, 0, 0).

2.	 AND-split: transmits spikes simultaneously from a
source neuron to all neurons connected from it.

	  Let an SN P system with three neurons given by
({a}, �1, �2, �3, syn), w h e r e �1 = (1, {a+∕a → a}),
�2 = �3 = (0, {}) and syn = {(1, 2), (1, 3)}. This can be
represented by the following matrix:

	  MΠAND-split
=

⎛⎜⎜⎝

−1 1 1

0 0 0

0 0 0

⎞⎟⎟⎠
, with C(0) = (1, 0, 0).

3.	 OR-join: spikes are transmitted from two source neu-
rons directly to a neuron connected from these source
neurons.

	  Let an SN P system with three neurons given by
({a}, �1, �2, �3, syn), w h e r e �1 = (1, {a+∕a → a}),
�2 = (1, {a+∕a → a}), �3 = (0, {}), a n d
syn = {(1, 3), (2, 3)}. This can be represented by the fol-
lowing matrix:

	  MΠOR-join
=

⎛⎜⎜⎝

−1 0 1

0 − 1 1

0 0 0

⎞⎟⎟⎠
, with C(0) = (1, 1, 0).

4.	 2-way OR-split: the transmitting neuron must decide
to which target neuron the spike must be transmit-
ted. This can be represented by ΠOR-split = ({a}, �1,
… , �8, syn), w h e r e �1 = (1, {a+∕a → a}),
�2 = �3 = (0, {a → a}), �4 = (0, {a2 → a2, a2 → a}),
�5 = (0, {a2 → �, a → a}), �6 = (0, {a2 → a, a → �}),
�7 = �8 = (0, {}), and syn = {(1, 2), (1, 3), (2, 4), (3, 4),
(4, 5), (4, 6), (5, 7), (6, 8)}. The spiking matrix represen-
tations is:

	  MΠOR-split
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 0 0 0 0 0

0 − 1 0 1 0 0 0 0

0 0 − 1 1 0 0 0 0

0 0 0 − 2 2 2 0 0

0 0 0 − 2 1 1 0 0

0 0 0 0 − 2 0 0 0

0 0 0 0 − 1 0 1 0

0 0 0 0 0 − 2 0 1

0 0 0 0 0 − 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with

C(0) = (1, 0, 0, 0, 0, 0, 0, 0).

	  Another solution, with fewer neurons than in the
above mentioned SN P system, ΠOR-split, is obtained by

138	 M. Gheorghe et al.

1 3

removing the neurons �2 and �3 with all the synapses
coming to and going out of them, and adding a synapse
from �1 to �4 and an initial spike to �4. These will be
reflected in the spiking matrix representation by remov-
ing the rows and columns 2 and 3, and introducing
C(0) = (1, 1, 0, 0, 0, 0).

The SN P system ΠOR-split, as well as the others above, per-
form one flow of execution, starting with one spike and then
moving through synapses up until no rule is executed. One
can consider a slight generalisation, whereby the neuron �1
will have initially k spikes, k ≥ 1, and its spiking rule will
become a+∕a → a. In this case the flow of spikes from �1
towards �7, �8 will move in k waves leading eventually to k1
spikes in �7 and k2 in �8, such that k1 + k2 = k . This and other
properties of ΠOR-split will be discussed in Sect. 5.

3.2.2 � Routing type for SN P systems

Now, we demonstrate the routing type [13] mentioned ear-
lier in this section. We likewise express as matrices these
routing types as demonstrated by appropriate SN P systems.
Similarly, correctness of these matrix representations can
be checked by performing matrix operation using Eq. (1).

1.	 Sequential routing:
	  Let Πseq given by ({a}, �1, �2, {(1, 2)}), where

�1 = (1, {a → a}), �2 = (0, {a → a}) . The spiking tran-
sition matrix is

	  MΠseq
=

(
−1 1

0 − 1

)
, with C(0) = (1, 0).

	  This matrix appears as a sub-matrix (top left corner)
of several matrices of basic routing blocks.

2.	 Conditional routing:
	  The SN P system, denoted Πcond is very similar to

2-way OR-split SN P system block, but instead of col-
lecting the spikes in two distinct neurons, �7 and �8 , only
one, denoted �7, will receive spikes from �5 and �6. In
this case �7 will also have a rule a → a. The spiking
transition matrix is

	  MΠcond
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 0 0 0 0

0 − 1 0 1 0 0 0

0 0 − 1 1 0 0 0

0 0 0 − 2 2 2 0

0 0 0 − 2 1 1 0

0 0 0 0 − 2 0 1

0 0 0 0 − 1 0 0

0 0 0 0 0 − 2 0

0 0 0 0 0 − 1 1

0 0 0 0 0 0 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with

C(0) = (1, 0, 0, 0, 0, 0, 0).

	  We consider the same changes as in the case of
ΠOR-split applied to Πcond and accordingly to MΠcond

 and
the initial configuration. Then this conditional routing
model will still perform as expected.

3.	 Parallel routing:
	  The SN P system, Πpar, consists of four neurons, very

similar to those defined for conditional routing; only the
fourth neuron is slightly different, �1 = (1, {a → a}),
�2 = �3 = (0, {a → a}), �4 = (0, {a2 → a}) a n d
syn = {(1, 2), (1, 3), (2, 4), (3, 4)}. The spiking transition
matrix is given by

	  MΠpar
=

⎛
⎜⎜⎜⎝

−1 1 1 0

0 − 1 0 1

0 0 − 1 1

0 0 0 − 2

⎞
⎟⎟⎟⎠
, with C(0) = (1, 0, 0, 0).

	  This matrix appears as a sub-matrix (top left corner)
of the matrix describing 2-way OR-split SN P system
block.

4.	 Iteration routing:
	  The SN P system, Πiter, contains three neu-

rons �1 = (1, {a → a}), �2 = �3 = (0, {a → a}) and
syn = {(1, 2), (2, 3), (3, 1)}. The spiking transition matrix
is

	  MΠiter
=

⎛⎜⎜⎝

−1 1 0

0 − 1 1

1 0 − 1

⎞⎟⎟⎠
, with C(0) = (1, 0, 0).

Remark: Notice that the non-zero sub-matrix of the matrix
representing the basic routing blocks AND-join, AND-split
and OR-join are sub-matrices of the matrices for conditional
and parallel routings.

3.2.3 � Boundedness and liveness of SN P systems

We now turn our focus on the properties of SN P systems as
described by its configurations. These properties described
how SN P system behaves as it performs its function.

Definition 10  We call a rule r live for an initial configura-
tion C(0) if for every C(k), C(k) ∈ R(Π,C(0)), there exists a
valid spiking sequence from C(k) that contains and applies r.

An SN P system Π is live for C(0) if all its rules are live
for C(0).

This means for SN P system Π to be live, rules in Π must
not be useless permanently during the computation. A gen-
erating or recognizing Π halts after computation. This means
no more rules can be applied and therefore “dead” or a
“deadlock”. We adapt the idea of the so-called “quasi-live
transition” from Petri nets for SN P systems.

139Spiking neural P systems: matrix representation and formal verification﻿	

1 3

Definition 11  A rule r is quasi-live for an initial configura-
tion C(0), if there is a valid spiking sequence from C(0) that
contains and applies r.

We call an SN P system quasi-live if all its rules are
quasi-live.

The idea of quasi-liveness allows SN P systems to be “not
dead” even some of the neurons are “useless” or “dead”
while the other neurons are still functional. Note that to keep
SN P systems live, it must have a “feedback-loop” or an
“iteration routing” structure where all rules involved are
live.

For the following illustrations, we have for all rules
E∕ac → ap of each neuron in the SN P system, E = ac. The
absolute values of the entries of MΠ for each Π, indicate the
values of the exponents c and p of a. C(0) is the correspond-
ing initial configuration of each Π.

Example 2  Let Π1 be an SN P system, such that,

MΠ1
=

(
−1 1

1 − 1

)
 with C(0) = (1, 0). It is not hard to see

that Π1 is live.

Example 3  Let Π2 be an SN P system, such that

MΠ2
=

⎛⎜⎜⎝

−1 1 0

0 − 1 1

0 1 − 1

⎞⎟⎟⎠
 with C(0) = (1, 0, 0). It is not hard

to see that Π2 is quasi-live (without deadlock).

Example 4  Let Π3 be an SN P system, such that

MΠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 2 2 0

−2 1 1 0

0 − 2 0 0

0 − 1 0 0

0 0 − 2 0

0 0 − 1 1

0 0 1 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

 with C(0) = (2, 0, 0, 0). It is not

hard to see that Π3 is quasi-live with deadlock.

We define below a bounded SN P system with respect to
the amount of spikes every neuron has after some computa-
tion. First, we define boundedness of a neuron.

Definition 12  A neuron � is bounded for an initial configu-
ration C(0) if there is a positive integer s such that, C(�) ≤ s,
for every configuration C ∈ R(Π,C(0)), where C(�) is the
amount of spikes in � in configuration C. We say, � is an
s-bounded neuron.

An SN P system Π is bounded for an initial configuration
C(0), if all neurons are bounded for C(0). Π is s-bounded if all
the neurons are s-bounded.

If s = 1, then we call the SN P system Π, safe.

Example 5  Let Π4 be an SN P system, such that,

MΠ4
=

⎛⎜⎜⎝

−1 1 1

1 − 1 0

0 0 0

⎞⎟⎟⎠
 with C(0) = (1, 0, 0). It is not hard to

see that Π4 is unbounded.

Note that �3 of Π4 accumulates spikes unboundedly dur-
ing the computation.

Example 6  The SN P system of Example 1 has neurons �1,
�2 and �3 2-bounded and �4 unbounded. This is also verified
in Sect. 5.

4 � SN P systems and kP systems

kP systems have been conceived as a membrane computing
model allowing to specify and verify problems from vari-
ous areas, from specific computer science topics, such as
communication and synchronisation [22], to applications in
synthetic biology [40, 41]. The modelling and verification
capabilities of these models have been presented in [22].
Relationships with other classes of P systems, such as P sys-
tems with active membranes and neural-like P systems [23],
and membrane systems with symport/antiport rules [22].

In this section we illustrate how potential connections
between SN P systems and kP systems are built. We do not
intend to make a thorough investigation of these relation-
ships, as our goal is relatively limited now, i.e., to illustrate
how some specific SN P system examples are expressed as
kP systems with equivalent behaviour, facilitating the use
of the verification tools developed for these models. We are
also aware that there are other types of SN P systems that
need to be investigated in relation to kP systems as well, and
these topics will be considered in a broader context.

Remark 2  For an SN P system, Π, as in Definition 1, we
build a kP system, kΠΠ. Its components and structure are as
in Definition 3.

1.	 The set of objects is A = {a}.

2.	 The set of edges (links), denoted L, of the graph giving
the membrane structure � , includes pairs {Ci,Cj} , if and
only if, at least one of (i, j) or (j, i) is in syn, i.e., there is
a synapse between �i and �j or vice-versa. Although the
edges (links) of L are bi-directional, the objects might
circulate only in one direction, as specified by the rules
and in accordance with the synapse that is considered in
Π.

140	 M. Gheorghe et al.

1 3

3.	 For each neuron �i, 1 ≤ i ≤ m, of Π , a compartment NCi
of type Ci is considered for kΠΠ. One might also have a
compartment NEnv of type Env.

4.	 For each set of rules Ri, 1 ≤ i ≤ m, of �i in Π , we build
in Ci the following

(a)	 set of rules, R�
i
∶

	  i.	 for each rule of type (1), E∕ac → ap ∈ Ri,
if (i, j1),…(i, jh) ∈ syn, h ≥ 1, a rule
ac → (ap,Cj1

,)… , (ap,Cjh
) {gE} i s

added to R′
i
 , where gE is the guard ob-

tained from the regular expression E.
Please note that as (i, j1),…(i, jh) ∈ syn,
then one must have {i, j1},…{i, jh} ∈ L.
When h = 0, i.e., no synapse going out
of �i , then the corresponding rule in R′

i
 is

ac → (ap,Env) {gE}. R′
Env

, the set of rules
associated with type Env, is ∅.

	  ii.	 for each rule of type (2), ac → � ∈ Ri, a
rule ac → � {= ac} is added to R′

i
.

(b)	 execution strategy, �i ∶ is always choice, as one
single rule from those applicable must be selected;
�Env is also choice.

5.	 The output compartment, i0, is only considered in kΠΠ
when an output neuron is distinguished in Π.

Below we are focusing on translating Example 1 and
2-way OR-split SNP system, into kP system specifications.

The SN P system introduced in Example 1 is now speci-
fied using kP systems.

Example 7  The following kP system

is built in accordance with Remark 2. In this case, we
have the edges (links) L = {{NC1, NC2}, {NC1, NC3},
{NC2, NC3}, {NC3, NC4}}, where the compartments
NCi = (Ci,wi,0), 1 ≤ i ≤ 4. The types of these com-
partments are Ci = (Ri, �i), 1 ≤ i ≤ 4, and the ini-
tial multisets w1,0 = a2, w2,0 = w3,0 = a and w4,0 = �.
The sets of rules that appear in the types above are
R1 = {r1,1 ∶ a → (a,C2)(a,C3) {= a2}, r1,2 ∶ a2 → (a,C2)(a,C3) {= a2}},
R2 = {r2,1 ∶ a → (a,C1)(a,C3) {= a}},
R3 = {r3,1 ∶ a → (a,C4) {= a}, r3,2 ∶ a2 → � {= a2}} and
R4 = �. The execution strategies are choice (or alternative),
i.e., �1 = {r1,1, r1,2}, �2 = {r2,1}, �3 = {r3,1, r3,2} and �4 = {}.
The output compartment is NC4.

kΠΠ = ({a},�, NC1, NC2, NC3, NC4, 4),

Remark 3  One can observe that the compartment NC4 of
type C4 collects the objects from NC3 sent out by rule r3,1
and acting as an environment.

It is easy to observe that kΠΠ and Π ( Π from Example 1)
have the same behaviour.

This kP system will be used in Sect. 5 for simulating and
verifying certain properties of this example.

Next we present the kP system obtained from the SN
P system associated with the 2-way OR-split block. We
only present the set of rules, initial multiset and execution
strategies.

Example 8  Let us denote by kΠΠOR-split
, the kP system built,

based on Remark 2, for the SN P system, ΠOR-split . For each
of the eight neurons of the SN P system ΠOR-split a compart-
ment, NCi, 1 ≤ i ≤ 8, of type Ci = (Ri, �i) will be constructed
in the kP system, kΠΠOR-split

.
The set of rules are R1 = {r1,1 ∶ a → (a,C2)(a,C3) {≥ a}},

Ri = {ri,1 ∶ a → (a,C4) {= a}}, i = 2, 3,
R4 = {r4,1 ∶ a2 → (a2,C5)(a

2,C6) {= a2}, r4,2 ∶ a2 → (a,C5)(a,C6) {= a2}},
R5 = {r5,1 ∶ a2 → (�,C7) {= a2}, r5,2 ∶ a → a {= a}},
R6 = {r6,1 ∶ a2 → (a,C8) {= a2}, r6,2 ∶ a → � {= a}},
R7 = R8 = �.

The initial multisets are w1,0 = ak, k ≥ 1, and wi,0 = �,
2 ≤ i ≤ 8, and the execution strategies are all choice.

Both, ΠOR-split and kΠΠOR-split
 , finally obtain in neurons

�7, �8 and compartments NC7, NC8, respectively, the
expected results.

Remark 4  The mapping of Example 1 and 2-way OR-split
SNP system into kP system specifications, by using Remark
2, shows how natural is the process of getting the compo-
nents NCi, 1 ≤ i ≤ n, of the kP system from the neurons �i
of the SN P system, where n = 4 , in the case of Example 1,
and n = 8 , for the 2-way OR-split system.

A simpler solution to the problem of splitting the amount
of objects present in the initial compartment, by using a kP
system, kΠ�

ΠOR-split
, with only three compartments, NC1, NC2

and NC3 , can be constructed. The k objects from NC1 will
be distributed non-deterministically to the other two.

NC1 is of type C = (R, �) and NC2, NC3 of type C� = (�, �).
R contains the rule, r ∶ a → (a,C�) {≥ a}, and � might be
choice (of a rule, r) or sequence. This solution exploits the
fact that the rule r sends non-deterministically an object a to
one of the two compartments, NC2, NC3, of the same type C′.

141Spiking neural P systems: matrix representation and formal verification﻿	

1 3

5 � Simulation and verification using
kPWorkbench

To provide a tool support for kernel P systems, an integrated
software suite, the kPWorkbench [42] platform, has been
developed (available and downloadable from its website
[43]). The tool includes two simulators, a native one, which
allows the execution of the entire system or a step-wise
approach, and the Flame simulator [17], a general purpose
large scale agent based simulation environment. The later
is meant to allow a kP system to be expressed as a set of
communicating X-machines [27] and then executed on high-
performance hardware platform [11].

The verification component of kPWorkbench [26] checks
the correctness of kP system models. Verification process
works by exhaustively analysing all possible execution paths.
Verification checks if system in question meets require-
ments, expressed in a formal logic [32, 33, 35]. Verification,
in particular model checking, has been widely applied to the
analysis of various systems, e.g. safety-critical systems [34,
36], concurrent systems [6], distributed systems [54], net-
work protocols [37], systems and synthetic biology [10, 39],
multi-agent systems [1] and pervasive systems [9, 38], as
well as some engineering applications [14, 44, 45].

Any kP system model can be expressed using kPWork-
bench ’s kP-Lingua language—see [23], for details, includ-
ing the language syntax. A kP-lingua model can be exe-
cuted, using some of the above mentioned simulators, or
formally verified, through the verification component of
kPWorkbench .

To assist users in verification process, which is a very
cumbersome process for non-experts, the platform also fea-
tures a user friendly property language, kP-Queries, based
on natural language statements, which makes the property
specification a much easier task. The query language com-
prises a list of property patterns written as natural language
statements. This is very useful for non-experts as they do not
need to know the syntax of such query languages, relying
on existing pre-defined patterns. The properties expressed in
kP-Queries are verified using the Spin [28] and NuSMV [16]
model checkers after being translated into corresponding
Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) syntax.

We now use kPWorkbench to model and analyse the
behaviour of the SN P system described in Example 1 in
Sect. 3. The corresponding kP system model kΠΠ has been
expressed in kPWorkbench ’s kP-Lingua language as pre-
sented in Fig. 1a. In kP-Lingua notation, the usual multiset
notation is replaced by exposing the multplicity of a symbol
in front of it, i.e., a3 will become 3a.

The model in Fig. 1a has four compartment types, C1,
C2, C3 and C4 with corresponding instances NC1, NC2,

NC3 and NC4, respectively. The compartment NC1 starts
with initial multiset 2a, NC2 and NC3 with a; NC4 is ini-
tially empty. Only one of the two rules of C1 is selected
non-deterministically. The first rule is executed only if its
guard =2a is true. This rule also sends an a to the instance
of the type C2 and C3. The rules in the compartments C2
and C3 are executed similarly. NC4 has no rules.

To observe the dynamic evolution of the system, we have
run simulation experiments using kPWorkbench ’s native
simulator. Table 1 shows some simulation results. We have
presented a finite halting computation (left) and the first
steps from a longer computation (right).

Remark 5  Table 1 shows on the left a computation ending
after 7 steps, with a6 in the output compartment, NC4 . This
means that the corresponding SN P system will stop with 6
spikes in �4. The simulation that appears on the right, shows
that steps 4 and 6 have the same configuration with respect
to compartments NC1 , NC2 and NC3 . Hence, this computa-
tion might stop later on, after n steps ( n ≥ 10 for the configu-
ration after 6 steps) or might continue forever.

Remark 6  Tables 2 and 4 summarise some of the properties
verified for the kΠΠ model and kΠΠOR-split

 model, respectively.
One can observe that any property that refers to the number
of spikes, n, of a neuron of the SN P system is translated to
the same property, but referring to an , in the corresponding
compartment of the kP system. This observation together
with Remark 4 show how natural is the verification of an SN
P system, derived directly from the verification of the associ-
ated kP system.

The first line of each property in these tables expresses
the property through a natural language statement. Hence,
its meaning becomes obvious to the reader.

Some interesting properties that have been verified for the
kΠΠ model can be seen in Table 2. The verification results
of most of these properties are true, for example property 1:
eventually the number of objects a in NC4 will be greater
than 0, or properties 2, 3 that state that the number of a
objects in compartments NC1–NC3 will not exceed 1 or 2.
This proves what has been presented in Sect. 3.2, Example 6,
where the boundedness of certain neurons of the SN P sys-
tem, Π, presented in Example 1. Two properties, 4 and 6, are
not true. Property 4 checks if the computation will halt with
an a in compartment NC1 and empty compartments NC2
and NC3. Many of the execution traces, those that halt, have
this property; however, the NuSMV model checker could
provide a counterexample with an infinite loop, showing it
is not always true—the loop was considering the applica-
tion of the same rules like those applied at steps 3–4, then
repeated in steps 5–6, provided in Table 1 (right). Although

142	 M. Gheorghe et al.

1 3

Fig. 1   kP-Lingua specifications
for the kernel P systems kΠΠ
and kΠΠOR-split

type C1 {
cho i c e {

=2a : a −> a (C2) , a (C3) .
=2a : 2a −> a (C2) , a (C3) .

}
}

type C2 {
cho i c e {

=a : a −> a (C1) , a (C3) .
}

}

type C3 {
cho i c e {

=a : a −> a (Env) .
=2a : 2a −> {} .

}
}

type C4 {}

NC1 {2a} (C1) − NC2 {a} (C2) .
NC1 − NC3 {a} (C3) .
NC2 − NC3 .
NC3 − NC4 {} (C4) .

type C1 {
cho i c e {

>=a : a −> a (C2) , a (C3) .
}

}

type C2 {
cho i c e {

=a : a −> a (C4) .
}

}

type C3 {
cho i c e {

=a : a −> a (C4) .
}

}

type C4 {
cho i c e {

=2a : 2a −> a (C5) , a (C6) .
=2a : 2a −> 2a (C5) , 2a (C6) .

}
}

type C5 {
cho i c e {

=a : a −> a (C7) .
=2a : 2a −> {} .

}
}

type C6 {
cho i c e {

=2a : 2a −> a (C8) .
=a : a −> {} .

}
}

type C7 {}

type C8 {}

NC1 {6a} (C1) − NC2 {} (C2) .
NC1 − NC3 {} (C3) .
NC2 − NC4 {} (C4) .
NC3 − NC4 .
NC4 − NC5 {} (C5) .
NC4 − NC6 {} (C6) .
NC5 − NC7 {} (C7) .
NC6 − NC8 {} (C8) .

(a) KPL file for kΠΠ (b) KPL file for kΠΠOR−split

Table 1   Simulation results for
kΠΠ : a halting computation
(left) and a longer, possible
infinite one (right)

Step NC1 NC2 NC3 NC4 Step NC1 NC2 NC3 NC4

0 a2 a a 0 a2 a a
1 a a a2 a 1 a2 a a2 a
2 a2 a a 2 a a a2 a
3 a a a a2 3 a2 a a
4 a2 a a3 4 a a a a2

5 a a a4 5 a2 a a3

6 a a a5 6 a a a a4

7 a a6 7 …

143Spiking neural P systems: matrix representation and formal verification﻿	

1 3

property 4 is false, property 7 states the context in which the
computation will halt, with a particular final configuration:
if in a step there are 0 objects a in the first compartment,
then the computation will eventually halt, with one a in the
first compartment and empty compartments NC2 and NC3.

Our second example refers to the SN P system associ-
ated with the 2-way OR-split block, ΠOR-split and trans-
lated into the kP system kΠΠOR-split

 . This is presented in
Fig. 1b. The model has eight compartment types, C1, … ,
C8, with corresponding instances NC1, … , NC8, respec-
tively. The compartment NC1 starts with the initial multi-
set 6a. All other compartments are initially empty. C4, C5
and C6 have two rules, which are selected non-determin-
istically only one at a time and the selected rule is

executed if the guard holds. For example, in C5, the first
rule is executed only if its guard =a is true. This rule also
sends an a to the instance of the type C7. The rules in the
compartments C4 and C6 are executed similarly. C1, C2,
and C3 have only one rule, which is executed if the guard
is true. C7 and C8 have no rules.

Table 3 presents two computations for kΠΠOR-split
 with the

same number of steps, but arriving to different configura-
tions given the non-determinism. For the same kP system
model we have verified some properties of interest and the
results are presented in Table 4. Properties 1–6 check the
number of objects in different compartments, at any time.
These are summarised in Property 7, which shows that the
number of objects in NC2, NC3 is maximum 1 and in

Table 2   Property patterns used
in the verification experiments
for kΠΠ

Table 3   Simulation results: computation examples for kΠΠOR-split

Step NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 Step NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8

0 a6 0 a6

1 a5 a a 1 a5 a a
2 a4 a a a2 2 a4 a a a2

3 a3 a a a2 a a 3 a3 a a a2 a a
4 a2 a a a2 a a a 4 a2 a a a2 a2 a2 a
5 a a a a2 a a a2 5 a a a a2 a2 a2 a a
6 a a a2 a a a3 6 a a a2 a a a a2

7 a2 a a a4 7 a2 a a a2 a2

8 a a a5 8 a2 a2 a3 a2

9 a6 9 a3 a3

144	 M. Gheorghe et al.

1 3

NC4–NC6 is maximum 2. Property 8 checks that the num-
ber of objects a in first compartment is decreasing. Proper-
ties 9 and 10 show that the number of objects in NC7 and
NC8, respectively, is bounded by the initial number of
objects (6 in NC1). Property 11 proves that eventually the
sum of objects in NC7 and NC8 is the same as the initial
number of objects in NC1, which verifies the statement
made for the SN P system ΠOR-split as a a model of the
2-way OR-split block presented in Sect. 3.2; it is also
shown that the other compartments, NC1–NC6, are empty.

In this section, we have shown that formal verification
of kP systems can be translated in a natural manner into

the verification of SN P systems. Both, the modelling lan-
guage, kP-lingua, and the verification mechanism provide
direct mapping of the neurons into compartments and
spikes into powers of the object a, respectively.

6 � Conclusions

This paper has presented an approach based on matrix rep-
resentation of SN P systems and a way of mapping such a
system to a kP system. The matrix representation allows to
express in a succinct and uniform way various structural and

Table 4   Property patterns used
in the verification experiments
for kΠΠOR-split

145Spiking neural P systems: matrix representation and formal verification﻿	

1 3

behavioural properties of such systems. The basic model
of SN P systems has been studied in connection with kP
systems and two examples of SN P system models have
been translated into equivalent kP system ones. These two
examples have been formally verified, by using an integrated
software suite, kPWorkbench .

Regarding the first line of research, investigating struc-
tural and behavioural properties of the SN P systems using
the matrix representation, we recall the fact that these prop-
erties are based on the the investigation considered in [13].
In [52], similar constructs are presented in the context of
generalized communicating P systems. For instance, sepa-
ration and joining blocks [52] are similar to AND-split and
OR-join, respectively.

A number of new research avenues remain to be investi-
gated, in the context of this work: the relationship between
various classes of SN P systems and kP systems; the inves-
tigation of the matrix representation for other problems
related to SN P systems - one of interest being the reverse
computation; a more systematic investigation of various
properties that are expressed by using kPWorkbench .

Finally, some comments regarding the second research
direction mentioned above are presented. Reverse com-
putation has been studied for various types of P systems
[3–5, 7, 46]. A first question is related to how a reverse
computation is defined for SN P systems. Reversing the
rules of an SN P system might involve the use of concepts
introduced for networks of cells [20] or generalized com-
municating P systems [52], whereby spikes are collected
from various neurons and a number of spikes returned to
one single neuron. The regular expressions associated with
such rules must be then verified a posteriori, similar to a
post-condition that must be true after executing a state-
ment. The second aspect is related to expressing reverse
computation with spiking translation matrices and the
relationship with the matrix representing the initial SN
P system.

Acknowledgements  This work of SK is supported by EPSRC research
grant EP/R043787/1. HNA is supported by DOST-ERDT research
grants; Semirara Mining Corp. Professorial Chair for Computer Sci-
ence of College of Engineering, UPDiliman; RLC grant from UPD-
OVCRD. The authors would like to thank the anonymous reviewers
for their efforts in carefully reading the paper and making valuable
and constructive comments that allowed us to significantly improve
the quality of the paper.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no confict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Abbink, H., et al. (2004). Automated support for adaptive incident
management. In: Proc. of the 1st Int. workshop on information
systems for crisis response and management, ISCRAM’04. Brus-
sels (pp. 153–170).

	 2.	 Adorna, H. N. (2019). Matrix representations of spiking neural
P systems: Revisited. In: G. Păun (Ed.) Proceedings of the 20th
Int. conference on membrane computing, CMC20, August 5–8,
2019, Curtea de Argeş, Romania, Editura BIBLIOSTAR, Râmnicu
Vâlcea, 2019 (pp. 227–247).

	 3.	 Agrigoroaiei, O., & Ciobanu, G. (2009). Dual P systems. In:
Corne, D. et al (Ed.) 9th Worskhop on membrane computing,
LNCS 5391 (pp. 955–107).

	 4.	 Agrigoroaiei, O., & Ciobanu, G. (2010). Reversing computation
in membrane systems. Journal of Logic and Algebraic Program-
ming, 79(3–5), 278–288.

	 5.	 Alhazov, A., & Miorita, K. (2010). On reversibility and deter-
minism in P systems. In: G. Păun et al. (Ed.) 10th Worskhop on
membrane computing, LNCS 5957 (pp. 158–158).

	 6.	 Alur, R., McMillan, K., & Peled, D. (2000). Model-checking of
correctness conditions for concurrent objects. Information and
Computation, 160(1–2), 167–188.

	 7.	 Aman, B., & Ciobanu, G. (2017). Reversibility in parallel rewrit-
ing systems. Journal of Universal Computer Science, 23(7),
692–703.

	 8.	 Martínez-del Amor, M. Á., Orellana-Martín, D., Cabarle, F. G. C.,
Pérez-Jiménez, M. J., & Adorna, H. N. (2017). Sparse-matrix rep-
resentation of spiking neural P systems for GPU. In: 15th Brain-
storming week on membrane computing) Fénix Editora. Sevilla,
Spain (pp. 161–170).

	 9.	 Arapinis, M., Calder, M., Denis, L., Fisher, M., Gray, P., & Konur,
S., et al. (2009). Towards the verification of pervasive systems.
Electronic Communications of the EASST, 22.

	10.	 Bakir, M. E., Konur, S., Gheorghe, M., Krasnogor, N., & Stannett,
M. (2018). Automatic selection of verification tools for efficient
analysis of biochemical models. Bioinformatics, 34(18), 3187–
3195. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty282.

	11.	 Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., & Ipate, F.
(2014). High performance simulations of kernel P systems. In:
16th IEEE Int. conference on high performance computing and
communications (pp. 409–412). https://​doi.​org/​10.​1109/​HPCC.​
2014.​69

	12.	 Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., & Niculescu, I.-M.
(2014). Extended simulation and verification platform for kernel

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bioinformatics/bty282
https://doi.org/10.1109/HPCC.2014.69
https://doi.org/10.1109/HPCC.2014.69

146	 M. Gheorghe et al.

1 3

P systems. In: Gheorghe M. et al. (Ed.) 15th Int. conference on
membrane computing, LNCS 8961 (pp. 158–178).

	13.	 Cabarle, F. G. C., & Adorna, H. N. (2013). On structures and
behaviors of spiking neural P systems and Petri nets. In: Csuhaj-
Varjú, E. et al. (Ed.) 13th Int. conference on membrane computing,
LNCS 7762 (pp. 145–160).

	14.	 Camci, F., Eker, O. F., Baskan, S., & Konur, S. (2016). Compari-
son of sensors and methodologies for effective prognostics on rail-
way turnout systems. Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit, 230(1),
24–42. https://​doi.​org/​10.​1177/​09544​09714​525145.

	15.	 Carandang, J. P., Villaflores, J. M., Cabarle, F. G. C., Adorna, H.
N., & Martínez-del Amor, M. Á. (2017). CuSNP: Spiking neural
P systems simulators in CUDA. Romanian Journal of Information
Science and Technology, 20(1), 57–70.

	16.	 Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore,
M., Roveri, M., Sebastiani, R., & Tacchella, A. (2002). NuSMV
version 2: An open source tool for symbolic model checking.
In: Proc. Int. conference on computer-aided verification (CAV
2002), LNCS (vol. 2404, pp. 359–364). Springer. https://​doi.​org/​
10.​1007/3-​540-​45657-0_​29

	17.	 Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D.,
& Greenough, C. (2012). Exploitation of high performance com-
puting in the FLAME agent-based simulation framework. In:
Proceedings of 14th IEEE Int. conference on high performance
computing and communications (pp. 538–545). https://​doi.​org/​10.​
1109/​HPCC.​2012.​79

	18.	 Dela Cruz, R. T. A, Cailipan, D. P., Cabarle, F. G. C., Hernan-
dez, N. H., Buño, K., Adorna, H. N., & Carandang, J. P. (2018).
Matrix representation and simulation algorithm for spiking neural
P systems with rules on synapses. In: P. L. Fernandez, Jr., H. N.
Adorna, A. A. Sioson, J. D. L. Caro (Ed.) Proc. 18th Philippine
Computing Science Congress (PCSC2018) (pp. 104–112).

	19.	 Dela Cruz, R. T. A, Jimenez, Z., Cabarle, F. G. C., Adorna, H. N.,
Buño, K., Hernandez, N. H., & Carandang, J. P. (2018). Matrix
representation of spiking neural P systems with structural plastic-
ity. In: P. L. Fernandez, Jr., H. N. Adorna, A. A. Sioson, J. D. L.
Caro (Ed.) Proc. 18th Philippine Computing Science Congress
(PCSC2018) (pp. 152–164).

	20.	 Freund, R., & Verlan, S. (2007). A formal framework for static
(tissue) P systems. In: G. Eleftherakis, et al. (Ed.) 8th Worskhop
on membrane computing, LNCS 4860 (pp. 271–284).

	21.	 Gheorghe, M., Ceterchi, R., Ipate, F., & Konur, S. (2017). Kernel
P systems modelling, testing and verification—sorting case study.
In: A. Leporati, et al. (Ed.) 17th Int. Conference on Membrane
Computing, LNCS 10105 (pp. 233–250). Cham.

	22.	 Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S., & Lefticaru, R.
(2018). Kernel P systems: From modelling to verification and
testing. Theoretical Computer Science, 724, 45–60.

	23.	 Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-
Cabrera, L., García-Quismondo, M., & Pérez-Jiménez, M.J.
(2013). Kernel P Systems—Version I. In 11th Brainstorming week
on membrane computing (pp. 97–124). http://​www.​gcn.​us.​es/​files/​
11bwmc/​097_​gheor​ghe_​ipate.​pdf

	24.	 Gheorghe, M., Konur, S., & Ipate, F. (2017). Kernel P systems
and stochastic P systems for modelling and formal verification of
genetic logic gates. In: A. Adamatzky (Ed.) Advances in uncon-
ventional computing, volume 1, theory (pp. 661–675). Cham .
https://​doi.​org/​10.​1007/​978-3-​319-​33924-5_​25

	25.	 Gheorghe, M., Konur, S., Ipate, F., Mierlă, L., Bakir, M. E., &
Stannett, M. (2015). An integrated model checking toolset for
kernel P systems. In: G. Rozenberg, et al. (Ed.) 16th Int. con-
ference on membrane computing, LNCS 9504 (pp. 153–170).
Springer.

	26.	 Gheorghe, M., Konur, S., Ipate, F., Mierlă, L., Bakir, M. E., &
Stannett, M. (2015). An integrated model checking toolset for

kernel P systems. In: G. Rozenberg, et al. (Ed.) 16th Int. con-
ference on membrane computing, LNCS 9504 (pp. 153–170).
Springer. https://​doi.​org/​10.​1007/​978-3-​319-​28475-0_​11

	27.	 Holcombe, M. (1988). X-machines as a basis for dynamic system
specification. Software Engineering Journal, 3(2), 69–76. https://​
doi.​org/​10.​1049/​sej.​1988.​0009.

	28.	 Holzmann, G. J. (1997). The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), 275–295. https://​doi.​org/​10.​
1109/​32.​588521.

	29.	 Ibo, G.N, & Adorna, H.N. (2011). Periodicity as a dynamical
aspect of generative spiking neural P systems. In: M. Gheorghe,
et al. (Ed.) Pre-Proc. 12th Int. conference on membrane comput-
ing (CMC12), Fontainebleau, France, 23–26 August 2011 (pp.
225–240).

	30.	 Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P
systems. Fundamenta Informaticae 71(2–3), 279–308 .

	31.	 Jimenez, Z.B., Cabarle, F.G.C., Dela Cruz, R.T.A, Buño, K.,
Adorna, H.N., Hernandez, N.H., & Zeng, X. (2018). Matrix rep-
resentation and simulation algorithm of spiking neural P systems
with structural plasticity. In: Pre-Proc. Asian conference mem-
brane computing (ACMC2018) (pp. 10–14).

	32.	 Konur, S. (2006). A decidable temporal logic for events and states.
In: Thirteenth international symposium on temporal representa-
tion and reasoning (TIME’06) (pp. 36–41). https://​doi.​org/​10.​
1109/​TIME.​2006.1

	33.	 Konur, S. (2008). An interval logic for natural language semantics.
In: Proceedings of the seventh conference on advances in modal
logic, Nancy, France, 9–12 September 2008 (pp. 177–191).

	34.	 Konur, S. (2010). Real-time and probabilistic temporal logics: An
overview. CoRR abs/1005.3200.

	35.	 Konur, S. (2010). A survey on temporal logics. CoRR
abs/1005.3199.

	36.	 Konur, S. (2014). Towards light-weight probabilistic model check-
ing. Journal of Applied Mathematics, 2014, 15. https://​doi.​org/​10.​
1155/​2014/​814159.

	37.	 Konur, S., & Fisher, M. (2011). Formal analysis of a VANET
congestion control protocol through probabilistic verification. In:
Proceedings of the 73rd IEEE vehicular technology conference,
VTC Spring 2011, 15–18 May 2011, Budapest, Hungary (pp.
1–5). IEEE. https://​doi.​org/​10.​1109/​VETECS.​2011.​59563​27

	38.	 Konur, S., Fisher, M., Dobson, S., & Knox, S. (2014). For-
mal verification of a pervasive messaging system. Formal
Aspects of Computing, 26(4), 677–694. https://​doi.​org/​10.​1007/​
s00165-​013-​0277-4.

	39.	 Konur, S., & Gheorghe, M. (2015). A property-driven methodol-
ogy for formal analysis of synthetic biology systems. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 12,
360–371. https://​doi.​org/​10.​1109/​TCBB.​2014.​23625​31.

	40.	 Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., & Krasnogor,
N. (2014). Conventional verification for unconventional comput-
ing: A genetic XOR gate example. Fundamenta Informaticae,
134(1–2), 97–110.

	41.	 Konur, S., Gheorghe, M., Dragomir, C., Mierlă, L., Ipate, F., &
Krasnogor, N. (2015). Qualitative and quantitative analysis of
systems and synthetic biology constructs using P systems. ACS
Synthetic Biology, 4(1), 83–92.

	42.	 Konur, S., Mierlă, L., Ipate, F., & Gheorghe, M. (2020). kPWork-
bench: A software suit for membrane systems. SoftwareX, 11,
100407.

	43.	 kPWorkbench website: https://​github.​com/​kernel-​p-​syste​ms/​
kpwor​kbench.

	44.	 Lefticaru, R., Bakir, M.E., Konur, S., Stannett, M., & Ipate, F.
(2018). Modelling and validating an engineering application in
kernel P systems. In: M. Gheorghe (Ed.) 18th Int. conference on

https://doi.org/10.1177/0954409714525145
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1109/HPCC.2012.79
https://doi.org/10.1109/HPCC.2012.79
http://www.gcn.us.es/files/11bwmc/097_gheorghe_ipate.pdf
http://www.gcn.us.es/files/11bwmc/097_gheorghe_ipate.pdf
https://doi.org/10.1007/978-3-319-33924-5_25
https://doi.org/10.1007/978-3-319-28475-0_11
https://doi.org/10.1049/sej.1988.0009
https://doi.org/10.1049/sej.1988.0009
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/TIME.2006.1
https://doi.org/10.1109/TIME.2006.1
https://doi.org/10.1155/2014/814159
https://doi.org/10.1155/2014/814159
https://doi.org/10.1109/VETECS.2011.5956327
https://doi.org/10.1007/s00165-013-0277-4
https://doi.org/10.1007/s00165-013-0277-4
https://doi.org/10.1109/TCBB.2014.2362531
https://github.com/kernel-p-systems/kpworkbench
https://github.com/kernel-p-systems/kpworkbench

147Spiking neural P systems: matrix representation and formal verification﻿	

1 3

membrane computing, LNCS 10725 (pp. 183–195). Cham. https://​
doi.​org/​10.​1007/​978-3-​319-​73359-3_​12

	45.	 Lefticaru, R., Konur, S., Yildirim, Ü., Uddin, A., Campean, F.,
& Gheorghe, M. (2017). Towards an integrated approach to veri-
fication and model-based testing in system engineering. In: The
international workshop on engineering data- & model-driven
applications (EDMA-2017) (pp. 131–138). https://​doi.​org/​10.​
1109/​iThin​gs-​Green​Com-​CPSCom-​Smart​Data.​2017.​25

	46.	 Leporati, A., Zandron, C., & Mauri, G. (2006). Reversible P systems
to simulate Fredkin circuits. Fundamenta Informaticae, 74, 529–548.

	47.	 Pan, L., Wu, T., & Zhang, Z. (2016). A bibliography of spiking
neural P systems. Bulletin of the International Membrane Com-
puting Society (I M C S), 1(1), 63–78.

	48.	 Păun, G. (1998). Computing with membranes. Tech. rep., Turku
Centre for Computer Science . http://​tucs.​fi/​publi​catio​ns/​view/?​
pub_​id=​tPaun​98a.

	49.	 Păun, Gh. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143. https://​doi.​org/​10.​
1006/​jcss.​1999.​1693.

	50.	 Păun, Gh. (2002). Membrane computing—An introduction. New
York: Springer.

	51.	 Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford Handbook of Membrane Computing. Oxford University
Press.

	52.	 Verlan, S., Bernardini, F., Gheorghe, M., & Margenstern, M.
(2008). Generalized communicating P systems. Theoretical Com-
puter Science, 404, 170–184.

	53.	 Verlan, S., Freund, R., Alhazov, A., Ivanov, S., & Pan, L. (2020).
A formal framework for spiking neural P systems. Journal of
Membrane Computing, 2(4), 355–368. https://​doi.​org/​10.​1007/​
s41965-​020-​00050-2.

	54.	 Yabandeh, M. (2011). Model checking of distributed algorithm
implementations. Ph.D. thesis, IC.

	55.	 Zeng, X., Adorna, H. N., Martínez-del Amor, M.Á., Pan, L., &
Pérez-Jiménez, M. J. (2009). Matrix representation of spiking
neural P systems. In: M. Gheorghe, et al. (Ed.) 10th Int. confer-
ence on membrane computing, LNCS 6510 (pp. 377–391).

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Marian Gheorghe  is currently a
Professor of Computational
Modelling and Software Engi-
neering with the University of
Bradford. MG obtained his PhD
and BSc in Mathematics and
Computer Science from the Uni-
versity of Bucharest. MG has
investigated a large variety of
computational models, such as
rewriting systems – formal
grammars, multiset rewriting,
automata, process algebras and
Petri nets. MG has also an inter-
est in the study of new classes of
unconventional computational

models, especially membrane systems, and their relationships with
other (unconventional) computational models, as well as the formal
verification of such models. MG has published extensively in high-
profile journals.

Raluca Lefticaru  is a Lecturer in
Computer Science with the Uni-
versity of Bradford and a Visit-
ing Researcher with the Univer-
sity of Sheffield, UK. Previously
she has been a Lecturer at the
University of Bucharest, Roma-
nia, and has held several research
positions in the UK. Her
research interests include model-
based testing, formal specifica-
tion methodologies, P systems
simulation, verification and test-
ing. RL has published numerous
articles in prestigious journals
and conferences. She has partici-

pated in various research projects and has been on the PC of several
conferences on Software Testing, Formal Methods and Membrane
Computing.

Savas Konur  is a Reader in the
Department of Computer Sci-
ence, University of Bradford. His
research interests involve Formal
Methods (mainly modelling,
verification and analysis of com-
plex, concurrent and stochastic
systems) and design/develop-
ment of software systems/tools/
methods facilitating Formal
Methods in various application
areas, including Systems and
Synthetic Biology, Ubiquitous
Systems, Real-time Systems,
Safety-critical Systems, Autono-
mous Systems and Multi-agent

& Systems. He has published his results in numerous leading journals
and conferences. His collaborative and interdisciplinary research pro-
gramme has been funded by EPSRC, Innovate UK and EU Access
Innovation.

Ionuţ Mihai Niculescu  holds a
PhD in Computer Science from
the University of Piteşti, Roma-
nia. For his thesis “Simulation
of kernel P Systems using Com-
municating X-machines - Appli-
cations in FLAME” he was dis-
tinguished by the International
Membrane Computing Society
(IMCS) with the PhD Thesis
Award for the year 2018. He has
been an active member in two
research projects, publishing
papers on modelling, simulation,
verification and testing. His
main research interests are in

membrane computing, computational modelling and parallel
processing.

https://doi.org/10.1007/978-3-319-73359-3_12
https://doi.org/10.1007/978-3-319-73359-3_12
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.25
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.25
http://tucs.fi/publications/view/?pub_id=tPaun98a
http://tucs.fi/publications/view/?pub_id=tPaun98a
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/s41965-020-00050-2
https://doi.org/10.1007/s41965-020-00050-2

148	 M. Gheorghe et al.

1 3

Henry N. Adorna  is a Professor
of (Theoretical) Computer Sci-
ence since 2007 and Scientist at
UP Diliman. He spent two years
(from 2000 to 2002) at Lehrstuhl
für Informatik I of RWTH
Aachen under the DAAD PhD
Sandwich Program to do his dis-
sertation on abstract communi-
cation complexity of uniform
computing models under Prof.

Dr. Juraj Hromkovic. HNA went home to obtain his PhD in Mathemat-
ics from the UP Diliman in 2002. HNA works primarily on P systems
since 2009. Other research interests of HNA include algorithmics for
NP-hard problems, particularly combinatorial hard problems in com-
putational biology, discrete mathematics, natural and unconventional
computing models.

	Spiking neural P systems: matrix representation and formal verification
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Spiking neural P systems
	2.2 Kernel P systems

	3 Matrix representation of spiking neural P systems and applications
	3.1 Basics on matrix representation of spiking neural P systems
	3.2 Properties of SN P systems
	3.2.1 Basic routing blocks
	3.2.2 Routing type for SN P systems
	3.2.3 Boundedness and liveness of SN P systems

	4 SN P systems and kP systems
	5 Simulation and verification using kPWorkbench
	6 Conclusions
	Acknowledgements
	References

