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Abstract
Structural and behavioural properties of models are very important in development of complex systems and applications. In 
this paper, we investigate such properties for some classes of SN P systems. First, a class of SN P systems associated to a set 
of routing problems are investigated through their matrix representation. This allows to make certain connections amongst 
some of these problems. Secondly, the behavioural properties of these SN P systems are formally verified through a natural 
and direct mapping of these models into kP systems which are equipped with adequate formal verification methods and tools. 
Some examples are used to prove the effectiveness of the verification approach.
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1  Introduction

Membrane computing is a research field initiated by Gh. 
Păun [48, 49]. This computation paradigm is inspired by the 
structure and functioning of the living cells. The key models 
are called membrane systems or P systems. The field has 
developed very fast and many classes of membrane systems 
(P systems) have been investigated. These may be classi-
fied as cell-like, tissue-like and neural-like P systems. A 

presentation of the most important such models is available 
in [50] and [51].

A class of neural-like P systems, called Spiking Neural 
P systems (SN P systems, for short), has been introduced 
in [30], inspired by the neurophysiological behaviour of 
neurons (in brain) sending electrical impulses along axons 
to other neurons. Significant results have been reported in 
the literature with respect to SN P systems, in particular, 
generating or recognising elements of a set (see the survey 
paper [47]).

Matrices have been used to represent SN P systems with-
out delays [55] and later SN P systems with delays [15]. 
These matrix representations have been useful in implement-
ing SN P systems in silico [8, 18, 19, 31]. A thorough pres-
entation on these matrix representations and further research 
directions have been discussed in [2], including the idea of 
periodicity in SN P systems (without delays) started by [29]. 
Some Petri net-like properties of SN P systems are also pro-
vided in [2].

Another type of P systems, called kernel P systems (kP 
systems, for short), has been introduced [23] in order to 
capture in a unified approach features of various membrane 
computing models, making it more amenable for describing 
various problems, including complex applications. kP sys-
tems have an expressive formal language, allowing models 
to be simulated with a software framework, called kPWork-
bench  [12], which also includes a verification component 

 *	 Raluca Lefticaru 
	 r.lefticaru@bradford.ac.uk

	 Marian Gheorghe 
	 m.gheorghe@bradford.ac.uk

	 Savas Konur 
	 s.konur@bradford.ac.uk

	 Ionuţ Mihai Niculescu 
	 ionutmihainiculescu@gmail.com

	 Henry N. Adorna 
	 hnadorna@dcs.upd.edu.ph

1	 Department of Computer Science, University of Bradford, 
West Yorkshire, Bradford BD7 1DP, UK

2	 Faculty of Science, University of Piteşti, Str. Târgul din Vale 
nr. 1, 110040 Piteşti, Romania

3	 Department of Computer Science (Algorithms 
and Complexity), University of Philippines Diliman, 
1101 Quezon City, Philippines

http://orcid.org/0000-0001-5289-0162
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-021-00075-1&domain=pdf


134	 M. Gheorghe et al.

1 3

[25]. A thorough presentation of this tool has been made 
in [42]. The modelling, simulation, verification and testing 
aspects of kP systems have been presented in [21, 22] and 
applications in synthetic biology in [24, 40, 41].

In this paper we investigate structural and behavioural 
properties of some classes of SN P systems. First, the over-
all structure and configurations of SN P systems associated 
to a set of routing problems are investigated through their 
matrix representation. This allows to make certain con-
nections amongst some of these problems. Secondly, the 
behavioural properties of these SN P systems are simulated 
and formally verified through a natural and direct mapping 
of these models into kP systems, which are equipped with 
adequate formal verification methods and tools. Some exam-
ples are used to prove the effectiveness of the verification 
approach.

This paper is structured as follows: Sect. 2 presents the 
preliminaries regarding SN P systems and kP systems. Sec-
tion 3 discusses the matrix representation introduced in [15] 
for SN P systems for some Petri net-like properties. Some 
connections between SN P systems and kP systems are pre-
sented in Sect. 4. Simulation and formal verification of the 
kP systems obtained from the SN P systems, by examining 
two examples, are discussed in Sect. 5. Finally, conclusions 
are presented in Sect. 6.

2 � Preliminaries

This section briefly presents the notations used, then gives 
the basic definitions regarding spiking neural P systems (SN 
P systems, for short) and kernel P systems (kP systems, for 
short).

For a finite alphabet A = {a1, ..., ap} , A∗ represents the set 
of all strings (sequences) over A. The empty string is denoted 
by � and A+ = A∗ ⧵ {�} denotes the set of non-empty strings.

A multiset over A is a mapping f ∶ A → ℕ , represented 
as a string af (a1)

1
⋯ a

f (ap)

p  , where the order is not important, 
and where elements which are not in the support (i.e., ele-
ments aj , with 1 ≤ j ≤ p, having f (aj) = 0 ) are omitted. In 
the sequel, multisets will be represented by such strings.

2.1 � Spiking neural P systems

The definition and other concepts related to SN P systems 
are from [2, 55]. In this paper, we consider only SN P sys-
tems without delay rules.

Definition 1  An SN P system of degree m, m ≥ 1 , is a tuple

where

Π = (O, �1,… , �m, syn, in, out),

•	 O = {a} is a singleton alphabet (a is called spike);
•	 �i, 1 ≤ i ≤ m, are neurons, �i = (ni,Ri), 1 ≤ i ≤ m, where

–	 ni ≥ 0 is the number of spikes in �i;
–	 Ri is a finite set of rules of the following forms:

(Type (1); spiking rules)
E∕ac → ap; where E is a regular expression over 
{a} , and c ≥ 1, p ≥ 1, such that c ≥ p;

(Type (2); forgetting rules)
as → �, for s ≥ 1, such that for each rule 
E∕ac → ap of type (1) from Ri , as ∉ L(E);

•	 syn = {(i, j)|1 ≤ i, j ≤ m, i ≠ j} (synapses between dis-
tinct neurons);

•	 in, out ∈ {1,… .m} indicate the input and output neurons 
respectively.

Remark 1  The in neuron will not be distinguished in what 
follows and, when specified, out will be also not considered.

The SN P system Π computes by applying one rule from 
each neuron.

A configuration of SN P system Π is an m-size vector 
of integers

where aj , 1 ≤ j ≤ m, represents the number of spikes in neu-
ron �j.

A configuration at time k,  k ≥ 0, of an SN P system Π, 
as above, is a vector

where a(k)
j

∈ ℤ
+ ∪ {0}, 1 ≤ j ≤ m , is the number of spikes 

present at time k in neuron �j.
The vector C(0) = (a

(0)

1
, a

(0)

2
,… , a(0)

m
) is the initial configu-

ration vector of SN P system Π, where a(0)
j
, 1 ≤ j ≤ m, rep-

resents the initial number of spikes, nj , in neuron �j.
We say a rule rx ∈ Rj, 1 ≤ j ≤ m, of neuron �j is applica-

ble at time k,  k ≥ 0, if and only if the multiset an satisfies Ex 
(or an ∈ L(Ex)), where n = a

(k)

j
. At some time k,  we can have 

in neuron �j, an ∈ L(Ex) ∩ L(Ey), for some rules rx and ry, 
x ≠ y. In this case one of the two rules will be chosen to be 
applied. This is how the non-determinism1 of the system is 
realised, whereas several neurons with their chosen applica-
ble rules can fire (or spike) simultaneouly at time k,  dem-
onstrating parallelism.

C = (a1, a2,… , am),

C(k) = (a
(k)

1
, a

(k)

2
,… , a(k)

m
),

1  In [53] there is a normal form for SN P systems where 
L(Ex) ∩ L(Ey) is either L(Ex) or empty, hence in order to find all non-
deterministic rules is sufficient to verify if their regular expressions 
are the same.
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A rule of type 2 from Rj removes spike(s) from the neu-
ron at some time k when applied. Such a rule could only be 
applied if and only if the number of spikes in �j is exactly the 
amount of spikes it needs to be applied. Formally, if there 
exists a rule as → � ∈ Rj, then there cannot exist any rule 
E∕ac → ap of type 1 in Rj such that as ∈ L(E).

In defining rules in SN P systems, we follow the standard 
convention of simply not specifying E whenever the left-
hand side of the rule is equal to E.

The sequence of configurations defines a computation of 
the system. SN P systems obtain inputs from outside the sys-
tem (environment) through the designated input neuron(s). 
We say that a computation halts or reaches a halting con-
figuration if it reaches a configuration where no more appli-
cable rules are available. We could represent the output of 
the system as the number of steps lapse between the first 
two spikes of the designated output neuron. Another out-
put representation of SN P system is a sequence of (coded) 
spikes. This sequence is called a spike train, which is a 
(combinatorial) sequence of spikes and no spikes (silence) 
made by the systems.

2.2 � Kernel P systems

In the following, we will give a formal definition of kP sys-
tems; for more details, see [23].

First, we introduce a compartment type utilised later in 
defining the compartments of a kP system.

Definition 2  T is a set of compartment types, T = {t1,… , ts}, 
where ti = (Ri, �i) , 1 ≤ i ≤ s , consists of a set of rules, Ri , and 
an execution strategy, �i , defined over Lab(Ri) , the labels of 
the rules of Ri.

The definition of a kP system uses the concept of com-
partment type.

Definition 3  A kP system of degree n,  n ≥ 1 , is a tuple

where

•	 A is a finite set of elements called objects;
•	 � defines the membrane structure, which is a graph, 

(V, L), where V is a set of vertices representing compart-
ments (or components), and L is a set of edges, i.e., links 
between compartments;

•	 Ci = (ti,wi,0) , 1 ≤ i ≤ n , is a compartment of the sys-
tem consisting of a compartment type, ti , from a set T,  
and an initial multiset, wi,0, over A; the type ti = (Ri, �i) 

kΠ = (A,�,C1,… ,Cn, i0),

consists of a set of evolution rules, Ri , and an execution 
strategy, �i;

•	 i0 is the output compartment where the result is 
obtained.

The kP systems presented in this paper will only use 
rewriting and communication rules. A more general dis-
cussion regarding all types of rules of a kP system, includ-
ing structure changing rules, i.e., membrane division, 
membrane dissolution, link creation and link destruction 
rules, can be found in [23].

A rewriting and communication rule of a compartment 
Ci , 1 ≤ i ≤ n , has the form: x → y{g} , where g represents 
a guard (this will be formally explained in Definition 5), 
x ∈ A+ and y ∈ (A × T)∗ ,  where y  is  a multiset, 
y = (a1, t1)… (ah, th) , where h ≥ 0 , and for each 1 ≤ j ≤ h , 
aj ∈ A and tj indicates a compartment type from T. If sev-
eral compartments, Cj1

,…Cjp
, p > 1, linked to Ci , have the 

same compartment type, tj, then one of them will be non-
deterministically chosen to receive aj.

For the next definitions, we make the following nota-
tions. For a multiset w over A and an element a ∈ A , we 
denote by |w|a the number of objects a occurring in w. 
Rel = {<,≤,=,≠,≥,>} denotes the set of relational opera-
tors, � ∈ Rel , a relational operator. We introduce now an 
abstract relational expression.

Definition 4  If g is the abstract relational expression 
denoted by �an and w a multiset, then the guard g applied to 
w denotes the relational expression |w|a�n.

The abstract relational expression g is true for the mul-
tiset w, if |w|a�n is true.

We consider now the following Boolean operators 
¬ (negation), ∧ (conjunction) and ∨ (disjunction). An 
abstract Boolean expression is defined by one of the fol-
lowing conditions:

•	 any abstract relational expression is an abstract Boolean 
expression;

•	 if g and h are abstract Boolean expressions then ¬g , 
g ∧ h and g ∨ h are abstract Boolean expressions.

Definition 5  If g is an abstract Boolean expression con-
taining gi, 1 ≤ i ≤ q, abstract relational expressions and w a 
multiset, then g applied to w means the Boolean expression 
obtained from g by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression, 
the guard g is true with respect to the multiset w, if the 
abstract Boolean expression g applied to w is true.
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In each compartment type, apart from rules, there is 
an execution strategy, as mentioned by Definition 2. In 
this paper we only refer to one execution strategy, namely 
choice or alternative. For an exhaustive discussion we refer 
to [23].

Definition 6  For a compartment type t = (R, �) from T and 
r1,… , rs ∈ Lab(R) , the choice (alternative) execution strat-
egy, � , is defined by the following notation {r1,… , rs}, with 
the meaning: one of the rules applicable will be non-deter-
ministically chosen and executed; if none is applicable then 
nothing is executed.

Definition 7  A configuration of a kP system, kΠ , with n 
compartments, is a tuple c = (c1,… , cn) , where ci ∈ A∗ , 
1 ≤ i ≤ n , is the multiset from compartment Ci . The initial 
configuration is (w1,… ,wn) , where wi ∈ A∗ is the initial 
multiset of the compartment Ci , 1 ≤ i ≤ n.

A transition (or computation step), introduced by the 
next definition, is the process of passing from one configu-
ration to another.

Definition 8  Given two configurations c = (c1,… , cn) and 
c� = (c�

1
,… , c�

n
) of a kP system, kΠ , with n compartments, 

and a multiset of rules Mi, 1 ≤ i ≤ n , applicable to ci (as �i is 
a choice, Mi consists either of a rule from the compartment 
Ci or is empty), a transition or a computation step is the 
process of obtaining c′ from c by using the multisets of rules 
Mi , 1 ≤ i ≤ n , denoted by c ⟹(M1,…,Mn) c� . The multiset c′

i
, 

1 ≤ i ≤ n , is obtained from ci by removing all the objects that 
are on the left-hand side of the rule of Mi from ci and then 
adding objects a that appear as (a, ti) on the right-hand side 
of each rule of Mj, 1 ≤ j ≤ n , and do not go to other compart-
ments with the same type ti as Ci.

A computation in a P system is a sequence of transi-
tions (computation steps). A configuration is called final 
configuration, if no rule can be applied to it. As usual 
in P systems, we only consider terminal computations, 
i.e., those arriving in a final configuration. The result of a 
terminal computation is the number of objects appearing 
in the output compartment of a final configuration.

3 � Matrix representation of spiking neural P 
systems and applications

We express with matrices SN P systems, as suggested 
in [2, 55]. Structural and behavioural properties of SN 
P systems considered in [13] are then investigated using 
matrices.

3.1 � Basics on matrix representation of spiking 
neural P systems

We restrict our SN P systems not to have any neuron with 
self-loop, that is synapse directly connecting to itself when 
defining its matrix representation.

Definition 9  (Spiking transition matrix) [55] Let Π be an SN 
P system with the total number of rules n and m neurons. 
Let the rules in the systems follow some precise ordering. 
The spiking transition matrix of Π is MΠ = [bij]n×m, where

The matrix MΠ is (almost) a natural representation of 
the SN P system Π. Each row i, 1 ≤ i ≤ n , corresponds to a 
rule ri ∶ Ei∕a

ci → api in some neuron �j, with bi,j, 1 ≤ j ≤ m, 
defined as above. Each column j, 1 ≤ j ≤ m, corresponds to 
a neuron �j.

Example 1  An SN P system for ℕ − {1} [55]. Let 
Π = ({a}, �1, �2, �3, �4, syn, out), where �1 = (2,R1), with 
R1 = {a2∕a → a, a2 → a}; �2 = (1,R2), with R2 = {a → a}; 
�3 = (1,R3), with R3 = {a → a, a2 → �}; and �4 = (0, {}); 
syn = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 4)}; out = �4.

The SN P system in Example 1, generating ℕ − {1}, has 
n = 5 rules and m = 4 neurons and its spiking transition 

matrix is MΠ =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 1 0

−2 1 1 0

1 − 1 1 0

0 0 − 1 1

0 0 − 2 0

⎞
⎟⎟⎟⎟⎟⎠

.

Some more details regarding the properties of this matrix, 
MΠ, are presented in [55]. The initial configuration of Π, 
introduced in Example 1, is C(0) = (2, 1, 1). The next con-
figuration C(k+1) to C(k) can be computed using the following 
identity [55],

where s(k) = (s
(k)

1
, s

(k)

2
,… , s(k)

n
) ∈ {0, 1}n is some valid spiking 

vector with respect to C(k) and MΠ is the spiking transition 
matrix of Π.

A valid spiking vector s(k) indicates the rules that could 
be used at time k with respect to C(k) and the regular expres-
sion governing the usability of rules in each neuron. s(k)

i
= 1 

whenever the multiset in �j is in L(Ei) of rule ri in neuron �j, 
else s(k)

i
= 0. Note that C(k) has non-negative entries. These 

bij =

⎧
⎪⎪⎨⎪⎪⎩

−ci, if the left-hand side rule of ri in �j is a
ci

(ci spikes are consumed)

pi, if the right-hand side of the rule ri in �s
(s ≠ j and (s, j) ∈ syn) is api

0, otherwise

(1)C(k+1) = C(k) + s(k) ⋅MΠ,
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entries represent only the amount of multisets in each neu-
ron in the system. Checking if the multiset in every neuron 
belongs to L(Ei), for each i is a must to define a valid spiking 
vector. If there exist at least two possible rules in a neuron 
that can be used, then we non-deterministically choose one 
of them for that time instance.

A valid configuration is one that is either an initial 
configuration or any configuration obtained from a valid 
configuration using a valid spiking vector or (sum of) 
sequence of valid spiking vectors [2]. It is not hard to see 
that

where for each i, 1 ≤ i ≤ k − 1, s(i) is a valid spiking vector.
Any configuration C(k) that satisfies Eq. (2) is called a 

reachable configuration. In particular, we define

the set of all reachable configurations from C(0) in Π . We 
call C(k) a reachable configuration of Π from C(0), for each 
k ≥ 0.

3.2 � Properties of SN P systems

In this section, we look into some structural and behavioural 
properties of SN P systems [13] which resemble some prop-
erties of transition systems such as Petri nets. SN P sys-
tems transmit and route spikes in processing information. 
First, we consider basic routing blocks, namely AND-join, 
AND-split, OR-join and 2-way OR-split. Then we focus on 
types of routing spikes via synapses in the systems that can 
be identified as follows: sequential, conditional, parallel, 
and iteration routing type. We will show some relationships 
amongst some basic routing blocks and some routing types. 
To demonstrate these routing blocks and routing types, we 
have SN P systems to emulate the behaviour of spike trans-
mission with respect to the structures of the synapses con-
necting neurons. In the following illustrations, neurons emit 
only at most 2 spikes. Boundedness and liveness of SN P 
systems are consider at the end of this section.

3.2.1 � Basic routing blocks

One can check correctness of the matrices below, rep-
resenting basic routing blocks by performing the matrix 
computation by SN P systems using equation (1) and 
observing the appropriate entries in the configuration vec-
tor that indicate the desired output. 

(2)C(k) = C(0) +

(
k−1∑
i=0

s(i)

)
⋅MΠ,

R(Π,C(0)) = {C(k) ∣ C(k)satisfies (2)},

1.	 AND-join: spikes are transmitted from two source neu-
rons to a neuron, which sends the processed accumu-
lated spikes to next neuron connected from it.

	   Le t  t he  SN P  sys t em ΠAND-join∶ g iven 
b y  ({a}, �1, �2, �3, �4, syn),  w h e r e 
�1 = �2 = (1, {a+∕a → a}), �3 = (0, {(a2)+∕a2 → a}), 
�4 = (0, {}), and syn = {(1, 3), (2, 3), (3, 4)} . The spik-
ing transition matrix is

	   MΠAND-join
=

⎛
⎜⎜⎜⎝

−1 0 1 0

0 − 1 1 0

0 0 − 2 1

0 0 0 0

⎞
⎟⎟⎟⎠
 with C(0) = (1, 1, 0, 0).

2.	 AND-split: transmits spikes simultaneously from a 
source neuron to all neurons connected from it.

	   Let an SN P system with three neurons given by 
({a}, �1, �2, �3, syn), w h e r e  �1 = (1, {a+∕a → a}), 
�2 = �3 = (0, {}) and syn = {(1, 2), (1, 3)}. This can be 
represented by the following matrix:

	   MΠAND-split
=

⎛⎜⎜⎝

−1 1 1

0 0 0

0 0 0

⎞⎟⎟⎠
, with C(0) = (1, 0, 0).

3.	 OR-join: spikes are transmitted from two source neu-
rons directly to a neuron connected from these source 
neurons.

	   Let an SN P system with three neurons given by 
({a}, �1, �2, �3, syn), w h e r e  �1 = (1, {a+∕a → a}), 
�2 = (1, {a+∕a → a}),  �3 = (0, {}),  a n d 
syn = {(1, 3), (2, 3)}. This can be represented by the fol-
lowing matrix:

	   MΠOR-join
=

⎛⎜⎜⎝

−1 0 1

0 − 1 1

0 0 0

⎞⎟⎟⎠
, with C(0) = (1, 1, 0).

4.	 2-way OR-split: the transmitting neuron must decide 
to which target neuron the spike must be transmit-
ted. This can be represented by ΠOR-split = ({a}, �1, 
… ,  �8, syn),  w h e r e  �1 = (1, {a+∕a → a}), 
�2 = �3 = (0, {a → a}),  �4 = (0, {a2 → a2, a2 → a}), 
�5 = (0, {a2 → �, a → a}), �6 = (0, {a2 → a, a → �}), 
�7 = �8 = (0, {}), and syn = {(1, 2), (1, 3), (2, 4), (3, 4),  
(4, 5),  (4, 6), (5, 7), (6, 8)}. The spiking matrix represen-
tations is:

	   MΠOR-split
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 0 0 0 0 0

0 − 1 0 1 0 0 0 0

0 0 − 1 1 0 0 0 0

0 0 0 − 2 2 2 0 0

0 0 0 − 2 1 1 0 0

0 0 0 0 − 2 0 0 0

0 0 0 0 − 1 0 1 0

0 0 0 0 0 − 2 0 1

0 0 0 0 0 − 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with 

C(0) = (1, 0, 0, 0, 0, 0, 0, 0).

	   Another solution, with fewer neurons than in the 
above mentioned SN P system, ΠOR-split, is obtained by 
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removing the neurons �2 and �3 with all the synapses 
coming to and going out of them, and adding a synapse 
from �1 to �4 and an initial spike to �4. These will be 
reflected in the spiking matrix representation by remov-
ing the rows and columns 2 and 3, and introducing 
C(0) = (1, 1, 0, 0, 0, 0).

The SN P system ΠOR-split, as well as the others above, per-
form one flow of execution, starting with one spike and then 
moving through synapses up until no rule is executed. One 
can consider a slight generalisation, whereby the neuron �1 
will have initially k spikes, k ≥ 1, and its spiking rule will 
become a+∕a → a. In this case the flow of spikes from �1 
towards �7, �8 will move in k waves leading eventually to k1 
spikes in �7 and k2 in �8, such that k1 + k2 = k . This and other 
properties of ΠOR-split will be discussed in Sect. 5.

3.2.2 � Routing type for SN P systems

Now, we demonstrate the routing type [13] mentioned ear-
lier in this section. We likewise express as matrices these 
routing types as demonstrated by appropriate SN P systems. 
Similarly, correctness of these matrix representations can 
be checked by performing matrix operation using Eq. (1). 

1.	 Sequential routing:
	   Let Πseq given by ({a}, �1, �2, {(1, 2)}), where 

�1 = (1, {a → a}), �2 = (0, {a → a}) . The spiking tran-
sition matrix is

	   MΠseq
=

(
−1 1

0 − 1

)
, with C(0) = (1, 0).

	   This matrix appears as a sub-matrix (top left corner) 
of several matrices of basic routing blocks.

2.	 Conditional routing:
	   The SN P system, denoted Πcond is very similar to 

2-way OR-split SN P system block, but instead of col-
lecting the spikes in two distinct neurons, �7 and �8 , only 
one, denoted �7, will receive spikes from �5 and �6. In 
this case �7 will also have a rule a → a. The spiking 
transition matrix is

	   MΠcond
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 0 0 0 0

0 − 1 0 1 0 0 0

0 0 − 1 1 0 0 0

0 0 0 − 2 2 2 0

0 0 0 − 2 1 1 0

0 0 0 0 − 2 0 1

0 0 0 0 − 1 0 0

0 0 0 0 0 − 2 0

0 0 0 0 0 − 1 1

0 0 0 0 0 0 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with 

C(0) = (1, 0, 0, 0, 0, 0, 0).

	   We consider the same changes as in the case of 
ΠOR-split applied to Πcond and accordingly to MΠcond

 and 
the initial configuration. Then this conditional routing 
model will still perform as expected.

3.	 Parallel routing:
	   The SN P system, Πpar, consists of four neurons, very 

similar to those defined for conditional routing; only the 
fourth neuron is slightly different, �1 = (1, {a → a}), 
�2 = �3 = (0, {a → a}),  �4 = (0, {a2 → a})  a n d 
syn = {(1, 2), (1, 3), (2, 4), (3, 4)}. The spiking transition 
matrix is given by

	   MΠpar
=

⎛
⎜⎜⎜⎝

−1 1 1 0

0 − 1 0 1

0 0 − 1 1

0 0 0 − 2

⎞
⎟⎟⎟⎠
, with C(0) = (1, 0, 0, 0).

	   This matrix appears as a sub-matrix (top left corner) 
of the matrix describing 2-way OR-split SN P system 
block.

4.	 Iteration routing:
	   The SN P system, Πiter, contains three neu-

rons �1 = (1, {a → a}), �2 = �3 = (0, {a → a}) and 
syn = {(1, 2), (2, 3), (3, 1)}. The spiking transition matrix 
is

	   MΠiter
=

⎛⎜⎜⎝

−1 1 0

0 − 1 1

1 0 − 1

⎞⎟⎟⎠
, with C(0) = (1, 0, 0).

Remark: Notice that the non-zero sub-matrix of the matrix 
representing the basic routing blocks AND-join, AND-split 
and OR-join are sub-matrices of the matrices for conditional 
and parallel routings.

3.2.3 � Boundedness and liveness of SN P systems

We now turn our focus on the properties of SN P systems as 
described by its configurations. These properties described 
how SN P system behaves as it performs its function.

Definition 10  We call a rule r live for an initial configura-
tion C(0) if for every C(k), C(k) ∈ R(Π,C(0)), there exists a 
valid spiking sequence from C(k) that contains and applies r.

An SN P system Π is live for C(0) if all its rules are live 
for C(0).

This means for SN P system Π to be live, rules in Π must 
not be useless permanently during the computation. A gen-
erating or recognizing Π halts after computation. This means 
no more rules can be applied and therefore “dead” or a 
“deadlock”. We adapt the idea of the so-called “quasi-live 
transition” from Petri nets for SN P systems.
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Definition 11  A rule r is quasi-live for an initial configura-
tion C(0), if there is a valid spiking sequence from C(0) that 
contains and applies r.

We call an SN P system quasi-live if all its rules are 
quasi-live.

The idea of quasi-liveness allows SN P systems to be “not 
dead” even some of the neurons are “useless” or “dead” 
while the other neurons are still functional. Note that to keep 
SN P systems live, it must have a “feedback-loop” or an 
“iteration routing” structure where all rules involved are 
live.

For the following illustrations, we have for all rules 
E∕ac → ap of each neuron in the SN P system, E = ac. The 
absolute values of the entries of MΠ for each Π, indicate the 
values of the exponents c and p of a. C(0) is the correspond-
ing initial configuration of each Π.

Example 2  Let Π1 be an SN P system, such that,

MΠ1
=

(
−1 1

1 − 1

)
 with C(0) = (1, 0). It is not hard to see 

that Π1 is live.

Example 3  Let Π2 be an SN P system, such that

MΠ2
=

⎛⎜⎜⎝

−1 1 0

0 − 1 1

0 1 − 1

⎞⎟⎟⎠
 with C(0) = (1, 0, 0). It is not hard 

to see that Π2 is quasi-live (without deadlock).

Example 4  Let Π3 be an SN P system, such that

MΠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 2 2 0

−2 1 1 0

0 − 2 0 0

0 − 1 0 0

0 0 − 2 0

0 0 − 1 1

0 0 1 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

 with C(0) = (2, 0, 0, 0). It is not 

hard to see that Π3 is quasi-live with deadlock.

We define below a bounded SN P system with respect to 
the amount of spikes every neuron has after some computa-
tion. First, we define boundedness of a neuron.

Definition 12  A neuron � is bounded for an initial configu-
ration C(0) if there is a positive integer s such that, C(�) ≤ s, 
for every configuration C ∈ R(Π,C(0)), where C(�) is the 
amount of spikes in � in configuration C. We say, � is an 
s-bounded neuron.

An SN P system Π is bounded for an initial configuration 
C(0), if all neurons are bounded for C(0). Π is s-bounded if all 
the neurons are s-bounded.

If s = 1, then we call the SN P system Π, safe.

Example 5  Let Π4 be an SN P system, such that,

MΠ4
=

⎛⎜⎜⎝

−1 1 1

1 − 1 0

0 0 0

⎞⎟⎟⎠
 with C(0) = (1, 0, 0). It is not hard to 

see that Π4 is unbounded.

Note that �3 of Π4 accumulates spikes unboundedly dur-
ing the computation.

Example 6  The SN P system of Example 1 has neurons �1, 
�2 and �3 2-bounded and �4 unbounded. This is also verified 
in Sect. 5.

4 � SN P systems and kP systems

kP systems have been conceived as a membrane computing 
model allowing to specify and verify problems from vari-
ous areas, from specific computer science topics, such as 
communication and synchronisation [22], to applications in 
synthetic biology [40, 41]. The modelling and verification 
capabilities of these models have been presented in [22]. 
Relationships with other classes of P systems, such as P sys-
tems with active membranes and neural-like P systems [23], 
and membrane systems with symport/antiport rules [22].

In this section we illustrate how potential connections 
between SN P systems and kP systems are built. We do not 
intend to make a thorough investigation of these relation-
ships, as our goal is relatively limited now, i.e., to illustrate 
how some specific SN P system examples are expressed as 
kP systems with equivalent behaviour, facilitating the use 
of the verification tools developed for these models. We are 
also aware that there are other types of SN P systems that 
need to be investigated in relation to kP systems as well, and 
these topics will be considered in a broader context.

Remark 2  For an SN P system, Π, as in Definition 1, we 
build a kP system, kΠΠ. Its components and structure are as 
in Definition 3. 

1.	 The set of objects is A = {a}.

2.	 The set of edges (links), denoted L,  of the graph giving 
the membrane structure � , includes pairs {Ci,Cj} , if and 
only if, at least one of (i, j) or (j, i) is in syn,  i.e., there is 
a synapse between �i and �j or vice-versa. Although the 
edges (links) of L are bi-directional, the objects might 
circulate only in one direction, as specified by the rules 
and in accordance with the synapse that is considered in 
Π.
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3.	 For each neuron �i, 1 ≤ i ≤ m, of Π , a compartment NCi 
of type Ci is considered for kΠΠ. One might also have a 
compartment NEnv of type Env.

4.	 For each set of rules Ri, 1 ≤ i ≤ m, of �i in Π , we build 
in Ci the following

(a)	 set of rules, R�
i
∶

	   i.	 for each rule of type (1), E∕ac → ap ∈ Ri, 
if (i, j1),…(i, jh) ∈ syn, h ≥ 1, a rule 
ac → (ap,Cj1

, )… , (ap,Cjh
) {gE}  i s 

added to R′
i
 , where gE is the guard ob-

tained from the regular expression E. 
Please note that as (i, j1),…(i, jh) ∈ syn, 
then one must have {i, j1},…{i, jh} ∈ L. 
When h = 0, i.e., no synapse going out 
of �i , then the corresponding rule in R′

i
 is 

ac → (ap,Env) {gE}. R′
Env

, the set of rules 
associated with type Env,  is ∅.

	   ii.	 for each rule of type (2), ac → � ∈ Ri, a 
rule ac → � {= ac} is added to R′

i
.

(b)	 execution strategy, �i ∶ is always choice, as one 
single rule from those applicable must be selected; 
�Env is also choice.

5.	 The output compartment, i0, is only considered in kΠΠ 
when an output neuron is distinguished in Π.

Below we are focusing on translating Example 1 and 
2-way OR-split SNP system, into kP system specifications.

The SN P system introduced in Example 1 is now speci-
fied using kP systems.

Example 7  The following kP system

is built in accordance with Remark 2. In this case, we 
have the edges (links) L = {{NC1, NC2}, {NC1, NC3}, 
{NC2, NC3}, {NC3, NC4}}, where the compartments 
NCi = (Ci,wi,0), 1 ≤ i ≤ 4. The types of these com-
partments are Ci = (Ri, �i), 1 ≤ i ≤ 4, and the ini-
tial multisets w1,0 = a2, w2,0 = w3,0 = a and w4,0 = �. 
The sets of rules that appear in the types above are 
R1 = {r1,1 ∶ a → (a,C2)(a,C3) {= a2}, r1,2 ∶ a2 → (a,C2)(a,C3) {= a2}}, 
R2 = {r2,1 ∶ a → (a,C1)(a,C3) {= a}}, 
R3 = {r3,1 ∶ a → (a,C4) {= a}, r3,2 ∶ a2 → � {= a2}} and 
R4 = �. The execution strategies are choice (or alternative), 
i.e., �1 = {r1,1, r1,2}, �2 = {r2,1}, �3 = {r3,1, r3,2} and �4 = {}. 
The output compartment is NC4.

kΠΠ = ({a},�, NC1, NC2, NC3, NC4, 4),

Remark 3  One can observe that the compartment NC4 of 
type C4 collects the objects from NC3 sent out by rule r3,1 
and acting as an environment.

It is easy to observe that kΠΠ and Π ( Π from Example 1) 
have the same behaviour.

This kP system will be used in Sect. 5 for simulating and 
verifying certain properties of this example.

Next we present the kP system obtained from the SN 
P system associated with the 2-way OR-split block. We 
only present the set of rules, initial multiset and execution 
strategies.

Example 8  Let us denote by kΠΠOR-split
, the kP system built, 

based on Remark 2, for the SN P system, ΠOR-split . For each 
of the eight neurons of the SN P system ΠOR-split a compart-
ment, NCi, 1 ≤ i ≤ 8, of type Ci = (Ri, �i) will be constructed 
in the kP system, kΠΠOR-split

.
The set of rules are R1 = {r1,1 ∶ a → (a,C2)(a,C3) {≥ a}}, 

Ri = {ri,1 ∶ a → (a,C4) {= a}},  i = 2, 3, 
R4 = {r4,1 ∶ a2 → (a2,C5)(a

2,C6) {= a2}, r4,2 ∶ a2 → (a,C5)(a,C6) {= a2}}, 
R5 = {r5,1 ∶ a2 → (�,C7) {= a2}, r5,2 ∶ a → a {= a}}, 
R6 = {r6,1 ∶ a2 → (a,C8) {= a2}, r6,2 ∶ a → � {= a}}, 
R7 = R8 = �.

The initial multisets are w1,0 = ak, k ≥ 1, and wi,0 = �, 
2 ≤ i ≤ 8, and the execution strategies are all choice.

Both, ΠOR-split and kΠΠOR-split
 , finally obtain in neurons 

�7, �8 and compartments NC7, NC8, respectively, the 
expected results.

Remark 4  The mapping of Example 1 and 2-way OR-split 
SNP system into kP system specifications, by using Remark 
2, shows how natural is the process of getting the compo-
nents NCi, 1 ≤ i ≤ n, of the kP system from the neurons �i 
of the SN P system, where n = 4 , in the case of Example 1, 
and n = 8 , for the 2-way OR-split system.

A simpler solution to the problem of splitting the amount 
of objects present in the initial compartment, by using a kP 
system, kΠ�

ΠOR-split
, with only three compartments, NC1, NC2 

and NC3 , can be constructed. The k objects from NC1 will 
be distributed non-deterministically to the other two.

NC1 is of type C = (R, �) and NC2, NC3 of type C� = (�, �). 
R contains the rule, r ∶ a → (a,C�) {≥ a}, and � might be 
choice (of a rule, r) or sequence. This solution exploits the 
fact that the rule r sends non-deterministically an object a to 
one of the two compartments, NC2, NC3, of the same type C′.
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5 � Simulation and verification using 
kPWorkbench 

To provide a tool support for kernel P systems, an integrated 
software suite, the kPWorkbench  [42] platform, has been 
developed (available and downloadable from its website 
[43]). The tool includes two simulators, a native one, which 
allows the execution of the entire system or a step-wise 
approach, and the Flame simulator [17], a general purpose 
large scale agent based simulation environment. The later 
is meant to allow a kP system to be expressed as a set of 
communicating X-machines [27] and then executed on high-
performance hardware platform  [11].

The verification component of kPWorkbench [26] checks 
the correctness of kP system models. Verification process 
works by exhaustively analysing all possible execution paths. 
Verification checks if system in question meets require-
ments, expressed in a formal logic [32, 33, 35]. Verification, 
in particular model checking, has been widely applied to the 
analysis of various systems, e.g. safety-critical systems [34, 
36], concurrent systems [6], distributed systems [54], net-
work protocols [37], systems and synthetic biology [10, 39], 
multi-agent systems [1] and pervasive systems [9, 38], as 
well as some engineering applications [14, 44, 45].

Any kP system model can be expressed using kPWork-
bench ’s kP-Lingua language—see [23], for details, includ-
ing the language syntax. A kP-lingua model can be exe-
cuted, using some of the above mentioned simulators, or 
formally verified, through the verification component of 
kPWorkbench .

To assist users in verification process, which is a very 
cumbersome process for non-experts, the platform also fea-
tures a user friendly property language, kP-Queries, based 
on natural language statements, which makes the property 
specification a much easier task. The query language com-
prises a list of property patterns written as natural language 
statements. This is very useful for non-experts as they do not 
need to know the syntax of such query languages, relying 
on existing pre-defined patterns. The properties expressed in 
kP-Queries are verified using the Spin [28] and NuSMV [16] 
model checkers after being translated into corresponding 
Linear Temporal Logic (LTL) and Computation Tree Logic 
(CTL) syntax.

We now use kPWorkbench  to model and analyse the 
behaviour of the SN P system described in Example 1 in 
Sect. 3. The corresponding kP system model kΠΠ has been 
expressed in kPWorkbench ’s kP-Lingua language as pre-
sented in Fig. 1a. In kP-Lingua notation, the usual multiset 
notation is replaced by exposing the multplicity of a symbol 
in front of it, i.e., a3 will become 3a.

The model in Fig. 1a has four compartment types, C1, 
C2, C3 and C4 with corresponding instances NC1, NC2, 

NC3 and NC4, respectively. The compartment NC1 starts 
with initial multiset 2a, NC2 and NC3 with a; NC4 is ini-
tially empty. Only one of the two rules of C1 is selected 
non-deterministically. The first rule is executed only if its 
guard =2a is true. This rule also sends an a to the instance 
of the type C2 and C3. The rules in the compartments C2 
and C3 are executed similarly. NC4 has no rules.

To observe the dynamic evolution of the system, we have 
run simulation experiments using kPWorkbench ’s native 
simulator. Table 1 shows some simulation results. We have 
presented a finite halting computation (left) and the first 
steps from a longer computation (right).

Remark 5  Table 1 shows on the left a computation ending 
after 7 steps, with a6 in the output compartment, NC4 . This 
means that the corresponding SN P system will stop with 6 
spikes in �4. The simulation that appears on the right, shows 
that steps 4 and 6 have the same configuration with respect 
to compartments NC1 , NC2 and NC3 . Hence, this computa-
tion might stop later on, after n steps ( n ≥ 10 for the configu-
ration after 6 steps) or might continue forever.

Remark 6  Tables 2 and 4 summarise some of the properties 
verified for the kΠΠ model and kΠΠOR-split

 model, respectively. 
One can observe that any property that refers to the number 
of spikes, n, of a neuron of the SN P system is translated to 
the same property, but referring to an , in the corresponding 
compartment of the kP system. This observation together 
with Remark 4 show how natural is the verification of an SN 
P system, derived directly from the verification of the associ-
ated kP system.

The first line of each property in these tables expresses 
the property through a natural language statement. Hence, 
its meaning becomes obvious to the reader.

Some interesting properties that have been verified for the 
kΠΠ model can be seen in Table 2. The verification results 
of most of these properties are true, for example property 1: 
eventually the number of objects a in NC4 will be greater 
than 0, or properties 2, 3 that state that the number of a 
objects in compartments NC1–NC3 will not exceed 1 or 2. 
This proves what has been presented in Sect. 3.2, Example 6, 
where the boundedness of certain neurons of the SN P sys-
tem, Π, presented in Example 1. Two properties, 4 and 6, are 
not true. Property 4 checks if the computation will halt with 
an a in compartment NC1 and empty compartments NC2 
and NC3. Many of the execution traces, those that halt, have 
this property; however, the NuSMV model checker could 
provide a counterexample with an infinite loop, showing it 
is not always true—the loop was considering the applica-
tion of the same rules like those applied at steps 3–4, then 
repeated in steps 5–6, provided in Table 1 (right). Although 
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Fig. 1   kP-Lingua specifications 
for the kernel P systems kΠΠ 
and kΠΠOR-split

type C1 {
cho i c e {

=2a : a −> a (C2) , a (C3) .
=2a : 2a −> a (C2) , a (C3) .

}
}

type C2 {
cho i c e {

=a : a −> a (C1) , a (C3) .
}

}

type C3 {
cho i c e {

=a : a −> a (Env) .
=2a : 2a −> {} .

}
}

type C4 {}

NC1 {2a} (C1) − NC2 {a} (C2) .
NC1 − NC3 {a} (C3) .
NC2 − NC3 .
NC3 − NC4 {} (C4) .

type C1 {
cho i c e {

>=a : a −> a (C2) , a (C3) .
}

}

type C2 {
cho i c e {

=a : a −> a (C4) .
}

}

type C3 {
cho i c e {

=a : a −> a (C4) .
}

}

type C4 {
cho i c e {

=2a : 2a −> a (C5) , a (C6) .
=2a : 2a −> 2a (C5) , 2a (C6) .

}
}

type C5 {
cho i c e {

=a : a −> a (C7) .
=2a : 2a −> {} .

}
}

type C6 {
cho i c e {

=2a : 2a −> a (C8) .
=a : a −> {} .

}
}

type C7 {}

type C8 {}

NC1 {6a} (C1) − NC2 {} (C2) .
NC1 − NC3 {} (C3) .
NC2 − NC4 {} (C4) .
NC3 − NC4 .
NC4 − NC5 {} (C5) .
NC4 − NC6 {} (C6) .
NC5 − NC7 {} (C7) .
NC6 − NC8 {} (C8) .

(a) KPL file for kΠΠ (b) KPL file for kΠΠOR−split

Table 1   Simulation results for 
kΠΠ : a halting computation 
(left) and a longer, possible 
infinite one (right)

Step NC1 NC2 NC3 NC4 Step NC1 NC2 NC3 NC4

0 a2 a a 0 a2 a a
1 a a a2 a 1 a2 a a2 a
2 a2 a a 2 a a a2 a
3 a a a a2 3 a2 a a
4 a2 a a3 4 a a a a2

5 a a a4 5 a2 a a3

6 a a a5 6 a a a a4

7 a a6 7 …
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property 4 is false, property 7 states the context in which the 
computation will halt, with a particular final configuration: 
if in a step there are 0 objects a in the first compartment, 
then the computation will eventually halt, with one a in the 
first compartment and empty compartments NC2 and NC3.

Our second example refers to the SN P system associ-
ated with the 2-way OR-split block, ΠOR-split and trans-
lated into the kP system kΠΠOR-split

 . This is presented in 
Fig. 1b. The model has eight compartment types, C1, … , 
C8, with corresponding instances NC1, … , NC8, respec-
tively. The compartment NC1 starts with the initial multi-
set 6a. All other compartments are initially empty. C4, C5 
and C6 have two rules, which are selected non-determin-
istically only one at a time and the selected rule is 

executed if the guard holds. For example, in C5, the first 
rule is executed only if its guard =a is true. This rule also 
sends an a to the instance of the type C7. The rules in the 
compartments C4 and C6 are executed similarly. C1, C2, 
and C3 have only one rule, which is executed if the guard 
is true. C7 and C8 have no rules.

Table 3 presents two computations for kΠΠOR-split
 with the 

same number of steps, but arriving to different configura-
tions given the non-determinism. For the same kP system 
model we have verified some properties of interest and the 
results are presented in Table 4. Properties 1–6 check the 
number of objects in different compartments, at any time. 
These are summarised in Property 7, which shows that the 
number of objects in NC2, NC3 is maximum 1 and in 

Table 2   Property patterns used 
in the verification experiments 
for kΠΠ

Table 3   Simulation results: computation examples for kΠΠOR-split

Step NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 Step NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8

0 a6 0 a6

1 a5 a a 1 a5 a a
2 a4 a a a2 2 a4 a a a2

3 a3 a a a2 a a 3 a3 a a a2 a a
4 a2 a a a2 a a a 4 a2 a a a2 a2 a2 a
5 a a a a2 a a a2 5 a a a a2 a2 a2 a a
6 a a a2 a a a3 6 a a a2 a a a a2

7 a2 a a a4 7 a2 a a a2 a2

8 a a a5 8 a2 a2 a3 a2

9 a6 9 a3 a3
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NC4–NC6 is maximum 2. Property 8 checks that the num-
ber of objects a in first compartment is decreasing. Proper-
ties 9 and 10 show that the number of objects in NC7 and 
NC8, respectively, is bounded by the initial number of 
objects (6 in NC1). Property 11 proves that eventually the 
sum of objects in NC7 and NC8 is the same as the initial 
number of objects in NC1, which verifies the statement 
made for the SN P system ΠOR-split as a a model of the 
2-way OR-split block presented in Sect. 3.2; it is also 
shown that the other compartments, NC1–NC6, are empty.

In this section, we have shown that formal verification 
of kP systems can be translated in a natural manner into 

the verification of SN P systems. Both, the modelling lan-
guage, kP-lingua, and the verification mechanism provide 
direct mapping of the neurons into compartments and 
spikes into powers of the object a, respectively.

6 � Conclusions

This paper has presented an approach based on matrix rep-
resentation of SN P systems and a way of mapping such a 
system to a kP system. The matrix representation allows to 
express in a succinct and uniform way various structural and 

Table 4   Property patterns used 
in the verification experiments 
for kΠΠOR-split



145Spiking neural P systems: matrix representation and formal verification﻿	

1 3

behavioural properties of such systems. The basic model 
of SN P systems has been studied in connection with kP 
systems and two examples of SN P system models have 
been translated into equivalent kP system ones. These two 
examples have been formally verified, by using an integrated 
software suite, kPWorkbench .

Regarding the first line of research, investigating struc-
tural and behavioural properties of the SN P systems using 
the matrix representation, we recall the fact that these prop-
erties are based on the the investigation considered in [13]. 
In [52], similar constructs are presented in the context of 
generalized communicating P systems. For instance, sepa-
ration and joining blocks [52] are similar to AND-split and 
OR-join, respectively.

A number of new research avenues remain to be investi-
gated, in the context of this work: the relationship between 
various classes of SN P systems and kP systems; the inves-
tigation of the matrix representation for other problems 
related to SN P systems - one of interest being the reverse 
computation; a more systematic investigation of various 
properties that are expressed by using kPWorkbench .

Finally, some comments regarding the second research 
direction mentioned above are presented. Reverse com-
putation has been studied for various types of P systems 
[3–5, 7, 46]. A first question is related to how a reverse 
computation is defined for SN P systems. Reversing the 
rules of an SN P system might involve the use of concepts 
introduced for networks of cells [20] or generalized com-
municating P systems [52], whereby spikes are collected 
from various neurons and a number of spikes returned to 
one single neuron. The regular expressions associated with 
such rules must be then verified a posteriori, similar to a 
post-condition that must be true after executing a state-
ment. The second aspect is related to expressing reverse 
computation with spiking translation matrices and the 
relationship with the matrix representing the initial SN 
P system.
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