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Abstract
P systems with active membranes are a variant of P systems where membranes can be created by division of existing mem-
branes, thus creating an exponential amount of resources in a polynomial number of steps. Time and space complexity 
classes for active membrane systems have been introduced, to characterize classes of problems that can be solved by different 
membrane systems making use of different resources. In particular, space complexity classes introduced initially considered 
a hypothetical real implementation by means of biochemical materials, assuming that every single object or membrane 
requires some constant physical space (corresponding to unary notation). A different approach considered implementation of 
P systems in silico, allowing to store the multiplicity of each object in each membrane using binary numbers. In both cases, 
the elements contributing to the definition of the space required by a system (namely, the total number of membranes, the 
total number of objects, the types of different membranes, and the types of different objects) was considered as a whole. In 
this paper, we consider a different definition for space complexity classes in the framework of P systems, where each of the 
previous elements is considered independently. We review the principal results related to the solution of different computa-
tionally hard problems presented in the literature, highlighting the requirement of every single resource in each solution. A 
discussion concerning possible alternative solutions requiring different resources is presented.

Keywords  Membrane systems · Computational complexity · Space complexity

1  Introduction

P systems with active membranes have been introduced in 
[29], considering the idea of generating new membranes 
through division of existing ones. The exponential amount 
of resources that can be obtained in this way, in a polyno-
mial number of computation steps, naturally leads to the 
definition of new complexity classes to be compared with 
the standard ones.

Initially, the research activity focused on the investiga-
tion of time complexity. It was proved that, to go beyond 
the complexity class P , the creation of new membranes is 
a necessary feature to gain enough computation efficiency 
[44], unless non-confluent systems are used [37]. In [38], it 
was proved that P systems with active membranes can solve 
all problems in the class ������ in polynomial time, a 
result which is valid also for uniform systems, as proved in 
[7]. Relations with the classes ��� and �������� were 
investigated in [36].

A series of works then defined various complexity classes 
characterized by P systems that make use of different fea-
tures. For instance, the works [13, 14] focused on the crucial 

 *	 Claudio Zandron 
	 claudio.zandron@unimib.it

	 Artiom Alhazov 
	 artiom@math.md

	 Alberto Leporati 
	 alberto.leporati@unimib.it

	 Luca Manzoni 
	 lmanzoni@units.it

	 Giancarlo Mauri 
	 giancarlo.mauri@unimib.it

1	 Vladimir Andrunachievici Institute of Mathematics 
and Computer Science, Academiei 5, Chişinău MD‑2028, 
Moldova

2	 Dipartimento di Informatica, Sistemistica e Comunicazione 
(DISCo), Università degli Studi di Milano-Bicocca, Viale 
Sarca 336, 20126 Milan, Italy

3	 Dipartimento di Matematica e Geoscienze, Università degli 
Studi di Trieste, Via Alfonso Valerio 12/a, 24127 Trieste, 
Italy

http://orcid.org/0000-0002-8105-4371
http://orcid.org/0000-0001-6312-7728
http://orcid.org/0000-0002-2163-7639
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-022-00106-5&domain=pdf


252	 A. Alhazov et al.

1 3

role of membrane dissolution; polarizationless systems have 
been investigated in [5, 6, 12, 17]; constraints on membrane 
division [24] or on depth of membrane structure [19] have 
been the subjects of other papers, while [40, 41] focused on 
the role of cooperation.

More recently, other aspects have also been studied. In [1, 
27], a different kind of membrane division, called separation 
(since objects are separated between new membranes, rather 
than duplicated) is considered in the framework of P sys-
tems with active membranes; in [26] such kind of rules are 
applied in a different variant of P systems, having proteins 
on membranes. In [8, 11], solutions for the SAT problem 
are proposed which use different strategies than previously 
proposed solutions. Systems of a shallow depth are the sub-
ject of [20–22]. A recent survey on different strategies to 
approach computationally hard problems by P systems with 
active membranes can be found in [39].

Besides time complexity, space complexity has been 
also considered. This notion was firstly introduced in the 
framework of P systems in [31], with a definition based on 
a hypothetical real implementation by means of biochemical 
materials such as cellular membranes and chemical mol-
ecules. Under this assumption, it was assumed that every 
single object or membrane requires some constant physi-
cal space, and this is equivalent to using a unary encoding 
to represent multiplicities. The relations between standard 
computational complexity classes and the space complex-
ity classes defined in these terms have been studied, both 
when at least a linear amount of space is used [32, 33], as 
well as when only sublinear [35] or even constant amount of 
space [18] is available. A recent survey concerning results 
obtained by considering different bounds on space can be 
found in [43].

A different approach to define space complexity for P sys-
tems was considered in [2], focusing the definition of space 
on the simulative point of view. In fact, by considering an 
implementation of P systems in silico (like the ones in, e.g., 
[9, 10]), it is not strictly necessary to store information con-
cerning every single object: the multiplicity of each object 
in each membrane can be stored using binary numbers, thus 
reducing the amount of needed space.

In both cases, the definition of the space required by a 
system was considered as a unique total measure obtained 
by considering all the elements contributing to it: the total 
number of membranes, the total number of objects, the types 
of different membranes, and the types of different objects.

In this paper, we introduce a different definition for space 
complexity classes in the framework of P systems, where 
each of the previous elements is considered independently, 
thus proposing a vector measurement of previously defined 
scalar measures. This allows to consider the amount of each 
element separately, thus highlighting the requirement of each 
of them in every solution considered, instead of a global 

value. We review the principal results present in the litera-
ture and we discuss possible alternative solutions, requiring 
different resources balances.

The paper is organized as follows. In Sect. 2 we recall 
some definitions concerning P systems with active mem-
branes and space requirements in P systems computations. 
In Sect. 3, we introduce a definition of space to measure the 
contribution by each component, namely the total number of 
membranes, the total number of objects, the types of differ-
ent membranes, and the types of different objects. Moreover, 
we survey some main results concerning complexity in the 
framework of P systems, highlighting the use of each single 
resource. Section 4 presents some conclusions and future 
research topics.

2 � Basic definitions

In this section, we shortly recall some definitions that will 
be useful while reading the rest of the paper. For a complete 
introduction to P systems, we refer the reader to The Oxford 
Handbook of Membrane Computing [30].

Definition 1  A P system with active membranes having ini-
tial degree d ≥ 1 is a tuple � = (� ,�,�,wh1

,… ,whd
,R) , 

where:

•	 �  is an alphabet, i.e., a finite non-empty set of sym-
bols, usually called objects; in the following, we assume 
� = {O1,O2,… ,On};

•	 � is a finite set of labels for the membranes;
•	 � is a membrane structure (i.e., a rooted unordered tree, 

usually represented by nested brackets) consisting of d 
membranes, labeled by elements of � , defining regions 
(the space between a membrane and all membranes 
immediately inside it, if any);

•	 wh1
,… ,whd

 , with  h1,… , hd ∈ � , are strings over �  
describing the initial multisets of objects placed in the d 
regions of �;

•	 R is a finite set of rules over � .

Membranes are polarized, that is, they have an attrib-
ute called electrical charge, which can be neutral (0), posi-
tive (+ ) or negative (−).

A P system can make a computation step by applying its 
rules to modify the membrane structure and/or the mem-
brane content. The following types of rules can be used dur-
ing the computation:

•	 Object evolution rules, of the form [a → w]�
h
  They can be 

applied inside a membrane labeled by h, having charge 
� and containing at least an occurrence of the object a; 
the copy of the object a to which the rule is applied is 



253Evaluating space measures in P systems﻿	

1 3

rewritten into the multiset w (i.e., a is removed from the 
multiset in h and replaced by the objects in w).

•	 Send-in communication rules, of the form a [ ]�
h
→ [b]

�

h
 

They can be applied to a membrane labeled by h, having 
charge � and such that the external region contains at 
least an occurrence of the object a; the copy of the object 
a to which the rule is applied is sent into h becoming b 
and, simultaneously, the charge of h is changed to �.

•	 Send-out communication rules, of the form [a]�
h
→ [ ]

�

h
b 

They can be applied to a membrane labeled by h, having 
charge � and containing at least an occurrence of the 
object a; the copy of the object a to which the rule is 
applied is sent out from h to the outside region becoming 
b and, simultaneously, the charge of h is changed to �.

•	 Dissolution rules, of the form [a]�
h
→ b They can be 

applied to a membrane labeled by h, having charge � and 
containing at least an occurrence of the object a; the copy 
of the object a to which the rule is applied is replaced by 
b, the membrane h is dissolved and its contents are left 
in the surrounding region.

•	 Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h
 

They can be applied to a membrane labeled by h, having 
charge � , containing at least an occurrence of the object 
a but having no other membrane inside (in this case, the 
membrane is said to be elementary); the membrane is 
divided into two membranes having both label h and 
charges � and � , respectively; the copy of the object a to 
which the rule is applied is replaced, respectively, by b 
and c in the two new membranes, while the other objects 
in the initial multiset are copied to both membranes.

•	 (Weak) Non-elementary division rules, of the 
form [a]�

h
→ [b]

�

h
[c]

�

h
 These rules operate just like divi-

sion for elementary membranes, but they can be applied 
to non-elementary membranes, containing membrane 
substructures and having a label h. Like the objects, the 
substructures inside the dividing membrane are repli-
cated in the two new copies of it.

A configuration of a P system with active membranes is 
described by the current membrane structure (including 
the electrical charge of each membrane) and the multisets 
located in the corresponding regions. A computation step 
changes the current configuration according to the following 
set of principles:

•	 Each object and membrane can be subject to at most one 
rule per step, except for object evolution rules: this means 
that inside each membrane several evolution rules can 
be applied simultaneously, but each membrane can be 
involved only in a single communication, dissolution, or 
division rule per step.

•	 The application of rules is maximally parallel: each 
object appearing on the left-hand side of evolution, com-
munication, dissolution or division rules must be subject 
to exactly one of them (unless the current charge of the 
membrane prohibits it, and according to the fact that a 
membrane can be involved in a single communication, 
dissolution, or division rule per step). The same principle 
applies to each membrane that can be involved in com-
munication, dissolution, or division rules. In other words, 
the only objects and membranes that do not evolve are 
those associated with no rule, or only to rules that are not 
applicable due to the electrical charges.

•	 When several conflicting rules can be applied at the same 
time, a nondeterministic choice is performed; this implies 
that, in general, multiple possible configurations can be 
reached as a result of a computation step.

•	 In each computation step, all the chosen rules are applied 
simultaneously (in an atomic way). We stress the fact that 
the membranes evolve only after their internal configura-
tion has been updated. For instance, before a membrane 
division occurs, all chosen object evolution rules must be 
applied inside it; in this way, the objects that are dupli-
cated during the division are already the final ones.

•	 The outermost membrane cannot be divided or dissolved, 
and any object sent out from it cannot re-enter the system 
again.

A halting computation of the P system � is a finite sequence 
of configurations C = (C0,… , Ck) , where C0 is the initial con-
figuration, every Ci+1 is reachable from Ci via a single com-
putation step, and no rules of � are applicable in Ck . If this 
last condition is never reached (that is, in each configuration 
of the sequence there is at least one applicable rule), then a 
non-halting computation C = (Ci ∶ i ∈ ℕ) is obtained, that 
consists of infinitely many configurations, again starting 
from the initial one and generated by successive computa-
tion steps.

P  systems can be used as language recognizers by 
employing two distinguished objects yes and no ; exactly one 
of these must be sent out from the outermost membrane, and 
only in the last step of each computation, to signal accept-
ance or rejection, respectively; we also assume that all com-
putations are halting.

To solve decision problems (i.e., recognize languages 
over an alphabet � ), we use families of recognizer P sys-
tems � = {𝛱x ∶ x ∈ 𝛴⋆} . Each input x is associated with 
a P system �x in the family � that decides the membership 
of x in the language L ⊆ 𝛴⋆ by accepting or rejecting. The 
mapping x ↦ �x must be efficiently computable for each 
input length [25].

These families of recognizer P systems can be used to 
solve decision problems as follows.
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Definition 2  Let � be a P system whose alphabet contains 
two distinct objects yes and no , such that every computation 
of � is halting and during each computation exactly one 
of the objects yes, no is sent out from the skin (in the last 
computation step) to signal acceptance or rejection. If all 
computations of � agree on the result, then � is said to be 
confluent; if this is not necessarily the case, then it is said to 
be non-confluent and the global result is acceptance if and 
only if there exists at least an accepting computation.

Definition 3  Let L ⊆ 𝛴⋆ be a language, D a class of P sys-
tems (i.e., a set of P systems using a specific subset of fea-
tures; in the following, we will consider some main classes: 
AM, active membranes—division for both elementary and 
non-elementary membranes, NAM, non active membranes—
membranes cannot be divided, and EAM, elementary active 
membranes—only elementary membranes can be divided) 
and let � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D be a family of P systems, 
either confluent or non-confluent. We say that � decides L 
when, for each x ∈ 𝛴⋆ , x ∈ L if and only if �x accepts.

Complexity classes for P systems are defined by impos-
ing a uniformity condition on � and restricting the amount 
of time or space available for deciding a language.

Definition 4  Consider a language L ⊆ 𝛴⋆ , a class of recog-
nizer P systems D , and let f ∶ ℕ → ℕ be a proper complex-
ity function (i.e., a “reasonable” one, see [28, Definition 
7.1]). We say that L belongs to the complexity class MC⋆

D
(f ) 

if and only if there exists a family of confluent P systems 
� = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is semi-uniform, i.e.,  there exists a deterministic 
Turing machine which, for each input x ∈ 𝛴⋆ , con-
structs the P system �x in polynomial time with respect 
to |x|;

•	 � operates in time f, i.e., for each x ∈ 𝛴⋆ , every com-
putation of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity 
class PMC⋆

D
 if and only if there exists a semi-uniform fam-

ily of confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D decid-
ing L in polynomial time.

The analogous complexity classes for non-confluent 
P systems are denoted by NMC⋆

D
(f ) and NPMC⋆

D
.

Another set of complexity classes is defined in terms of 
uniform families of recognizer P systems:

Definition 5  Consider a language L ⊆ 𝛴⋆ , a class of rec-
ognizer P systems D , and let f ∶ ℕ → ℕ be a proper com-
plexity function. We say that L belongs to the complexity 

class MCD(f ) if and only if there exists a family of confluent 
P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is uniform, i.e.,  for each x ∈ 𝛴⋆ deciding whether 
x ∈ L is performed as follows: first, a polynomial-time 
deterministic Turing machine, given the length n = |x| as 
a unary integer, constructs a P system �n with a distin-
guished input membrane; then, another polynomial-time 
deterministic Turing machine computes an encoding of 
the string x as a multiset wx , which is finally added to the 
input membrane of �n , thus obtaining a P system �x that 
accepts if and only if x ∈ L.

•	 � operates in time f, i.e., for each x ∈ 𝛴⋆ , every compu-
tation of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity 
class PMCD if and only if there exists a uniform family of 
confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L in 
polynomial time.

The analogous complexity classes for non-confluent 
P systems are denoted by NMCD(f ) and NPMCD.

As stated in the Introduction, the first definition of space 
complexity for P systems introduced in [31] considered a 
possible real implementation with biochemical materi-
als, thus assuming that every single object and membrane 
requires some constant physical space. Such a definition (in 
the improved version from [23], taking into account also the 
space required by the labels for membranes and the alphabet 
of symbols) is the following:

Definition 6  Considering a configuration C of a P system � , 
its size |C| is the number of membranes in the current mem-
brane structure multiplied by log |�| , plus the total num-
ber of objects from �  they contain multiplied by log |� | . 
If C = (C0,… , Ck) is a computation of � , then the space 
required by C is defined as

The space required by � itself is defined as the supremum 
of the space required by all computations of �:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer 
P systems, and let s ∶ ℕ → ℕ . We say that � operates within 
space bound s if and only if |�x| ≤ s(|x|) for each x ∈ 𝛴⋆.

Following what has been done for time complex-
ity classes, we can define space complexity classes. By 
MCSPACED(s(n)) (resp. MCSPACE⋆

D
(s(n)) ) we denote the 

class of languages which can be decided by uniform (resp. 

|C| = max{|C0|,… , |Ck|}.

|�| = sup{|C| ∶ C is a computation of �}.
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semi-uniform) families, � , of confluent P systems of type D 
(for example, when we refer to P systems with active mem-
branes, we denote this by setting D = AM ), where each 
�x ∈ � operates within space bound s(|x|).

In particular, the class of problems solvable in a poly-
nomial space by uniform confluent systems is denoted 
by PMCSPACED , and the class of problems solvable 
in an exponential space by uniform confluent systems 
is denoted by EXPMCSPACED (adding a star in case 
of semi–uniform classes). The corresponding classes 
for non-conf luent systems are NPMCSPACED and 
NEXPMCSPACED.

A different approach to define space complexity for P 
systems was introduced in [2], considering the informa-
tion stored in the objects of the systems, and not the sin-
gle objects themselves. Binary notation, instead of unary, 
was used to store the amount of objects in each region, 
with the following definition of binary space:

Definition 7  Consider a configuration C of a P system � . 
Let us denote by h1, h2, ..., hz the membranes of the current 
membrane structure (we stress the fact that z can be smaller, 
equal, or greater than the initial number of membranes d, 
due to dissolution and duplication of membranes; we also 
stress the fact that we do not need to store unique IDs for 
membranes having the same label as we can, for example, 
indicate multisets of objects inside a string-like bracketed 
expression), and by |Oi,j| the multiplicity of object i within 
region j. The binary size |C|B of a configuration C is defined 
as:

that is the number of membranes in the current membrane 
structure multiplied by log |�| , plus the number of bits 
required to store the description of the multiset in each 
region.

If C = (C0,… , Ck) is a computation of � , then the binary 
space required by C is defined as

The binary space required by � itself is then obtained by 
computing the binary space required by all computations 
of � and taking the supremum:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer 
P  systems, and let  s ∶ ℕ → ℕ . We say that �operates 
within binary space bound s if and only if |�x|B ≤ s(|x|) for 
each x ∈ 𝛴⋆.

�C�B = z ⋅ log ��� +
z�

j=1

n�

i=1

�
⌈log(�Oi,j� + 1)⌉ + log �� �

�
,

|C|B = max{|C0|B,… , |Ck|B}.

|�|B = sup{|C|B ∶ C is a computation of �}.

Corresponding space complexity classes, that consider 
this different size measure, can be considered.

3 � Considering separate feature 
contributions to space definition

In both cases of space definition considered in the previous 
Section, the amount of space required by a system was a 
single total measure obtained, in different ways, by consid-
ering all the elements contributing to it: the total number 
of membranes (denoted by me), the total number of objects 
(ob), the membrane types (met), and the object types (obt).

We introduce now a different definition of space in the 
framework of P systems, based on a vector measurement, 
instead of a scalar one, where each of the previous ele-
ments is considered independently, thus allowing to con-
sider the contribution given by each element separately, 
and highlighting the requirement of each of them in every 
solution to complex computational problems considered 
in the literature.

The use of vector measurements has been successfully 
considered in many different domains. Just to cite some 
examples, it has been considered to define size for inser-
tion–deletion systems [16], with the size measured by six 
numbers (insertion, left insertion context, right insertion 
context, size of deletion, left deletion context, right dele-
tion context), or in splicing systems [15], using four num-
bers to consider the sizes of the recombination points in 
the strings involved in a splicing operation.

Definition 8  Consider a P system � with active membranes, 
and a computation C = (C0,… , Ck) of � . Let us denote the 
set of membrane labels of � by � , and the alphabet of 
objects by �  . Moreover, let us denote by MaxMe the maxi-
mum number of membranes present at the same time in � 
during some steps of C , and by MaxOb the maximum num-
ber of objects present at the same time in � during some 
steps of C (we stress the fact that the maximum number of 
membranes and objects do not necessarily appear in the 
same computation step).

We say that the computation C of �  is bounded by 
Space(me,  ob,  met,  obt) if and only if MaxMe ≤ me , 
MaxOb ≤ ob , |�| ≤ met , and |� | ≤ obt.

The space required by � itself is then obtained by com-
puting the corresponding space required by all computations 
of � and taking the supremum.

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer 
P systems. We say that � operates within Space(me, ob, met, 
obt) if and only if each member �x of the family operates 
within the above space.
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Of course, complexity classes corresponding to this 
definition of space can be defined in a similar way as 
already done in the previous Section; as an example, by 
MCSPACED(me, ob,met, obt) we denote the class of prob-
lems solved by P systems with active membranes of type 
D having features limited according to me, ob, met, obt.

Having defined the contribution of each element to the 
space requirements, we are ready to survey some main 
results present in the literature, to analyze the require-
ments in terms of single features required by each pro-
posed solution.

The first results we analyze are from [31].

P r o p o s i t i o n  1   P ⊆ MCSPACE
∗
NAM

(O(1)),  a n d 
P ⊆ MCSPACE

NAM
(O(1)).

In this proposition, it is proved that semi-uniform sys-
tems with active membranes that do not use membrane 
division can solve all problems in P in constant space. 
In fact, all the work is done by the deterministic Turing 
machine used to build the system (a deterministic poly-
nomial time uniformity condition is considered). The 
obtained system simply sends out a yes or no answer, in 
one step. Similar considerations remain valid also for the 
uniform case. As a consequence, in both cases we have 
me = ob = mt = obt = 1. Considering the corresponding 
proposition, we have:

Proposition 1’  P ⊆ MCSPACE
∗
NAM

(1, 1, 1, 1)

The next proposition exploits the results from [44], in 
particular concerning the problems SAT with n variables 
and m clauses, and Hamiltonian Path over an undirected 
graph with n nodes.

In the first case, 2n membranes are generated, each con-
taining one possible truth assignment to be checked. We 
have: me = O(2n), ob = O((n ∗ m) ∗ (2n)), met = 2, and 
obt = 4n + 2m + 4.

The solution for the Hamiltonian Path problem tries 
all possible paths, to check if at least one of them satisfies 
the required conditions. In this case, we have me = O(nn) , 
ob = O(n ∗ me) = O(nn+1) , met = 2 , obt = 6n + 4.

In [38], it was shown how to exploit membrane division 
to solve the ������-complete problem Satisfiability of 
Quantified Boolean Formulas (QBF), using semi-uniform 
P systems with active membranes:

Proposition 2  ������ ⊆ EXPMCSPACE∗

AM

The solution makes use of an exponential number 
of membranes and objects: me = O(2n), ob = O(2n), 
met = m + n + 2, and obt = 5n + m + 4 . By considering each 
single result, and the new space measure, we have:

P r o p o s i t i o n  2 ’   �� ⊆ MCSPACE∗
AM(O(2

n),O(2n), 2, 4n + 2m + 4)
�� ⊆ MCSPACE∗

AM(O(2
n),O(2n), 2, 4n + 2m + 4)

�� ⊆ MCSPACE∗

AM
(O(nn),O(nn), 2, 6n + 4)

������ ⊆ MCSPACE∗
AM

(O(2n),O(2n),m + n + 2, 5n + m + 4))

In [4], the same last result was proved for uniform 
systems.

Proposition 3  ������ ⊆ EXPMCSPACEAM

An analysis of resources used for this solution 
shows that me = O(22n) = O(4n), ob = O(22n) = O(4n), 
met = O(m + n), and obt = O(m ∗ n).

Proposition 3’  ������ ⊆ MCSPACEAM(O(4n),O(4n),
O(m + n),O(m ∗ n))

In [34], systems with limited power were considered; in 
particular, division rules for non-elementary membranes 
and dissolution rules were avoided. It was proved that such 
systems can solve all problems in the complexity class �� 
in polynomial time. In fact, a solution for the ��-complete 
problem SQRT3SAT was proposed.

Proposition 4  �� ⊆ ���
ndiss

EAM

The features of that solution are the following: 
me = O(2n) , ob = O(2n) , met = 3 , and obt = O(n) . Thus, 
we have

Proposition 4’  �� ⊆ �������
ndiss

EAM
(O(2n),O(2n), 3,O(n))

In [42], it was shown that a deterministic Turing machine 
working in polynomial space, with respect to the input 
length, can be efficiently simulated (both in terms of time 
and space) by a semi-uniform family of P systems with 
active membranes, using only communication rules.

Proposition 5  A Deterministic Turing machine M working in 
space s(n) and time t(n) can be simulated by a semi-uniform 
family of P systems in space O(s(n)) and time O(t(n))

The main idea to prove this result was to store infor-
mation bits by using polarizations associated with 
membranes, instead of objects inside them. As a conse-
quence, the required amount of resources needed is very 
low: me = s(n) + 2, ob = O(n) initially, then 1, met = 3 , 
obt = 5 + 3 ∗ |Q| , where Q is the set of states of the Turing 
machine M.
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Proposition 5’  A Deterministic Turing machine M working 
in space s(n) and in time t(n) can be simulated by a semi-
uniform family of P systems in space MCSPACE∗

AM
(s(n) + 2,

O(n), 3, 5 + 3 ∗ |Q|)

In [3], similar results for uniform families of P systems 
with active membranes were proved, using a cubic slow-
down and a quadratic space overheads:

Proposition 6  A deterministic Turing machine M working in 
space s(n) and time t(n) can be simulated by uniform conflu-
ent or non-confluent P systems within polynomial bounds for 
space and time.

In both cases, we have the following: me = O(s(n)) , 
ob = O(s(n)2) , met = 7 , and obt = 3.

Proposition 6’  A deterministic Turing machine M work-
ing in space s(n) and time t(n) can be simulated by uni-
form confluent or non-confluent P  systems in space 
�������

∗

AM
(O(s(n)),O(s(n)2), 7, 3)

We conclude this analysis by recalling a result from [33]. 
In this work, it was proved that recognizer P systems with 
active membranes that use polynomial space characterize 
the complexity class ������. In particular, the result holds 
for both confluent and non-confluent systems, and indepen-
dently of the use of membrane division rules.

This generic result allows to relate the number of com-
putation steps to the maximum number of objects and the 
maximum number of membranes that can be obtained after 
those steps. In particular, let us consider a non-confluent 
P system � with active membranes, defined using a descrip-
tion of length m made in any reasonable encoding (e.g., 
where the membrane structure is represented using strings 
of brackets), and where multisets are represented in unary. 
After t steps of computation of � , we have the following: 
me = O(2t∗m+m∗log(m)), and ob = O(2t∗t∗m∗log(m)).

We conclude this section by summarizing in the fol-
lowing table the results we presented in the paper. For 
instance, the first result can be read as “deterministic 
MCSPACE∗

(c)
(1, 1, 1, 1) ⊇ P , see [31]”.

D/C, me ob met obt D ⊇ class/problem props ref.
U/SU

D,SU 1 1 1 1 (c) P ConstTime [31]
D,U 1 1 1 2 (c) P ConstTime [31]
SU 2n O(2n) 2 4n+2m+4 EAM NP ∪ coNP/SAT [44]
SU O(nn) O(nn) 2 6n+4 EAM NP ∪ coNP/HPP [44]
SU O(2n) O(2n) m+n+2 5n+m+4 AM PSPACE/QSAT [38]
U O(4n) O(4n) O(m+n) O(m×n) AM PSPACE/QSAT [4]

O(2n) O(2n) 3 O(n) (abce) PP/SQRT-3SAT PolTime [34]
SU s(n)+2 O(n)⋯ 1 3 5+3∗|Q| AM DT(t(n))S(s(n)) [42]
C,U O(s(n)) O(s(n)2) 7 3 AM DT(t(n))S(s(n)) [3]

O(2x), O(2y), AM PSPACE/TM time=t [33]
x = t∗m+ y = t2∗

m∗log(m) m∗log(m)

4 � Conclusions

We introduced a definition for space complexity classes in 
the framework of P systems, where each element contribut-
ing to the definition of space used by the system (that is, the 
total number of membranes, the total number of objects, 
the types of different membranes, and the types of different 
objects) is considered independently. In this way, the contri-
bution of each element in defining the total space required 
by the system to execute a computation can be highlighted 
independently.

Many different constructions by various authors have been 
presented in the literature to attack computationally hard prob-
lems. After presenting here some of them, we think it will be 

interesting to check the possibility to propose alternative solu-
tions where the considered parameters are different (i.e., of a dif-
ferent asymptotic order) with respect to those already published. 
As an example, would it be possible to find solutions similar 
to those of Propositions 3 and 4 by using a constant amount of 
object types or of membrane types?

Moreover, we want to stress the fact that, under the usual 
uniformity condition considered, a polynomial time precomput-
ing by a deterministic Turing machine is allowed and, in this 
case, membrane types and object types are forced to be at most 
polynomial. However, different uniformity conditions can also 
be considered, to highlight their impact on these features. For 
instance, how to factor the input for sublinear space complexity 
classes if we would like to have more object types with respect 
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to those allowed by the input size (maybe not all of them pre-
sent since the beginning of the computation), but the uniformity 
condition forbids that?

It would also be useful to clarify how to proceed when the 
size of the problem instance is given by a few numbers like, e.g., 
the number of clauses and variables for SAT.
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