
Vol.:(0123456789)1 3

Journal of Membrane Computing (2022) 4:251–260
https://doi.org/10.1007/s41965-022-00106-5

REGULAR PAPER

Evaluating space measures in P systems

Artiom Alhazov1 · Alberto Leporati2  · Luca Manzoni3  · Giancarlo Mauri2 · Claudio Zandron2 

Received: 8 July 2022 / Accepted: 11 September 2022 / Published online: 10 October 2022
© The Author(s) 2022

Abstract
P systems with active membranes are a variant of P systems where membranes can be created by division of existing mem-
branes, thus creating an exponential amount of resources in a polynomial number of steps. Time and space complexity
classes for active membrane systems have been introduced, to characterize classes of problems that can be solved by different
membrane systems making use of different resources. In particular, space complexity classes introduced initially considered
a hypothetical real implementation by means of biochemical materials, assuming that every single object or membrane
requires some constant physical space (corresponding to unary notation). A different approach considered implementation of
P systems in silico, allowing to store the multiplicity of each object in each membrane using binary numbers. In both cases,
the elements contributing to the definition of the space required by a system (namely, the total number of membranes, the
total number of objects, the types of different membranes, and the types of different objects) was considered as a whole. In
this paper, we consider a different definition for space complexity classes in the framework of P systems, where each of the
previous elements is considered independently. We review the principal results related to the solution of different computa-
tionally hard problems presented in the literature, highlighting the requirement of every single resource in each solution. A
discussion concerning possible alternative solutions requiring different resources is presented.

Keywords  Membrane systems · Computational complexity · Space complexity

1  Introduction

P systems with active membranes have been introduced in
[29], considering the idea of generating new membranes
through division of existing ones. The exponential amount
of resources that can be obtained in this way, in a polyno-
mial number of computation steps, naturally leads to the
definition of new complexity classes to be compared with
the standard ones.

Initially, the research activity focused on the investiga-
tion of time complexity. It was proved that, to go beyond
the complexity class P , the creation of new membranes is
a necessary feature to gain enough computation efficiency
[44], unless non-confluent systems are used [37]. In [38], it
was proved that P systems with active membranes can solve
all problems in the class ������ in polynomial time, a
result which is valid also for uniform systems, as proved in
[7]. Relations with the classes ��� and �������� were
investigated in [36].

A series of works then defined various complexity classes
characterized by P systems that make use of different fea-
tures. For instance, the works [13, 14] focused on the crucial

 *	 Claudio Zandron
	 claudio.zandron@unimib.it

	 Artiom Alhazov
	 artiom@math.md

	 Alberto Leporati
	 alberto.leporati@unimib.it

	 Luca Manzoni
	 lmanzoni@units.it

	 Giancarlo Mauri
	 giancarlo.mauri@unimib.it

1	 Vladimir Andrunachievici Institute of Mathematics
and Computer Science, Academiei 5, Chişinău MD‑2028,
Moldova

2	 Dipartimento di Informatica, Sistemistica e Comunicazione
(DISCo), Università degli Studi di Milano-Bicocca, Viale
Sarca 336, 20126 Milan, Italy

3	 Dipartimento di Matematica e Geoscienze, Università degli
Studi di Trieste, Via Alfonso Valerio 12/a, 24127 Trieste,
Italy

http://orcid.org/0000-0002-8105-4371
http://orcid.org/0000-0001-6312-7728
http://orcid.org/0000-0002-2163-7639
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-022-00106-5&domain=pdf

252	 A. Alhazov et al.

1 3

role of membrane dissolution; polarizationless systems have
been investigated in [5, 6, 12, 17]; constraints on membrane
division [24] or on depth of membrane structure [19] have
been the subjects of other papers, while [40, 41] focused on
the role of cooperation.

More recently, other aspects have also been studied. In [1,
27], a different kind of membrane division, called separation
(since objects are separated between new membranes, rather
than duplicated) is considered in the framework of P sys-
tems with active membranes; in [26] such kind of rules are
applied in a different variant of P systems, having proteins
on membranes. In [8, 11], solutions for the SAT problem
are proposed which use different strategies than previously
proposed solutions. Systems of a shallow depth are the sub-
ject of [20–22]. A recent survey on different strategies to
approach computationally hard problems by P systems with
active membranes can be found in [39].

Besides time complexity, space complexity has been
also considered. This notion was firstly introduced in the
framework of P systems in [31], with a definition based on
a hypothetical real implementation by means of biochemical
materials such as cellular membranes and chemical mol-
ecules. Under this assumption, it was assumed that every
single object or membrane requires some constant physi-
cal space, and this is equivalent to using a unary encoding
to represent multiplicities. The relations between standard
computational complexity classes and the space complex-
ity classes defined in these terms have been studied, both
when at least a linear amount of space is used [32, 33], as
well as when only sublinear [35] or even constant amount of
space [18] is available. A recent survey concerning results
obtained by considering different bounds on space can be
found in [43].

A different approach to define space complexity for P sys-
tems was considered in [2], focusing the definition of space
on the simulative point of view. In fact, by considering an
implementation of P systems in silico (like the ones in, e.g.,
[9, 10]), it is not strictly necessary to store information con-
cerning every single object: the multiplicity of each object
in each membrane can be stored using binary numbers, thus
reducing the amount of needed space.

In both cases, the definition of the space required by a
system was considered as a unique total measure obtained
by considering all the elements contributing to it: the total
number of membranes, the total number of objects, the types
of different membranes, and the types of different objects.

In this paper, we introduce a different definition for space
complexity classes in the framework of P systems, where
each of the previous elements is considered independently,
thus proposing a vector measurement of previously defined
scalar measures. This allows to consider the amount of each
element separately, thus highlighting the requirement of each
of them in every solution considered, instead of a global

value. We review the principal results present in the litera-
ture and we discuss possible alternative solutions, requiring
different resources balances.

The paper is organized as follows. In Sect. 2 we recall
some definitions concerning P systems with active mem-
branes and space requirements in P systems computations.
In Sect. 3, we introduce a definition of space to measure the
contribution by each component, namely the total number of
membranes, the total number of objects, the types of differ-
ent membranes, and the types of different objects. Moreover,
we survey some main results concerning complexity in the
framework of P systems, highlighting the use of each single
resource. Section 4 presents some conclusions and future
research topics.

2 � Basic definitions

In this section, we shortly recall some definitions that will
be useful while reading the rest of the paper. For a complete
introduction to P systems, we refer the reader to The Oxford
Handbook of Membrane Computing [30].

Definition 1  A P system with active membranes having ini-
tial degree d ≥ 1 is a tuple � = (� ,�,�,wh1

,… ,whd
,R) ,

where:

•	 � is an alphabet, i.e., a finite non-empty set of sym-
bols, usually called objects; in the following, we assume
� = {O1,O2,… ,On};

•	 � is a finite set of labels for the membranes;
•	 � is a membrane structure (i.e., a rooted unordered tree,

usually represented by nested brackets) consisting of d
membranes, labeled by elements of � , defining regions
(the space between a membrane and all membranes
immediately inside it, if any);

•	 wh1
,… ,whd

 , with h1,… , hd ∈ � , are strings over �
describing the initial multisets of objects placed in the d
regions of �;

•	 R is a finite set of rules over � .

Membranes are polarized, that is, they have an attrib-
ute called electrical charge, which can be neutral (0), posi-
tive (+ ) or negative (−).

A P system can make a computation step by applying its
rules to modify the membrane structure and/or the mem-
brane content. The following types of rules can be used dur-
ing the computation:

•	 Object evolution rules, of the form [a → w]�
h
 They can be

applied inside a membrane labeled by h, having charge
� and containing at least an occurrence of the object a;
the copy of the object a to which the rule is applied is

253Evaluating space measures in P systems﻿	

1 3

rewritten into the multiset w (i.e., a is removed from the
multiset in h and replaced by the objects in w).

•	 Send-in communication rules, of the form a []�
h
→ [b]

�

h

They can be applied to a membrane labeled by h, having
charge � and such that the external region contains at
least an occurrence of the object a; the copy of the object
a to which the rule is applied is sent into h becoming b
and, simultaneously, the charge of h is changed to �.

•	 Send-out communication rules, of the form [a]�
h
→ []

�

h
b

They can be applied to a membrane labeled by h, having
charge � and containing at least an occurrence of the
object a; the copy of the object a to which the rule is
applied is sent out from h to the outside region becoming
b and, simultaneously, the charge of h is changed to �.

•	 Dissolution rules, of the form [a]�
h
→ b They can be

applied to a membrane labeled by h, having charge � and
containing at least an occurrence of the object a; the copy
of the object a to which the rule is applied is replaced by
b, the membrane h is dissolved and its contents are left
in the surrounding region.

•	 Elementary division rules, of the form [a]�
h
→ [b]

�

h
[c]

�

h

They can be applied to a membrane labeled by h, having
charge � , containing at least an occurrence of the object
a but having no other membrane inside (in this case, the
membrane is said to be elementary); the membrane is
divided into two membranes having both label h and
charges � and � , respectively; the copy of the object a to
which the rule is applied is replaced, respectively, by b
and c in the two new membranes, while the other objects
in the initial multiset are copied to both membranes.

•	 (Weak) Non-elementary division rules, of the
form [a]�

h
→ [b]

�

h
[c]

�

h
 These rules operate just like divi-

sion for elementary membranes, but they can be applied
to non-elementary membranes, containing membrane
substructures and having a label h. Like the objects, the
substructures inside the dividing membrane are repli-
cated in the two new copies of it.

A configuration of a P system with active membranes is
described by the current membrane structure (including
the electrical charge of each membrane) and the multisets
located in the corresponding regions. A computation step
changes the current configuration according to the following
set of principles:

•	 Each object and membrane can be subject to at most one
rule per step, except for object evolution rules: this means
that inside each membrane several evolution rules can
be applied simultaneously, but each membrane can be
involved only in a single communication, dissolution, or
division rule per step.

•	 The application of rules is maximally parallel: each
object appearing on the left-hand side of evolution, com-
munication, dissolution or division rules must be subject
to exactly one of them (unless the current charge of the
membrane prohibits it, and according to the fact that a
membrane can be involved in a single communication,
dissolution, or division rule per step). The same principle
applies to each membrane that can be involved in com-
munication, dissolution, or division rules. In other words,
the only objects and membranes that do not evolve are
those associated with no rule, or only to rules that are not
applicable due to the electrical charges.

•	 When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached as a result of a computation step.

•	 In each computation step, all the chosen rules are applied
simultaneously (in an atomic way). We stress the fact that
the membranes evolve only after their internal configura-
tion has been updated. For instance, before a membrane
division occurs, all chosen object evolution rules must be
applied inside it; in this way, the objects that are dupli-
cated during the division are already the final ones.

•	 The outermost membrane cannot be divided or dissolved,
and any object sent out from it cannot re-enter the system
again.

A halting computation of the P system � is a finite sequence
of configurations C = (C0,… , Ck) , where C0 is the initial con-
figuration, every Ci+1 is reachable from Ci via a single com-
putation step, and no rules of � are applicable in Ck . If this
last condition is never reached (that is, in each configuration
of the sequence there is at least one applicable rule), then a
non-halting computation C = (Ci ∶ i ∈ ℕ) is obtained, that
consists of infinitely many configurations, again starting
from the initial one and generated by successive computa-
tion steps.

P systems can be used as language recognizers by
employing two distinguished objects yes and no ; exactly one
of these must be sent out from the outermost membrane, and
only in the last step of each computation, to signal accept-
ance or rejection, respectively; we also assume that all com-
putations are halting.

To solve decision problems (i.e., recognize languages
over an alphabet � ), we use families of recognizer P sys-
tems � = {𝛱x ∶ x ∈ 𝛴⋆} . Each input x is associated with
a P system �x in the family � that decides the membership
of x in the language L ⊆ 𝛴⋆ by accepting or rejecting. The
mapping x ↦ �x must be efficiently computable for each
input length [25].

These families of recognizer P systems can be used to
solve decision problems as follows.

254	 A. Alhazov et al.

1 3

Definition 2  Let � be a P system whose alphabet contains
two distinct objects yes and no , such that every computation
of � is halting and during each computation exactly one
of the objects yes, no is sent out from the skin (in the last
computation step) to signal acceptance or rejection. If all
computations of � agree on the result, then � is said to be
confluent; if this is not necessarily the case, then it is said to
be non-confluent and the global result is acceptance if and
only if there exists at least an accepting computation.

Definition 3  Let L ⊆ 𝛴⋆ be a language, D a class of P sys-
tems (i.e., a set of P systems using a specific subset of fea-
tures; in the following, we will consider some main classes:
AM, active membranes—division for both elementary and
non-elementary membranes, NAM, non active membranes—
membranes cannot be divided, and EAM, elementary active
membranes—only elementary membranes can be divided)
and let � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D be a family of P systems,
either confluent or non-confluent. We say that � decides L
when, for each x ∈ 𝛴⋆ , x ∈ L if and only if �x accepts.

Complexity classes for P systems are defined by impos-
ing a uniformity condition on � and restricting the amount
of time or space available for deciding a language.

Definition 4  Consider a language L ⊆ 𝛴⋆ , a class of recog-
nizer P systems D , and let f ∶ ℕ → ℕ be a proper complex-
ity function (i.e., a “reasonable” one, see [28, Definition
7.1]). We say that L belongs to the complexity class MC⋆

D
(f)

if and only if there exists a family of confluent P systems
� = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is semi-uniform, i.e., there exists a deterministic
Turing machine which, for each input x ∈ 𝛴⋆ , con-
structs the P system �x in polynomial time with respect
to |x|;

•	 � operates in time f, i.e., for each x ∈ 𝛴⋆ , every com-
putation of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity
class PMC⋆

D
 if and only if there exists a semi-uniform fam-

ily of confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D decid-
ing L in polynomial time.

The analogous complexity classes for non-confluent
P systems are denoted by NMC⋆

D
(f) and NPMC⋆

D
.

Another set of complexity classes is defined in terms of
uniform families of recognizer P systems:

Definition 5  Consider a language L ⊆ 𝛴⋆ , a class of rec-
ognizer P systems D , and let f ∶ ℕ → ℕ be a proper com-
plexity function. We say that L belongs to the complexity

class MCD(f) if and only if there exists a family of confluent
P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L such that:

•	 � is uniform, i.e., for each x ∈ 𝛴⋆ deciding whether
x ∈ L is performed as follows: first, a polynomial-time
deterministic Turing machine, given the length n = |x| as
a unary integer, constructs a P system �n with a distin-
guished input membrane; then, another polynomial-time
deterministic Turing machine computes an encoding of
the string x as a multiset wx , which is finally added to the
input membrane of �n , thus obtaining a P system �x that
accepts if and only if x ∈ L.

•	 � operates in time f, i.e., for each x ∈ 𝛴⋆ , every compu-
tation of �x halts within f(|x|) steps.

In particular, a language L ⊆ 𝛴⋆ belongs to the complexity
class PMCD if and only if there exists a uniform family of
confluent P systems � = {𝛱x ∣ x ∈ 𝛴⋆} ⊆ D deciding L in
polynomial time.

The analogous complexity classes for non-confluent
P systems are denoted by NMCD(f) and NPMCD.

As stated in the Introduction, the first definition of space
complexity for P systems introduced in [31] considered a
possible real implementation with biochemical materi-
als, thus assuming that every single object and membrane
requires some constant physical space. Such a definition (in
the improved version from [23], taking into account also the
space required by the labels for membranes and the alphabet
of symbols) is the following:

Definition 6  Considering a configuration C of a P system � ,
its size |C| is the number of membranes in the current mem-
brane structure multiplied by log |�| , plus the total num-
ber of objects from � they contain multiplied by log |� | .
If C = (C0,… , Ck) is a computation of � , then the space
required by C is defined as

The space required by � itself is defined as the supremum
of the space required by all computations of �:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer
P systems, and let s ∶ ℕ → ℕ . We say that � operates within
space bound s if and only if |�x| ≤ s(|x|) for each x ∈ 𝛴⋆.

Following what has been done for time complex-
ity classes, we can define space complexity classes. By
MCSPACED(s(n)) (resp. MCSPACE⋆

D
(s(n)) ) we denote the

class of languages which can be decided by uniform (resp.

|C| = max{|C0|,… , |Ck|}.

|�| = sup{|C| ∶ C is a computation of �}.

255Evaluating space measures in P systems﻿	

1 3

semi-uniform) families, � , of confluent P systems of type D
(for example, when we refer to P systems with active mem-
branes, we denote this by setting D = AM ), where each
�x ∈ � operates within space bound s(|x|).

In particular, the class of problems solvable in a poly-
nomial space by uniform confluent systems is denoted
by PMCSPACED , and the class of problems solvable
in an exponential space by uniform confluent systems
is denoted by EXPMCSPACED (adding a star in case
of semi–uniform classes). The corresponding classes
for non-conf luent systems are NPMCSPACED and
NEXPMCSPACED.

A different approach to define space complexity for P
systems was introduced in [2], considering the informa-
tion stored in the objects of the systems, and not the sin-
gle objects themselves. Binary notation, instead of unary,
was used to store the amount of objects in each region,
with the following definition of binary space:

Definition 7  Consider a configuration C of a P system � .
Let us denote by h1, h2, ..., hz the membranes of the current
membrane structure (we stress the fact that z can be smaller,
equal, or greater than the initial number of membranes d,
due to dissolution and duplication of membranes; we also
stress the fact that we do not need to store unique IDs for
membranes having the same label as we can, for example,
indicate multisets of objects inside a string-like bracketed
expression), and by |Oi,j| the multiplicity of object i within
region j. The binary size |C|B of a configuration C is defined
as:

that is the number of membranes in the current membrane
structure multiplied by log |�| , plus the number of bits
required to store the description of the multiset in each
region.

If C = (C0,… , Ck) is a computation of � , then the binary
space required by C is defined as

The binary space required by � itself is then obtained by
computing the binary space required by all computations
of � and taking the supremum:

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer
P systems, and let s ∶ ℕ → ℕ . We say that �operates
within binary space bound s if and only if |�x|B ≤ s(|x|) for
each x ∈ 𝛴⋆.

�C�B = z ⋅ log ��� +
z�

j=1

n�

i=1

�
⌈log(�Oi,j� + 1)⌉ + log �� �

�
,

|C|B = max{|C0|B,… , |Ck|B}.

|�|B = sup{|C|B ∶ C is a computation of �}.

Corresponding space complexity classes, that consider
this different size measure, can be considered.

3 � Considering separate feature
contributions to space definition

In both cases of space definition considered in the previous
Section, the amount of space required by a system was a
single total measure obtained, in different ways, by consid-
ering all the elements contributing to it: the total number
of membranes (denoted by me), the total number of objects
(ob), the membrane types (met), and the object types (obt).

We introduce now a different definition of space in the
framework of P systems, based on a vector measurement,
instead of a scalar one, where each of the previous ele-
ments is considered independently, thus allowing to con-
sider the contribution given by each element separately,
and highlighting the requirement of each of them in every
solution to complex computational problems considered
in the literature.

The use of vector measurements has been successfully
considered in many different domains. Just to cite some
examples, it has been considered to define size for inser-
tion–deletion systems [16], with the size measured by six
numbers (insertion, left insertion context, right insertion
context, size of deletion, left deletion context, right dele-
tion context), or in splicing systems [15], using four num-
bers to consider the sizes of the recombination points in
the strings involved in a splicing operation.

Definition 8  Consider a P system � with active membranes,
and a computation C = (C0,… , Ck) of � . Let us denote the
set of membrane labels of � by � , and the alphabet of
objects by �  . Moreover, let us denote by MaxMe the maxi-
mum number of membranes present at the same time in �
during some steps of C , and by MaxOb the maximum num-
ber of objects present at the same time in � during some
steps of C (we stress the fact that the maximum number of
membranes and objects do not necessarily appear in the
same computation step).

We say that the computation C of � is bounded by
Space(me, ob, met, obt) if and only if MaxMe ≤ me ,
MaxOb ≤ ob , |�| ≤ met , and |� | ≤ obt.

The space required by � itself is then obtained by com-
puting the corresponding space required by all computations
of � and taking the supremum.

Finally, let � = {𝛱x ∶ x ∈ 𝛴⋆} be a family of recognizer
P systems. We say that � operates within Space(me, ob, met,
obt) if and only if each member �x of the family operates
within the above space.

256	 A. Alhazov et al.

1 3

Of course, complexity classes corresponding to this
definition of space can be defined in a similar way as
already done in the previous Section; as an example, by
MCSPACED(me, ob,met, obt) we denote the class of prob-
lems solved by P systems with active membranes of type
D having features limited according to me, ob, met, obt.

Having defined the contribution of each element to the
space requirements, we are ready to survey some main
results present in the literature, to analyze the require-
ments in terms of single features required by each pro-
posed solution.

The first results we analyze are from [31].

P r o p o s i t i o n 1   P ⊆ MCSPACE
∗
NAM

(O(1)), a n d
P ⊆ MCSPACE

NAM
(O(1)).

In this proposition, it is proved that semi-uniform sys-
tems with active membranes that do not use membrane
division can solve all problems in P in constant space.
In fact, all the work is done by the deterministic Turing
machine used to build the system (a deterministic poly-
nomial time uniformity condition is considered). The
obtained system simply sends out a yes or no answer, in
one step. Similar considerations remain valid also for the
uniform case. As a consequence, in both cases we have
me = ob = mt = obt = 1. Considering the corresponding
proposition, we have:

Proposition 1’  P ⊆ MCSPACE
∗
NAM

(1, 1, 1, 1)

The next proposition exploits the results from [44], in
particular concerning the problems SAT with n variables
and m clauses, and Hamiltonian Path over an undirected
graph with n nodes.

In the first case, 2n membranes are generated, each con-
taining one possible truth assignment to be checked. We
have: me = O(2n), ob = O((n ∗ m) ∗ (2n)), met = 2, and
obt = 4n + 2m + 4.

The solution for the Hamiltonian Path problem tries
all possible paths, to check if at least one of them satisfies
the required conditions. In this case, we have me = O(nn) ,
ob = O(n ∗ me) = O(nn+1) , met = 2 , obt = 6n + 4.

In [38], it was shown how to exploit membrane division
to solve the ������-complete problem Satisfiability of
Quantified Boolean Formulas (QBF), using semi-uniform
P systems with active membranes:

Proposition 2  ������ ⊆ EXPMCSPACE∗

AM

The solution makes use of an exponential number
of membranes and objects: me = O(2n), ob = O(2n),
met = m + n + 2, and obt = 5n + m + 4 . By considering each
single result, and the new space measure, we have:

P r o p o s i t i o n 2 ’   �� ⊆ MCSPACE∗
AM(O(2

n),O(2n), 2, 4n + 2m + 4)
�� ⊆ MCSPACE∗

AM(O(2
n),O(2n), 2, 4n + 2m + 4)

�� ⊆ MCSPACE∗

AM
(O(nn),O(nn), 2, 6n + 4)

������ ⊆ MCSPACE∗
AM

(O(2n),O(2n),m + n + 2, 5n + m + 4))

In [4], the same last result was proved for uniform
systems.

Proposition 3  ������ ⊆ EXPMCSPACEAM

An analysis of resources used for this solution
shows that me = O(22n) = O(4n), ob = O(22n) = O(4n),
met = O(m + n), and obt = O(m ∗ n).

Proposition 3’  ������ ⊆ MCSPACEAM(O(4n),O(4n),
O(m + n),O(m ∗ n))

In [34], systems with limited power were considered; in
particular, division rules for non-elementary membranes
and dissolution rules were avoided. It was proved that such
systems can solve all problems in the complexity class ��
in polynomial time. In fact, a solution for the ��-complete
problem SQRT3SAT was proposed.

Proposition 4  �� ⊆ ���
ndiss

EAM

The features of that solution are the following:
me = O(2n) , ob = O(2n) , met = 3 , and obt = O(n) . Thus,
we have

Proposition 4’  �� ⊆ �������
ndiss

EAM
(O(2n),O(2n), 3,O(n))

In [42], it was shown that a deterministic Turing machine
working in polynomial space, with respect to the input
length, can be efficiently simulated (both in terms of time
and space) by a semi-uniform family of P systems with
active membranes, using only communication rules.

Proposition 5  A Deterministic Turing machine M working in
space s(n) and time t(n) can be simulated by a semi-uniform
family of P systems in space O(s(n)) and time O(t(n))

The main idea to prove this result was to store infor-
mation bits by using polarizations associated with
membranes, instead of objects inside them. As a conse-
quence, the required amount of resources needed is very
low: me = s(n) + 2, ob = O(n) initially, then 1, met = 3 ,
obt = 5 + 3 ∗ |Q| , where Q is the set of states of the Turing
machine M.

257Evaluating space measures in P systems﻿	

1 3

Proposition 5’  A Deterministic Turing machine M working
in space s(n) and in time t(n) can be simulated by a semi-
uniform family of P systems in space MCSPACE∗

AM
(s(n) + 2,

O(n), 3, 5 + 3 ∗ |Q|)

In [3], similar results for uniform families of P systems
with active membranes were proved, using a cubic slow-
down and a quadratic space overheads:

Proposition 6  A deterministic Turing machine M working in
space s(n) and time t(n) can be simulated by uniform conflu-
ent or non-confluent P systems within polynomial bounds for
space and time.

In both cases, we have the following: me = O(s(n)) ,
ob = O(s(n)2) , met = 7 , and obt = 3.

Proposition 6’  A deterministic Turing machine M work-
ing in space s(n) and time t(n) can be simulated by uni-
form confluent or non-confluent P systems in space
�������

∗

AM
(O(s(n)),O(s(n)2), 7, 3)

We conclude this analysis by recalling a result from [33].
In this work, it was proved that recognizer P systems with
active membranes that use polynomial space characterize
the complexity class ������. In particular, the result holds
for both confluent and non-confluent systems, and indepen-
dently of the use of membrane division rules.

This generic result allows to relate the number of com-
putation steps to the maximum number of objects and the
maximum number of membranes that can be obtained after
those steps. In particular, let us consider a non-confluent
P system � with active membranes, defined using a descrip-
tion of length m made in any reasonable encoding (e.g.,
where the membrane structure is represented using strings
of brackets), and where multisets are represented in unary.
After t steps of computation of � , we have the following:
me = O(2t∗m+m∗log(m)), and ob = O(2t∗t∗m∗log(m)).

We conclude this section by summarizing in the fol-
lowing table the results we presented in the paper. For
instance, the first result can be read as “deterministic
MCSPACE∗

(c)
(1, 1, 1, 1) ⊇ P , see [31]”.

D/C, me ob met obt D ⊇ class/problem props ref.
U/SU

D,SU 1 1 1 1 (c) P ConstTime [31]
D,U 1 1 1 2 (c) P ConstTime [31]
SU 2n O(2n) 2 4n+2m+4 EAM NP ∪ coNP/SAT [44]
SU O(nn) O(nn) 2 6n+4 EAM NP ∪ coNP/HPP [44]
SU O(2n) O(2n) m+n+2 5n+m+4 AM PSPACE/QSAT [38]
U O(4n) O(4n) O(m+n) O(m×n) AM PSPACE/QSAT [4]

O(2n) O(2n) 3 O(n) (abce) PP/SQRT-3SAT PolTime [34]
SU s(n)+2 O(n)⋯ 1 3 5+3∗|Q| AM DT(t(n))S(s(n)) [42]
C,U O(s(n)) O(s(n)2) 7 3 AM DT(t(n))S(s(n)) [3]

O(2x), O(2y), AM PSPACE/TM time=t [33]
x = t∗m+ y = t2∗

m∗log(m) m∗log(m)

4 � Conclusions

We introduced a definition for space complexity classes in
the framework of P systems, where each element contribut-
ing to the definition of space used by the system (that is, the
total number of membranes, the total number of objects,
the types of different membranes, and the types of different
objects) is considered independently. In this way, the contri-
bution of each element in defining the total space required
by the system to execute a computation can be highlighted
independently.

Many different constructions by various authors have been
presented in the literature to attack computationally hard prob-
lems. After presenting here some of them, we think it will be

interesting to check the possibility to propose alternative solu-
tions where the considered parameters are different (i.e., of a dif-
ferent asymptotic order) with respect to those already published.
As an example, would it be possible to find solutions similar
to those of Propositions 3 and 4 by using a constant amount of
object types or of membrane types?

Moreover, we want to stress the fact that, under the usual
uniformity condition considered, a polynomial time precomput-
ing by a deterministic Turing machine is allowed and, in this
case, membrane types and object types are forced to be at most
polynomial. However, different uniformity conditions can also
be considered, to highlight their impact on these features. For
instance, how to factor the input for sublinear space complexity
classes if we would like to have more object types with respect

258	 A. Alhazov et al.

1 3

to those allowed by the input size (maybe not all of them pre-
sent since the beginning of the computation), but the uniformity
condition forbids that?

It would also be useful to clarify how to proceed when the
size of the problem instance is given by a few numbers like, e.g.,
the number of clauses and variables for SAT.

Acknowledgements  This work was partially supported by Univer-
sità degli Studi di Milano-Bicocca, Fondo di Ateneo per la Ricerca
2019, project 2019-ATE-0454. The first author acknowledges pro-
ject 20.80009.5007.22 “Intelligent information systems for solving
ill-structured problems, processing knowledge and big data” by the
National Agency for Research and Development.

Funding  Open access funding provided by Università degli Studi di
Milano - Bicocca within the CRUI-CARE Agreement.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alhazov, A., Ishdorj, T. (2004). Membrane operations in P
systems with active membranes. In: Păun, Gh., Riscos-Núñez,
A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second
Brainstorming Week on Membrane Computing. pp. 37–44. No.
1/2004 in RGNC Reports, Fénix Editora

	 2.	 Alhazov, A., Leporati, A., Manzoni, L., Mauri, G., & Zandron,
C. (2021). Alternative space definitions for P systems with
active membranes. Journal of Membrane Computing, 3(2),
87–96. https://​doi.​org/​10.​1007/​s41965-​021-​00074-2

	 3.	 Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron,
C. (2014). Space complexity equivalence of P systems with
active membranes and Turing machines. Theoretical Computer
Science, 529, 69–81. https://​doi.​org/​10.​1016/j.​tcs.​2013.​11.​015

	 4.	 Alhazov, A., Martín-Vide, C., Pan, L. (2003). Solving a
PSPACE-complete problem by recognizing P systems with
restricted active membranes. Fundamenta Informaticae, 58(2),
67–77.

	 5.	 Alhazov, A., & Pan, L. (2004). Polarizationless P systems with
active membranes. Grammars, 7, 141–159.

	 6.	 Alhazov, A., Pan, L., & Păun, Gh. (2004). Trading polariza-
tions for labels in P systems with active membranes. Acta
Informatica, 41(2–3), 111–144. https://​doi.​org/​10.​1007/​
s00236-​004-​0153-z

	 7.	 Alhazov, A., Pérez-Jiménez, M.J. (2007). Uniform solu-
tion to QSAT using polarizationless active membranes. In:

Durand-Lose, J., Margenstern, M. (eds.) Machines, Compu-
tations, and Universality, 5th International Conference, MCU
2007, Lecture Notes in Computer Science, vol. 4664, pp. 122–
133. Springer, https://​doi.​org/​10.​1007/​978-3-​540-​74593-8_​11

	 8.	 Buño, K., & Adorna, H. (2020). Distributed computation of a kP
system with active membranes for SAT using clause completion.
Journal of Membrane Computing, 2(2), 108–120. https://​doi.​
org/​10.​1007/​s41965-​020-​00040-4

	 9.	 Cecilia, J., García, J., Guerrero, G., Martínez-del Amor, M.,
Pérez-Hurtado, I., & Pérez-Jiménez, M. (2010). Simulating a P
system based efficient solution to SAT by using GPUs. Journal
of Logic and Algebraic Programming, 79(6), 317–325.

	10.	 García-Quismondo, M., Gutiérrez-Escudero, R., Martínez-del
Amor, M.A., Orejuela-Pinedo, E., Pérez-Hurtado, I. (2009).
P-Lingua 2.0: A software framework for cell-like P systems.
International Journal of Computers, Communications & Control
4(3), 234–243

	11.	 Gazdag, Z., Kolonits, G. (2013). A new approach for solving SAT
by P systems with active membranes. In: Csuhaj-Varjú, E., Gheo-
rghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane
Computing, 13th International Conference, CMC 2012. Lecture
Notes in Computer Science, vol. 7762, pp. 195–207. Springer

	12.	 Gazdag, Z., & Kolonits, G. (2019). A new method to simulate
restricted variants of polarizationless P systems with active
membranes. Journal of Membrane Computing, 1(4), 251–261.

	13.	 Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez,
A., Romero-Campero, F.J. (2006). On the power of dissolution
in P systems with active membranes. In: Freund, R., Păun, Gh.,
Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, 6th
International Workshop, WMC 2005. Lecture Notes in Com-
puter Science, vol. 3850, pp. 224–240. Springer, https://​doi.​org/​
10.​1007/​11603​047

	14.	 Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Nuñez,
A., & Romero-Campero, F. J. (2006). Computational efficiency
of dissolution rules in membrane systems. International Journal
of Computer Mathematics, 83(7), 593–611. https://​doi.​org/​10.​
1080/​00207​16060​10654​13

	15.	 Head, T. (1987). Formal language theory and DNA: An analysis
of the generative capacity of specific recombinant behaviors.
Bulletin of Mathematical Biology, 49(6), 737–759.

	16.	 Kari, L., & Thierrin, G. (1996). Contextual insertion/dele-
tion and computability. Information and Computation, 131(1),
47–61.

	17.	 Leporati, A., Ferretti, C., Mauri, G., & Zandron, C. (2008). Com-
plexity aspects of polarizationless membrane systems. Natural
Computing, 4(8), 703–717.

	18.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2014). Constant-space P systems with active membranes.
Fundamenta Informaticae, 134(1–2), 111–128. https://​doi.​org/​
10.​3233/​FI-​2014-​1094

	19.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2015). Membrane division, oracles, and the counting hierar-
chy. Fundamenta Informaticae, 138(1–2), 97–111. https://​doi.​org/​
10.​3233/​FI-​2015-​1201

	20.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2019). Characterizing PSPACE with shallow non-confluent P
systems. Journal of Membrane Computing, 1(2), 75–84. https://​
doi.​org/​10.​1007/​s41965-​019-​00011-4

	21.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zan-
dron, C. (2020). Shallow laconic P systems can count. Journal
of Membrane Computing, 2(1), 49–58. https://​doi.​org/​10.​1007/​
s41965-​020-​00032-4

	22.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2020). A Turing machine simulation by P systems without
charges. Journal of Membrane Computing, 2(2), 71–79. https://​
doi.​org/​10.​1007/​s41965-​020-​00031-5

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41965-021-00074-2
https://doi.org/10.1016/j.tcs.2013.11.015
https://doi.org/10.1007/s00236-004-0153-z
https://doi.org/10.1007/s00236-004-0153-z
https://doi.org/10.1007/978-3-540-74593-8_11
https://doi.org/10.1007/s41965-020-00040-4
https://doi.org/10.1007/s41965-020-00040-4
https://doi.org/10.1007/11603047
https://doi.org/10.1007/11603047
https://doi.org/10.1080/00207160601065413
https://doi.org/10.1080/00207160601065413
https://doi.org/10.3233/FI-2014-1094
https://doi.org/10.3233/FI-2014-1094
https://doi.org/10.3233/FI-2015-1201
https://doi.org/10.3233/FI-2015-1201
https://doi.org/10.1007/s41965-019-00011-4
https://doi.org/10.1007/s41965-019-00011-4
https://doi.org/10.1007/s41965-020-00032-4
https://doi.org/10.1007/s41965-020-00032-4
https://doi.org/10.1007/s41965-020-00031-5
https://doi.org/10.1007/s41965-020-00031-5

259Evaluating space measures in P systems﻿	

1 3

	23.	 Leporati, A., Mauri, G., Porreca, A.E., Zandron, C. (2014). A
gap in the space hierarchy of P systems with active membranes.
Journal of Automata, Languages and Combinatorics 19(1–4),
173–184, http://​theo.​cs.​ovgu.​de/​jalc/​search/​j19_i.​html. Accessed
29 Sept 2022

	24.	 Murphy, N., Woods, D. (2007). Active membrane systems without
charges and using only symmetric elementary division charac-
terise P. In: Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg,
G., Salomaa, A. (eds.) Membrane Computing, 8th International
Workshop, WMC 2007. Lecture Notes in Computer Science,
vol. 4860, pp. 367–384, https://​doi.​org/​10.​1007/​978-3-​540-​77312-
2_​23

	25.	 Murphy, N., & Woods, D. (2011). The computational power
of membrane systems under tight uniformity conditions. Nat-
ural Computing, 10(1), 613–632. https://​doi.​org/​10.​1007/​
s11047-​010-​9244-7

	26.	 Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez,
A., Pérez-Jiménez, M.J. (2019). P systems with proteins: a
new frontier when membrane division disappears. Journal of
Membrane Computing 1(1), 29–39, https://​doi.​org/​10.​1007/​
s41965-​018-​00003-w

	27.	 Pan, L., Alhazov, A., & Ishdorj, T. O. (2005). Further remarks
on P systems with active membranes, separation, merging, and
release rules. Soft Computing, 9(9), 686–690. https://​doi.​org/​10.​
1007/​s00500-​004-​0399-y

	28.	 Papadimitriou, C.H. (1993). Computational Complexity.
Addison-Wesley

	29.	 Păun, Gh. (2001). P systems with active membranes: Attacking
NP-complete problems. Journal of Automata, Languages and
Combinatorics, 6(1), 75–90.

	30.	 Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Hand-
book of Membrane Computing. Oxford University Press (2010)

	31.	 Porreca, A.E., Leporati, A., Mauri, G., Zandron, C. (2009). Intro-
ducing a space complexity measure for P systems. International
Journal of Computers, Communications & Control 4(3), 301–
310, http://​univa​gora.​ro/​jour/​index.​php/​ijccc/​artic​le/​view/​2779.
Accessed 29 Sept 2022

	32.	 Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011).
P systems with active membranes: Trading time for space.
Natural Computing, 10(1), 167–182. https://​doi.​org/​10.​1007/​
s11047-​010-​9189-x

	33.	 Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011).
P systems with active membranes working in polynomial space.
International Journal of Foundations of Computer Science, 22(1),
65–73. https://​doi.​org/​10.​1142/​S0129​05411​10078​36

	34.	 Porreca, A.E., Leporati, A., Mauri, G., Zandron, C. (2011). P sys-
tems with elementary active membranes: Beyond NP and coNP.
In: Gheorghe, M., Hinze, T., Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing, 11th International Conference,
CMC 2010. Lecture Notes in Computer Science, vol. 6501, pp.
338–347. Springer, https://​doi.​org/​10.​1007/​978-3-​642-​18123-8_​
26

	35.	 Porreca, A.E., Leporati, A., Mauri, G., Zandron, C. (2013).
Sublinear-space P systems with active membranes. In: Csuhaj-
Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil,
G. (eds.) Membrane Computing, 13th International Conference,
CMC 2012. Lecture Notes in Computer Science, vol. 7762, pp.
342–357. Springer, https://​doi.​org/​10.​1007/​978-3-​642-​36751-9_​
23

	36.	 Porreca, A. E., Mauri, G., & Zandron, C. (2006). Complexity
classes for membrane systems. RAIRO Theoretical Informatics
and Applications, 40(2), 141–162. https://​doi.​org/​10.​1051/​ita:​
20060​01

	37.	 Porreca, A. E., Mauri, G., & Zandron, C. (2010). Non-confluence
in divisionless P systems with active membranes. Theoretical

Computer Science, 411(6), 878–887. https://​doi.​org/​10.​1016/j.​
tcs.​2009.​07.​032

	38.	 Sosík, P. (2003). The computational power of cell division in P
systems: Beating down parallel computers? Natural Computing,
2(3), 287–298. https://​doi.​org/​10.​1023/A:​10254​01325​428

	39.	 Sosík, P. (2019). P systems attacking hard problems beyond NP: A
survey. Journal of Membrane Computing, 1(3), 198–208. https://​
doi.​org/​10.​1007/​s41965-​019-​00017-y.

	40.	 Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor,
M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Com-
putational efficiency of minimal cooperation and distribution in
polarizationless P systems with active membranes. Fundamenta
Informaticae, 153(1–2), 147–172. https://​doi.​org/​10.​3233/​
FI-​2017-​1535

	41.	 Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor,
M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Reach-
ing efficiency through collaboration in membrane systems: Dis-
solution, polarization and cooperation. Theoretical Computer
Science, 701, 226–234. https://​doi.​org/​10.​1016/j.​tcs.​2017.​04.​015

	42.	 Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron,
C. (2010). An efficient simulation of polynomial-space Turing
machines by P systems with active membranes. In: Păun, Gh.,
Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing, 10th International Workshop,
WMC 2009, Lecture Notes in Computer Science, vol. 6501, pp.
461–478. Springer, https://​doi.​org/​10.​1007/​978-3-​642-​11467-0_​
31

	43.	 Zandron, C. (2020). Bounding the space in P systems with active
membranes. Journal of Membrane Computing, 2(2), 137–145.
https://​doi.​org/​10.​1007/​s41965-​020-​00039-x

	44.	 Zandron, C., Ferretti, C., Mauri, G. (2001). Solving NP-complete
problems using P systems with active membranes. In: Antoniou,
I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of
Computation, UMC’2K, Proc. Second Int. Conference, pp. 289–
301. Springer, https://​doi.​org/​10.​1007/​978-1-​4471-​0313-4_​21

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Artiom Alhazov  is a principal researcher at the Vladimir Andrunachie-
vici Institute of Mathematics and Computer Science. He has achieved
over 300 publications including over 60 ones in journals, together with
over 60 coauthors. By the time of publication of this paper, Google
Scholar reported his h-index was 25. He got his PhD thesis in Spain in
2006 and, after some postdoc positions in Finland, Japan, and Italy, he
defended his Habilitation thesis in Moldova in 2013. His main research
visits have been to Austria, China, and France. His research interests
are centered in Theoretical Computer Science, including but not lim-
ited to descriptional complexity parameters of small computationally
universal systems from a wide variety of formal models of parallel
distributed processing of strings and multisets, giving special focus on
membrane systems.

Alberto Leporati  PhD, is an Associate Professor at the University of
Milano-Bicocca, at the Department of Informatics, Systems and Com-
munication. His research activity concerns the theory of computational
complexity. In particular, he studies the computational power of mod-
els of computation which are inspired by the working of living cells
(Membrane Computing) and the laws of quantum mechanics (Quantum
Computing). On these subjects, he published more than 100 papers on
international journals and in peer-reviewed proceedings of international
conferences. He is also a member of the Steering Committee for the
CMC and ACMC international conference series, and he serves as Vice
President of the International Membrane Computing Society.

http://theo.cs.ovgu.de/jalc/search/j19_i.html
https://doi.org/10.1007/978-3-540-77312-2_23
https://doi.org/10.1007/978-3-540-77312-2_23
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1007/s41965-018-00003-w
https://doi.org/10.1007/s41965-018-00003-w
https://doi.org/10.1007/s00500-004-0399-y
https://doi.org/10.1007/s00500-004-0399-y
http://univagora.ro/jour/index.php/ijccc/article/view/2779
https://doi.org/10.1007/s11047-010-9189-x
https://doi.org/10.1007/s11047-010-9189-x
https://doi.org/10.1142/S0129054111007836
https://doi.org/10.1007/978-3-642-18123-8_26
https://doi.org/10.1007/978-3-642-18123-8_26
https://doi.org/10.1007/978-3-642-36751-9_23
https://doi.org/10.1007/978-3-642-36751-9_23
https://doi.org/10.1051/ita:2006001
https://doi.org/10.1051/ita:2006001
https://doi.org/10.1016/j.tcs.2009.07.032
https://doi.org/10.1016/j.tcs.2009.07.032
https://doi.org/10.1023/A:1025401325428
https://doi.org/10.1007/s41965-019-00017-y
https://doi.org/10.1007/s41965-019-00017-y
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.1016/j.tcs.2017.04.015
https://doi.org/10.1007/978-3-642-11467-0_31
https://doi.org/10.1007/978-3-642-11467-0_31
https://doi.org/10.1007/s41965-020-00039-x
https://doi.org/10.1007/978-1-4471-0313-4_21

260	 A. Alhazov et al.

1 3

Luca Manzoni  is an associate professor at the University of Trieste,
Italy. He obtained his PhD in Computer Science at the University of
Milano-Bicocca in 2013. In 2012, he obtained a JSPS postdoctoral
fellowship. In 2017, he obtained an award as the best young postdoc
in Computer Science and Mathematics at the University of Milano-
Bicocca. He has published more than 80 papers in international journal,
conferences, and workshops. His interests are in the areas of natural
computing models, like P systems, reactions systems, and cellular
automata, and in the area of evolutionary computation, and genetic
programming in particular.

Giancarlo Mauri  is professor emeritus of Computer Science at the
University of Milano-Bicocca. His research interests include natu-
ral computing and unconventional computing models, in particular
membrane systems and splicing systems; bioinformatics, in particular
algorithms for NGS data analysis; computational systems biology, in

particular stochastic modeling and simulation of biological systems
and processes. On these subjects, he published about 500 scientific
papers in international journals, contributed volumes and conference
proceedings. He is or has been member of the steering committees of
the International Conferences on DNA Computing, Membrane Com-
puting, Unconventional Computing and Natural Computing, Devel-
opments in Language Theory, and of the International workshop on
Cellular Automata for Research and Industry.

Claudio Zandron  got the PhD in Computer Science from the University
of Milan in 2002. Since 2006, he is associate professor at the Depart-
ment of Informatics, Systems and Communication of the University
of Milano-Bicocca, Italy. His research interests concern the areas of
formal languages, molecular computing models, DNA computing,
Membrane Computing, and computational complexity.

	Evaluating space measures in P systems
	Abstract
	1 Introduction
	2 Basic definitions
	3 Considering separate feature contributions to space definition
	4 Conclusions
	Acknowledgements
	References

