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Improving GPU Web Simulations of Spiking

Neural P Systems

Ayla Nikki Lorreen Odasco, Matthew Lemuel Rey, and Francis George C.
Cabarle⋆

Dept. of Computer Science, University of the Philippines Diliman, Quezon City, 1101,
Philippines

Abstract. The utilization of a parallel processor such as the graph-
ics processing unit (GPU) is only natural for the simulation of spiking
neural p systems (SN P Systems) because of their inherent parallel na-
ture. A recent work, created an SN P system simulator, GPUSnapse,
that both utilizes GPU and runs on modern web browsers by exploiting
the Web Graphics Library (WebGL) which creates shaders to generate
textures that corresponds to SN P system simulation algorithms. Ma-
trix representation operations were used in GPUSnapse. In GPUSnapse,
when working with large matrices a common concern are sparse matri-
ces. Sparse matrices are known to downgrade the performance of the
simulation because of wasting memory and time due to performing re-
dundant operations. In this work we extend GPUSnapse by: (a) using
optimized sparse matrix operations to improve the performance of our
simulator and; (b) increase the number of neurons that can be handled
by the simulator due to better memory usage. We also identify the lim-
itations of GPUSnapse in terms of the sizes of each benchmark system
that it can handle. We present two algorithms: deterministic and non-
deterministic algorithms, which we use to compare the performance and
memory requirements of the previous GPUSnapse and our present work.
We also analyzed the performance between GPU and CPU implementa-
tions of all algorithms involved. Results from our work show promising
improvements such as up to a 1.97x speedup of GPU runtime and up to
30% reduction of memory usage. We also identify some bottlenecks in
our work and recommendations for improvements.

Keywords: SN P System ➲ GPUSnapse ➲ WebGL

1 Introduction

Spiking Neural P Systems (also called SN P systems) are a class of neural-like
P systems which are distributed parallel computing devices that were inspired
by how neurons communicate[14]. SN P systems consist of a set of neurons that
convey information by means of the timing and number of spikes which are sent
through synapses. There are two rules: forgetting rule and spiking rule, used
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by this type of systems that would affect the spikes that would be sent to the
next neuron. The rules will be applied when the number of spikes in the neurons
match the regular expression.

Representing P systems with discrete structures had already been a topic in
membrane computing in 2010 or even earlier [24]. One of those discrete struc-
tures that is now commonly used in representing SN P systems is the matrix.
The simulations of SN P systems started from representing it as vectors and ma-
trices, at first, without considering delays [24]. However, more research studies
were conducted over the years until SN P systems can now be represented as
matrices with consideration for delays [8] and now, being studied for even more
such as for simulation performances. The computations involved in matrix rep-
resentations are able to generate the next configuration of the system given the
current configuration. Several simulators have been developed for SN P systems
such as Snapse [11], CuSNP [8], WebSnapse [10], and GPUSnapse [20].

Because of the parallel nature of SN P systems, the use of parallel computing
devices such as GPUs is a straightforward approach. With the use of GPUs,
large speedups can be obtained when performing algebraic operations such as
those used in the simulation of SN P systems using matrix representations.
However, parallel computing in GPUs has more caveats compared to CPUs.
Best performance is only achieved when threads used in GPUs are executed in a
synchronized manner and accessed data from memory are contiguous [4]. With
certain large matrices, there can be many zero elements. For instance, graphs
with more nodes than edges have matrices with more zeroes than ones in their
adjacency matrices. This is known as a sparse matrix and it downgrades the
performance of the simulation due to wasted memory and time on performing
redundant operations [3].

In this work, we extend the work in [20] by incorporating optimized sparse
matrix vector operations introduced in [3,1] to reduce memory requirements on
GPUSnapse which leads to a performance increase and subsequently, support for
simulations of bigger SN P systems. We present two algorithms without delays
(deterministic and non-deterministic), each tested with a SN P system suitable
to test sparse matrices: bitonic network SN P systems used as test inputs in [8]
and non-uniform solution to subset sum [15].

The paper is structured as follows: Section 2 provides the formal definition
of SN P systems, the matrix representations (regular and optimized sparse) and
some GPU terminologies that would be used in the discussion of the results of
this work. Section 3 discusses the different simulators and how they compare to
one another and the extension done in this work. It also contains more in-depth
discussions about the techniques used in GPUSnapse and how WebGL was used
for the simulation of the SN P Systems. Section 4 presents the technology, and
simulation architecture and algorithms used in this work. Section 5 contains the
tests done including the setups and the current working limitations of the work
in terms of input sizes for both algorithms. This section also discusses the time
and space analysis of the results from tests. Lastly, in Section 6 we state the
conclusions of this work and future work recommendations.
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2 Preliminaries

2.1 Spiking Neural P Systems

SN P Systems are formally defined in [14] as follows:

Definition 1 A Spiking Neural P system of degree m ≥ 1 is a construct of the
form

Π = (O, σi, . . . σm, syn, in, out), where:

1. O = a is the singleton alphabet (a is called spike);
2. σi, . . . σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

(a) ni ≥ 0 is the initial number of spikes contained in σi,
(b) Ri is a finite set of rules of the forms:

i. E/ac → ap; d, where E is a regular expression over a and c ≥ p ≥
1, d ≥ 0;

ii. as → λ, for s ≥ 1, with the restriction that for each rule E/ac →
ap; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . .m}×{1, 2, . . .m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m;
4. in, out ∈ {1, 2, . . .m} indicate the input and the output neurons, respectively.

Elaborating on the set of rules of 2b, 2(b)i are known as firing rules. If the
number of spikes n present in a neuron satisfies an ∈ L(E), n ≥ c, c spikes are
consumed and n− c spikes are left in the neuron while p spikes will be fired by
the neuron to all connected neurons after a delay of d time units. While during
the d times units of delay, the neuron is considered to be closed and cannot
receive further spikes. All spikes sent to this neuron during this time period is
considered to be lost. Consequently, during the delay period, this neuron cannot
also apply new rules or fire spikes. In the case that multiple rules are satisfied
by n, the rules are chosen non-deterministic manner however only one rule will
be active at a given time. 2(b)ii are known as forgetting rules. If the number of
spikes present in the neuron n = s then n spikes are removed from the neuron
hence the name forgetting rule.

In our work in the following sections, we only use systems without delays,
that is d is always set to zero.

2.2 Matrix Representation of SN P Systems

SN P Systems have been represented as various discrete structures. A particu-
larly relevant representation is through matrices as matrices are a well researched
topic utilized across scientific and computing disciplines [19]. The matrix repre-
sentation for a restricted SN P System with no delays from [24] are defined as
follows:

Definition 2 (Configuration Vectors) Let Π be an SN P system with m
neurons, the vector C0 = 〈n1, n2, . . . nm〉 is called the initial configuration vec-
tor of Π, where ni is the amount of the initial spikes present in neuron σi,
i = 1, 2, . . .m before a computation starts.
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a
a→ a
a2 → λ

3

a2

a2/a→ a
a2 → a

1

a
a→ a

2

Fig. 1: An SN P system Π that generates the set N− 1
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For the example in Figure 1, we have the Configuration Vector C0 = 〈2, 1, 1〉.

Definition 3 (Spiking Vectors) Let Π be an SN P system with m neurons

and n rules, and Ck = 〈n
(k)
1 , n

(k)
2 , . . . , n

(k)
m 〉 be the kth configuration vector of Π.

Assume a total order d : 1, . . . , n is given for all the n rules, so the rules can be
referred as r1, . . . , rn. A spiking vector s(k) is defined as follows:

s(k) = 〈r
(k)
1 , r

(k)
2 , . . . , r(k)n 〉,

where:

r
(k)
i =























1 if the regular expression Ei of rule ri is

satisfied by the number of spikes n
(k)
j (rule

ri is in neuron σj ) and rule ri is chosen
and applied;

0 otherwise.

For the example in Figure 1, because the system is non-deterministic we have
the Spiking Vectors s0 = 〈1, 0, 1, 1, 0〉 and s0 = 〈0, 1, 1, 1, 0〉.

Definition 4 (Spiking Transition Matrix) Let Π be an SN P system with
m neurons and n rules, and d : 1, . . . , n be a total order given for all the n rules,
A spiking transition matrix of the system Π, MΠ is defined as follows:

MΠ = [aij ]n×m,

where:

aij =































−c if rule ri is in neuron σj and it is applied
consuming c spikes;

p if rule ri is in neuron σs (s 6= j and
(s, j) ∈ syn) and it is applied producing p
spikes;

0 if rule ri is in neuron σs (s 6= j and (s, j) /∈ syn).

For the example in Figure 1, we have the Spiking Transition Matrix as follows:

MΠ =













−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2













2.3 Optimized Sparse Matrix Representation

A typical matrix representation of an SN P system that is not fully connected
leads to sparse matrices or matrices with more zeroes than nonzero values. Sparse
matrices slow down computation because a majority of memory and computing
time is dedicated to processing zeroes. Two approaches have been suggested by
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[5] for sparsity in matrices representing SN P systems. The first approach uses
the ELL format and with the main idea to assign a thread to each rule one
per column of the spiking vector Sk and one per column of MΠ

s . The second
optimized approach separates the synapses from the rule information. This is
what we will be using and it is described as follows in [5]:

– Rule information. By using a CSR-like format, rules of the form E/ac → ap

(also forgetting rules are included, assuming p = 0) can be represented by a
double array storing the values c and p (also the regular expression, but this
is required only to select a spiking vector, and hence is out of scope of this
work). A pointer array is employed to relate, for each neuron, the subset of
rules that it is associated with and this is called the neuron-rule map vector.

– Synapse matrix, SyΠ . It has a column per neuron i, and a row for every
neuron j such that (i, j) ∈ Syn (there is a synapse). That is, every element
of the matrix corresponds to a synapse or null, given that the number of rows
equals to the maximum output degree in the neurons of the SN P system
Π, and padding is required.

– Spiking vector is modified, containing only m positions, one per neuron, and
stating which rule 0 ≤ r ≤ n is selected.

2.4 Graphics Processing Unit (GPU)

Graphics Processing Units (GPUs) are compute units designed to perform ren-
dering of 3D visual effects on a 2D screen.[17] Graphics workloads are highly
parallel, which in turn makes the GPUs also suitable for other general purpose
parallel workloads. [12] In GPU programming models, we refer to the CPU and
its memory as the host while the term device is used denote the GPU and its
own memory.[13] Parallel programs ran on the GPU are referred to as kernels.
The kernels are concurrently executed on threads which are the basic unit of a
GPU that can run a single function.[12]

3 Related Works

Much work has been done in finding problems that can be solved using SN P
system models. Recent examples are methods of fault diagnosis in power systems
[22][23] and visual cryptography [16]. However as ”P systems are yet to be fully
implemented in vivo, in vitro, or even in silico.” [6], developing simulators on
electronic computers are necessary to validate P systems [2]. Several simulators
and representations developed for SN P Systems are discussed in the following
sections to analyze how they compare to each other.

3.1 CuSNP

CuSNP is a project which involves both sequential (CPU) and parallel (GPU)
simulators for SN P systems with delays [8]. For the sequential simulator, it used
C++ implementation while for the parallel simulator, it utilized CUDA.
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The matrix representation defined in [24] was modified to achieve an up to
50x speed up in a 512-input generalized sorting network over CPU only imple-
mentations. However, there are some downsides in using matrix representations
in simulating SN P systems. Matrix representation of SN P systems with a low-
connectivity-degree graph lead to sparse matrices, in other words, containing
more zeros than nonzero values. Sparse matrices downgrades the performance
of the simulators since it would waste memory and time [3]. Follow up research
on CuSNP utilized sparse matrix representations from [3] to reduce the memory
footprint of the simulator which allowed simulations of larger SN P systems than
was previously supported [1].

3.2 WebSnapse

WebSnapse is a web-based SN P system simulator that aims to provide visu-
alization of SN P systems for building and running computations [10]. It used
the matrix representation extension discussed in [8] to account for SN P systems
with delays.

Since the current configuration of WebSnapse is saved into local storage, the
number of time steps that an SN P system simulation can run is limited by the
amount of local storage available, which varies based on the web browser that
the user is working on. This means that the number of rules, neurons, spikes
and length of characters consumed by the rules will considerably impact the
amount of data stored. Further work considered by the authors to improve the
performance of the simulations would be the integration with a GPU simulator
running on a web browser [20]. Additionally, a current work in progress of the
extension of WebSnapse that have additional features and is more user-friendly,
is being developed in parallel with this work (extension of GPUSnapse) and it
was a great help in understanding the simulation of SN P Systems. Using it also
helped to check the validity of our tests, further discussions of this can be found
in Section 5.2.

3.3 GPUSnapse

Simulators like CuSNP use CUDA as a platform to make performant SN P
system simulations but with the limitation of being restricted to only computers
with CUDA capable GPUs while web based simulators such as WebSnapse are
more accessible but only use CPUs which dont fully utilize the parallelized nature
of SN P systems. GPUSnapse aims to create a web simulator that harnesses
GPUs with the aim of providing better performance than current CPU based
web simulators and making it more accessible than traditional native simulators
by exploiting the WebGL framework which is designed to render graphics on the
browser [20].

Two algorithms were used: the algorithm defined in [6] which simulate Non-
Deterministic SN P Systems without delays and a modified algorithm from [8]
which simulate Deterministic SN P systems with delays. In the first mentioned
algorithm, the web based GPU simulator was able to achieve an up to 2x speedup
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compared to CPU based simulations while in the second algorithm, GPU simu-
lations were slower than CPU simulations due to overhead on the browser and
WebGL texture computations.

To utilize the WebGL framework in implementing the GPU algorithms,
GPUSnapse used the GPU.js framework. GPU.js is a JavaScript library for Gen-
eral Purpose computing on GPUs (GPGPU) that can run in both websites and
in Node.js. It serves as the bridge between code written in JavaScript to GPU
specific code by transpiling JavaScript functions into shader language used by
the GPU. [18]

A kernel in GPU.js is a special function that runs on the GPU in parallel
usingWebGL. The key method in GPU.js is the gpu.createKernel() method that
creates a kernel and takes in as arguments the kernel configuration such as output
format and most importantly, the operations we will be running on the GPU.
The kernel function acts as a loop and exposes this.thread.x and this.thread.y
which we use to determine on which matrix element are we operating on.

Using GPU.js, three kernels were implemented using the gpu.createKernel()
method which all ran on the GPU. The kernelmultSpikingTransition [21] takes
in the Spiking Vector generated from the current configuration vector and the
rules and performs a parallel matrix multiplication in the GPU to get the transi-
tion net gain vector. The kernel columnarAdd adds the current configuration and
the transition net gain vector from multSpikingTransition to get the next con-
figuration vector. To avoid wasting time on host to device data transfers, a com-
bined kernel [21] was created that takes in the results of multSpikingTransition
kernel directly to columnarAdd which keeps the computations entirely in the
GPU to avoid the overhead present when transferring data from CPU host to
GPU device and vice versa.

To better visualize the kernel functions, the kernel schema is presented in Fig-
ure 2 [21]. The creation of the kernels start by the call to getConfigGPU(). All
the kernel functions are inside it. We call on the compute function which uses the
method, gpu.combineKernels(), to lessen the performance penalty of utilizing
two kernels. Inside this compute function, the columnarAdd kernel is called and
lastly, themultSpikingTransition kernel is called to be passed as a parameter to
columnarAdd. To better understand the structure of the kernel usage, the source
code of GPUSnapse can be viewed at https://github.com/Secretmapper/gpusnapse.

The laptop computers used in the experiments from [20] and [21] are no
longer available for this present work. Instead, the present work compares the
implementation from [20] and [21] to our present work using another set of
computers.

4 Optimized Sparse GPUSnapse

The following section discusses the development of the optimized GPUSnapse
that uses sparse matrix representation. The source code can be found in here.

https://github.com/Secretmapper/gpusnapse
https://github.com/accelthreat/sparse-optimized-gpusnapse
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Fig. 2: GPUSnapse Kernel Schema [21]

Fig. 3: Optimized Sparse GPUSnapse Architecture
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4.1 GPU.js

The optimized GPUSnapse still uses GPU.js as its way of utilizing the GPU for
matrix computations for SN P systems on the web. GPU.js is a JavaScript library
that uses WebGL to access the GPU for General Purpose computing [18]. This
is done by transpiling regular JavaScript functions into shader language than
can be ran by WebGL to produce a matrix result.

4.2 Architecture

Figure 3 shows the main architecture of the Optimized GPUSnapse and the
boundaries between CPU and GPU. The function, getConfigGPU(), takes 6
inputs in optimized sparse representation: config, spikingVector (spikingMatrix
for non-deterministic), ruleVector, synapseMatrix, neuronRuleMapVector, and
ruleExpVector. By utilizing the kernel function detailed in algorithm 2, it pro-
duces the next config. This config goes out of the GPU back into the CPU
to the function, generateSpikingV ector(), (generateSpikingMatrix() for non-
deterministic) in order to produce the next spiking vector (spiking matrix for
non-deterministic). It is in this part that we encountered problems in optimiz-
ing the algorithm to eliminate the device-host-device transfers which incurs a
big performance penalty. In the process of optimizing this part, library issues
were encountered concerning the generation of spiking vectors inside the GPU
directly which we are unable to find a solution for due to lack of experience and
lack of information regarding GPU.js.

4.3 GPU Algorithm

We present the two algorithms: deterministic and non-deterministic, both with-
out support for delays, and both utilize optimized sparse matrix representation
from [4].

Algorithm 1 shows the Deterministic Algorithm. Note the symbols: SN P
System Π, initial configuration vector C0, rule vector RuΠ , rule expression vec-
tor rExpV (this is just the regular expressions for the rules), synapse matrix
SyΠ , neuron-rule map vector nmV , and spiking vector Sk for the kth configura-
tion vector. First, the algorithm starts with getting inputs from the generation
of the benchmark SN P systems. For the deterministic algorithm in this work,
the benchmark used is the bitonic network sorting SN P System. The function
getF inalConfigOptimized is then called and this helps in the end-to-end com-
putation of the configuration vectors. Inside, the spiking vectors are computed
and passed on to the loop. The while loop would go on until the input maximum
run, maxRun, is reached and the spiking vector computation is finished. Inside
the loop, the function, getConfigGPUOptimized() (see Algorithm 2) is called
and the spiking vectors and the last computed configuration vector is passed
on as parameters (along with the original rule vector and synapse matrix) to
compute for the next configuration. After the while loop, the last configuration
vector is returned.
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Algorithm 1 Optimized Deterministic Algorithm

Input: C0, RuΠ , rExpV SyΠ , nmV , and Sk

Output: Last configuration vector of the SN P System Π

1: Get inputs C0, RuΠ , rExpV , SyΠ , and nmV generated from benchmark SN P
Systems

2: function getFinalConfigOptimized( C0, nmV , rExpV , RuΠ , maxRun) ⊲
Call to a function

3: Sk ← generateOptimizedSpikingV ector(C0, nmV, rExpV ) ⊲ compute for the
spiking vector

4: iteration← 0 ⊲ initialize iteration number
5: while iteration ≤ maxRun and isComputationNotDone(Sk)
6: nextConfig ← getConfigGPUOptimized ⊲ compute for the next config

vector
7: Sk ← generateOptimizedSpikingV ector ⊲ compute for the Sk of the

computed nextConfig
8: end while

9: return Ck

10: end function

We discuss further the kernel functions in getConfigGPUOptimized(). It is
divided into three sub-functions. The first one is getSubConfig which takes in
as inputs spiking vector sV , rule vector rV , and synapse matrix sM . At line 5,
it gets j, the index of rule that is activated from the spiking vector and in the
following line prematurely terminates the function if j is not a valid rule index. At
line 9, it extracts the tuple [c, p] from the rule vector which contains information
on how much spikes are consumed and produced for the given neuron. From
lines 10 to 16 is the main logic of the function. The function checks if thread.x =
thread.y which implies that the current neuron is the one consuming the spike,
we return −c to indicate this change. If thread.x 6= thread.y, the function checks
using the synapse matrix if the neuron is connected. If the neuron is connected,
then we return p to indicate that this neuron has received p spikes from the
neuron that used this rule. If the above two cases are met, then the neuron the
function is currently on is not the neuron that used this rule nor a connected
neuron, therefore the current neuron is unaffected and we return 0.

The second function columnarAdd sums up a 2D matrix’s rows per column
with a specified initial vector in parallel. This is used to combine the changes to
each neuron made by different rules in order to produce the next configuration
vector.

For the non-deterministic algorithm (see Algorithm 3), it has more or less
the same structure as Algorithm 1 except that the CPU implementation has
to go through a for loop to compute for each spiking vectors possible for the
given configuration. Compared to the GPU implementation, which is made to
be parallel and computes and returns a spiking matrix SMk consisting of all
the possible spiking vectors already. The vectors and techniques used for the
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Algorithm 2 getConfigGPUOptimized

1: function getConfigGPUOptimized(Ck, Sk, RuΠ , SyΠ)
2: configMatrixLength← Ck.length
3: function getSubConfig( Sk, RuΠ , SyΠ)
4: PAD ← −1
5: j ← Sk[this.thread.y]
6: if j = PAD then

7: return 0
8: end if

9: [c, p] = RuΠ [j]
10: if this.thread.x = this.thread.y then

11: return −c
12: else if SyΠ [this.thread.x][this.thread.y] 6= PAD then

13: return p
14: else

15: return 0
16: end if

17: end function

18: function columnarAdd(newConfig, oldConfig)
19: sum← oldConfig[this.thread.x]
20: for i = 0, 1, . . . , configMatrixLength do

21: sum← sum+ newConfig[i][this.thread.x]
22: end for

23: return sum
24: end function

25: function combineConfigs(getSubConfig, Ck)
26: return columnarAdd(getSubConfig(Sk, RuΠ , SyΠ), Ck)
27: end function

28: return combineConfigs(Ck, Sk, RuΠ , SyΠ)
29: end function
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generation of the spiking matrix and the configuration vectors are from [7], such
as the 1D array, Q. This array holds all the configuration vectors computed for
each spiking matrix, and that is why we have the marker indices, start and
end, to mark the current batch of configuration vectors. For all the computed
configuration vectors, the computation widens as it gets each of its corresponding
spiking matrices. The loop goes on until the iterations reach 5, as the benchmark
SN P systems, the non-uniform solution to subset sum, is sure to stop at 5 steps.
After the while loop, we return the last batch of configuration vectors which are
all the possible last configurations of the SN P system.

The function getConfigGPUOptimized nd() is almost the same as in Al-
gorithm 2, except this time for the non-deterministic algorithm, the input SMk

is 2D instead of Sk which is 1D. Thus, the getSubConfig outputs a 3D matrix
and the function columnarAdd accesses this 3D matrix. The overall output of
the function is a 2D matrix of configuration vectors.

5 Experiment Tests and Results

5.1 Testing setups

To perform the tests we used two computer setups:

– Setup 1: CPU: Ryzen 5 2600, GPU: Geforce GTX 1070 (discrete)
– Setup 2: CPU: Intel(R) Core i5-1135G7, GPU: Intel Iris Xe graphics (inte-

grated)

5.2 Test inputs

For testing the deterministic algorithm we used the bitonic sorting network sys-
tem and its inputs from [8] as our benchmark. For each bitonic sorting network
size from 2 to 64, the tests were ran 5 times to get the mean runtime. For
non-deterministic algorithm, we used the non-uniform solution to subset sum
from [15] as our benchmark. Although the uniform solution to subset sum works
for the non-deterministic algorithm as well, we feel that the non-uniform so-
lution was suitable as our benchmark since the non-uniform solution is better
able to maximise the resources of the GPU for parallel computations. For each
subset size from 3 to 9, we randomly chose values from 50 to 100 as our el-
ements to our subset. We did this by running our python generator program,
Subset Generator.py, which generates a txt file for each subset size which we use
as our input to our main program. Each input txt file were also ran 5 times to
get the mean runtime. The runtimes were measured by getting the difference be-
tween two calls of performance.now() function. Both the test setups were ran on
the unoptimized and optimized algorithms. The unoptimized algorithm is based
from [20] while the optimized algorithm was previously discussed on section 4.3.

The algorithms compute end-to-end configurations of the benchmark SN
P Systems. It is also important to note that before we moved on to run and
test bigger sizes, the validity of the resulting last configuration vector/s were
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Algorithm 3 Optimized Non-Deterministic Algorithm

Input: C0, RuΠ , rExpV SyΠ , nmV , and SMk

Output: Last configuration vectors of the SN P System Π

1: Get inputs C0, RuΠ , rExpV , SyΠ , and nmV generated from benchmark SN P
Systems

2: function getFinalConfigOptimized nd( C0, nmV , rExpV , RuΠ , maxRun) ⊲
Call to a function

3: iteration← 0 ⊲ initialize iteration number
4: Q← [] ⊲ initialize Q
5: SMk ← [] ⊲ initialize spiking matrix
6: Insert C0 to Q
7: start← 0 ⊲ mark the indices
8: end← length(Q)
9: while iteration ≤ 5 ⊲ benchmark SN P system is sure to end in 5 steps
10: for starting = start to end-1 do do ⊲ for each config vector, compute for the

spiking matrix
11: Ck ← Q[starting]
12: SMk ← generateSpikingMatrix Sparse(Ck, nmV, rExpV )
13: if GPU then

14: Q← ConcatQwithgetConfigGPUOptimized nd ⊲ store all computed
configs to Q

15: else

16: for k=0 to length(SMk) do
17: nextConfig ← getConfigCPUOptimized

⊲ compute for the next config vector
18: Insert nextConfig to Q ⊲ per computed config vector, store it to Q
19: end for

20: end if

21: end for

22: start← end ⊲ update the indices for the newer batch of config vectors
23: end← length(Q)
24: iteration← iteration+ 1
25: end while

26: return Q[start...end]
27: end function
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checked first. The work from [9] which is an extension of WebSnapse version 1
in [10] (can be found here: https://nccruel.github.io/websnapse extended/) greatly
helped in understanding the basics of our chosen benchmark SN P Systems.
XML files of smaller systems were first created and outputs of the configura-
tions were compared with the output of our extended GPUSnapse to check the
configuration correctness of our program. We made a bitonic SN P system of
size 2 and 4, and a non-uniform solution SN P system of subset size 3, for
understanding the basics. All of these can be found in our github repository:
https://github.com/accelthreat/sparse-optimized-gpusnapse

The tests currently works well within the sizes mentioned earlier for their re-
spective algorithms. This is because of being limited by the supported maximum
WebGL texture size of the browser that was used for the testing which is Google
Chrome, 16384 x 16384. Future work recommendation for this is discussed in
Section 6.

5.3 Estimating Memory Requirements

The memory was estimated by using a function derived from the array and ma-
trix sizes generated by our code. This is because measuring memory directly
introduces a lot of variability because of the way chrome introduces metadata
for array items. For an SN P system of m neurons and n rules:

Unoptimized deterministic algorithm:
Memory(m,n) = m+ 3n+mn
Optimized deterministic algorithm 1:
Memory(m,n) = m2 + 3m+ 2n

Unoptimized non-deterministic algorithm:
Memory(m,n, subsetsize) = m+ 2n+mn+ (2subsetsizen)
Optimized non-deterministic algorithm 3:
Memory(m,n) = 2m+ 2n+m2 + (2subsetsizem)

The 3D graph of the memory equations are shown in Figures 4 and 5. For
the non-deterministic algorithm, the subset size used for graphing is 9 since
this brings about the maximum difference in memory requirements between the
unoptimized and optimized algorithms. As we can see, from both of the 3D
graphs, the memory requirements for the optimized algorithm shows a propor-
tional growth as the number of neurons and rules increase. Meanwhile, the un-
optimized algorithm have high memory requirements despite having low number
of neurons.

5.4 Results

First, we present the plot of the memory requirements of the unoptimized vs
the optimized algorithm based on the values of our inputs for each input size

https://nccruel.github.io/websnapse_extended/
https://github.com/accelthreat/sparse-optimized-gpusnapse
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Fig. 5: 3D Graph of Non-Deterministic Algorithm Memory Requirements

(bitonic network size and subset size). The results are shown in Figures 6 and 7.
On both figures, unoptimized algorithm shows higher memory requirements than
the optimized algorithm. Comparing the result in the deterministic algorithms
to the non-deterministic, the former shows consistent growth for each bitonic
network size while the latter have peaks and dips. This is because from the
definition of the non-uniform solution to subset sum from [15], the number of
neurons and rules depends on the values of the subset, and from the discussion in
Section 5.2, it was mentioned that the values for each subset size were randomly
chosen. Certain input sets of size 6 (that is, with 6 elements) may have elements
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with smaller values than other input sets of size 5. The chosen values for each
subset can be seen in our repository in the file, readme subsetsum samples.txt.
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Fig. 6: Estimated memory use of unoptimized versus optimized Deterministic
Algorithm

Next, we present the results from the performance tests. Various tests were
done to compare the performance of the algorithms (unoptimized vs optimized)
between the two setups and the two processors (CPU vs GPU). We discuss first
the deterministic algorithms. Figures 8 and 9 show the runtimes of the unopti-
mized vs optimized algorithm using CPU on Setups 1 and 2, respectively. As
we can see, for both setups the unoptimized CPU shows a significant increase
around bitonic network size 16 and ends with a large difference in runtime in
bitonic network size 64. Almost the same trend can be seen in Figures 10 and
11 for Setups 1 and 2, respectively, where the unoptimized algorithm has sig-
nificant higher runtimes than the optimized. Both of the setups show the same
trend, except that Setup 2 shows higher numbers for the GPU tests compared
to Setup 1 because the former uses an integrated graphics while the latter uses a
discrete graphics card. Lastly, we compare all the results that we have into one
graph shown in Figures 12 and 13 for the two setups. For both setups we see
that the optimized algorithm shows better performance. Notice that the GPU
performance for the optimized is slower than the CPU. This would be further
discussed after the non-deterministic results are presented in the next paragraph.

For the non-deterministic results. Figures 14 and 15 show the runtimes of the
unoptimized vs optimized algorithm using CPU on Setups 1 and 2, respectively.
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Fig. 8: Running time of unoptimized CPU versus optimized CPU on Setup 1
(Deterministic)

For both of the setups 1 and 2, we can see that the optimized CPU performed
better than the unoptimized. We especially see bigger differences in their per-
formance as the subset size increase. Now for the GPUs, the results are shown
in Figures 16 and 17 for Setups 1 and 2, respectively. For both of the setups,
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Fig. 9: Running time of unoptimized CPU versus optimized CPU on Setup 2
(Deterministic)
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Fig. 10: Running time of unoptimized GPU versus optimized GPU on Setup 1
(Deterministic)

the same trend can be seen where the unoptimized GPU performs better than
the optimized GPU. This is because for the unoptimized non-deterministic GPU
implementation, it uses a single kernel unlike in the unoptimized deterministic
GPU implementation. This is to take into account the 2D spiking matrix which



20 Odasco, A., Rey, M., et al.

2 4 8 16 32 64
0

0.5

1

1.5

2
·104

Bitonic Network Size

R
u
n
n
in
g
ti
m
e
(m

il
li
se
co
n
d
s)

unoptimized GPU

optimized GPU

Fig. 11: Running time of unoptimized GPU versus optimized GPU on Setup 2
(Deterministic)
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Fig. 12: All Running Times on Setup 1 (Deterministic)

consists of all the possible spiking vectors per configuration vector. Meanwhile,
the optimized GPU uses two kernels and uses the combineKernels() method to
lessen the cost of having multiple kernels. However, the cost is still significant
and it shows in the results. To demonstrate this cost we ran a test that creates a
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Fig. 13: All Running Times on Setup 2 (Deterministic)

single, empty kernel. We ran the program a total of 45 times and got its average.
The creation of a single, empty kernel costs around 26 ms. Note that this does
not mean that the creation of any kernel only takes 26 ms as this is an empty
kernel and does not contain any computation.

For the CPUs vs GPUs, from the results mentioned above, we see consistent
trends that the CPUs perform better. This is because of the usage of multiple
kernels and the host-to-device transfers that happens when we compute for the
spiking vectors (for deterministic) and spiking matrices (for non-deterministic).
We were not able to compute accurately the cost for host-to-device transfers as
there is no method to do so in GPU.js unlike in CUDA. However, we confirm
these claims by performing tests for a single SN P system configuration only vs
two configurations and see how much they differ in terms of runtimes.

The configurations mentioned here are the same configuration vectors defined
in Definition 2. For more context, a configuration means getting the resulting
number of spikes for each neuron after executing an applicable rule per neuron.
For non-deterministic SN P systems, a configuration can have different results
because it will vary per the choice of the rule to execute.

For this test, one algorithm and setup are enough just to see the difference.
For each subset size, the program ran 5 times to get their average runtimes.
We did this test for the optimized non-deterministic GPU implementation on
Setup 2. The results can be seen in Figure 18. As we can see, the performance
of the computation for a single configuration is consistently between 100 to 200
ms for all subset sizes. This single configuration computation does not have
much host-to-device transfers as it only has to access the GPU to compute for
the next configuration once, and return the result. The spiking matrix is also
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Fig. 14: Running time of unoptimized CPU versus optimized CPU on Setup 1
(Non-Deterministic)
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Fig. 15: Running time of unoptimized CPU versus optimized CPU on Setup 2
(Non-Deterministic)

computed only once, thus, the consistency of the runtimes across the subset sizes.
Meanwhile for the computation of two configuration vectors, we have to wait
for the computation of the spiking matrix each time, and the data is transferred
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Fig. 16: Running time of unoptimized GPU versus optimized GPU on Setup 1
(Non-Deterministic)
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Setup 1: CPU: Ryzen 5 2600, GPU: Geforce GTX 1070

Network Size
CPU Time (ms) GPU Time (ms) Memory

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

2 1.2 0.96 1456.94 1698.2 60 66

4 3.48 1.09 710.14 679 1144 940

8 13.16 5.19 2976.12 2416.2 13800 11384

16 70.88 12.46 1326.48 1426.4 152208 114800

32 940 38.90 2321.48 2272.6 1370112 989792

64 8702.56 380.96 5948.36 4803.4 10758272 7589568

Table 1: Summary of Results for Setup 1

between host-to-device twice. Future work recommendation for this is mentioned
in Section 6.

6 Final Remarks

In this paper, we extended the GPUSnapse program in order to take advantage
of optimized sparse matrix representation to reduce memory consumption and
running time. We implemented 4 algorithms that simulate deterministic and
non-deterministic SN P systems for both CPU and GPU using the optimized
representation. From our tests we were able to observe an up to 1.97x speedup of
GPU runtime and a 22x speedup of CPU runtime using the optimized represen-
tation for deterministic SN P systems. We also observed an up to 30% reduction
in estimated memory usage for the optimized deterministic algorithms. For the
non-deterministic algorithms, we were able to observe a 6.64x speedup of CPU
runtime and an up to 24% reduction in estimated memory usage for the opti-
mized algorithms. For the GPU implementation, the optimized algorithm shows
promise already considering that it accesses and outputs a 3D matrix to com-
pute for all the possible last configuration vectors. Its performance can be further
improved by considering implementing it in a single kernel only. Note that, the
performance of all the GPU implementations would benefit if all of them can
be done in a single kernel. Since the algorithms presented in this work do not
support delays, it may be extended to support delays for future work.

The runtime of the simulations itself can still be improved by future work
by minimizing device to host transfers. This can eliminate a lot of overhead
when processing the next configuration from a previous one. A better way of
accessing the GPU for GPGPU purposes in the web could also be tackled as
the current approach of using GPU.js to exploit the graphics-focused WebGL
platform for computation purposes also introduces plenty of overhead which
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Setup 2: CPU: Intel(R) Core i5-1135G7, GPU: Intel Iris Xe graphics

Network Size
CPU Time (ms) GPU Time (ms) Memory

Unoptimized Optimized Unoptimized Optimized Unoptimized Optimized

2 1.32 1.44 1942.08 1755.48 60 66

4 8.60 1.34 615.32 635.42 1144 940

8 27.10 9.96 1072.10 992.64 13800 11384

16 102.84 16.80 1379.96 1237.26 152208 114800

32 1279.26 72.84 2596.92 2438.48 1370112 989792

64 5366.68 395.48 15394.56 7810.42 10758272 7589568

Table 2: Summary of Results for Setup 2

negatively impacts the runtime. In terms of limitations on texture sizes, this
can be improved by exploring different implementations where the arrays would
not reach the maximum supported texture size while accommodating bigger
benchmark sizes. The work can also be improved by exploring better and newer
technologies. WebGPU is one candidate to replace WebGL, as it is purposely
built to help web developers to use for general computing. It was announced in
2021 that WebGPU was available for developers to test and give feedback. But
as of February 2023, it is still in trial and not available to most web browsers.
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3. Mart́ınez del Amor, M.Á., Orellana Mart́ın, D., Cabarle, F.G.C., Pérez Jiménez,
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F.G.C., Adorna, H.N.: Simulation of spiking neural p systems with sparse matrix-
vector operations. Processes 9(4), 690 (2021)
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Amor, M.Á.: Cusnp: Spiking neural p systems simulators in cuda. Romanian Jour-
nal of Information Science and Technology (ROMJIST), 20 (1), 57-70. (2017)

9. Cruel, N., Coleen, Q.: Extension of websnapse: Enhancing the visual, web-based
simulator of spiking neural p systems presentations. CS 199 Reports, Department
of Computer Science, University of the Philippines Diliman (2022), accessed 2022-
06-13

10. Dupaya, A., Galano, A., Cabarle, F.G.C., R.T., D.L.C., I.H., M., K.J., B., P.L.,
L.: A web-based visual simulator for spiking neural p systems. In: Proceedings of
ICMC 2021, International Conference on Membrane Computing. Edited by Gy.
Vaszil, C. Zandron, and G. Zhang. pp. 264–295 (2021)

11. Fernandez, A.D.C., Fresco, R.M., Cabarle, F.G.C., de la Cruz, R.T.A.,
Macababayao, I.C.H., Ballesteros, K.J., Adorna, H.N.: Snapse: A
visual tool for spiking neural p systems. Processes 9(1) (2021).
https://doi.org/10.3390/pr9010072, https://www.mdpi.com/2227-9717/9/1/72

12. Garland, M.: NVIDIA GPU, pp. 1339–1345. Springer US, Boston, MA (2011)
13. Harris, M.: An easy introduction to cuda c and c++ (2012)
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