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Abstract In the modern knowledge economy, success demands sustained fo-
cus and high cognitive performance. Research suggests that human cognition
is linked to a finite resource, and upon its depletion, cognitive functions such
as self-control and decision-making may decline. While fatigue, among other
factors, affects human activity, how cognitive performance evolves during ex-
tended periods of focus remains poorly understood. By analyzing performance
of a large cohort answering practice standardized test questions online, we
show that accuracy and learning decline as the test session progresses and
recover following prolonged breaks. To explain these findings, we hypothesize
that answering questions consumes some finite cognitive resources on which
performance depends, but these resources recover during breaks between test
questions. We propose a dynamic mechanism of the consumption and recovery
of these resources and show that it explains empirical findings and predicts
performance better than alternative hypotheses. While further controlled ex-
periments are needed to identify the physiological origin of these phenomena,
our work highlights the potential of empirical analysis of large-scale human
behavior data to explore cognitive behavior.
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1 Introduction

A growing body of evidence suggests that human cognitive performance in
decision making [9,35], visual attention tasks [5,20,13], self-control [27] and
even morality [23] declines on relatively short time scales of hours and even
minutes. Recent studies of online activity demonstrated similar deterioration
in performance. For example, among the comments posted on a social media
site over the course of a single session, or answers to questions posted on a
question–answering forum, those written later in a session have lower quality:
they are shorter, less complex, and receive less feedback from others [37,10].
People also prefer to engage in easier tasks later in a session, e.g., skimming
posts, rather than reading them [22] or retweeting the messages of others,
rather than composing original messages [21]. One hypothesis advanced to
explain these findings is that cognitive performance is limited by finite re-
sources available to the brain. According to this view, the brain uses some
energetic resources for mental work, and upon depletion of these resources,
performance declines. Laboratory studies have linked impulsive behavior, the
loss of willpower and executive function (‘ego depletion’), with the consump-
tion of a finite resource [27,2], believed to be glucose [11,12]. However, these
works have been controversial, and alternative hypotheses exist [6,3,24,17],
including boredom and brain’s strategic choice to limit effort. The controversy
stems in part from the difficulties of measuring cognitive depletion and repli-
cating its effects in laboratory experiments [25] and in part from the lack of
clear mechanisms to characterize the depletion process.

In the current paper we explore the link between cognitive resources and
performance through mathematical analysis of large-scale behavioral data.
Specifically, we study performance on online practice standardized tests (SAT,
ACT, and GED) collected from a large cohort under natural conditions. The
data we study, obtained from grockit.com, contain records of 2.8 million at-
tempts by 180 thousand users to answer six thousand questions. The data
include the time a user started and stopped answering each question, the
question’s subject matter and outcome, i.e., whether the answer was correct,
incorrect, or skipped. Because of the importance of standardized testing in
determining student’s educational opportunities, understanding how to char-
acterize and maximize performance is an interesting question on its own right.
In this paper, however, we focus on the dynamics of test performance. Whereas
a previous study showed that time-of-day affects test performance [36], here
we demonstrate that the mere act of answering test questions impairs per-
formance and the ability to learn correct answers. In addition, we show that
while performance declines over the course of a test-taking session, it recovers
following prolonged breaks between sessions.

We argue that these empirical observations are best understood if answer-
ing questions consumed some finite cognitive resources on which performance
depends. We propose a dynamic model of resource depletion that is inspired
by mechanisms for energy metabolism in the brain, and show that it better
explains performance than alternate models. It also provides the foundation
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for estimating resource levels and predicting performance, and eventually even
developing strategies that optimize performance.

Modeling behavioral data presents many challenges, including size, noise
and individual variability. We partly account for this variability by rescaling
individual parameters and estimating them using a model fitting procedure.
Model fitting maximizes the explanatory power of the model, which is mea-
sured non-parameterically by mutual information between model variables and
behavioral outcomes.

The growing availability of behavioral data has opened the psychological
and cognitive sciences to new lines of inquiry from the computational perspec-
tive. The current paper’s contribution lies in illustrating some of the challenges
posed by working with big behavioral data, as well as the opportunities the
data offer for the new field of computational cognitive science.

2 Results

One of the main challenges in analyzing behavioral data is extreme individ-
ual heterogeneity. It is necessary to account for this heterogeneity to remove
excessive bias and variance from analysis [38,26,14]. Properly characterizing
variation between people requires sample sizes far larger than those typically
available in a laboratory setting, making real-world online data an exciting
and valuable tool for studying cognitive performance. Without such data, im-
portant trends are often obscured. For example, to test for performance de-
terioration, we might simply track user performance on the practice test over
time, but this reveals no trend.Although we expect all users to begin work-
ing on practice tests under different initial conditions, for example, whether
well-rested or having eaten, they may stop working for similar reasons, such
as fatigue, boredom, etc. Instead of aligning the time series of users based on
the time they started working, we align them based on the time they decided
to stop working and take a break, where we define a break as a period of at
least 5 minutes without answering questions (we find no notable variation in
effect size for breaks longer than 5 minutes). Using this alignment, we see a
systematic decrease in performance approaching a break (Figure 1a), even af-
ter controlling for user ability and question difficulty as described below. Note
that this occurs even if the users are not aware when they will take a break,
as the last question before the break is often never completed.

To partially account for individual heterogeneity, we first calculate the
probability P (u, q) that a user with net accuracy u correctly answers a ques-
tion with net difficulty q (% correct answers). Notice that when a question is
difficult, q has a low value, meaning that few users have answered it correctly.
User’s performance on an attempt a is P = δa − P (u, q), where δa = 1 if the
user answered the question correctly, and 0 otherwise. In this way, we can com-
pare the outcomes of different users answering different questions. An average
performance of 〈P〉 = 0 indicates a user answers questions correctly at the
same rate as we expect for those user/question combinations. Negative perfor-
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mance (P < 0) signifies a user is under-performing, and positive performance
(P > 0) signifies a user answering questions correctly more frequently than
expected. As users approach a break, their performance decreases (Figure 1a)
and the speed at which they answer questions also decreases until very near
break time (Figure 1b).

After answering a question on grockit.com, the user is presented with the
correct answer, regardless of the outcome, and thus he or she has the oppor-
tunity to learn both the solution method and the precise answer. If the user
is presented the same question again, it will have the same answer, since each
question/answer pair has a unique id, so questions with the same id will have
the same answer. To estimate learning, we search for the next question with
the same question-id attempted by the user. We limited the calculation only to
questions the user actually provided a response, so they had the opportunity
to be exposed to the correct answer. If users learned (or at least remembered)
the questions from previous attempts, they should be able to answer them cor-
rectly upon repeat exposure. However, we find a systematic decline in users’
accuracy as a function of time before a break they were exposed to the correct
answer (Figure 1c).

Conversely, the length of the break is highly correlated with performance.
As the time from the end of one question to the start of the next question in-
creases, the user’s relative performance increases (Figure 1d). That is, while the
absolute performance does not vary significantly as a function of time between
questions (or may even decrease due to “warm-up” requirements described
below), the relative change in performance from the previous question to the
next one increases with the between-question time interval. This suggests that
longer breaks between questions are associated with under-performance, and
the worse the under-performance, the longer the break the user takes, recov-
ering the performance after the break. The same trend holds for learning:
users appear to take longer breaks after their ability to learn the answer has
decreased (not shown).

To understand these observations and predict performance, we developed
two kinetic models of cognitive resource depletion that are inspired by recent
neuroenergetics models [20]. The first model, the “one-resource” model, was
motivated by work exploring the link between glucose and finite willpower [27,
12,11]. The model considers a single resource A, that decreases while the user
is working (i.e., attempting to answer a question) and recovers during periods
of rest (i.e., time interval between question-answer attempts). By implication,
A is the primary driver of performance [20]. The general form for the one-
resource model is

Ȧ(t) = −w1(A, t)δ(t) + r1(A, t)(1 − δ(t)), (1)

where the functions w1 and r1 represent kinetics of resource depletion during
work and recovery, respectively, and δ(t) = 1 when the user is working on a
question and 0 otherwise. The precise form of the kinetic functions w1 and r1
were chosen to represent enzyme-catalyzed kinetics with anomalous diffusion
(see Methods).
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Emerging evidence suggests that glucose may not be the primary energy
source for neurons engaged in intensive activity; instead, lactate metabolism
may be more important for this function [15,1,7,4,34]. This motivated us
to construct a second model of cognitive depletion. This model considers a
primary resource A, which is responsible for performance but is normally low
during rest conditions. Engaging in the task consumes resource A, but also
causes conversion of a secondary resource B into A [15,1,8,39]:

Ȧ(t) = −f(A, t) + w2(A,B, t)δ(t) (2)

Ḃ(t) = −w2(A,B, t)δ(t) + r2(B, t)(1 − δ(t)), (3)

where f is the depletion rate of primary resource A, w2 is the conversion rate
of a secondary resource into a primary resource, and r2 is the rate of recovery
for secondary resource.

Both models are parameterized by rate constants, which were estimated
using model fitting procedure (see Methods) by maximizing the explanatory
power of the model, i.e., by maximizing the mutual information between the
dynamic values of A or A,B and the outcome of the corresponding question
(correct or incorrect). Mutual information MI is the reduction in entropy of
a random variable achieved by knowing another variable. The advantage of
using mutual information, rather than another quantity, in the optimization
procedure, is that it does not require knowing the precise way that hypothetical
resources translate into performance to find parameters that maximize the
explanatory power of the model.

As mentioned earlier, a significant technical challenge in modeling human
data is the large variation among users. In our sample, users differ substantially
in 1) the number of questions they attempt, 2) the length of time they worked
without a break and 3) the speed of answering a question. To handle individual
heterogeneity, we characterized each user by two performance-independent
parameters. First, to quantify whether a user was faster or slower than average,
we measured the mean time taken by each user to answer a question correctly
relative to the population’s average time to answer that question correctly.
Second, as a proxy for the maximal amount of the available cognitive resources,
we measured the longest time each user spent answering a question correctly.
Each user’s rates were scaled based on these two numbers, as described in
Methods. This user-specific scaling is based only on the observed time series of
user’s answers and is not an explicit fitting step nor post-hoc constraint on user
performance (beyond knowing they answered at least one question correctly).
This scaling procedure resulted in significant improvement of MI estimates
(> 5 fold improvement) and clearly shows that underlying user heterogeneity
must be incorporated in any study of cognitive depletion.

The two-resource model, where the driver of cognitive performance is a
primary resource that is converted from a secondary resource, better links
many important performance-related metrics to available resources than the
one-resource model. Table 1 reports mutual information between actual user
performance and resources estimated by the one-resource and two-resource
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models. The two-resource model accounts for 12% of the variance in user’s
performance on a question, compared to the one-resource model, which ac-
counts for just 5% of the variance. Similarly, the two-resource model explains
16% of uncertainty in whether or not a user will answer the same question cor-
rectly in the future (learning). In contrast, the one-resource model accounts
for only 3% of uncertainty in learning. The two-resource model also explains
16% of uncertainty in how long a user will spend between questions and 8%
of how long a user will spend answering a particular question, knowing only
the resources available at the beginning of the question, compared to the one-
resource model, which explains 4% and 2% of the variance respectively.

After optimizing, we used the models to estimate the levels of resources
in users at the beginning and end of each question they answered from a
time series of their question-answer attempts. Figure 2 shows how various as-
pects of performance depend on the estimated resources of the two-resource
model. The two lines in each subplot correspond to the estimated levels of
resources users have when they start working on a question and at the end
of the question. Answer-speed is determined by both primary and secondary
resources (Figs. 2a and 2b). The more of these users possess, the faster they
answer questions. As resources decline, answer speeds decline, but below a
certain threshold users answer questions very rapidly relative to the average
time they spent on the questions. At these levels of the primary resource,
relative accuracy also declines rapidly (Figure 2e). In situations when perfor-
mance is saturated, differences in resources between the beginning and end
are not important; hence, the lines overlap. Together, these observations sug-
gest that when their primary resources are too low, they get rapidly depleted
over the course of working on questions, leading to decreased accuracy on an-
swers users produce as they guess answers. They answer quickly, but at the
expense of accuracy. Similarly, when their primarily resources are low at the
end of the question (when the correct answer is revealed), users may have more
difficulty remembering or learning correct answers to questions, as shown in
Figure 2c. This is consistent with primary resource being the driver of perfor-
mance. Note that performance does not suffer as much when primary resource
is low at the beginning of the question, which could indicate either depletion
or the user starting off in a cold state, i.e., with low initial resources. In the
former case, performance will be negatively impacted by depleted resources,
while in the latter case, primary resource levels will increase over the course
of the question-answer attempt due to conversion of the secondary resource.
This will result in improved performance after a brief “warm-up” period.

Secondary resources change more slowly, hence, the levels at the beginning
(i.e., when users start working on a question) and end of a question are highly
correlated and those lines overlap. Low secondary resources constrain primary
resources, which tends to lead to lower performance.

To check whether our findings could be explained by another—non-resource—
feature, we tested alternative hypotheses. A commonly proposed explanation
for performance decrease posits that people are sensitive to their near-term
success, for example, measured by the fraction of the previous five questions
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they answered correctly. When performing successfully, they may be highly
motivated and engaged, but when success declines they may become discour-
aged and inattentive. Could the resource model simply be proxy for the pos-
itive or negative feedback a user receives by answering questions correctly or
incorrectly? To test this hypothesis, we used conditional mutual information,
which is defined as CMI(X,Y |Z) = MI(X, [Y Z]) − MI(X,Z). If variable
Y (e.g., current available resources) is merely a proxy for variable Z, (e.g.,
near-term success), then CMI(X,Y |Z) will be smaller than MI(X,Y ). In
the extreme case where Y = Z, CMI(X,Y |Z) = 0. If, on the other hand, Y
and Z together explain X (e.g., performance) better than either alone, than
CMI(X,Y |Z) will be larger than MI(X,Y ).

We find that the two-resource resource model cannot be explained by near-
term success: the CMI between performance and resources conditioned on
successfully answering the previous five questions is statistically unchanged
from MI between performance and resources, shown in Table 2. We also find
that the user’s parameters used to fit the model do not explain the mutual
information between performance and resources, nor does the difficulty of the
question, nor the time spent on the question. We also test if learning can be
explained by the time spend on a question or the time until the next question
(i.e., potentially forgetting the answer). We can conclude that the explanatory
power of resources is not a simple proxy for any of the alternative explanations.
In fact, there is a distinct synergy in knowing both of these features. For
example, the intuition that a user may get discouraged by a streak of poor
performance, leading them to take a longer break, may also be correct, but
it does not rule out the resource model. We also note that results cannot be
attributed to random chance (Supplementary Information).

3 Discussion

Modeling results suggest that performance on practice standardized tests is
tied to levels of cognitive resources. As these resources are depleted by sus-
tained mental effort, performance and answer speeds decline, and users have
more difficulty learning correct answers. This is consistent with depletion re-
sulting in mental fatigue, which degrades performance. In addition, the model
suggests that performance may be critically tied to a resource that is nor-
mally low when the user isn’t on-task, requiring a “warm-up” period to raise
its levels sufficiently, e.g., solving a simple problem before the start of a test
session. The two-resource model better explains observed performance on test
questions than alternative theories. Even in uncontrolled environments of at-
home practice tests, it succeeds at explaining over 10% of the uncertainty
in performance. While small in absolute size, this effect is significant to the
user, because it changes what is normally a roughly 50:50 odds of answering a
question correctly into roughly 70:30 odds. Therefore, it may be possible to im-
prove performance on standardized tests simply by better managing available
resources. Granted, the one-resource model may have a simple parsimonious
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interpretation: a cognitive resource, specifically glucose [12,11], being directly
depleted by answering questions. However, it cannot explain as many auxiliary
observations nor produce a similar improvement in question answer odds as
the two-resource models. This may explain reported inconsistencies linking ego
depletion to levels of glucose in laboratory studies [25]. Our findings suggest
an alternate mechanism, where the driver for cognitive performance is drawn
from a secondary resource. This is consistent with how the lactate shuttle is
believed to function in brain metabolism [30].

Other phenomena not linked to cognitive resources could have similar be-
havioral outcomes. For example, instead of consuming a resource, cognition
could be inhibited by accumulated stress hormones, dopamine, etc. [31,6]. In
addition, top-down processes of cost-benefit analysis for continuing work [6]
could also account for some of our observations. However, we specifically tested
proxies of motivational factors, which did not present significant explanatory
power compared to the two-resource model. Further controlled experiments are
required to shed more light on the physiological origin of these phenomena.

Human behavior data are becoming increasingly available, offering new
opportunities and new tools for addressing cognitive science questions. When
combined with controlled laboratory studies, data analysis promises to acceler-
ate the development and testing of theories of human behavior and cognitive
performance. The main challenge in making the most of these data is con-
trolling for individual variability. This paper described our solution to this
challenge. By applying these data analysis and modeling techniques to large-
scale practice test data, we find that cognitive depletion may explain some
of the observed variance in test performance. By accounting for individual’s
cognitive resources, we will be better able to predict cognitive performance
and devise strategies for improving it.

4 Methods

4.1 Data Availability

The data were obtained from the Kaggle “What do you know” competition
(http://www.kaggle.com/c/WhatDoYouKnow) provided by grockit.com. The
full data are available at the site, along with the schema. For the description
of the data and how it was used in the competition, see [33,19,16].

4.2 Data Processing

For the purpose of the present work, we utilized the following entries: outcome,
user id, question id, track name, round started at, deactivated at. With this
information, we can determine when (round started at) a user (user id) started
each question (question id) and when they answered it (deactivated at) and
if they answered correctly, incorrectly, skipped it, or abandoned it (outcome).

http://www.kaggle.com/c/WhatDoYouKnow
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For our analysis, we restricted our attention to users who answered at least
15 questions, leaving us with 180 thousand users who answered 6 thousand
different questions, for a total of 2.8 million different attempts. By comparing
correct answers with question id, we determined that each question id has a
unique answer.

To determine if a question was a typical math or verbal question, we as-
signed each track name to either math or verbal as follows. Tracks ‘ACT
Math’, ‘ACT Science’, ‘GMAT Quantitative’, and ‘SAT Math’ were tagged
as math, while the tracks ‘ACT English’, ‘ACT Reading’, ‘SAT Reading’, and
‘SAT Writing’ were tagged as verbal. Unless indicated otherwise, we calculated
separate statistics, rates, and outcomes for each user for math and for verbal,
based on the obvious observation that people have different competencies.

As is typical of all real-world data, some idiosyncrasies exist in the grockit.com
data. For example, sometimes the data indicated that a user answered a ques-
tion after they started the next question (potentially by navigating back to
the previous question). In this case, we consider the time when the user starts
question i + 1 as the definitive end of their work on question i. When a user
abandons a question, e.g. shutting down their computer, stopping work en-
tirely, or timing out on the question, the question is marked in the data as
‘abandoned.’ We consider the user to be working up to the point at which
the data states the user deactivated the question, even if they abandoned the
question. We did not attempt to guess whether the user was actually thinking
about the question, nor did we attempt to place any artificial upper bounds
on the time a user would spend on a question, to avoid investigator created
bias. Given this, we considered the time each user spent on the ith question,
Ti as

Ti = min(deactived ati, round started ati+1)− round started ati. (4)

If a question was marked as skipped, this indicates that the user made the
affirmative choice to skip a question. Although it is not technically a wrong
answer, it is not the correct answer, and it is counted as such unless noted
otherwise.

4.3 Dynamic Models of Resource Depletion

We explore two dynamic models of cognitive resource depletion. The one-
resource model considers a single resource A, that gets depleted while the user
is answering test questions and recovers during time periods between question-
answer attempts:

Ȧ(t) = −w1(A, t)δ(t) + r1(A, t)(1 − δ(t)), (5)

where w1 is a function representing kinetics of depletion during work, r1 is the
kinetics of recovery, and δ(t) = 1 when the user is recorded as working on a
question and 0 otherwise. The precise form of the kinetic functions were chosen
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to represent enzyme-catalyzed (Michaelis-Menten) reactions with anomalous
diffusion [40]. Specifically, we use the following expressions for rates:

w1(A, t) =
k

tρ
A(t)

(Km +A(t))
(6)

r1(A, t) =
kr
tρ

(Amax −A(t)), (7)

where Km is the Michaelis constant, kw and kr represent the forward and
reverse chemical reaction rates, and ρ is the exponent characterizing anomalous
diffusion. In the equation above, Amax represents the maximum amount of
resource A.

Emerging evidence suggests that glucose may not be the primary energy
source for neurons engaged in intensive activity; instead, lactate metabolism
may be more important for this function [15,1,7,4,34]. This motivated us to
construct a second model of cognitive depletion. We compare the model above
to a second model of cognitive depletion. This two-resource model considers a
primary resourceA and a secondary resourceB. Engaging in the task consumes
resource A, but also causes conversion of a secondary resource B into A:

Ȧ(t) = −f(A, t) + w2(A,B, t)δ(t) (8)

Ḃ(t) = −w2(A,B, t)δ(t) + r2(B, t)(1 − δ(t)), (9)

where f is the rate of consumption of primary resource A, w2 is the conversion
rate of a secondary resource into a primary resource, and r2 is the rate of
recovery for secondary resource. The functions in the two-resource model are:

f(A, t) =
kw
tρ

A(t)

KA +A(t)
(10)

w2(A,B, t) ≡
kb
tρ

(1−A(t))B(t)

KB +B(t)
(11)

r2(B, t) =
kr
tρ

(Bmax −B(t))(1 − δ(t)). (12)

The functional form of the parameters, although nontrivial, is a natural exten-
sion of the one-resource model, allowing for complex and anomalous enzyme
kinetics.

4.4 User Characterization

To account for user heterogeneity, we decided to fit one set of kinetic pa-
rameters, but each parameter was scaled for each user based on performance-
independent observable user behavior. First, we measured the longest time it
took each user to answer a question correctly,

TL = max
i∈correct

Ti, (13)
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where Ti is the time the user spends answering question i, determined as
in Eq 4. This restricts our investigation to users who answered at least one
question correctly. Although the user may sometimes get the right answer
purely by chance, we hypothesize that the user will only be able to answer
questions correctly when they have sufficient cognitive resources and that the
longest time they spend answering a question correctly will scale with the
total depth of their cognitive resources. Second, we measured for each user the
average time it took them to answer a question correctly, relative to the average
time it took all users to answer that question correctly. More specifically,

Tr =
1

Nc

∑

i∈correct

Ti/〈Ti〉, (14)

where Nc is the number of questions the user answered correctly, Ti is the time
the user spent on the ith question, and 〈Ti〉 is the mean time all users took to
answer that same question correctly. Thus, Tr reflects if a user is faster than
average or slower than average when attempting to answer a question. We
only consider correctly answered questions to remove the effects of skipping,
guessing (most guesses will be incorrect), and abandoning.

User parameters were constrained to fall between the 5th and 95th per-
centiles, which were 33s and 200s respectively for math TL, 29s and 240s for
verbal TL, 0.46 and 1.6 for math Tr, and 0.45 and 1.7 for verbal Tr. Parameters
falling below this range were automatically set to the 5th percentile for that
value, while those falling above the range were set to the 95th percentile. This
procedure removes pathological effects due to users who only guess, users who
answer questions abnormally slow, etc.

For the fitting procedure (detailed below), we scaled all of the users rates
as k → k/Tr, where Tr is specific to each user. In addition, we scaled Bmax →
Bmaxf0/Tr, where

f0 =

{

log(TL + 1), if ρ = 1
((TL+1)ρ−(TL+1))

(TL+1)ρ(ρ−1) , otherwise
(15)

In this way, rates for faster users who were able to work longer successfully were
different from slow users or users who could not maintain high performance
levels over extended periods. We also tried fitting each user separately, where
each user’s parameters was determined only from that user’s data, but we
found this to be inferior to the results from user-specific scaling Table 1. That
is, we find having 5 free-parameters and user-specific scaling produced superior
results than fitting 5 free-parameters per user, shown in Fig. 3. This is most
likely due to increased overfitting. To carry-out a test train split for user-
specific rate, we train on the first half of each user’s time series and test on
the second half. This is less robust than fitting on one set of users and testing
on another set of users, and more prone to over-fitting. However, there is no
alternative if you want to do user-specific rates.
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4.5 Mutual Information

Mutual information (MI) is the reduction in entropy (uncertainty) of random
variable X achieved by knowing another variable Y . For example, how much
information about an individual’s performance (X) do we obtain by knowing
the amount of cognitive resources available to him or her (Y )? MI is defined
as MI(X,Y ) = H(X)−H(X |Y ), where H(X) is the entropy of the random
variable X , and H(X |Y ) is the entropy of X given Y , and it is measured in
bits. Mutual information has the property that MI(X,Y ) = MI(f(X), g(Y ))
for invertible functions f and g [28], so it is not necessary to know the precise
way that hypothesized resources translate into performance to find parameters
that maximize the explanatory power of the proposed models. In contrast,
optimizing a regression model or Pearson correlation for parameter estimation
requires not only correctly modeling resources but also knowing how those
resources quantitatively translate into predicted performance, because R2 is
only maximized when predicted and observed results have an affine relation.
Contrast this to MI, where a large MI implies large explanatory power, even
if we do not know the precise mapping from X to Y .

To calculate mutual information, we utilized a variation of the method
described in [29]. That is, to calculate MI(X,Y ), we first performed a copula
transform on each dimension of X and Y . We then calculated the quantity,

MI(X,Y ) = −H([XY ]) +
1

10

10
∑

i=1

H([XỸi]) +H([X̃iY ])−H([X̃iỸi]), (16)

where H([XY ]) is the Renyi entropy with Renyi-exponent taken as 0.99999
(that is, a very close approximation to Shannon entropy), calculated according
to Pal et al. [29]. X̃i is a shuffled version of X , such that any correlation
between dimensions ofX or Y are destroyed, and i denotes the ith shuffle. This
version of mutual information was chosen because it demonstrated the most
robustness. Normal calculations of mutual information, calculated directly as
H(X)+H(Y )−H([XY ]) subtract entropy calculated from low-dimensionality
spaces from entropy calculated from high-dimensional spaces. Because bias in
entropy calculations vary with dimension, the shuffled version helps to cancel
out systematic dimensional biases.

4.6 Model Fitting

To determine the parameters to use for estimating resource levels, we first
divided the data into a training and test sets. The training set comprised of
250 users, each making at least 500 attempts at one or more question. Out of
the training set, we only measured the performance between the 2nd attempt
and the 5000th attempt (should the user make more than 5000 attempts), to
avoid overweighting the statistics with attempts from a small handful of users.
The test set comprised users who made at least 25 attempts, answered at least
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20% of the question correctly, and were not included in the training set. The
training set was used to find parameters, and the results in the tables, figures
and tables were all produced from the test set. As stated in the section on
user characterization, the global rates were scaled for each user according to
performance-independent observations.

To find parameters, for each user in the training set, we evaluated their
resources at the beginning and end of each attempt using Eqs. 5 or 8. As
mentioned above, we calculated resources for math and verbal questions sep-
arately, so we really calculate two different independent sets of resources for
each user. When a user is working on a math question, we consider that to be
recovering for the verbal resources, and vice versa. For the purpose of compar-
ing resources to performance, we only compare the resource that matches the
type of question. So, if the user is attempting to answer a math question, we
compare the outcome with the resources connected to math.

We then optimized the parameters using the NLopt optimization library [18]
with COBYLA algorithm [32]. The resulting parameters were all constrained
to be between 0.0001 and 2.0. The results of the fitting were as follows: for the
one factor model, k = 0.078, kr = 0.21, ρ = 1.0,Km = 0.44867, and for the two
factor model, kw = 0.003, kb = 0.118, kr = 0.00125, Bmax = 0.27, ρ = 0.03. In
addition, we fixedKA = 0.858 andKB = 0.1, which were values taken from [8].

4.7 Odds Adjustment

Entropy for a binary outcome (correct or incorrect) is defined as S = −p log2(p)−
(1 − p) log2(1 − p), where p is the probability of answering the question cor-
rectly. For all users, averaging over all questions, the total entropy for getting
the question correct or not is roughly 1 bit, meaning without knowing any-
thing about the user or the question, the user has a roughly 50:50 chance of
getting the question correct. As we report in the main text, the two resource
model accounts for roughly 12% of performance variance, so once you know
the resources at the beginning of the question, the remaining entropy is 0.88
bits. Thus, we have 0.88 = −p∗ log2(p

∗)− (1−p∗) log2(1−p∗), where p∗ is the
probability of answering the question correctly (or incorrectly). Thus, p∗ is 0.7
or 0.3. Therefore, knowing the resources, or estimating them using the model,
changes the odds the user answers that question correctly 50:50 to 70:30 (high
resources) or 30:70 (low resources), even without incorporating anything else
about the question or user. The user may then make adjustments in their
test-taking strategy to improve the overall score.
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Fig. 1: Observed relationships between performance and time-to-

break and length-of-break. Individual plots show that (a) relative accu-
racy of answers, (b) relative answer speed, and (c) learning all decline as users
approach the time they decide to take a break. On the other hand, (d) perfor-
mance improves more following longer breaks. Note that (b) shows only part
of the range on the y-axis. Error bars represent standard errors.
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Fig. 2: Key performance measures as a function of estimated cog-

nitive resources. Plots show relative answer duration as a function of (a)
primary (P ) and (b) secondary (S) resources estimated by the two-resource
model. Similarly, (c), (d) show learning probability and (e), (f) show per-
formance (relative answer accuracy) as a function of estimated primary and
secondary resources respectively. Finally, we also show (g) mean question dif-
ficulty vs primary resource. Error bars show standard errors.
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Fig. 3: Fitting separate rates for each user produces a lower mean mutual
information than the mean mutual information produced by having a single
set of free parameters combined with user-specific scaling, as described in
the text. The dashed line shows the mean mutual information for the user-
specific scaling results, 0.12. Having 5 parameters per user results in significant
overfitting. As described in the text, user-specific scaling is not a fitted free
parameter.

Two-Resource Model One-Resource Model

Quantity Bits Std. Dev. % of Entropy Bits Std. Dev. % of Entropy
MI(A;R) 0.12 0.015 12% 0.04 0.006 4%
MI(L;R) 0.10 0.02 16% 0.03 0.014 3%
MI(T;Rb) 0.51 0.05 8% 0.15 0.01 2%
MI(∆T;R) 1.18 0.06 16% 0.27 0.016 4%

Table 1:Model comparison using Mutual Information.Mutual Informa-
tion (MI) between observed performance and cognitive resources R, estimated
by a model, provides a measure of the explanatory power of the model. Perfor-
mance variables are A (questions answered correctly), L (learned correctly),
∆T (time until next question), T (time spent on question). The variable R
represents resources at the beginning and end of question, while Rb specifically
represents resources at beginning of question. The two-resource model better
explains observations, capturing more information about them (in bits) and
explaining more of the entropy.
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Alternative Hypothesis Bits Std. Dev.

CMI(L;R|∆T) 0.14 0.03
CMI(L;R|T) 0.10 0.03
CMI(A;R|U5) 0.11 0.02
CMI(A;R|P) 0.18 0.02
CMI(A;R|T) 0.14 0.02
CMI(A;R|D) 0.14 0.02
CMI(∆T;R|U5) 1.36 0.06

Table 2:Comparison of the explanatory power of alternative hypothe-

ses. Conditional Mutual Information (CMI) gives mutual information be-
tween observed performance and cognitive resources R, conditioned on the
operative variable of the alternative hypothesis. Performance variables are A
(questions answered correctly), L (learned correctly), and time ∆T until next
question,. Alternative hypothesis variables are time spent on the question (T );
average performance on previous five questions (U5), parameters defining user
(P ), and difficulty of the question (D). Alternative hypotheses do not rule
out cognitive depletion, because CMI between performance and resources
conditioned on alternative hypothesis is statistically unchanged. For example,
conditioning on successfully answering the previous five questions (U5) does
not change mutual information between resources and performance.

Tables

Additional Files

Additional file 1 — Supplementary Material

Additional regression fits and results of diagnostic tests.
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