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Abstract
Consumer-Generated Media (CGM) are useful for sharing information, but infor-
mation does not come without cost. Incentives to discourage free riding (receiving 
information, but not providing it) are, therefore, offered to CGM users. The public 
goods game framework is a strong tool for analyzing and understanding CGM and 
users’ information behaviors. Although it is well known that rewards are needed for 
maintaining cooperation in CGM, the existing models hypothesize three unnatural 
hypotheses: the linkage hypothesis, unlimited meta-rewarder, and sanction without 
expectation. In this study, we update the meta-reward model to identify a realistic 
situation through which to achieve a cooperation on CGM. Our model reveals that 
restricted public goods games cannot provide cooperative regimes when players are 
myopic and never have any strategies on their actions. Cooperative regimes emerge 
if players that provide the first-order rewards know whether cooperative players will 
give the second-order rewards to the first-order rewarders. In the context of CGM, 
active posting of articles occurs if potential commenters/responders can ascertain 
that the user posting the article will respond to their comments.

Keywords  Public goods game · Consumer-generated media · Agent-based 
simulation

Introduction

Consumer-generated media (CGM) are the most active information-sharing plat-
forms in which users generate contents by voluntary participation. For example, 
Facebook provides an information-sharing platform in which their users freely 
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post their comments and enjoy responses by their readers. CGM reflect positive 
traits of the Internet, because, in CGM, aggregating users’ voluntary participation 
bears values, and thus, they have network externality in which the more active 
users are, the more the values of the CGM are. Although users’ motivations to 
generate contents are not only rational thinking but also intrinsic psychological 
minds including self-disclosure [27], brand image [13], and communication [24], 
institutional designs from the perspective of the rational and logical incentives 
should be considered, because inactivate and unsuccessful CGM are not so rare.

CGM rely on user-provided information and thus fail if information is not pro-
vided. Getting users to provide information generally requires effort costs includ-
ing time costs and click costs [18]. Therefore, CGM users are given incentives 
to discourage free riding, a situation in which users receive information, but do 
not provide it. While huge CGM never worry about freeriding, many managers 
of small-sized CGM pay attention to it. CGM can be regarded as a kind of pub-
lic goods game—a social dilemma game in which users may refrain from pay-
ing costs (that is, free riding)—although they could benefit substantially if they 
contributed.

To avoid the free-rider problem, many CGM adopt incentive systems for 
users to receive comments as appreciation for posting articles. These comments 
are considered rewards for contributing to the public goods game. Moreover, 
many real CGM systems provide Like buttons to react to comments, which can 
be regarded as meta-rewards. This is because comments also give psychological 
benefits to original article providers as well as Like buttons give psychological 
benefits to their receivers.

The public goods game framework is a strong analytical tool for understanding 
the contents which generate behaviors of users. Some studies insist that informa-
tion-sharing services in online networks have public goods game features [7, 8, 15]. 
Empirical studies have analyzed influences on the cooperative behaviors of reciproc-
ity and network structures in social media [10, 17, 21] and some data analyses con-
sider the effects of reputation systems on online markets [4, 30].

In public goods game research, kinship and reciprocity promote cooperation [19]. 
Sanctions, including punishments for free riding and rewards for cooperative behav-
ior, also encourage cooperation [3, 6, 16, 22, 28]. Theoretical analyses have pointed 
out that cooperation through sanctions cannot be maintained due to the second-order 
free riders, who cooperate but shirk sanction behaviors to non-cooperative others 
[20]. To avoid the second-order free riders, Axelrod [1] introduced a meta-punish-
ment to punish those who did not participate in punishing the second-order free rid-
ers. Despite this approach, some studies have pointed out that meta-punishments 
alone cannot maintain a stable cooperative regime [9, 31, 32]. Okada et  al. [20] 
extended the meta-punishment concept and exhaustively explored all combinations 
of meta-incentive systems, including meta-rewards as well as meta-punishments.

Toriumi et al. [26] used a public goods game model to show that meta-rewards 
are required to maintain cooperation. A meta-reward is a reward for those who gave 
a reward to cooperative users. Many CGMs implement a function that allows other 
users to express their gratitude to those who provided information, and the users 
who expressed their gratitude can also be given something as a reward. For example, 
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Facebook/Blog users can post comment to information-providers who mainly 
reply to these comments. Here, we regard comments as rewards and responses as 
meta-rewards.

However, when we consider Facebook and blog sites, there are three challenges 
to applying these theoretical second-order sanction system studies to real CGM 
empirically.

1.	 Linkage hypothesis: whoever performs the first-order sanction (rewards and pun-
ishments) also performs the second-order one.

2.	 No limitation of meta-reward doers: all users can give meta-rewards to all others.
3.	 Sanctions without expectation: users give rewards without considering their 

expectations for meta-rewards.

First, for the linkage hypothesis, which is adopted by Axelrod [1] first, there is a posi-
tive correlation between the probability of imposing the first-order sanctions and that 
of imposing the second-order sanctions. This hypothesis is needed for the theoretical 
rationale of meta-sanctions, because, if the second-order sanctions are independent of 
the first-order sanctions, the third-order free riders who shirk the second-order sanc-
tions only are possible, and thus cooperation through meta-sanctions collapses. Experi-
mental studies have no consensus on this linkage hypothesis. Some experiments sup-
port the linkage between the first-order sanctions and cooperative behaviors [11, 12], 
while others deny it [5, 29]. The linkage hypothesis between the first-order and sec-
ond-order sanctions is partially supported by an experiment of a one-shot public goods 
game [14].

We will model our CGM public goods game without assuming the linkage hypoth-
esis between the first- and second-order rewards. While a previous model [26] uses the 
same parameter, ri , as the probabilities of giving rewards and giving meta-rewards, our 
model separates the former probability from the latter.

Second, many of the theoretical models are different from real CGM in terms of 
meta-rewards. The theoretical models assume that all users can give meta-rewards, 
while only those who post an article can give meta-rewards in real CGM. For example, 
Facebook/blog sites allow replies to comments from all users, but in many cases, origi-
nal article posted user only replies to the comments. That is, the meta-reward actions 
are performed by the information providers, because the comments are for them, not 
for the others. No study has tested the effect of only permitting users who receive the 
first-order rewards to give meta-rewards. We, therefore, undertake this challenge in this 
study.

Third, we assume that people expect the consequences of their own actions. This 
tendency can apply to a reward action in CGM. When CGM users give rewards to oth-
ers, they are confident that the receiving users will respond with meta-rewards to them. 
They would not give rewards if they did not expect a meta-reward in return. This ten-
dency is natural in terms of reciprocal altruism; people act altruistically if they expect 
returns. In our model, we introduce a belief on giving meta-rewards to capture this 
tendency.
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Models and methods

For this study, we developed a new model that considers the three challenges of the 
previous models discussed above and propose a required definition of a system or 
an institution for resolving social dilemma problems in real CGM. In this section, 
we develop a model that reflects real CGM by extending the CGM model proposed 
by Toriumi et al. [25]. We then define an adaptive process of players in the model to 
explore feasible solutions of strategies for promoting and maintaining cooperation. 
Third, we introduce several scenarios to provide insight for managing real CGM 
by comparing their performances. Finally, we set parameter values to perform our 
simulation.

A restricted meta‑reward game model

We consider N agents playing a restricted meta-reward game. The game is run for a 
discrete time and each period is referred to as a round. In each round, all agents play 
three sequential steps in serial order. Using the case of Agent i as an example, Agent 
i has its own strategy denoted by (bi, ri, rri) , which we will explain later.

In the first step, the agent provides its own token into a public pool with probabil-
ity bi and otherwise does not. In CGM, a contribution and a non-contribution are, 
respectively, regarded as an information-providing behavior and a non-providing 
behavior. If a token is provided by Agent i, i must pay a cost �0 , also the other N − 1 
players receive a benefit, �0.

In the second step, rewards for providing a public good may occur. In CGM, post-
ing a comment to an information provider is regarded as a reward. If and only if 
Agent i provides a token, the other N − 1 agents consider whether or not they will 
give a reward to Agent i. Agent j(≠ i) gives a reward to Agent i with probability pri→j

 
and otherwise does not. This probability is calculated as pri→j

= � ⋅ rj , where rj is j’s 
own reward parameter and � is an expected rate of meta-rewards newly introduced in 
this model to consider the third challenge of the above-mentioned prior studies. If a 
reward is given, Agent i gains a constant benefit, �1 , while Agent j must pay a con-
stant cost, �1.

In the third step, meta-rewards for giving rewards may occur. In our model, 
meta-rewards from contributors are possible in the first step only to consider the 
second challenge of the previous studies, thus making this model a restricted game. 
In CGM, a reply to comments is regarded as a meta-reward. If and only if Agent i 
received a reward from Agent j, Agent i can decide whether to give a meta-reward 
to Agent j with probability rri , and otherwise not. While Toriumi et al. [25] assume 
that ri = rri , our model assumes that these are independent of each other to consider 
the linkage hypothesis. If a meta-reward is given, Agent j gains a constant benefit, 
�2 , while Agent i must pay a constant cost, �2.

Each agent plays the above three steps four times in each round. When all agents 
complete these steps, each agent’s final payoff at each round is regarded as its fitness 
value.
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Figure 1 illustrates the conceptual diagram of the model.

Adaptive process of strategy

At the end of each round, each agent evolves their own strategy. Although many 
evolution algorithms have been tested [9], we employ roulette selection as a selec-
tion mechanism, because it is one of the most basic selection methods adopted by 
Axelrod [1, 2].

To do so, a strategy, (bi, ri, rri) , is coded as a binary code and is regarded as a 
locus. Agent i randomly selected as a parent agent by roulette selection. The prob-
ability that Agent i is randomly chosen is defined as follows:

where vi, v̄ , and � are, respectively, Agent i’s fitness value, the average values of 
fitness of all agents, and the standard deviation of the fitness values of all agents. 
Value � is set to 0.0001 to avoid division by zero. This probability function shows 
that a strategy with a higher payoff tends to spread in the next generation. Next, the 
strategy parameters are converted to binary code as in Axelrod’s procedure [1].

After adopting this method, each binary code in the new locus may reverse one’s 
value (either 0 to 1 or 1 to 0) with a constant probability, 1% . The focal agent has this 
new locus as their own strategy in the next round.

Simulation scenarios

In the restricted meta-reward game, there is no incentive to give meta-rewards, 
and thus, players never provide meta-rewards. To consider this point, we introduce 
player expectations of meta-rewards. We then explore how these expectations are 
reflected in the probability of providing rewards using the following three scenarios 
that are different values of expected rates of meta-rewards, �.

(1)Πi =

exp
�

vi−v

�

�

+ �

∑

exp
�

vj−v

�

�

+ �

,

Fig. 1   Outline of Extended CGM Model
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1.	 No reference ( � = 1.0 ): players do not use any reference.
2.	 Social reference ( � =

1

N

∑

k rrk ): players use the average rate of meta-rewards in 
the group.

3.	 Individual reference ( � = rri ): players use cooperator i’s probability of meta-
rewards.

Scenario  1 is a baseline. Scenario  2 describes a situation that players can get 
information on a providing rate of meta-rewards in CGM. For instance, we sup-
pose that a system in which seeing all meta-rewards for rewards by others is 
possible. Scenario  3 describes a situation that visualizes a providing rate of 
meta-rewards for information provided in CGM. In this scenario, we assume that 
players can decide whether or not to provide meta-rewards to a cooperator after 
they check the providing rate of meta-rewards of the focal cooperator.

Parameter setting

For simplicity, we set the values of the parameters above by installing two new 
intervening parameters: � and �:

where n = 1, 2.
At first, we simulate the case of � = 2 and � = 0.8 to clarify the performances 

of each scenario. Then, we investigate the influences of the cost–reward ratios 
in Sect. 3.2. Table 1 shows the values of the other parameters in the simulation.

(2)�0 = 1.0

(3)�n = � ⋅ �n

(4)�n = � ⋅ �n−1,

Table 1   Simulation parameters Param Value

N 100
Simulation steps 1000
� (benefit–cost ratio) 2.0
� (discount ratio) 0.8
�
0
 (benefit of cooperation) 2.0

�
0
 (cost of cooperation) 1.0

�
1
 (benefit of reward) 1.6

�
1
 (cost of reward) 0.8

�
2
 (benefit of meta-reward) 1.28

�
2
 (cost of meta-reward) 0.64
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Simulation results

Comparison of three scenarios

We simulate 100 runs with different random seeds in each scenario, and show the 
averages and the variances of values using error bars in Figs. 2, 3, and 4. In these 
figures, the vertical axes show the step numbers, while the horizontal axes show 
the average parameter values: cooperation indicates cooperation rates, bi ; Reward 
indicates reward rates, ri ; and MetaReward indicates meta-reward rates, rri.

As shown in Fig. 2, the cooperation rate in Scenario 1 decreases at about 100 
steps while increasing at the beginning. This is due to the decrease in reward 
rates. The rate gradually decreases immediately after the beginning and reaches 
0.1 at 20 steps. No reward never bears cooperation.

Fig. 2   Result of Scenario 1

Fig. 3   Result of Scenario 2



26	 Journal of Computational Social Science (2020) 3:19–31

1 3

Scenario 2 faces the same mechanism, and thus, neither scenario can maintain 
a cooperative regime.

In Scenario 3, on the other hand, the cooperation rate increases from the begin-
ning, and then, the meta-reward rate also increases and, finally, the reward rate 
increases, therefore maintaining a stable cooperative regime, as shown in Fig. 4.

Why does Scenario 3 promote cooperative regimes while Scenario 1 does not? 
This is quite surprising, because parameter value � is 1 in Scenario 3, while it is 
less than 1 in Scenario 1. We then analyzed the time series of cooperation rates, 
reward rates, and meta-reward rates in Scenario 3 in comparison with Scenario 1. 
At the beginning of the simulation, cooperative rates increased in both scenarios. 
However, the next phenomena are different. In Scenario 3, the meta-reward rates 
increased before the reward rates increased. This is because players with high 
meta-reward rates tend to receive more rewards than those with low meta-reward 
rates. If the number of players who give rewards is sufficiently large, the high 
meta-reward rates bear the benefit of the rewards and are larger than the costs of 
meta-rewards. Therefore, players with high meta-reward rates benefit more than 
those with low meta-reward rates.

The more players with high meta-reward rates there are, the greater the prob-
ability of receiving meta-rewards when giving rewards. Therefore, players who 
tend to give rewards gain more benefit than those who do not, and thus, the 
reward rates increase. High reward rates enhance the benefit of cooperation and, 
therefore, cooperative players have an advantage over defective players. Coopera-
tive regimes stay robust.

In both Scenarios 1 and 2, on the other hand, a cooperator’s meta-reward rate 
is independent of the rate of receiving rewards, and thus, players with high meta-
reward rates do not always have higher probabilities of receiving rewards than 
those with low meta-reward rates. Despite this, the former players must give 
meta-rewards by paying costs. Therefore, neither scenario has an incentive for 
raising meta-rewards.

Fig. 4   Result of Scenario 3
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In Scenario 3, rewards are given by referring to the individual rate of meta-
rewards and, indirectly, players with low meta-reward rates receive a kind of punish-
ment, i.e., they are not given rewards. Players with low meta-reward rates gain rela-
tively small amounts of payoffs, and thus, they are distinct sooner or later under the 
selection pressure. At last, players with high meta-reward rates become the major-
ity. To receive meta-rewards, players tend to post rewarding actions, and to receive 
rewards, players tend to cooperate. Therefore, these traits indicate that a cooperative 
regime emerges if players can observe the other individual’s meta-reward rate. In 
the context of CGM, information providing would increase by selecting information 
providers who respond to posted comments at an expected response rate.

Influence of cost–reward ratios

In our model, the rate of the reward benefit on the reward cost is important for pro-
moting cooperative regimes [26]. Therefore, we simulated many cases with different 
values of � and � . Figure 5 shows the average rate of cooperation in 1000th step with 
in 50 runs per each case. In this figure, the x-axis indicates � , the y-axis indicates � , 
and the color bar indicates the average cooperation rates. Figures 6 and 7 show those 
in Scenarios 1 and 2, respectively.

The scopes of � and � are, respectively, 0.0 ≤ � ≤ 5.0 and 0 ≤ � ≤ 1.0 . This fig-
ure shows that

1.	 cooperative regimes emerge only in Scenario 3;
2.	 cooperative regimes never emerge if 𝜇 < 1.4 ; and
3.	 cooperative regimes emerge if approximately 𝜇 ⋅ 𝛿 > 1.0

Among these, Result 2 is consistent with a previous study [25] that demonstrated that 
cooperative regimes require a substantially large benefit of rewards compared with their 
costs. Our result adds the insight that it also requires a sufficiently larger value of � 
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Fig. 5   Change �, � in Scenario 3
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in our model than the previous study’s model. This is because the expected values of 
meta-rewards are small if � is small, and thus, the incentive to give rewards vanishes.

Next, we consider Result 3. As a result of our simulation, condition 𝜇 ⋅ 𝛿 > 1.0 is 
necessary for promoting cooperation. In terms of the relationship between rewards and 
meta-rewards, if the benefit of meta-rewards is greater than the cost of rewards, play-
ers may receive a benefit through giving rewards, and thus, there are incentives to give 
rewards. This indicates that

is required. If 𝜅1 > 0 is satisfied, equations �2 = � ⋅ �2 = � ⋅ ��1 are satisfied, and 
thus, the necessary condition of reward behaviors is as follows:

(5)𝜌2 > 𝜅1

(6)𝜇 ⋅ 𝛿 =
𝜌2

𝜅1
>1.0.
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Fig. 6   Change �, � in Scenario 1
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Strictly on this point, players do not always receive meta-rewards, and thus, we 
should consider the average rate of meta-rewards, rri . Therefore

is the necessary condition.
If this condition is satisfied, players who give rewards to other players at suffi-

ciently large rates of meta-rewards have an advantage. This also means that coop-
erative agents are given incentives from which they should receive a large amount 
of meta-reward rates. This mechanism works, and therefore, players with large 
amounts of both reward rates and meta-reward rates have survival advantages and, 
finally, cooperative regimes emerge.

We note why the cooperation rate converges to zero in these figures. This is 
because our model installs mutants invaded in the population each period. In the 
adaptive process in our model, they do not become extinct sooner, and thus not so 
few cooperative agents survive even if the society is occupied by the defectors.

Discussion

While our main results support the importance of meta-rewards for activating CGM, 
we must state the other important drivers of real posting including brand image [13], 
attention seeking, communication, archiving, and entertainment [24]. Moreover, we 
have no option but to accept the future study on the empirical data that support that 
the original article providers respond to other commenters replies to sustain posting 
on CGM.

We developed a restricted public goods games model to overcome the mis-
matches found between previous models and actual CGM. Our model reveals that 
restricted public goods games cannot provide cooperative regimes when players are 
myopic1 and never have any strategies on their actions. Cooperative regimes emerge 
if players that give first-order rewards are given information that reveals whether 
cooperative players will give second-order rewards to the first-order rewarders. In 
the context of CGM, if users who post articles reply to commenters/responders, 
active posting of articles occurs if potential commenters/responders can ascertain 
that the user posting the article will respond to their comments.

Furthermore, we have tested the different adaptive process in Sect.  2.2. In this 
paper, we explained the case of Axelrod’s selection rule. However, the readers may 
consider that the results keep in the different selection rule. Therefore, we performed 
Genetic Algorithm instead of Axelrod’s and we confirmed that the essential points 
never change.

We adopt the linkage hypothesis [20], and thus, the first-order reward seems to 
be affected by the opponent’s second-order reward in the past. In other words, the 
model is regarded as a kind of a ‘direct reciprocity’ with probability. The original 

(7)rri ⋅ 𝜇 ⋅ 𝛿 > 1.0

1  In the literature of microeconomics, the term ‘myopic’ means that players behave as a utility maximiz-
ers without any consideration [23].
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model performed by [1] uses the linkage hypothesis strictly, while our model uses 
the hypothesis probabilistically.

Although everyone can post meta-comments to comments in functions of Face-
book/Blog, the typical usage of meta-comments is for the original information-pro-
viders only. We would like to explore the cooperative conditions even if the system 
has restricted meta-rewards, and thus, we have tried the original assumption. How-
ever, we should extend this point in the future works.

This study should be extended. First, the present version of our model describes 
two types of players actions: cooperation as posting information and defect as non-
posting. However, defect behaviors in CGM can be divided into two types: do noth-
ing and post inadequate information. This issue should be introduced in a future ver-
sion. Second, while our model assumes that all players can observe all information, 
this is not realistic. We are interested in the influence when the frequency of infor-
mation accessibility depends on the quality of the information. In this version, we 
assume that agents’ payoffs are observable to the others, because we think that the 
other payoff can be expected by observing their actions. However, this point can be 
loosen and should be tested in the future extension.
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