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Abstract
VisualCommunity is a platform designed to support community or neighborhood 
scale research. The platform integrates mobile, AI, visualization techniques, along 
with tools to help domain researchers, practitioners, and students collecting and 
working with spatialized video and geo-narratives. These data, which provide gran-
ular spatialized imagery and associated context gained through expert commentary 
have previously provided value in understanding various community-scale chal-
lenges. This paper further enhances this work AI-based image processing and speech 
transcription tools available in VisualCommunity, allowing for the easy exploration 
of the acquired semantic and visual information about the area under investigation. 
In this paper we describe the specific advances through use case examples including 
COVID-19 related scenarios.
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Introduction

A “community”1 is a complex construct of environment, geography, and behav-
ior. It also contains multiple challenges, research topics, or success stories that 
can be investigated. While there is no single research frame to address this com-
plexity, there is often a commonality in terms of visual data that ties these per-
spectives together. For example all might benefit from a video of a street. Simi-
larly, that common source can be used as a data source, potentially enhanced with 
expert or local knowledge. For example, spatially coded data including sketch 
maps, videos, photos, and narratives can provide valuable insights into the granu-
lar processes at work in a community. These perspectives, often acquired from 
local residents, workers, or service professionals enrich or even replace more 
“official” data. One approach to collect such granular data is through using global 
positioning system (GPS) enriched video cameras, often mounted on a vehicle 
[1]. Narratives about the environment being traversed can also be recorded to cre-
ate a spatial video geonarrative. The use of these methods can capture fine-scale 
changes and provides context to help explain process, discover processes and pat-
terns, even across multiple time periods of collection, with insights gained being 
used to guide intervention (e.g., [1–5]). Topics could vary from crime or over-
doses in high density residential or business districts, to environmental risks such 
as stagnant water and trash being predictive of disease outbreaks. Stakeholders 
can include various academic disciplines, planners and policymakers, to service 
providers and local community groups and residents.

Typically these data can include video, images, audio and associated transcrip-
tions all of which can be tied together spatially with the GPS stream. While the 
potential use of these data in social studies and practices is large, widespread 
implementation is often hindered due to the lack of:

•	 A fully functional platform providing both data capture and data analysis 
functions, with a seamless linkage between them.

•	 Data processing capabilities for extracting semantic information from the geo-
coded videos and for transcribing the recorded audio narratives.

•	 A visualization platform supporting interactive exploration of the visual, 
semantic, and geospatial information.

Existing visual analytic (VA) tools for analyzing vehicle/human trajectories (e.g., 
[6]), geo-spatial events (e.g., [7]), geo-tagged social media (e.g., [8]), and multi-
media data (e.g., [9]) cannot be directly applied to these types of geo-coded video 
datasets. Recently, a GeoVisuals system [10] was developed to visually explore 
similar spatially encoded datasets. However, this system is not easily applied 
by a community user (see “Motivation and tasks” scetion) due to (1) the lack of 

1  We understand the complex nature of the term “community”—in this paper we only use this to mean a 
small (within city/rural area/similar environmental) area.
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processing functions and system integration, and (2) the complexity restricting 
non-technical users.

To help address this gap we develop a computational platform, named Vis-
ualCommunity, for easy community data capture, archiving, and analysis. This 
platform includes (1) a mobile APP (named as GeoVideo) helping users capture 
geo-coded video and narrative data with their mobile phones [11], and (2) a visu-
alization system for easy and interactive study of the various acquired data. AI 
tools for semantic image segmentation and speech transcription are included, so 
that users can automatically process the collected data to extract visual and tex-
tual semantic information, which can also be linked to the associated location on 
the map.

A key aspect of VisualCommunity’s creation is usability and transferability 
amongst users; domain experts were consulted throughout its development pro-
cess; the mobile APP has been developed for both iOS and Android systems and is 
available in the corresponding APP stores [11]; and the visualization system is pub-
licly available for download onto desktops or laptops environments. In this paper, 
we introduce the design and development of the platform, and present examples to 
illustrate functionality and effectiveness. We also discuss current limitations and the 
future work plan.

Related work

Community study with geospatial videos and narratives

Collecting and analyzing spatially encoded video data has proved to be an effective 
way of capturing, mapping and analyzing community processes. This has been aided 
by the widespread availability of GPS technologies, including smart phones and 
spatially supported cameras. In effect this means that researchers, professionals, and 
even community members can now record the type of visual, and spatially precise 
data that were previously unavailable through cost [2]. Adding in a simultaneously 
recorded commentary, often described as a geonarrative, further enriches these data 
with context. As a result, multiple topics including health, crime [12], and disasters 
have been studied using this approach both within the United States and in vari-
ous challenging oversea environments [3, 13–15]. The challenge has always been 
that the associated software, including spatial data processing and analysis tools 
have lagged behind the technological and methodological advances. In this regards, 
only bespoke (and therefore niche limited) visualization systems allow users to fully 
explore spatial video and geo-narratives associated with their geo-trajectories.

Urban study with visual information

The utility of online geo-locatable imagery such as Google Streetview (GSV) [16] 
has further opened the potential to include neighborhood audits into research. Topics 
have included assessing disaster related damage [17], understanding the association 
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between the built environment and health [18], finding green areas [19], locating 
criminogenic environments [20, 21], and even identifying animal activity [22]. How-
ever, while useful, these data also have multiple limitations, including limited times 
for data collection, which can be problematic if the goal is to assess specific environ-
ments to an event that had happened, such as after a disaster, or to capture temporal 
change. One such challenge is that while there have been technological advances in 
the equipment used, the ability to manipulate and visualize the collected data lags 
behind. Our platform helps address this gap in a way not previously available.

In the proposed platform street level images were used as a data source to search 
for localized detail [12, 23–25]. The images were segmented with machine learn-
ing (ML) tools and the identified semantic categories (e.g., greenery, building, road, 
etc.) were utilized to characterize, cluster, and visualize urban forms. These methods 
utilize street images without narratives, while our platform explores spatial videos 
linked to geo-narratives.

Visual analytics systems for urban study

While as mentioned there have been various visual analytic methods and tools devel-
oped (e.g., [6, 26]) to fully leverage geo-spatial data, spatial videos combined with 
geonarratives provides both a new data direction and associated challenges. The 
team had previously built GeoVisuals [10] to interactively manage, visualize, and 
analyze spatial video and narratives using a set of visualization widgets and inter-
action functions. This offered a variety of data investigations based on keywords 
extracted from geo-narratives tied to images and locations on the videos. Users 
could quickly find important locations based on term frequency and sentiments. 
However, GeoVisuals required that the source data had already been acquired and 
processed (meaning having separate video and audio) while the extracted keywords, 
trajectories, and videos were integrated with a special data structure within a spatial 
database. This previous system also did not benefit from AI. More detailed compari-
sons are shown in “Motivation and tasks” section.

Overview

Target community data

Many workers, stakeholders, and social scientists often try to understand a commu-
nity and tackle social problems at fine geographic scales. One data source to achieve 
this is a combination of community scale visuals enhanced by firsthand insights and 
opinions. To meet this research need, VisualCommunity incorporates the following 
heterogeneous data:

•	 Geospatial video that collects continuous video of an environment with each 
frame being geotagged.
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•	 Audio narrative often recorded at the same time of the video by expert or 
informed individuals who provide a commentary on the environment being tra-
versed, often identifying Points of Interest (POI).

•	 Geo-trajectory that associates the spatial video and narrative with GPS locations 
along the recording trip.

•	 Geo-structures of the environment such as streets and POIs.

These data items are often archived and organized together in a data-capture trip.

Motivation and tasks

Domain researchers in fields such as geography, public health, criminology, and 
other urban focused social sciences identified a set of research requirements if spa-
tial video and geonarratives were to be used as an effective research method.

One identified challenge was that there was no single integrated system for data 
collection and analysis. A variety of off-the-shelf video cameras (e.g., mounted on 
cars) were used to collect data. Quite often the video players supplied by the cam-
era’s manufacturer were used to view the videos. The geotrajectories were displayed 
again either in the camera’s own software, or through options available in a GIS 
(e.g., ArcGIS). To leverage the narratives, the audio had to be converted to text for 
browsing and searching. The overall process was fragmented and lacked the consist-
ency often required for scientific inquiry.

Second, when the existing VA system, GeoVisuals [10], was used, domain 
experts could perform visual analytic over visual+semantic information. However, 
they identified several limitations: (1) GeoVisuals did not support data capture and 
processing. They had to load the videos into a database and the audio still had to 
be transcribed prior to upload. (2) GeoVisuals required the install of a spatial data-
base, a Web server service, and there were system configuration issues which trou-
bled less technologically savvy researchers. (3) GeoVisuals integrated a set of visual 
interfaces with video mode and trip mode. Combining complex visual metaphors of 
maps, texts, videos, and pictures in an interface quickly became overwhelming for 
users. The coordination of views and interactions demanded a relatively long learn-
ing curve. All of these issues meant that the platform, while offering an improved 
research experience, suffered from widespread use.

VisualCommunity platform is developed to address these limitations. In Table 1, 
we summarized the itemized comparison and also identified a set of tasks for Visu-
alCommunity including:

•	 T1: Supporting convenient capture of geo-coded video and audio narrative with 
smartphones or tablets.

•	 T2: Automatically extracting landscape images and their semantic contents from 
the video.

•	 T3: Automatically transcribing audio narratives to text.
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•	 T4: Allowing users to edit narratives for errors and typos, and to add comments 
during analysis.

•	 T5: Facilitating users to perform analysis based on the extracted visual contents.
•	 T6: User friendly visualizations for non-technical users.

To implement these tasks, VisualCommunity was developed with two major goals:

•	 G1: Providing an integrated platform that enables a fluid workflow from data 
archiving, to visualizations, analysis, spatial inquiry and mining themes.

•	 G2: Making the platform easy to master and use for community data exploration. 
It should therefore be easy to deploy and install on different machines.

Workflow

VisualCommunity workflow and structure are illustrated in Fig. 1. The geo-coded 
video and narrative data can be conveniently captured by a GeoVideo mobile APP, 
which is available for iOS or Android platforms [11]. Section 4 shows its functions. 
The captured data can be easily transferred to the visual system running on desk-
tops or laptops. Then, AI-based image semantic segmentation can automatically 
extract semantic categories (e.g., road, building, person, etc.) from consecutive 
video frames. Meanwhile, automatic speech transcription from a DNN (Deep Neu-
ral Network) model is applied which transforms audio data into a textual narration. 
This information is integrated into the system with the map matching corresponding 
trajectories to geographical context. We introduce the tools and functions in “AI-
based data processing” section. Eventually, users can perform interactive data edit-
ing and exploration with intuitive visualization tools for the video, audio, image, and 
semantic information, which will be discussed in “VisualCommunity visualization 
system” section.

Fig. 1   VisualCommunity framework consists of (1) data capture with GeoVideo mobile APP; (2) AI-
based data processing including map matching, semantic segmentation, and speech transcription; (3) 
visualization interface with coordinated visual components
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Data archiving with GeoVideo app

Many domain users use cameras with internal GPS receivers mounted on vehi-
cles (cars or bikes) or carried by hand to capture environmental data covering top-
ics from post-disaster landscapes to infectious disease risk. While many use video 
cameras there is a need for more commonly available technologies such as a mobile 
phone or tablet integrating a GPS unit and a video camera. Some existing apps col-
lect geo-trajectories such as [27, 28]. However, there is not a convenient mobile app 
available that can combine geo-videos with trajectories.

Fig. 2   GeoVideo interface snapshots (iOS version): a Listing recorded files. b Playing a recorded video 
along with its mapped geo-trajectory
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The GeoVideo App is designed for this purpose, to collect spatial video and 
audio together with a geographical trajectory. An active Internet connection is not 
required which is critical for oversea and generally resource challenged areas.

Once the app is opened it displays the current location of the user on a map 
view. Users can then start to record videos and trajectories. A list of recorded 
files is shown in Fig. 2a. The user can select one of them and play it. Figure 2b is 
the visualization interface where the selected video is played along with its cor-
responding trajectory displayed on the map. The map style can be easily changed. 
A marker moves along the trajectory to show the location of video content as the 
route progresses, with an option to be dragged anywhere on the route to show 
imagery at that location. The saved files which combine the video, audio, and 
GPS trajectory data are bundled for upload directly to the VisualCommunity vis-
ualization system for analysis.

GeoVideo stores the GPS trajectories in a .CSV (comma-separated values) for-
mat consisting of sequences of sampling points (longitude, latitude) for each second. 
Video clips are stored in .MP4 or .MOV format from mobile phones. The times-
tamps of the video are used to match the video to geographical locations.2

AI‑based data processing

Once a user uploads a captured dataset to the VisualCommunity system, two AI 
algorithms are integrated based on deep learning neural networks. They are used for 
automatic information retrieval from the spatial video and audio narratives. The AI-
based functions are used to automatically process the captured data, which are used 

Fig. 3   VisualCommunity interface: A Upload data, B data management panel, C map view, D visual 
information view with video player, E narrative editor, F comment editor, G narrative view of speech 
transcript and user comments, H keyword filter, I visual category view

2  GeoVideo has been developed and tested on different mobile platforms. It is available on Google Play 
App Store and Apple App Store.
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later in extracting more meaningful information (see “Semantic content extraction 
from videos” and “Speech transcription from narratives” sections). In this study, we 
use PSPNet deep learning model to extract semantic object information from videos 
[29, 30], and DeepSpeech to extract transcripts from audio data [31]. Both of these 
AI-based tools are state-of-the-art models when this study was conducted. In “Sce-
nario 3: data transfer and processing performance” section, we show an example of 
the effectiveness and latencies of these functions.

Semantic content extraction from videos

The video stream is broken down into image frames with a time interval of one 
second (e.g., using Ffmpeg libraries) though the time interval can be adjusted. 
These image frames are processed by the AI tool PSPNet for semantic content 
extraction. PSPNet is based on a Pyramid scene parsing deep neural network [29, 
30]. This model is proven to provide better performance in benchmark datasets, 
such as PASCAL VOC2012 and cityscapes [29].

A pixel-level classification of each streetview image uses 19 categories includ-
ing road, sidewalk, building, person, car, etc. In addition, the proportion of each 
in an image is recorded (for example, does “road” occupy 50% of the pixel). As 
shown in Fig. 3D, road (purple), car (red), meadow (green) are extracted from a 
sequence of image frames.

Speech transcription from narratives

The audio track is extracted and processed by the deep learning network of Deep-
Speech [31]. DeepSpeech is an open-source embedded speech-to-text engine 
which can run in real-time on multiple types of devices. Integration occurs as a 
long audio stream split into smaller sections, which achieves a better transcription 
quality than if the whole stream is processed as one.

First, the AI algorithm transcribes the audio narrative to a text document con-
sisting of a list of speech fragments. Each fragment is a natural language seg-
ment of the speaker’s narration based on their talking speed, stopping points, and 
other attributes. It consists of multiple terms (i.e., keywords) while each term has 
unique term speaking length (audio length). As shown in the example in Fig. 3G, 
these fragments are visualized following the time sequence which is also the loca-
tion on the trajectory. The text inevitably includes errors although DeepSpeech is 
one of the top engines in transcription accuracy. Therefore, it is important to pro-
vide a text edit function (Fig. 3E).

The textual narratives are processed to further extract semantic attributes for 
easy interaction. The system allows for keyword selection using TF (Term Fre-
quency) or TF-IDF (Term Frequency-Inverse Document Frequency) weights as 
a guide. A text indexing structure supports the fast query response needed for 
interactive filtering.
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The PSPNet and DeepSpeech tools are selected as being among the most reli-
able, and, importantly, they can run offline and on-device so that users do not 
have to rely on active remote servers during data exploration.

Visual community visualization system

Interface overview

The VisualCommunity interface is illustrated in Fig.  3 which includes a set of 
visualization functions:

•	 Upload data function (Fig. 3A) supports the upload of captured data from the 
GeoVideo app.

•	 Data management panel (Fig. 3B) allows users to manage these data and per-
form AI-based data processing. Users can load, select, remove, and process 
datasets organized as a list of trips.

•	 Map view (Fig.  3C) visualizes geo-trajectories where users can directly 
select an active trajectory. A location marker (i.e., blue color marker) on the 
active trajectory indicates the current location of a trajectory. Narrative-based 
insights linked with geographical structures are highlighted.

•	 Visual information view (Fig.  3D) shows the visual information at the cur-
rent location in the form of video frames and their semantic objects. A video 
player allows for the user to play, pause, and drag the video to a specific loca-
tion of a trip.

•	 Narrative editor (Fig.  3E) allows users to edit the transcribed speech narra-
tives and correct the transcription errors.

•	 Comment editor (Fig.  3F) allows users to add extra comments and more 
description during data analysis.

•	 Narrative view (Fig. 3G) displays the description and insights, by location and 
video content, including both the transcribed narrative and the added com-
ments.

•	 Keyword filter (Fig. 3H) presents the top keywords (in a list view or bubble 
view). Joint conditions are supported by Boolean operations on multiple key-
words.

•	 Visual category view (Fig. 3I) visualizes the distribution of semantic catego-
ries (road, car, building, etc.) in the street scenes sourced from the spatial vid-
eos. A user can filter and extract critical images and their locations based on 
these categories.

All these functions are coordinated for interactive data exploration. Next, we 
introduce the visualization design and functions.
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Data management and AI‑based data processing

Users can load, select, and remove datasets which are organized as a list of trips 
(3B). For each trip, the users can start the semantic segmentation of images while 
also transcribing the audio narratives.

From the list, users can sort the data trips by their uploaded date, recorded 
date, or the size of narratives. Users can also select unique colors (Fig. 4A) for 
visualizing the trip trajectories on the map view.

Based on early prototype feedback, the system also allow users to browse the 
video and trajectory data before any AI-based data processing. This is important 
to perform an immediate quality control check and discard of problematic trips. 
As shown in Fig. 4C, users can start the AI-based processing of a selected trip, 
with progress visualized in percentages. It is also possible to pause and resume 
the segmentation and transcription processes at any time.

Map view and content visualization

Multiple trip trajectories are visualized on the map. A variety of map styles, such 
as streets, light, dark, outdoors, or satellite, can be chosen. One active trajectory 
is shown (in highlighted color) but it is possible to switch to any of the other 
inactive routes. On the active trajectory, a location marker indicates the current 
location of the images shown in the visual information view and the correspond-
ing text in the narrative view. Users can drag the marker to change location.

Fig. 4   Data list and processing: A Picking a specific trip color; B trip information such as ID, upload/
record date, location and description; C AI-based processing with two modules: semantic segmentation 
and speech transcription
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Four types of associated data contents can be highlighted over the trajectories 
displayed in different colors, including the narrative transcript, user comments, 
filtered keywords, and semantic category information. For example, in Fig. 3C, 
three locations (in red) indicate where users added comments, and two trajectory 
parts (in blue) show the geo-locations where narratives are available.

Visual information view and video player

The spatial video information of the active trip is shown in the visual information 
view (Fig. 3D). Two rows of images display the image frames corresponding to the 
current location. The frames of the exact location is highlighted with a black border, 
while a few frames prior and after are also shown to provide context. The top row 
presents the original images, while the bottom row shows the images with colorized 
visual categories (same as the colors in Fig. 3I). On the left of the two rows, the 
associated video plays with the ability to move through the frames by dragging.

Fig. 5   Keyword filters: A Keyword lists are sorted by keyword frequency extracted from AI-based 
speech transcription and B keyword bubble contains a group of keywords colored by intensity of key-
word frequency. All selected keywords are highlighted over trajectory and narrative
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Geo‑narrative editing and comments

VisualCommunity allows a user to edit the text (Fig. 3E) at any time during analysis, 
with then option to listen to the original audio repeatedly if needed. It is also pos-
sible to add comments or third-party opinions at any location—for example it might 
be useful to emphasize that a place being described is clearly visible in the bottom 
of the image (Fig. 3F). The narratives and comments are shown in Fig. 3G. Users 
can also click on any item to change or remove it.

Fig. 6   Visual category based analysis based on semantic categories (e.g. road, building, traffic light, sky, 
etc.). The filtered values are displayed as a circle marker over the trajectory
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Keyword filter

The keyword filter (Fig. 3H) allows for the selection of keywords in the narratives 
or comments. At the same time the corresponding visual information and textural 
information are visualized, together with the locations on the map. This means that 
a researcher can use the three different media sources (image, text, map) to explore 
a location or scene in multiple non-linear ways. The filter uses two visualizations: 
a keyword list and a keyword bubble view, as shown in Fig. 5. In the keyword list 
(Fig. 5A), top keywords are shown and sorted by their term frequency in all texts. 
In the bubble view (Fig. 5B), top keywords are shown while the bubble color repre-
sents the frequency. Users can adjust the number of bubbles with a slider. Users can 
also directly input keywords in the text box. Hovering over each keyword will high-
light those trajectory locations where the narrative text includes the keyword.

Users can also combine keywords which offer opportunities to explore locations 
and themes with semantics. In Fig. 5, using “student AND health” in the keyword 
filter creates highlighted parts on the map. Meanwhile, the corresponding keywords 
are highlighted in the narrative view as well.

Visual category view

At the current location, each semantic category of the video content, such as build-
ing, sidewalk, road, person, etc., is visualized as a bar with a specific color, as shown 
in Fig. 6. The length of the bar represents the maximum percentage of this category 
in any image from the active trip dataset. For example, Fig. 6 shows that “building” 
occupies a maximum of 54% in any street scene image and “sidewalk” has a maxi-
mum of 23%. Based on these hints, users can identify the visual content features. 
More importantly, it is possible to click on a category and use its percentage slider 
to define a specific threshold value. As shown in Fig. 6, users define a threshold of 
30% for “building” meaning that only the locations with more than 30% buildings 
(based on the captured spatial video) are identified, as highlighted on the trajectory 
over the map (with red dots). Drilling down on these red dot locations reveals the 
corresponding images and narratives. It is also possible to drag the slider to adjust 
the threshold percentage to observe locations in real-time. In this way VisualCom-
munity supports data analysis based on the captured visual contents.

System implementation

For the visualization system, all the heterogeneous data are organized in local file 
systems with JSON formats. We avoid using a spatial database so as to reduce 
potential barriers to use based on the required installation and configuration exper-
tise. The visualization system is implemented and distributed based on the Electron 
framework, in which D3.js and Mapbox libraries are employed. PSPNet and Deep-
Speech are bundled inside, and GPU acceleration is automatically used when a GPU 
is available. The system can be installed and run on Windows, Linux, or Mac OS 
computers.
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Case study: using visualcommunity in COVID pandemic

In this section, we present a case study of using VisualCommunity system. This 
proof of concept test has been implemented during the COVID-19 pandemic. As 
a result of COVID-19 an university has imposed various health requirements and 
policies on staff, faculty and students, and on the physical campus environment. One 
outcome is the presence and movement of people on campus. VisualCommunity can 
be utilized to collect data and analyze the community dynamics and patterns, dur-
ing different stages of the pandemic, which in turn can be used to further refine and 
improve campus policies. In an alternative application, the pandemic prevents cam-
pus visitors, such as prospective students and their families, from attending a tradi-
tional in-person campus tour. VisualCommunity can present a visual platform for 
them to tour the campus and discover information about the university.

The following two usage scenarios are presented: (1) campus tour guides record 
touring videos along with the typical narratives usually given during in-person tours. 
(2) university employees walk around the campus, capture spatial videos, and orally 
record their descriptions and findings related to the pandemic. These trips can be 
used to perform interactive campus data exploration based on the visual, semantic, 
and geospatial information. In this case study, the names and scenarios are fictitious 
to show the system utility.

Scenario 1: exploring virtual tours

Campus tour guides usually provide in-person tours for visitors such as high school 
students and their families. These visitors would like to “see” the campus, and 
acquire acquire information linked to campus places and life. Due to the pandemic, 
tours were halted but could be made virtual through the VisualCommunity frame-
work. These virtual guided trips used GeoVideo to record videos and descriptions of 

Fig. 7   Exploring virtual campus tours: A Finding the visual object “bus” with visual information view. B 
Studying related locations on the map. C Browsing landscape images and video. D Studying audio tran-
scripts of campus information
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the campus. The virtual visitors can then use the visualization system to explore the 
campus. In this example, a (fictitious) visitor, Amy, conducts a virtual and interac-
tive tour with the system.

As shown in Fig.  7A, Amy studied the trip datasets in the visual information 
view. Amy clicked on various categories to check the highlighted locations and their 
narratives recorded by the tour guides. In particular, Amy wanted to explore campus 
information with the visual object “building”. By selecting this category, she set a 
threshold of 30% to extract those street scenes with more than 30% were buildings 
(identified by AI segmentation). A set of magenta points on the trajectories indi-
cated where “building” was spotted. The same approach could be used to explore 
more topic categories such as “sidewalk” to assess campus walking paths, or as dis-
played in Fig. 7 “vegetation” to show how green the campus was.

Figure 7B displays one trip trajectory after Amy zoomed into the main street on 
campus where big buildings exist in the video frames. On the trajectory, one seg-
ment is highlighted in yellow showing where audio transcripts of the guides’ narra-
tive are available. Amy can read the transcript for more information (Fig. 7D) and 
check the street-view images as shown in Fig.  7C. She soon realizes the location 
is a bus station close to the student center. In Fig. 7C, Amy can drag these images, 
or directly drag the marker on the map, forward and backward to browse the envi-
ronment surrounding this location. She can directly play the video as well. In such 
exploration, for example, Amy realizes that there are big tents around the student 
center. The transcript indicates that these tents are being used for COVID testing. 
For the tour guides who created this dataset, they could have used the same system 
to browse the data before sharing it with visitors, and add in comments about the 
tents that they might have missed during data capture, or provide updates if informa-
tion has changed. Two advantages of this system as described are that it provides 
multiple options for the user to explore data on their own terms, even spatially, 
rather than simply viewing a more typical orientation video. Secondly, the example 
of the tents also shows how such a system can be used to archive temporal change, 
either over long durations (how a campus changes over the different phases of a mul-
tiple-year planning initiative), or short duration (how an environment changes in the 
days and weeks following a disaster - or in this case, a pandemic). A version of this 
second example will be explored next.

Scenario 2: studying campus situation

University staff used the GeoVideo app on walking trips across the university cam-
pus in order to archive the daily situation during the pandemic. The captured datasets 
included important campus locations, such as the health center, student recreation 
center, university library, student center, and more. These datasets were uploaded to 
the system and processed by the AI-tools. The data creators could also correct the 
errors in the narratives. After this, a (fictitious) university manager, Alice, explored 
the information in the visualization interface.

As shown in Fig. 8, Alice first selected one trip around the university’s health 
center, whose trajectory was shown on the map (Fig.  8B). Alice explored the 
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related data in the geo-narratives, as shown in Fig.  8A. She first hovered over 
each top keyword to see where each was located. She then selected interesting 
keywords and combined them for searching. For instance, she used “student AND 
COVID AND campus” to find related locations, which were highlighted as the 
two yellow parts on the trajectory as shown in Fig. 8B. Alice could read the asso-
ciated narrative text in which these words appeared. She clicked one paragraph 
on the narrative view (Fig. 8D). Meanwhile, the location marker on the map auto-
matically moved to the corresponding location. This paragraph described that the 
health center continued to provide medical services but there had been relatively 
few students attending due to the pandemic. Figure 8C verifies this by displaying 
a video snapshot around the building in which there are no people or cars. The 
text provides further detail in that this might be partly due to the COVID test site 

Fig. 8   Studying campus situation during pandemic: A Searching interesting keywords. B Finding critical 
locations on the map. C Observing video snapshots. D Reading-related narratives. E Editing narratives 
and adding comments
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being located in the student center, instead of this health center. Few people came 
to the health center for other medical reasons. The high volume of cars around 
the student center might also provide justification for the university to move some 
testing capacity to the health center. Alice could add this idea / observation as a 
comment (Fig. 8E) with these comments being shared out as a report. What is key 
here is that the relative ease of data collection using a commonplace device like a 
smart phone could result in weekly, or even daily status updates.

Scenario 3: data transfer and processing performance

In this scenario, we use the example in (Fig. 3) to quantitatively show the effec-
tiveness and latencies associated with the proposed solution.

First, GeoVideo APP can be used offline without any internet connection. 
This will eliminate the network latency and cost during the data capture process. 
For the captured video of about 30  min long, the file is about 2.1  GB which 
contains video, GPS and audio information. The file can be uploaded to Visu-
alCommunity through the interface (Fig. 3). Here, the whole data transfer take 
approximately 5 min with a normal resident Internet speed.

The semantic segmentation and speech transcription process of this dataset 
are tested on a consumer desktop computer with an Intel i7-8700K CPU and 
16  GB memory and an Nvidia GTX 1070 GPU with 8GB texture memory. 
With an implementation by TensorFlow, the semantic segmentation costs about 
20 min and the speech transcription costs about 5 min. Here the processing time 
mostly depends on the duration of the recorded video (in this example, 30 min 
long). After all the data processing, the data exploration can be done over Vis-
ualCommunity interface. For example, when using Visual Category (Fig.  3I) 
to filter visual concepts related to keywords (e.g., “Car”), this task took about 
2 min since the related visual and audio information need to be extracted from 
the dataset. The filtered visual elements are illustrated over the trajectory as cir-
cle markers. Dragging the location marker along the trajectory to each circle 
marker (Fig. 3C). Figure 3D shows a parking lot with cars inside. Here the drag-
ging and visualization response cost less than 1 second. In the same way, users 
can perform interactive data exploration through the visualization software.

Deployment and feedback

VisualCommunity system has been publicized recently for test use. It is avail-
able at the website: http://​vis.​cs.​kent.​edu/​Visua​lComm​unity. It was employed by 
some domain scientists for different applications, such as investigating vegeta-
tion areas on sidewalks to analyze their walkability and the effects on differ-
ent types of community residents (e.g., seniors, disabled); studying insights and 
suggestions from architects on community infrastructures, etc.

http://vis.cs.kent.edu/VisualCommunity


1276	 Journal of Computational Social Science (2022) 5:1257–1279

1 3

The preliminary feedback from the users was positive. First, the new Geo-
Video app which is not available in existing tools (e.g., GeoVisuals) is conveni-
ent on mobile platforms. Second, the automatic tools can extract visual seman-
tics from the video and transfer the speech to text. These were very practical 
challenges in their work. Third, the data exploration based on keywords is sim-
pler in comparison to GeoVisuals. We also received a few limitations to be dis-
cussed in the next section. We will address the issues and further improve the 
software platform.

Discussion

There is a growing appreciation of multi-media mode, multi perspective, mixed 
data approach to investigating many of the challenges facing “communities” or 
other granular areas of interest. While spatially enhanced technologies, such as 
video cameras, have been used to good effect in both the United States and over-
seas, a common criticism for more widespread use is the lack of robust and user 
friendly software or platforms to fully leverage the insights contained within. In 
this paper we have addressed these needs through VisualCommunity, which has 
been developed while continually soliciting feedback from those same research-
ers and critics. More specifically, this new platform contributes to the following 
topics, while some limitations are to be addressed in future development:

Data exploration: VisualCommunity supports the visual exploration of data 
through being able to easily view video and the associated narrative. It also allows 
users to investigate these narratives in this space through both term (through key 
word) and image mining. We will further study visual storytelling techniques to 
report and promote the findings from the exploration.

Integration of AI functions in visualization system: The platform facilitates 
automatic processing of raw data through AI tools. The team also responded to 
a central directive of prototype evaluators that it is often not possible to rely on 
connecting to servers when in the field, or in certain locations. In response Visu-
alCommunity utilizes free and off-line tools which are vitally important to the 
free visualization software. However, as AI tools (and the associated code) are 
continually developing, the platform has also been designed to be flexible and 
easily ingest such advances, and VisualCommunity can be adapted to customized 
versions that incorporate paid and online AI services if appropriate. For instance, 
a further advance can be achieved through the incorporation of new AI techniques 
to improve the quality of semantic segmentation (e.g., in bad weather) and voice 
transcription (e.g., for accent recognition and natural sentence detection). There 
is also a need to develop the theoretical frame that incorporates tools such as 
VisualCommunity with regards reliability, bias, and sustainability of AI, not only 
in terms software performance and utility, but also in how these affect society.

Software framework coupling data capture and exploration: While there was a 
need for better tools to investigate data being collected using existing technologies, a 
further frequently discussed limitation was when such equipment was not available. 
There was a need to be able to also capture the type of data that would feed into 
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VisualCommunity. This is now possible through the GeoVideo app function which 
in effect allows even a smart phone or tablet to become the only “extra” kit required.

A further need addressed by VisualCommunity is usability in any (including 
resource challenged) environments. While this point has been raised regarding 
the AI implementing, the same challenge faces software download/compilation, 
and data upload. In developing a practical visualization software, the software 
installation and functionalities, have equal importance to the visualization design 
itself. To further address this need future versions will incorporate the remote 
upload of GeoVideo data.

Conclusion

A computational and visualization platform, VisualCommunity, is developed to sup-
port the archiving and exploration of spatial multimedia data (spatial videos and 
geo-narratives) for small area (community/neighborhood/micro environmental) 
research and practice. It includes a mobile data capture tool and provides a cross- 
platform visual analytic tool on desktop and laptop computers. It allows social scien-
tists, researchers, residents, and administrators to utilize the advances more fully in 
mobile technology currently available.
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