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Abstract
Force-directed layout algorithms are ubiquitously used tools for network visualiza-
tion. However, existing algorithms either lack clear interpretation, or they are based 
on techniques of dimensionality reduction which simply seek to preserve network-
immanent topological features, such as geodesic distance. We propose an alternative 
layout algorithm. The forces of the algorithm are derived from latent space models, 
which assume that the probability of nodes forming a tie depends on their distance 
in an unobserved latent space. As opposed to previous approaches, this grounds the 
algorithm in a plausible interaction mechanism. The forces infer positions which 
maximise the likelihood of the given network under the latent space model. We 
implement these forces for unweighted, multi-tie, and weighted networks. We then 
showcase the algorithm by applying it to Facebook friendship, and Twitter follower 
and retweet networks; we also explore the possibility of visualizing data tradition-
ally not seen as network data, such as survey data. Comparison to existing layout 
algorithms reveals that node groups are placed in similar configurations, while said 
algorithms show a stronger intra-cluster separation of nodes, as well as a tendency 
to separate clusters more strongly in multi-tie networks, such as Twitter retweet 
networks.
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Introduction

This contribution aims to bring together two strands of research: latent space 
approaches to network analysis and force-directed layout algorithms (FDLs). FDLs 
are used ubiquitously for network exploration, illustration, and analysis in a wide 
variety of disciplines [2, 16, 17, 19, 24, 43, 51, 56, 61, 62]. While often producing 
intuitively compelling and aesthetic layouts, FDLs remain a double-edged sword. 
Two different families of approaches are subsumed under the term—both suffer from 
certain shortcomings. For FDLs that build on an electric-spring metaphor (e.g., Ref. 
[35]), it is unclear how to precisely interpret node positions and corresponding pat-
terns, such as clusters (discussed recently in Refs. [34, 62]). FDLs that are instances 
of stress models, on the other hand, are simply directed towards the preservation of 
certain topological features of the network, such as geodesic distance between node 
pairs (see, e.g., Ref. [36]). They also tend to perform poorly on scale-free networks, 
a network type often found in social networks [14]. Besides, appropriate algorithm 
choice from the variety of FDLs available remains arbitrary in both cases.

We argue and show that explicit interpretability can be provided by latent space 
approaches, which have the goal of embedding a network in an underlying latent 
space, and where link probabilities are related to proximity in said space.

This contribution combines different approaches to embed networks in a mean-
ingful space. It also makes the differences between several force-directed algorithms 
that embed networks clearer, especially for scientists who do not have an overview 
of the vast literature in graph drawing with FDLs. To this end, we first briefly sketch 
different types of FDLs in Sect.  2. We distinguish between FDLs based on elec-
tric-spring models, and stress models which are based on multidimensional scal-
ing (MDS).1 We sketch the approaches and show differences in terms of what their 
layouts mediate in low-dimensional spaces. Specifically, the former have a tight 
connection to modularity, while the latter usually aim at arriving at uniform edge 
lengths rather than conveying community structure. In Sect. 3, we introduce latent 
space approaches to network analysis, and subsequently show how force terms of 
a new type of FDL can be derived from said latent space models, where the forces 
move nodes towards positions and parameters which maximise the likelihood for the 
network under the given model. Especially for social networks, latent space models 
can serve as a plausible probabilistic models of social behavior and, in principle, can 
also be used for link prediction. We derive force equations for three types of net-
works (Sect. 4): unweighted networks, multi-tie networks (such as the much-studied 
Twitter retweet networks), and weighted networks. We present an implementation of 
the FDL, which we call Leipzig Layout, as well as a number of real-world networks 
spatialised with it in Sect. 5; we also show that the existing algorithms, specifically 
ForceAtlas2 [35], Fruchterman Reingold [23], and Yifan Hu [32], differ from the 
presented FDL. Section 6 concludes with a summary and an outlook.

1  This article will not cover MDS in general, but only insofar as the layout algorithms are connected to 
it.
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Force‑directed layout algorithms

In the graph drawing literature, force-directed network layouts encase two different 
families of approaches. On the one hand, they include layout techniques that mimic 
a physical system in which forces that depend on the distance between nodes act 
on them until the system is at rest. This is what we will refer to as electric-spring 
models. On the other hand, layout algorithms have been developed that are types of 
MDS. While not actually simulating physical forces, they are referred to as ‘force-
directed’ algorithms in the graph drawing community [38].2 MDS is an approach 
to dimensionality reduction: information contained in a (high-dimensional) distance 
matrix is sought to be embedded in a low-dimensional space while keeping dis-
tances as truthful to the high-dimensional ones as possible. These approaches mini-
mise an underlying objective function called stress function, which is why they are 
also referred to as stress models.3

Electric‑spring models

Initially, force-based network visualization algorithms, both based on electric-spring 
and stress models, had been conceived to facilitate graph reading. They were sup-
posed to make small networks readable in the sense that paths and nodes in the net-
work were clearly accessible, that the edges had similar lengths and that the net-
work was drawn as symmetric as possible [21].4 These readability criteria were also 
referred to as ‘aesthetic’ (see, e.g., Refs.  [8, 12, 20, 32, 58]). Progress in network 
science and the sudden availability of very large network data sets at the end of the 
millennium—for which a comprehension of individual node positions and paths was 
illusory—shifted focus: now, networks needed to be drawn such that community 
structure and topological features were mediated in the layout. Electric-spring mod-
els (partly having been developed already before this complex turn, notably in Refs. 
[21, 23]) turned out to be useful and efficient tools for this task. The algorithms 
have in common that all nodes repel each other, while connected nodes are addition-
ally drawn together by their edges. The repulsive force Fr , Fr ∝ dr (d is the distance 
between nodes), has a smaller exponent than the attractive force Fa , Fa ∝ da , such 
that a > r.

Noack, in a seminal work [47], connected electric-spring models to modularity, 
one of the most central measures of clustering in networks in use today. Roughly 

2  Hence, one could also call electric-spring models FDLs ‘proper’, but we will stick to the established 
terminology for the rest of this article.
3  It is worth noting already here that this distinction is permeable to a certain extent. Electric-spring 
models also minimise an objective function, namely the potential energy of the system. However, the 
forces for different algorithms have usually been chosen, because they produce aesthetically pleasing lay-
outs, and not because the implicit energy function has certain desirable properties—such as preserving 
high-dimensional distances well. On the other hand, force equations governing a system can be derived 
from a stress function. However, typically, to find the stress function minimum, techniques such as stress 
majorization [25] are used.
4  This paragraph largely follows [34] in its account of the history of (force-directed) network layout 
algorithms.
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speaking, modularity Q compares the proportion of links connecting nodes within 
a group of nodes with the proportion expected if the edges in the network were 
randomly rewired [45]. Community detection algorithms, such as the Louvain 
algorithm [9], aim to find partitions of a network that maximise this value. Noack 
showed that, under certain constraints, modularity can be transformed into an 
expression that equals the energy function of electric-spring layouts. Constraints for 
the equivalence are as follows: 

	 (i)	 Nodes can only be placed either at the same position (then, they belong to 
the same cluster) or at distance 1 from each other (if they are not in the same 
cluster).

	 (ii)	 The algorithms operate in a space of (at least) k − 1 dimensions, where k is 
the number of modularity clusters (usually, FDLs embed networks in a two-
dimensional space).

	 (iii)	 The exponents of attractive and repulsive force should be non-negative. (Obvi-
ously, if the repulsive force has a negative exponent, placement of nodes at the 
same position would be impossible.)

For electric-spring layouts, this means that if they fulfill (ii) and (iii), their energy-
minimal states are relaxations of modularity maximization: They make community 
structure in networks visible without constraint (i) of having to sort nodes into dif-
ferent, fixed partitions with distance 0 or 1 from each other. They can assign con-
tinuous positions in space. Or, phrased the other way round: modularity is then a 
special case of their energy function.

However, Noack’s finding is diluted by the fact that network visualizations with 
FDLs are commonly restricted to two (or at most three) dimensions; and moreover, 
most electric-spring models in use today employ a negative exponent for the repul-
sive force. Noack also gave qualitative observations of which algorithms, even if 
they do not exactly fulfill the constraints above, tend to produce results that resemble 
modularity clusterings. Exponents in the forces should be characterized by a ≥ 0 
and the closer to 0, the better, r ≤ 0 , and a − r ≈ 1.5

The connection to modularity—which, notably, had not been intended in the 
design of the algorithms—helped give additional credibility to FDLs in general. 
They were not only used for illustrative purposes [2, 16, 17], but also to explore 
and analyse network data [19, 43, 51, 61, 62]. It is, however, unclear what informa-
tion electric-spring models add to modularity clustering by placing the nodes in a 
continuous space. It has been stressed that while they have been widely used, a thor-
ough assessment of what exactly is entailed by the produced layouts has not been 
provided yet [35].6 Moreover, many different types of FDLs have been developed, 

5  ForceAtlas2 ( a = 1 , r = −1 ) is in that sense more closely related to modularity than FruchtermanRein-
gold ( a = 2 , r = −1 ) or Yifan Hu (which uses similar forces to FruchtermanReingold, but with a multi-
level algorithm).
6  [34] departs into a somewhat different direction than the work presented here by proposing certain 
interventions which help interpret what is visible in electric-spring models that are already in use today, 
but both approaches try to tackle the shortcomings that are sketched above.
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several of which at least approximately subsume modularity clustering.7 But which 
one of them constitutes an appropriate choice for a certain data set at hand?8

Stress models

A separate branch of graph drawing is constituted by the so-called stress approaches, 
which are a type of MDS. They are commonly also subsumed under the term ‘force-
directed layout algorithms’. They relate a good graph drawing to good isometry with 
respect to higher dimensional node distances [38]. That is, uniform edge length 
is aspired. Stress approaches can generally be used for any data where distances 
between data points are given. In the special case of networks, they seek to embed a 
network in a low-dimensional space (for visualization, dimensions should obviously 
be at most three) and distances between nodes are typically given by the geodesic 
shortest path between two nodes [13, 36, 38]. This is achieved via a stress function 
which is supposed to be minimised. A typical stress function is of the form

xi and xj refer to node positions in the low-dimensional space, dist(i, j) is the 
(graph-theoretical) distance between i and j, and wij can be given by a term such as 
wij = dist(i, j)−� and serves as a normalization constant [38]. The stress function was 
introduced by Kruskal and Seery [39], and popularized by the graph drawing algo-
rithm of Kamada and Kawai [36]. Kamada and Kawai used the Newton–Raphson 
method to minimise the stress function iteratively. Other, more efficient approaches, 
such as stress majorization, have also been conceived [25]. Electric-spring models 
only differentiate between connected and disconnected nodes. Stress models encode 
different target distances between nodes based, e.g., on the shortest path between 
them. Hence, the former are of lower descriptive complexity [38].

As has been stated already, MDS approaches to network visualization are types of 
dimensionality reduction. They simply try to preserve graph-theoretic distances as 
well as possible. This is why the literature on FDLs appears to have split in two dif-
ferent directions: Electric-spring approaches mediate tightly connected clusters and 
are evaluated on that basis [34, 47, 62]. The graph drawing community has oriented 
towards MDS models, since they have an explicit objective function and there are 
powerful techniques allowing efficient low-dimensional embeddings [13, 14, 25, 
38].

Scientists might seek to interpret their layout based on a reasonable interaction 
mechanism between nodes. For example, what is often sought by social scientists 

(1)
∑
i<j

wij

(‖‖‖xi − xj
‖‖‖ − dist(i, j)

)2

.

7  We note here that modularity clustering is not without significant weaknesses, such as its resolution 
limit [22] or strong degeneracies of high-scoring solutions [26].
8  Certain quality measures to compare network layouts have been proposed, such as the normalized edge 
length [46] corresponding to the total geometric length of the edges of a network divided by the graph 
density and the total geometric distance between nodes. However, these do not give meaning to the pro-
duced layout beyond network-immanent topological features.
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is a plausible account of human behavior which forms the basis of the embedding. 
Stress models do not provide this. They do optimize an explicit objective function 
which has a clear interpretation.9 However, their objective function aims at preserv-
ing a specific topological feature of a network which has been translated into a dis-
tance matrix.10 Moreover, stress models tend to yield “poor results on certain classes 
of graphs, which include small worlds and other graphs with many shortcuts or 
low diameter, and scale-free graphs with highly skewed degree distributions, large 
1-shells, or other forms of structural imbalance” [14, p. 228]. Since, for example, 
social networks often have scale-free properties, this is rather problematic. All in all, 
it is clear what network embeddings with stress models mean, but this meaning does 
not point beyond network-immanent topological features.

Latent space models

FDLs are often implemented in easily accessible tools, such as Gephi [7].11 Not 
all researchers using the tools possess the methodological training to assess the 
mechanics behind them. However, the problems sketched above give an additional 
explanation for the fact that the limits or benefits of a chosen FDL are usually not 
discussed and “tools such as Gephi [are often treated as] as black boxes” [15]. As we 
have seen above, while being heavily used, layouts produced with FDLs are either 
ambiguous (in the case of electric-spring models) or aim at enforcing uniform edge 
length.

We propose to base a new type of FDL grounded in latent space models, with 
which network layouts can be interpreted explicitly in terms of a probabilistic model 
of node interactions. The approach is general, but as we show, it is especially fruitful 
for social networks. The distances between nodes can then be given a rigorous inter-
pretation, and forces can be chosen that are suitable to the network data one wants to 
analyse.

Latent space approaches to network analysis have been developed to infer latent 
positions from their interactions. They represent a class of models based on the 
assumption that the probability that two actors establish a relation depends on their 
positions in an unobserved social space [28, 31]. The social space can be constituted 
by a continuous space, such as an Euclidean space, or a discrete latent space, where 
each node is in one of several latent classes [42]. Models of this type have also been 
introduced under the name of spatially embedded random networks [6]. Under this 
umbrella term, the Waxman model [65] and random geometric graphs [18, 50] were 
recognized as specific examples. Recently, latent space models have been employed 
in the estimation of continuous one-dimensional ideological positions from social 

9  As opposed to electric-spring models, where interpretation is ambiguous and reasons for algorithm 
choice are only given ex post [34, 46].
10  This is not always straightforward for social networks, especially multi-tie networks. What, for exam-
ple, would be the distance between two nodes i and j if i had retweeted j once, but j had set off 10 tweets?
11  Gephi incorporates mostly electric-spring models, but the stress model algorithm by Kamada and 
Kawai [36] is implemented, e.g., in the Python networkx [27] package.
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media data [4, 5, 33], specifically from Twitter follower networks. These works cov-
ered large quantities of users and showed good agreement with, e.g., party registra-
tion records in the United States [5]. The estimation of positions in the latent space 
was achieved with correspondence analysis in [5], while in [4], the posterior den-
sity of the parameters was inferred via Markov Chain Monte Carlo methods. Latent 
space models have also been used to embed dynamic networks [53, 54], and have 
recently been extended to additionally include attribute information or multiple rela-
tionships in one shared embedding [64, 66].

This is where the present work intersects: We attempt to take an alternative route 
to arrive at a specific form of force equations for FDLs. We obtain the forces on the 
basis of latent space models. The positions of the nodes in an assumed latent space 
influence the probability of ties between them—the closer their positions, the more 
probable it is that they form a tie. We derive an FDL as a maximum-likelihood esti-
mator of such a model. This approach clarifies the underlying assumptions of our 
layout algorithm and makes the resulting layout interpretable. We derive three dif-
ferent forces for three different types of networks, specifically adapted to the task of 
embedding them in a political space: unweighted, multi-tie, and weighted networks. 
Moreover, alternative interaction models can in principle be used to develop force-
directed layouts in a completely analogous way. For this, the present work can serve 
as a blueprint.

While some might claim that the visualization of a network only serves illustra-
tive purposes, their wide-spread use, not only for exploration and illustration, but 
also visual analysis of networks [17, 19, 43, 61, 62] underscores the necessity of 
this enterprise: Exploration and interpretation are, in practice, guided by force-
directed layouts for many researchers from a variety of disciplines. And especially in 
the (computational) social sciences, where network data are abundant and explora-
tion and analysis are tied closely to readily implemented algorithms, algorithms that 
make their assumptions explicit and are suitable to the data that is supposed to be 
analysed are needed.

From latent space models to force equations

In this section, we show how force terms in a force-directed layout algorithm can be 
derived from latent space models of node interactions. Central to this procedure is 
the assumption that nodes tend to form ties to others that are close to them in a latent 
social space. The closer two nodes, the higher the probability that one forms a tie to 
the other. Since none of the positions (as well as none of the additional parameters 
of the statistical model which will be introduced in the corresponding subsections) 
are directly observed, the statistical problem posed here is their inference. Given the 
latent space model, one can determine the likelihood function L(G) for any observed 
network. The positions and parameters are then inferred via maximum-likelihood 
estimation. In our approach, this is done by treating the negative log-likelihood as a 
potential energy. The minima of this potential energy are the local maximisers of the 
likelihood. Its derivatives with respect to the positions and parameters of the nodes 
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can be considered as forces that move the nodes towards positions that maximise the 
likelihood.

We will cover three different types of directed networks: unweighted networks, 
such as the follower networks covered by Barberá and colleagues [4, 5], multi-tie 
networks (which include Twitter retweet networks), and weighted networks. Undi-
rected networks are implicitly included as a special case where aij = aji and each 
node only has one additional parameter � . We will present the derivation of the 
forces for the unweighted case in detail. The complete derivations for the other two 
cases are given in Appendices 7 and 8.

Unweighted networks

Consider an unweighted graph G = (V ,E) with nodes i ∈ V  and edges (i, j) ∈ E . The 
graph can be described by an adjacency matrix A = {aij|aij = 1 if (i, j) ∈ E} . Now, 
let us assume that the nodes are represented by vectors xi ∈ ℝ

n and dij = d(xi, xj) 
denotes the Euclidean distance between xi and xj.12 For the probability of a tie 
between two nodes, we choose (see [31])

The probability is dependent on the squared Euclidean distance between the two 
node positions.13 That the probability is dependent on the squared distance is also 
assumed in [4], while in [5, 31], the linear distance is used. � and � are additional 
parameters that also influence the probability of a tie. �i can be interpreted as an 
activity parameter related to the out-degree of node i: The higher �i , the higher the 
probability of a tie from i to others. �j influences the probability of ties to j, i.e., the 
in-degree of node j. The parameters allow nodes that occupy the same position in 
space to have different degrees—as an example, there might be people with roughly 
the same political position as, say, a state leader, but it is generally unreasonable 
to expect that these users have the same amount of followers on social media. On 
the other hand, some users might simply be more active than others, hence forming 
more ties, while sharing a political position.

The model introduced here has already been well established in the literature [4, 
5, 31]. However, alternative models can be posited that might be more fitting for 
certain network types. In that case, the derivation lined out below can be carried out 
analogously.

(2)p(aij = 1) = logit−1
(
�i + �j − d2

ij

)
=

exp
(
�i + �j − d2

ij

)

1 + exp
(
�i + �j − d2

ij

) .

12  The question of dimensionality is an open one both for latent space models and for FDLs. We are con-
cerned with network visualization in this contribution, and hence restrict ourselves to two dimensions. 
Especially with respect to political embeddings, already two dimensions (left–right plus an additional 
one) which already explain much of the structure in these networks (see [48]). Nevertheless, it is highly 
desirable to investigate dimensionality effects in a systematic way both for latent space models and FDLs.
13  This is a convenient choice, since it yields, as we will see shortly, linear forces.



715

1 3

Journal of Computational Social Science (2023) 6:707–739	

For a given graph G, the likelihood function L(G) can be written as the product of 
the probability of an edge if there exists an edge between two nodes, and the prob-
ability of there not being an edge if not

The logarithm of the likelihood is given by

If we consider the negative log-likelihood as a potential energy, its minimas are 
the local maximisers of the likelihood. Its (negative, once again) derivatives with 
respect to the positions xi of the nodes can be considered as forces that move the 
nodes towards positions that maximise the likelihood. For a concrete node i′ , an 
attractive force is generated by node j′ if i′ establishes a tie to j′

If j′ also establishes a tie to i′ , the same attractive force is applied again. On the other 
hand, a rejecting force is always present for each possible tie14

Another repulsive force on i′ appears for this node pair for the potential tie from j′ to 
i′.

The derivative of Eq. (4) with respect to �i′ and �i′ gives us the forces on the 
parameters of node i′ , such that

and

(3)

L(G) =
�
(i,j)∈E

p
�
aij = 1

� �
(i,j)∉E

�
1 − p

�
aij = 1

��

=

∏
(i,j)∈E exp

�
�i + �j − d2

ij

�

∏
i, j

i ≠ j

�
1 + exp

�
�i + �j − d2

ij

�� .

(4)

LL(G) ∶ = logL(G)

=
∑
(i,j)∈E

(
�i + �j − d2

ij

)
−

∑
i, j

i ≠ j

log
(
1 + exp

(
�i + �j − d2

ij

))
.

(5)F
j�

att,i�
=

�

�xi�

(
�i� + �j� − d2

i�j�

)
= −2

(
xi� − xj�

)
.

(6)

F
j�

rej,i�
= −

�

�xi�
log

(
1 + exp

(
�i� + �j� − d2

i�j�

))
=

1

1 + exp
(
−�i� − �j� + d2

i�j�

)2(xi� − xj�
)
.

(7)Fj�

�i�
= ai�j� −

1

1 + exp
(
−�i� − �j� + d2

i�j�

) = ai�j� − p
(
ai�j� = 1

)

14  Note the sign reversal in the exponent of the exponential function in the denominator in the last equiv-
alence, which stems from 
exp ∶ (�i� + �j� − d2

i� j�
)∕

(
1 + exp

(
�i� + �j� − d2

i� j�

))
= 1∕

(
1 + exp

(
−�i� − �j� + d2

i� j�

))
.
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The sum over all forces on the single parameters yields the difference between the 
actual and the expected in-/out-degree. In the equilibrium state, where this sum 
yields 0, the observed in-/out-degree of nodes equals the one expected under the 
model of Eq. (2)

Multi‑tie networks

Force equations can also be derived for networks which are constituted by a number 
of binary signals between nodes—for example, when users of an online platform 
create several posts, each of which can be taken up by others (e.g., through liking 
or sharing the respective post). A much-studied case are Twitter retweet networks, 
which are frequently employed to investigate opinion groups on the platform [16, 
17].

We consider, for each action k initiated by a node j (e.g., a tweet), an unweighted 
graph Gk

j
= (V ,Ek

j
) with nodes i ∈ V  and edges (i, j) ∈ Ek

j
 , where an edge means that 

i has formed a tie to j upon action k. The graph for each k can be described by an 
adjacency matrix Ak

j
= {aij|aij = 1 if (i, j) ∈ Ek

j
} . This constitutes an m-star graph 

with m = |Ek
j
|.15

Analogously to the unweighted case, we assume the probability of establishing a 
single tie upon action k from user i to user j with

where each action k of j has its own parameter �jk which affects the in-degree of j.
The log-likelihood for the multi-tie network can be written as

(8)F
j�

�i�
= aj�i� −

1

1 + exp
(
−�j� − �i� + d2

i�j�

) = aj�i� − p
(
aj�i� = 1

)
.

(9)
∑
j�

Fj�

�i�
= dout

i
−
⟨
dout
i

⟩
,

(10)
∑
j�

F
j�

�i�
= din

i
−
⟨
din
i

⟩
.

(11)p(ak
ij
= 1) =

1

1 + exp
(
−�i − �jk + d2

ij

) ,

15  In general, multi-tie networks are also constituted by networks with an arbitrary number of edges 
between nodes. In our model here, we are concerned with networks with a maximum number of edges 
from node i to node j which is determined by the number of actions mj of j that i can form a tie on.
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Here, in addition to user pairs, we sum over all actions k. The derivation of forces 
for this case is largely analogous to the unweighted case and can be found in Appen-
dix 7, along with the concrete force equations.

Weighted networks

So far, we have assumed a binary signal between node pairs—e.g., whether an indi-
vidual follows another one or not, or whether someone shares certain content of 
another individual or not. Extending the model to the non-binary case can be achieved 
by exchanging the ordinary logit model [Eq. (2)] with an ordered logit or proportional 
odds model.

There, a response variable has levels 0, 1, ..., n (e.g., people rate their relationships to 
others on a scale from 0 to 6, or similar). We consider the general case of weighted net-
works with finite weights that can be transformed into natural numbers (including 0), 
i.e., an adjacency matrix A = {aij = k|k ∈ ℕ0} . The probability of the variable being 
greater than or equal to a certain level k is given by [29, 37]

where k = 0, 1, ..., n. ( c0 = ∞ , cn+1 = −∞ .) The probability of aij equal to a certain k 
is given by

The likelihood L(G) is given by
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The force equations derived from the log-likelihood (for the case of a three-point 
scale) can be found in Appendix 8. Potential applications of a visualization with 
these forces are manifold. In smaller data sets, a non-binary signal between nodes, 
e.g., rating of the relationships between individuals of a social group, might be given 
between all node pairs. But often, there might be cases for which a subset of indi-
viduals (say, politicians, public figures, etc.) or items (e.g., the importance of politi-
cal goals, technologies, etc.) are rated by others, such that they form a bi-partite 
network. Then, only the rating individuals receive an � , while the rated just have a 
�-parameter. The interpretation of the parameters � and � might need adjustment: 
They now rather refer to the tendency of individuals to give/receive rather high/low 
ratings.

Real‑world networks

The force-directed layout algorithm was implemented in JavaScript, building upon 
the d3-force library [10]. There, force equations are simulated using a velocity Ver-
let integrator [57, 63]. A ready-to-use implementation, which we call Leipzig Lay-
out, is available under https://​github.​com/​pourn​aki/​leipz​ig-​layout.16 It builds upon 
the force-graph library [3] to interactively display the graph and the evolution of 
node positions in the simulation of forces. Note that at the current state, this layout 
tool works reasonably fast for networks below 10,000 links. We include a perfor-
mance benchmark for convergence speed in Appendix 9. Validation is included in 
Appendix 10.

We use Leipzig Layout to spatialise several real-world networks: Undirected 
Facebook friendship networks, the directed Twitter follower network of the Ger-
man parliament, the Twitter retweet network of a debate surrounding the publication 
of a letter on free speech by Harper’s magazine, and a survey on different types of 
energy-generating technologies.

Facebook100: Haverford & Caltech

The Facebook100 data set consists of online social networks collected from the 
Facebook social media platform when the platform was only open to 100 universi-
ties in the US [59]. The data set contains social networks of students of particular 
universities with quite rich metadata (e.g., gender, year, residence, or major). We 
analyse friendship networks—undirected networks where a tie between users rep-
resents that both have agreed to connect with each other as ‘friends’ on the plat-
form. We spatialise the friendship network of Haverford University in Fig. 1 A, B 
(links have been omitted for better accessibility). On the left, it is visible that stu-
dents are spatially layered according to their year by the layout algorithm. The first-
year students are visually separated from the others. The layout becomes denser for 
students who have been at the university for a longer time. The layers are ordered 

16  For the moment, this implementation is restricted to unweighted graphs. An extension for weighted 
and multi-tie graphs will be published on the same repository.

https://github.com/pournaki/leipzig-layout
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chronologically. It seems that if students form cross-year ties, they tend to connect 
to others from adjacent cohorts. The local assortativity distribution with respect to 
residence of the students of Haverford has been analysed in detail in [49]. There, 
it was found that first-year students tend to form ties to other students from their 
dorms, while students from higher years show less of a tendency to mix only with 
others they share residence with. This behavioral pattern can also be discerned in the 
spatialisation (Fig. 1B): For the first-year students, the students sharing a dorm tend 
to be placed rather close to each other, while for students from higher years, this is 
not the case. As a complement, we spatialise the network for the university with 
the highest overall assortativity with respect to dormitory in the data set: Caltech. 
There, the students’ years do not influence Facebook friendship to a large extent; 
rather, students’ friendships are more strongly guided by their residences [52]. This 

Fig. 1   Friendship network of students of Haverford University (top) and California Institute of Technol-
ogy (bottom), colored by year (left), and residence (right). The spatialisation of the former layers stu-
dents by year (A, chronologically ordered from top to bottom, with first-year students colored pink, sec-
ond-year students colored green, etc.; dark grey nodes correspond to students whose year is unknown). 
First-year students are visually separated from the others, while the layout becomes denser if students 
have been at university for a longer time. In (B), it is also visible that first-year students show a higher 
tendency to mix with others they share residency with (dark grey: dorm unknown). For Caltech, the 
network out of the Facebook100 data set with the highest assortativity with respect to residence, nodes 
are visibly placed according to dorm membership (D, dark grey: year/dorm unknown), and less so with 
respect to year (C)
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is reproduced by Leipzig Layout: Fig. 1 D shows that students that share residence 
are visibly placed close to each other. On the other hand, students are less strongly 
grouped according to their university year (C).

German parliament: Twitter follower network

While [4, 5] aim for the estimation of one-dimensional ideological positions of 
politicians (and their followers), the FDL proposed here embeds nodes in a two-
dimensional space. We spatialise the Twitter follower network of all then-mem-
bers of the German parliament that had an active Twitter account in Fig. 2 as of 
July 2021. The parties (members colored according to their typical party color) 
are quite visibly separated. They are located along a circle that quite accurately 
mirrors the political constellation in federal German politics. The center-left to 
center-right parties (SPD, Bündnis 90/Die Grünen (Green party), CDU/CSU) are 
positioned between Die Linke (left party) and the market-liberal FDP. The AfD 
(blue), a right-wing populist party with which collaboration has been ruled out 
by all other parties, accordingly occupies a secluded area. Interestingly, within 

Fig. 2   Leipzig layout of the follower network of all German deputies that have a Twitter account (A). 
Members are colored according to their party and node size corresponds to overall node degree. Clear 
division between parties, as well as a stronger division between the right-wing party AfD and the other 
parties is visible. All parties except the Greens are arranged on a one-dimensional axis. This is explained 
by a difference in cross-party ties between politicians of the same party: The further out a member on the 
party-internal axis, the fewer cross-party ties to and from them have been established (except for the AfD, 
which does not receive many ties from other parties no matter where the users are placed) (C, colored 
according to parties, linear fits included). ForceAtlas2, in comparison, has a stronger separation of nodes 
within party clusters due to its rejecting force being proportional to d−1 (B)
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parties, a one-dimensional arrangement is visible (except for the Greens). This 
mirrors the amount of cross-party ties, as well as the users’ activity on Twitter: 
The further out on an axis between the innermost and outermost party member 
users are placed (outliers excluded), the smaller their share of ties to other par-
ties (Fig. 2C). The densely packed placement of the Greens can be explained by 
the fact that they tend to use Twitter quite homogeneously (see Appendix 12) 
in the sense that there are no users which are inactive or lack followers: Each 
of them (except one) has an in-/out-degree of at least 50. Moreover, the party 
members are followed by and follow all other parties (except for the AfD) in a 
well-balanced fashion. � and � are generally correlated with out and in-degree of 
the nodes (again, see Appendix 12). They exhibit a very pronounced linear cor-
relation for the Greens.

This layout also illustrates the difference between ForceAtlas2 (see (B) in Fig. 2) 
and the layout algorithm at hand here: ForceAtlas2 incorporates a rejecting force 
between node pairs proportional to d−1

ij
 , which leads to a stronger separation of 

nodes within clusters. Hence, while the overall arrangement of parties is similar to 
Leipzig Layout, parties themselves are more strongly spaced out. A comparison to 
spatialisations with the algorithms Yifan Hu and FruchtermanReingold can also be 
found in Appendix 12.

Moreover, we observe that several minima are inferred by both Leipzig Layout 
and the other FDLs—depending on the initial positions of the nodes. While the 
existence of different local minima is a general problem of FDLs, one can simply 
select the outcome with the highest likelihood with the present approach. A differ-
ent, but less likely local minimum inferred with Leipzig Layout is also presented in 
Appendix 12. The more likely minimum, which is displayed in Fig. 2, is also the 

Harpers

Julia Serano

Judd Legum

J.K. Rowling

Thomas Chatterton Williams

Astead W. Herndon

Fig. 3   Retweet network of Twitter debate about a letter on free speech published by Harper’s magazine 
(node size proportional to in-degree). A two-camp division is visible, where the left pole includes the 
magazine as well as prominent signees, while the right pole contains critics



722	 Journal of Computational Social Science (2023) 6:707–739

1 3

politically more plausible one: In Appendix 12, SPD is placed closer to FDP than 
CDU/CSU, while the latter two parties have more commonalities (especially when it 
comes to economic policy).

Retweet network: Harper’s letter

In July 2020, Harper’s magazine published an open letter signed by 153 public fig-
ures defending free speech which they saw endangered by ‘forces of illiberalism.’ 
Not only Donald Trump was denounced as contributing to illiberalism, but also 
some groups who advancing “racial and political justice,” who had “intensified a 
new set of moral attitudes and political commitments that tend to weaken our norms 
of open debate and toleration of differences in favor of ideological conformity” 
[1]. On Twitter, the letter was controversially discussed (see also https://​blog.​twitt​
erexp​lorer.​org/​post/​harpe​rs_​letter/). The layout of the retweet network reproduces a 
division between critics and supporters of the letter: On the left side of Fig. 3, the 
account of Harper’s magazine as well as prominent signees such as Thomas Chatter-
ton Williams and Joanne K. Rowling are visible, while the right pole includes crit-
ics of the letter and its signees, such as Judd Legum, Astead W. Herndon, and Julia 
Serano. Serano, a transgender activist, criticized that what the signees referred to 
as ‘free speech’ has prevented marginalized groups from speaking out, and accused 
Rowling of having spread disinformation about trans children. That she was voicing 
rather specific criticism which aimed towards certain signatories of the letter is mir-
rored in her position close to the margin of the inferred space. Legum and Herndon 
are placed closer to the center: Legum noted in a relatively nuanced critique that the 
signees of the letter are not silenced in any way, while Herndon published several 
ironical tweets about the letter. Interestingly, the division of clusters visible in the 
layout is not as pronounced as in the spatialisation of the network with ForceAtlas2 
and Yifan Hu (see Fig. 11 in Appendix 12), a finding that calls for further systematic 
investigation.

Survey data

With the weighted layout, not only generic network data can be spatialised, but also 
surveys: There, evaluated items as well as respondents are nodes, and forces only 
exist between items and individuals.

In Fig. 4, we visualize a survey where respondents were asked about their attitude 
towards six different energy-generating technologies [55]. The responses represent 
the initial attitudes of respondents with respect to the technologies before being con-
fronted with several pro and counter arguments. Responses were initially given on a 
nine-point scale, which was aggregated to a three-point scale for visualization. The 
presented technologies were gas and coal power stations, onshore and offshore wind 
stations, biomass power stations, and open-space photovoltaics (which we refer to as 
solar in Fig. 4).

The distribution of respondents over the inferred space, given by a density plot 
(the lighter the color, the more respondents lie in a region of the layout), shows that 

https://blog.twitterexplorer.org/post/harpers_letter/
https://blog.twitterexplorer.org/post/harpers_letter/
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the vast majority of respondents are located between gas and onshore, solar and 
offshore energy-generating technologies, while coal is placed far away from most 
respondents.

Several density peaks exist which correspond to respondents with similar 
response profiles: one between gas and biomass, one placed rather centrally between 
gas, offshore, solar, onshore and biomass, two between biomass and solar/onshore, 
and one at the margin of the space, but closest to offshore and solar/onshore tech-
nologies. Even more interesting is the arrangement of technologies themselves, 
since it shows that collectively, response profiles of individuals create two orthog-
onal axes along which technologies are placed: One axis is visible from renewa-
bles towards technologies relying on fossil sources of energy (gas and coal). On the 
other hand, renewable sources of energy are distributed along an perpendicular axis. 
Onshore and solar occupy central positions there, while offshore and biomass are 
located opposite of each other. The respondents’ distribution and the arrangement 
of technologies are in line with the average ratings and rating correlations between 
individuals (see Appendix 13). Average ratings for coal are reported to be signifi-
cantly lower than for any other technology in [55], gas receives a neutral rating, and 
renewable technologies (offshore, onshore, solar, and biomass) are rated positively 
on average. Biomass receives the lowest average rating of the renewables, which is 
reflected in the distribution of respondents. Biomass has, among the renewables, the 

Fig. 4   Visualization of a survey on six different energy-generating technologies. The distribution of 
respondents is plotted as a density in the background (the lighter, the denser they are distributed in an 
area). Respondents are distributed close to gas, renewable energy-generating technologies, and between 
them. Two technological axes are visible: One from coal and gas to the renewables, and one among tech-
nologies using renewable sources of energy, with onshore and solar occupying central positions, while 
offshore and biomass are located opposite of each other
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weakest correlations with the other renewables. On the other hand, ratings are not 
negatively correlated with coal or gas. This is mirrored by its placement in Fig. 4.

Outlook

FDLs are frequently employed for network visualization across a variety of sci-
entific disciplines. However, the algorithms are either based on forces whose 
explicit interpretation is still unclear or on techniques dimensionality reduction 
which seek to preserve network-immanent topological features.

We have presented a path towards interpretable FDLs based on latent space 
models. We have derived force equations for Leipzig Layout, a FDL that serves 
as a maximum-likelihood estimator of said models. We have posited three var-
iants of the FDL, which are applicable to unweighted, multi-tie, and weighted 
networks, respectively. Exemplary spatialisations of several real-world networks 
show that important properties of the networks (assessed through different net-
work measures) are reflected by node placement. Moreover, commonalities with, 
but also differences to the existing FDLs have been pointed out: The latter tend to 
exhibit a stronger separation of nodes within tightly connected clusters, and, for 
retweet networks, also between each other.

The new type of FDL presented here makes the assumptions it is based on—
the underlying latent space model—explicit, and hence constitutes an attempt 
to put FDLs on a plausible model of node interactions. Latent space models are 
well established in the estimation of ideological positions on the basis of (social) 
networks. In most cases, the ideology estimates have been carried out on a one-
dimensional axis. Leipzig Layout infers a two-dimensional latent space.

The model chosen here can, if found necessary for certain network types, be 
replaced by alternative interaction models. For this purpose, the derivation of 
forces above can serve as a blueprint. The present approach might also be used 
to motivate parameter choices for the existing FDLs, such as ForceAtlas2: The 
degree of influence of edge weights there, for example, can be chosen freely. 
However, the choice could be guided by agreement with the weighted case of the 
algorithm implemented here.

The spatialisation of survey data presented above points beyond traditional 
usage of FDLs, an avenue which should be explored further. Moreover, embed-
dings produced on latent space models can be used for link prediction, for exam-
ple, if data are incomplete or if future behavior is supposed to be prognosticated.

Recently, approaches have been developed which assist or replace the force-
directed algorithm with neural networks, especially graph neural networks 
(GNNs) [11, 40]. This might potentially increase convergence speed consider-
ably and might form a possible route to make a layout with the energy (i.e., loss) 
function above more efficient. We note here that recent work in machine learn-
ing also used force-directed layouts that were derived as gradients of an objec-
tive function: stochastic neighbor embedding (SNE) [30] and t-SNE [44, 60] used 
this technique to embed a graph in a lower dimensional space. In these cases, the 
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objective function was not the likelihood of a statistical model but the KL-diver-
gence between two probability distributions.

Limitations remain: The convergence of FDLs to local minima is a problem 
that cannot be solved by the present approach. The follower network presented in 
Fig. 2, for instance, possesses several equilibria for which the parties were allo-
cated in different order, both for Leipzig Layout as well as the three algorithms it 
was compared with. Nevertheless, the underlying model of Leipzig layout allows 
a comparison of the log-likelihood of several equilibria, out of which the most 
likely can then be chosen. Minor design options which serve readability could 
be included in the algorithm in the future. For example, allowing nodes to over-
lap allows a precise representation of the inferred space. However, if individual 
nodes are supposed to be discerned, an option that prevents node overlap could be 
introduced.

Moreover, the role of dimensionality for the outcomes of latent space inference in 
general has not been studied systematically [42]. For network visualization, an exten-
sion to a three-dimensional latent space would be of interest in comparison to the two-
dimensional case studied here.

Appendix A: force derivation—multi‑tie networks

For multi-tie networks, we stipulate the probability of establishing a single tie upon 
action k from user i to user j by

The derivation of the forces for this case is analogous to the unweighted case, except 
that we sum over tweets instead of user pairs.

The log-likelihood for a given network can be written as

The force on the position of node i′ exerted by node j′ is given by
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The force on �i′ exerted by j′ is given by

the force on each �i′k due to j′ by

Appendix B: Force derivation—weighted networks

A possibility of extending the model to weighted graphs, i.e., an adjacency matrix 
A = {aij = k|k ∈ ℕ0} , is the ordered logit or proportional odds model. There, the 
response variable has levels 0, 1, ..., n (e.g., people rate their relationships to others 
on a scale from 0 to 6). The probability of the variable being greater than or equal to 
a certain level k is given by

(c0 = ∞ , cn+1 = −∞ ). The probability of aij equal to a certain k is given by

The log-likelihood of the graph is then given by

As the simplest example, we turn to the case with three levels, where the probabili-
ties are given by17
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17  In practice, one might often encounter data sets where individuals have rated a limited set of others, 
e.g., politicians, which themselves might not participate in the rating. This yields a bi-partite graph for 
which � only applies to the rated individuals, while �-values are present only for the rating individuals.
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The derivative of Eq. (B3) with respect to xi , �i and �i gives us the forces on the 
position and the parameters of node i. Additionally, the derivative with respect to c1 
and c2 estimates the cut points. We introduce the following abbreviations:

and

The first part of the force on the position of node i′ exerted by node j′ is given by

if ai�j� = 0 . If ai�j� = 1 , the force is given by

Or, if ai�j� = 2

For the second part of the force on i′ , caused by aj′i′ , one simply needs to take the 
appropriate term out of the three above and switch i′ and j′ for � and �.
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Now, there is no second force part—this is the only contribution by the pair i′ and j′ . 
The force on �i′ is given by the analogous term where i′ and j′ are, again, switched 
for � and � , and the level of aj′i′ is considered.

The forces on c1 and c2 by the pair are given by

(For the second part, switch i′ and j′ for � and � and consider aj′i′.)

(For the second part, switch i′ and j′ for � and � and consider aj′i′.)

Appendix C: Performance benchmark

The convergence times in Table  1 were measured on an Apple Silicon M1 Max 
machine. Note that, especially for sharing networks, our first implementation of the 
algorithm is still very slow compared to existing layout algorithms such as FA2. 
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Table 1   Performance 
benchmarks for networks of 
different sizes

Network name Dir./undir Nnodes Nedges Conver-
gence 
time (s)

Zachary’s Karate Club Undirected 34 156 2
Lazega Lawyers Undirected 71 798 3
German parliamentarians Directed 538 48260 5
Caltech FB Friendships Undirected 1538 33312 60
Haverford FB Friendships Undirected 2892 119178 90
Harper’s letter (multi-tie) Directed 540 1017 3600
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Further work is required to accelerate the performance for larger networks, which 
could be achieved using approximations such as Barnes Hut, or by randomly sam-
pling nodes for the computation of repulsive forces instead of computing them 
between all pairs.

Appendix D: Validation

Validation for the unweighted case was performed by testing the agreement with the 
expected distance of a stochastic blockmodel (SBM) of two blocks with varying pout 
and pin = 0.5 . In the above model, the expected distance can be computed by plac-
ing the nodes of each block on the same point in space, and then choosing the dis-
tance d between the two blocks, so that pout =

1

1+exp(−d2)
 ( � and � are set to 0, so that 

the expected degree for all nodes in one block is the same). With this underlying 

Fig. 5   Expected distance of an SBM (two blocks, 100 nodes each) with varying pout compared to the 
distance between the center of mass of the clusters in the proposed layout algorithm, averaged over 5 
runs (A). Not only is the inferred distance by the force-directed layout algorithm nearly identical to the 
expected one throughout, but the log-likelihood of the inferred latent space surpasses the ground truth in 
all cases (B). The difference between inferred log-likelihood and the log-likelihood of the ground truth 
for a Gaussian distribution of two groups of nodes ( � = 1∕12 , d = 5∕6 , averaged over 3 runs) is given 
in (C). In all cases, the log-likelihood of the inferred latent space surpasses the ground truth (i.e., them 
difference in log-likelihood is positive). Still, similarity between ground truth and inferred distances 
between nodes is high (increasing with number of nodes), as is visible in the average Pearson correlation 
between distance matrices (D)
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latent space, one can draw a network according to the given probabilities and let the 
layout algorithm infer the latent space again. Averaged over five runs and for 100 
nodes per block, we observe that the inferred distance of the centers of mass of the 
blocks are nearly identical to the expected one (Fig. 5 A), and the log-likelihood of 
the inferreds latent space surpasses the one of the actually drawn one in all cases 
(Fig. 5 B).

Moreover, we compare the log-likelihood of the inferred latent space with the one 
of the actually drawn network from a Gaussian distribution of two groups of nodes 
with a � of 1/12 and a distance of 5/6 between the groups with varying node num-
ber, averaged over three runs. In all cases, the log-likelihood of the inferred latent 
space is higher than the ground truth (Fig. 5C). Still, similarity to the ground truth 
distances between nodes was high throughout, which we assessed with a Mantel test 
[41]. Pearson correlation between distance matrices can be inspected in Fig.  5D. 
Table 2 gives the average z-scores for the Mantel test.

Appendix E: Bayesian correction of force term

For the inference of the model parameters, we have only one sample. Although 
our model is a probabilistic model, our empirical distribution contains either 
p(aij = 1) = 1 if there is an edge, or p(aij = 1) = 0 , if not. This can lead to diver-
gences of the model parameters in the maximum-likelihood solution. If one node 
is connected to all the other nodes, for instance, i.e., the graph contains a (N-1)-star 
subgraph, �i will diverge in the maximum-likelihood solution ( �i → ∞ ). One way to 
avoid this problem is to formulate is as a Bayesian inference problem. This is a well-
defined problem, even with a single data point. Lets denote the entries of the adja-
cency matrix of our graph G as aij and the corresponding random variables Aij or 
A , respectively. Moreover, lets call the parameter vector of our model � = {�, �, �} , 
with �i = {�i, �i, xi} and the corresponding random variable X. Then, the posterior 
distribution of the parameters is given as

Here, p(A|X) is the likelihood (see Eq. (3)), p(X) comprises all prior distributions, 
and p(A) is the marginal likelihood of the data. Instead of asking for the parameters 
that maximise the likelihood, we can now ask for the parameters that maximise the 

(E1)p(X|A) = p(A|X)p(X)
p(A)

.

Table 2   Average z-scores for a Mantel test for layout of a network generated from a Gaussian distribution 
of two groups of nodes with a sigma of 1/12 and a distance of 5/6 between the groups with varying node 
number (averaged over three runs)

Node number 100 300 600 900

Unweighted 36.65 77.49 90.56 94.91
multi-tie 43.07 77.04 84.58 92.12
Weighted 45.60 83.32 92.84 95.69
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posterior p(X|A) or, equivalently, its logarithm. If one considers the gradients of the 
logarithm of the posterior again as forces, the likelihood term produces the same 
forces as in the maximum-likelihood case. However, we may get additional forces 
from the prior term, which, for instance, can prevent the activity parameters from 
diverging.18

Appendix F: Real‑world networks and comparison to other layout 
algorithms

German parliament In the main text, the Bundestag follower network layout was 
only compared to ForceAtlas2. In Fig. 6, we also show the follower network spa-
tialised with Yifan Hu [32] (lower left) and Fruchterman Reingold [23] (lower 

Leipzig Layout ForceAtlas2

Yifan Hu Fruchterman Reingold

Fig. 6   Bundestag follower network, comparison of Leipzig Layout (top left), ForceAtlas2 (top right), 
Yifan Hu (lower left), and Fruchterman Reingold (lower right). Overall placement of parties is simi-
lar, but Leipzig layout, which allows closer placement of nodes, arranges all parties (except the Greens) 
along a one-dimensional axis

18  [4] assumes normal priors for all parameters of the model. Nevertheless, it is noted in the main text 
that flat priors are used except for � and the positions x . The mean of the prior distribution of � is set to 0 
and the prior distribution for the positions is N(0, 1).



732	 Journal of Computational Social Science (2023) 6:707–739

1 3

Fi
g.

 7
  

Sc
at

te
r p

lo
t o

f i
n/

ou
t-d

eg
re

e 
an

d 
nu

m
be

r o
f o

ut
-g

ro
up

 ti
es

 fo
r e

ac
h 

pa
rty

. N
o 

us
er

 fr
om

 th
e 

G
re

en
 p

ar
ty

 h
as

 in
 in

- o
r o

ut
-d

eg
re

e 
of

 le
ss

 th
an

 5
0.

 T
he

y 
us

e 
Tw

itt
er

 
qu

ite
 h

om
og

en
eo

us
ly

, w
hi

ch
 e

xp
la

in
s 

th
ei

r c
en

tra
l p

la
ce

m
en

t i
n 

th
e 

fo
rc

e-
di

re
ct

ed
 la

yo
ut

 (a
s 

w
el

l a
s 

th
e 

ho
m

og
en

eo
us

ly
 d

ist
rib

ut
ed

 in
co

m
in

g 
an

d 
ou

tg
oi

ng
 li

nk
s 

am
on

g 
pa

rti
es

, s
ee

 F
ig

. 7
)



733

1 3

Journal of Computational Social Science (2023) 6:707–739	

right). All layout algorithms roughly reproduce party divisions. Fruchterman 
Reingold tends to distribute nodes homogeneously in spaces. Die Linke and the 
Greens have some overlap in this layout. A less pronounced overlap is also vis-
ible for Yifan Hu, which produces a comparably dense spatialisation.

The central placement of the Greens in the Leipzig Layout (as well as in the 
other layout algorithms) can be explained by their homogeneous usage of the 
platform: Each user of the party has an in/out-degree of at least 50 (which is not 
the case for the other parties; see Fig. 7). Moreover, the party members are fol-
lowed and follow all other parties in a quite uniform fashion (see Fig. 8).

Moreover, � and � are correlated with node out- and in-degree for each party; 
see Fig. 9. In the case of the Greens, the correlation appears to be (except for 
one outlier) strongly linear.

Different (local) minima exist for this network, one of which is displayed in 
Fig. 10. There, the FDP is placed between SPD and Die Linke. The inference of 
local minima is a general problem of FDLs—nevertheless, in the present frame-
work, one can compare the log-likelihood of different equilibria and take the 
spatialisation with the highest likelihood (i.e., the lowest negative log-likeli-
hood). The log-likelihood of Fig. 10 is around 61,700, while it is roughly 57,700 
for Fig. 2. The minimum with the higher likelihood is also the politically more 
plausible one: SPD and Die Linke are, especially when it comes to economic 
policy, oftentimes strongly opposed to the market-liberal FDP. On the other 
hand, FDP and CDU/CSU have often stressed that they are parties that have 
many things in common, such that Fig. 2 seems to be closer to political reality.

Harper’s letter
Figure 11 shows the Harper’s letter retweet network spatialised with the four 

layout algorithms. Fruchterman Reingold, again, arranges the nodes rather uni-
formly in space. Interestingly, Yifan Hu and ForceAtlas2 produce a much more 
polarized spatialisation than Leipzig Layout.

SPD AfD CDUCSU LeftGreens FDP

SPD AfD CDUCSU LeftGreens FDP

Fig. 8   Incoming and outgoing links from/to different parties by party. Greens are followed and follow all 
other parties (except AfD) quite uniformly, which explains their central placement
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Appendix G: Survey on energy‑generating technologies—
correlations

Pairwise Pearson correlation coefficients between ratings of different energy-gen-
erating technologies (for the aggregated three-point scale) can be found in Fig. 12. 
Solar and onshore technologies exhibit the strongest correlation. Gas and coal, as 
well as offshore and onshore technologies are also correlated relatively strongly. 
Biomass has, among the renewables, the weakest correlations with the other renewa-
bles. On the other hand, ratings are not negatively correlated with coal or gas. This 
is mirrored by its placement in Fig. 4 at a certain distance from solar and onshore, 
and also offshore.

Fig. 10   Local minimum of the follower network of German deputies. Parties are still visibly separated, 
but FDP is now placed between SPD and Die Linke 
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ForceAtlas2

Yifan Hu Fruchterman Reingold

Leipzig Layout

Fig. 11   Harper’s letter retweet network comparison of Leipzig Layout (multi-tie case, top left), ForceAt-
las2 (top right), Yifan Hu (lower left), and Fruchterman Reingold (lower right)

Fig. 12   Correlations between ratings of different energy-generating technologies for the aggregated 
3-point scale
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