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Abstract
Polarization, ideological and psychological distancing between groups, can cause 
dire societal fragmentation. Of chief concern is the role of social media in enhancing 
polarization through mechanisms like facilitating selective exposure to information. 
Researchers using user-generated content to measure polarization typically focus on 
direct communication, suggesting echo chamber-like communities indicate the most 
polarization. However, this operationalization does not account for other dimensions 
of intergroup conflict that have been associated with polarization. We address this 
limitation by introducing a high-dimensional network framework to evaluate polari-
zation based on three dimensions: social, knowledge, and knowledge source. Fol-
lowing an extensive review of the psychological and social mechanisms of polar-
ization, we specify five sufficient conditions for polarization to occur that can be 
evaluated using our approach. We analyze six existing network-based polarization 
metrics in our high-dimensional network framework through a virtual experiment 
and apply our proposed methodology to discussions around COVID-19 vaccines on 
Twitter. This work has implications for detecting polarization on social media using 
user-generated content, quantifying the effects of offline divides or de-polarization 
efforts online, and comparing community dynamics across contexts.
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Introduction

Polarization refers to ideological and psychological distancing between opposed 
groups through an interplay of social and cognitive processes. There has been 
growing concern regarding the consequences of polarization in recent years,1 as it 
has been linked to a range of negative societal consequences. Research shows that 
polarization can lead to decreased social cohesion, increased intergroup conflict, and 
decreased trust in democratic institutions [1–3]. Furthermore, polarization can con-
tribute to the spread of misinformation and propaganda, as individuals may become 
more susceptible to cognitive biases [2, 4].

There is evidence that polarization is enhanced in online contexts, where users 
are exposed to a high volume of information and can easily find and share content 
that aligns with their pre-existing beliefs [5]. Yet the complex relationship between 
social media and polarization remains largely obfuscated due to constantly evolving 
platform and algorithmic factors, numerous offline influences, and individual-level 
differences [6, 7]. Direct interactions between users provide limited information 
about the complex sharing of information and attitudes online. Therefore, develop-
ing tools to evaluate polarization beyond direct communication between communi-
ties on social media is essential to improve understanding of the effect of contextual 
factors [8, 9] and de-polarization interventions [10] on ideological and psychologi-
cal division.

Many scholars intuitively think of polarization as a distanced bimodal distribu-
tion of opinions of group members, often called ideological or issue polarization 
[11, 12]. In a survey, researchers can directly ask participants about the valence and 
salience of their opinion towards issues to form such a distribution [13]. Working 
with observable user-generated content at the scale afforded by social media com-
plicates this process, requiring the development of new theories and methods to esti-
mate the ideological and psychological division between groups of users without 
having direct access to self-reported attitudes.

Our measurement approach is based on a collective narrative conceptualization 
of group-level polarization, where collective narratives are shared perspectives or 
cognitions about social reality [14]. We posit that collective narratives are formed 
and represented through three dimensions: social, knowledge and source. The social 
dimension represents communication between users to share and shape collective 
narratives. Knowledge consists of the ideas, arguments, and other information that 
form collective narratives, while knowledge sources include any opinion leaders or 
organizations that group members cite.

Synthesizing existing literature on social and psychological mechanisms of 
polarization, we propose the following properties constitute sufficient conditions for 
polarization to occur: 

1  https://​carne​gieen​dowme​nt.​org/​2019/​10/​01/​how-​to-​under​stand-​global-​spread-​of-​polit​ical-​polar​izati​on-​
pub-​79893

https://carnegieendowment.org/2019/10/01/how-to-understand-global-spread-of-political-polarization-pub-79893
https://carnegieendowment.org/2019/10/01/how-to-understand-global-spread-of-political-polarization-pub-79893


1149

1 3

Journal of Computational Social Science (2023) 6:1147–1178	

1.	 Group membership: definition of group membership of two mutually exclusive 
groups holding opposing ideologies towards a topic or set of topics

2.	 Awareness: ideologically opposed groups are aware of the collective narratives 
of the outgroup

3.	 Social dimension: high levels of direct communication within groups and low 
levels between groups

4.	 Knowledge dimension: high levels of shared ideas, arguments, and phrases 
(referred to as knowledge bits) within groups and low levels between groups

5.	 Source dimension: high levels of shared opinion leaders, media, and organizations 
(referred to as knowledge sources) within groups and low levels between groups

In this work, we establish a high-dimensional network approach to assess polariza-
tion that detects the presence of these conditions in online discourse (Sect. 3). Each 
dimension of the network represents a different dimension of polarization. Further-
more, we evaluate six existing network-based measures and three network aggrega-
tion procedures in our framework through a virtual experiment (Sects. 4 and 5). This 
work leads to a recommendation of the W/B index or average I/E index applied to 
the lossy intersection of the social, knowledge, and source networks. We also dem-
onstrate applying the proposed methodology applied to discussions surrounding the 
COVID-19 vaccine on Twitter over time (Sect.  6), before discussing the implica-
tions and path forward (Sect. 7).

Polarizing properties and processes

In this section, we define polarization in terms of collective narratives and expound 
on the proposed sufficient conditions for polarization to occur. Polarization broadly 
refers to the state or trend of increasing division between two or more groups [15]. 
In social psychology, polarization has classically been described as an intragroup 
process in which discussion among group members shifts their views to be more 
extreme in the same direction as the average pre-existing views [16]. The social 
identity approach to conceptualizing polarization, specifically self-categorization 
theory (SCT), introduces the role of intergroup context in enhancing and enabling 
polarization [17, 18].

SCT suggests that polarization occurs when group members conform to some 
group norm that is induced through internal communication and deduced from the 
broader context and relative to other groups. According to this theory, the group 
norm is shifted further from the outgroup to appear more extreme than the actual 
average view of the group when groups are distinct and hold opposing ideologies 
[17]. As group members hold more extreme views and further psychologically sepa-
rate from other groups, polarization occurs.

Building on the idea that intragroup social-psychological processes are enhanced 
by the intergroup context, we turn to a recent conceptualization of polarization based 
on shared collective narratives (i.e., shared cognitions and perspectives) of social real-
ity [14]. Bliuc and colleagues propose that polarization occurs when there are groups 
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with opposing collective narratives, which can be thought of as opposing ideological 
groups (group membership) [14]. These collective narratives are defined in opposi-
tion to an alternative collective narrative, requiring intergroup awareness (awareness).

When members of a group endorse a collective narrative, they have the same 
basis for social identity formation that informs subsequent behaviors, beliefs, and 
attitudes. Collective narratives contain ideas, beliefs, and values that influence the 
adopted norms and intergroup attitude. Analogously, differences in information 
(and crucially, misinformation) contributing to collective narratives can result 
in entirely different perceptions of reality and behavioral effects [19, 20]. There-
fore, salient shared collective narratives (like identities) within groups, defined in 
opposition to alternative narratives, promotes further ideological and psychologi-
cal division between groups.

We aim to detect the presence (or absence) of opposed collective narratives 
between online communities to indicate polarization is occurring, rather than ana-
lyzing the degree of belief or attitude directly. We suggest three dimensions that dic-
tate a social structure in which there are shared collective narratives within groups 
and different narratives between groups. The first dimension is social and represents 
direct communication between group members. This is a way narratives are shared 
or disputed in the context of social relationships. As suggested by social identity the-
ory, social influence shapes how people perceive information and members of other 
groups [17, 18, 21]. Thus, more communication within ideologically-defined com-
munities than between indicates more consideration of ideas from in-group members 
than out-group, which contributes to polarization (social dimension).

An affordance of social media is the possibility of shaping the narrative around 
an issue through indirect communication. Posts do not necessarily directly endorse 
or reply to another user. Rather, the content in posts can represent ideas, arguments, 
and other knowledge that form collective narratives. More common knowledge 
usage within a group relative to between groups indicates different collective narra-
tives adopted by each community, enhancing division (knowledge dimension) [21].

Shared knowledge sources indicate similar underlying knowledge is informing 
collective narrative and identity formation. Sources includes opinion leaders, such 
as politicians and media, that have agenda-setting power in public discourse [21]. 
Furthermore, polarization among influential people and organizations can incite 
mass polarization, especially if people feel a strong sense of identification with that 
leader’s group or ideology [22, 23]. Hence, common sources used within groups and 
not between designates opposing collective narratives as well (source dimension).

Given the preceding review of psychological and social theories of polarization, 
we establish five sufficient conditions for polarization to occur in List 1. These con-
ditions were put together to evaluate polarization on social media, but they extend to 
offline contexts as well. The main differentiating factor is the data access afforded by 
social media platforms.

Note that we purposefully use “high" and “low" instead of quantitative values when 
describing conditions because 1) different measures report polarization on differ-
ent scales and 2) our approach to assessing polarization is not necessarily meant to be 
informative in isolation. Instead, polarization of online groups can be compared across 
contexts and time.
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Effects of social media

On social media, algorithmic factors can compound cognitive influences, like selec-
tive exposure, to create highly fragmented social networks where people almost exclu-
sively communicate with others who hold the same identity and ideology [24]. These 
self-contained groups are often referred to as echo chambers. There is evidence that 
echo chambers facilitate stronger group identities and more extreme views online, and 
therefore, collective narrative formation [5, 25]. The true prevalence of echo chambers 
on social media is highly contested [26] with some studies suggesting access to social 
media increases exposure to diverse views [27]. Most likely, this effect depends on the 
social media platform and any number of decisions made by the user [24, 28].

Even if people do see opposing views, the impact on belief and identity is not clear. 
Some studies report a negative relationship between discussions along users with 
opposing views and polarization, indicating such interactions do in fact moderate opin-
ions [29, 30]. Other work empirically shows the opposite occurs—communication 
across groups increases polarization between ideological groups as people defend their 
pre-existing position [31, 32]. Yet other scholars suggest people merely tolerate other 
viewpoints without being impacted further [33].

We assume communication and information sharing across groups indicates a 
weaker bias towards like-minded users, following research that shows people selec-
tively interact with in-group users and content that aligns with their pre-existing beliefs 
[34, 35]. Although users may see posts containing opposing views, selective communi-
cation and information sharing indicates strong in-group favoritism and identification, 
which reveals preferential collective narrative development. At the same time, polariza-
tion requires some degree of awareness of ideas held by other groups to provide inter-
group context that informs intragroup collective narrative development.

In sum, we suggest that reported deviations in the prevalence of echo chambers on 
social media and their impact on polarization may arise due to differences in detection 
and influence measures. Having a shared collective narrative within a group requires 
discussion and sharing of ideas and information sources, suggesting high levels of com-
munication, shared knowledge, and shared knowledge sources within a group is a nec-
essary condition for polarization. When members of different groups communicate and 
share ideas between them as much as within their respective groups, there is evidence 
of a common collective narrative or perspective across communities. Therefore, fewer 
connections between ideologically opposed groups relative to within indicates oppos-
ing collective narratives and therefore, polarization.

High‑dimensional network approach

In our high-dimensional approach, we apply existing network-structure based meas-
ures of polarization to networks representing social, knowledge, and source dimen-
sions. Remarkably, most of these methods have only successfully been applied to 
uni-dimensional networks, typically interaction networks where edges indicate 
one user re-posts, mentions, or follows another [36–42]. This neglects the knowl-
edge and source dimensions of polarization, overlooking the impact of indirect 



1152	 Journal of Computational Social Science (2023) 6:1147–1178

1 3

communication on collective narrative development and division. Alternatively, a 
high-dimensional representation of communication is required to detect the suffi-
cient conditions of polarization described in List 1.

The proposed methodology broadly entails four steps: 

1.	 Data collection
2.	 Generate high-dimensional and aggregated networks
3.	 Partition users into ideologically opposed groups
4.	 Measure polarization

We focus on improving the second and fourth steps in this article. The network gen-
eration step is described in the following subsections, where we define high-dimen-
sional networks and associated measures, as well as four aggregation techniques. 
Polarization measure application is discussed in Sect.  4 and  5, where we specify 
and evaluate six existing network-based measures that fit within our framework. We 
demonstrate all required steps and interpretation of results in a case study in Sect. 6.

High‑dimensional network definitions

High-dimensional networks are sometimes referred to as multi-dimensional, multi-
layer, multi-plex, or meta-network, depending on the field and context [43–46]. 
Features that differentiate these terms include the number of sets of nodes and 
dimensions. All networks generated in this work have the same set of nodes in each 
dimension; we use “high-dimensional" throughout the paper for consistency.

Definition 1  (High-dimensional network) Define a weighted, directed high-dimen-
sional network by G = (V ,E, L) , where V is the set of nodes, L is the set of labels 
for layers, E is the set of edges denoted by (u, v, l, w) where u, v are nodes, l is the 
label for the dimension, and w is the edge weight [44]. Each edge weight w is a non-
negative integer.

The high-dimensional network used here contains three dimensions: social, 
knowledge, and source. The social dimension is typically directed, where edges 
indicate one node is directing communication towards another. However, the 
shared knowledge and shared information source networks are inherently undi-
rected—each edge denotes two nodes using the same knowledge bit or informa-
tion source, respectively. To preserve as much information as possible, we make 
all networks directed before applying measures whenever possible. For undi-
rected networks, this entails replacing each undirected edge with bidirectional, 
directed edges.

For the measure that requires undirected networks (spectral segregation 
index—SSI), we make all networks undirected. Directed edges between each 
pair of nodes are summed to weight the replacement undirected edges. Because 
we consider both directed and undirected forms of the high-dimensional 
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representation of connections between users, we define overall density, within 
community density, and external community density for each.

Definition 2  (Overall density) We define the density of an (un)directed high-dimen-
sional network analogously to the traditional definition of density for uni-dimen-
sional networks, based on the ratio of existing and possible edges. Consider an 
(un)directed high-dimensional network G with |V| nodes, |E| total edges across all 
layers and |L| layers. There are, by definition, no edges between dimensions. For 
the directed case, there are at most 2 ⋅ |L| edges between nodes. For the undirected 
case, there are at most |L| edges between nodes. The density of an (un)directed high-
dimensional network, d, is calculated by

where k = 2 for the directed case and k = 1 for the undirected case.

Definition 3  (Within Community Density) Consider a subset of nodes forming a 
community C in an (un)directed high-dimensional network G with |VC| nodes, |EC| 
edges within the community across all layers and |L| layers. The density of a commu-
nity in an (un)directed high-dimensional network, d

C
, is calculated by

where k = 2 for the directed case and k = 1 for the undirected case.

Definition 4  (External Community Density) Consider a subset of nodes forming a 
community C in an (un)directed high-dimensional network G with |V∼C| nodes in 
the overall network that are not contained in C, |E∼C| edges external to the commu-
nity across all layers and |L| layers. The density external to a community in an (un)
directed high-dimensional network, d∼C, is calculated by

where k = 2 for the directed case and k = 1 for the undirected case.

Aggregation techniques

There are two possible paths to account for multiple dimensions at the same time 
when measuring polarization using a high-dimensional network. The first option 
is to aggregate measures after applying them to each dimension separately. This 
approach is typically used if the dimensions are conceptually distinct, and therefore 
merging them does not make sense [47]. Additionally, this preserves the information 

d =
|E|

k ⋅ |L| ⋅ |V|(|V| − 1)

dC =
|EC|

k ⋅ |L| ⋅ |VC|(|VC| − 1)

d∼C =
|E∼C|

k ⋅ |L| ⋅ |VC| ⋅ |V∼C|
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contained in each layer separately. In this case, we simply average the output of the 
measure applied to each dimension.

The other option is to aggregate the dimensions of the network prior to applying 
measures. This is a well-studied process [48, 49] due to the wealth of applications of 
high-dimensional networks, such as social and organizational systems [46, 50, 51]. 
We focus on methods that aggregate dimensions without removing nodes. Rather, 
edge weights between nodes that have an edge in any layer are updated according to 
a mapping.

There are several possible mappings to generate a uni-dimensional network from 
a high-dimensional network [49, 52]. We define a family of thresholded networks 
that are generated by setting a threshold L∗ ≤ |L| to keep (or disregard) edges. An 
edge between nodes u and v is included in the aggregated network if there exists 
an edge between u, v for at least L∗ layers of the high-dimensional network and 0 
otherwise. In particular, we have the union network, where L∗ = 1 , and intersec-
tion network, where L∗ = |L| . Additionally, we define L∗-edges networks where 
1 < L∗ < |L| . Since we have three dimensions, the only other possible value of L∗ is 
2. We refer to this network as the lossy intersection network.

The edge weights of thresholded networks are the sum of included edges (and 
0 otherwise). If the edge weights of the input networks are binary, so are the edge 
weights of the aggregated thresholded networks.

In sum, we investigate four aggregation techniques in our methodology: average 
measures, union network, intersection network, and lossy intersection network.

Comparison of existing measures

Methods applied to characterize online polarization are typically described as con-
tent-based, network-based, or a combination of the two. Purely content-based meth-
ods use the information contained in posts and do not account for the underlying 
structure of communication. These methods often rely on language and/or domain-
dependent natural language processing tools [53]. Alternatively, researchers have 
turned to manually labelled keywords [54] or social media users [55] to estimate the 
degree of polarization between communities.

We incorporate content into our approach without necessarily requiring language 
models or manual labelling of terms. Rather, we associate knowledge bits and infor-
mation sources with users previously assigned stances towards the specified topic 
using a bipartite network. Then we project the bipartite network to obtain an undi-
rected network between users where a link indicates the users used the same term 
or domain. Because we describe the degree of shared narratives, our method is not 
purely a network-based.

In the following subsection, we describe existing network-based polarization 
measures and our selection process for our analysis. Next, we specify the six metrics 
we analyze and their relevant properties.
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Network‑based polarization measures

Existing network-based measures of online polarization can broadly be character-
ized as either traditional measures of group structure or polarization-specific. Sev-
eral of the measures selected have also been described as measures of segregation 
[39]. Segregation, polarization, and homophily are closely related, but distinct 
conceptually.

At a general level, segregation is “the degree to which two or more groups live 
separately from one another" [56]. Homophily, the tendency to have social ties with 
those most similar to oneself, is a process that can lead to segregation and polariza-
tion [5, 57]. Yet it is not necessarily sufficient for either to occur [58, 59]. Thus, 
the extent to which the groups are divided is encapsulated by segregation [56]. 
However, segregation is not necessarily concerned with the degree of homogeneity 
within groups.

Our selection process involved an in-depth literature review of prominent meth-
ods [39, 41, 42, 60]. Notably, measures based on the work of Esteban and colleagues 
use the distribution of an attribute of the population of interest, such as income or 
opinion [12, 61, 62]. Since we are working with network representations of commu-
nication and content usage, we do not consider measures based on a uni-dimensional 
distribution.

Well-established measures of group structure not initially developed for quanti-
fying polarization include the E/I index [63], modularity [64], segregation matrix 
index (SMI) [65], and spectral segregation index (SSI) [66]. These measures dis-
play a variety of attributes and applications. The E/I index and modularity have been 
used to assess echo chamber-ness of polarized groups [37] and degree of network 
structure of political groups online [36], respectively. Another similar measure of 
intergroup connectedness that has been used to measure polarization compares the 
number of edges between groups and total number of edges, described by Rajabi 
and colleagues [67].

The SMI is a measure of group cohesiveness, where a cohesive group is “a social 
group of actors who prefer to interact with one another more than with others and 
reveal a highly self-preference segregative attitude" [65]. This definition aligns with 
our ideal properties of polarization we established. Similar to the E/I index, the SMI 
measures the relative number and intensity of edges within and between groups. 
Finally, the SSI was established to measure school and residential segregation using 
social interactions [66]. Notably, the SSI returns individual and group-level segrega-
tion assessments.

More recently, metrics were introduced specifically for measuring polarization on 
social media. Some scholars presented measures that highlight the role of bound-
ary nodes and edges between stance groups, like boundary connectivity controversy 
and edge betweenness controversy [38, 41]. Other techniques include random walks 
to determine the likelihood of a member of one group interacting with a member 
of another group and mapping the network to a low-dimensional embedding [41]. 
Garimella and colleagues find random walk controversy and embeddings contro-
versy most reliably distinguish between controversial and non-controversial top-
ics. Later studies modified random walk controversy to account for the distance of 
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the random walk from the initial user and weights of edges with reliable results [8, 
42]. On the other hand, embedding-based approaches have been shown to produce 
unstable results [8]. To encapsulate multiple approaches established to assess online 
polarization, we consider the boundary connectivity controversy and random walk 
controversy [38, 41].

Description of selected measures

Crucially, some measures report polarization for each group, while others describe 
polarization of the network as a whole. We aim to measure polarization of both 
groups at the same and adjust measures as needed, described in the following sec-
tions. While all the measures can incorporate weighted edges, they are not neces-
sarily designed for directed networks. Whenever possible, we retain the information 
about the direction of interactions. We discuss any adjustments for each measure.

In sum, the following measures require: (1) a (high-dimensional) network and (2) 
labelled group membership (partitioning the network) for each node.

W/B index

The W/B index is the percent difference in edges within (W) and between (B) all 
groups. It is a network-level extension of the group-level E/I index and SMI [63, 
65]. Suppose we have two groups denoted X and Y. Let lXX and lYY be the number of 
edges within group X and Y, respectively. Let lXY be the number of links from group 
X to Y and lYX be the opposite.

The W/B index is bounded between -1 and 1. In order for the W/B index to equal 1, 
the groups must have no links between them. However, the awareness condition is 
not satisfied in this case, and therefore we would not assume polarization is occur-
ring. The threshold of interactions, shared knowledge, and shared sources between 
groups that designate awareness is not necessarily constant and thus, requires case-
by-case consideration.

A value closer to -1 indicates low polarization, where groups are more inter-
connected than intra-connected. The W/B index equals -1 if all links are between 
groups, which certainly does not provide evidence of opposed collective narratives 
held by each group.

In sum, both the minimum and maximum value of the W/B index describes unpo-
larized groups. Other than the extremes, a higher W/B index denotes more polariza-
tion. We note that the W/B index is appropriate for both undirected and directed 
networks.

(1)W∕B =
lXX + lYY − lXY − lYX

lXX + lYY + lXY + lYX
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Average I/E index

In addition to creating an entirely new network-level measure, we assess the aver-
age percent difference in edges internal (I) and external (E) to each group. This is 
inspired by the E/I index and SMI, but we use the number of edges instead of den-
sity and reverse the use of internal and external links. Suppose we have two groups 
denoted X and Y. Let lXX and lYY be the number of edges within group X and Y, 
respectively. Similarly, lXY is the number of links from group X to Y and lYX is the 
opposite.

The average I/E index is also between -1 and 1, where a larger value denotes more 
polarization (unlike the E/I index). An average I/E index of 1 indicates the density 
between groups is 0, while an average I/E index of -1 indicates the density within 
groups is 0. Again, if there is no evidence of awareness of other groups, we assume 
polarization is not occurring. Thus, the minimum and maximum average I/E values 
represent unpolarized communities. However, as the average I/E index increases, 
polarization also increases until there is evidence of a lack of awareness of other 
groups. The appropriate threshold of awareness is dependent on the context and thus 
requires case-by-case consideration. The average I/E index is appropriate for both 
undirected and directed networks.

Modularity

Modularity is a measure of community structure that compared the actual and 
expected number of edges within communities [64]. It is calculated by summing the 
difference between actual and expected number of edges of pairs of nodes within the 
same group.

Let m denote the total number of edges in the network. Then let i,  j be distinct 
nodes, Aij denote the number of edges between the i and j, and ki , kj be the degrees 
of node i and j, respectively. Modularity, Q, is defined as

where �ij = 1 if i and j are in the same group and �ij = 0 otherwise.
A score close to 1 denotes well-defined groups and thus a high level polarization, 

while modularity close to 0 indicates the number of edges within groups relative to 
between is the same as it would be expected if the edges were random. A score close 
to − 1 means the groups are more likely to communicate between them than would 
occur due to random chance. Like the W/B and average I/E index, modularity can be 
applied to both directed and undirected networks.

(2)Avg. I∕E =
lXXlYY − lXY lYX

lXXlYY + lXY lYX + lXXlYX + lYY lXY

(3)Q =
1

4m

∑

ij

(
Aij −

kikj

2m

)
�ij
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Spectral segregation index

The spectral segregation index (SSI) was originally developed in the context of 
racial segregation to capture the connectedness of members within groups using 
social interactions [66]. The SSI is defined on a group level, but can be averaged 
across groups to determine network-level polarization.

This method requires a normalized adjacency matrix A and defined groups, X and 
Y. Without loss of generality, fix group X. Suppose B is a sub-matrix of A with only 
nodes in X. Next, identify the set of connected components in B, CK . On a com-
ponent level, SSIc is equal to the largest eigenvalue. Since we are concerned with 
network-level polarization, we do not break down the SSI into values for each indi-
vidual node. However, we note that a key attribute of this measure is that it can be 
measured on an individual level and direct readers to [66].

The group-level SSI for group X is

where Nc is the total number of components in group X. We average SSIX and SSIY to 
obtain the SSI for the network.

The range of SSI values is 0 to 1, where 1 represents the most polarization. Like 
the preceding measures, a network with an SSI of 1 has no edges between groups. 
A network with an SSI of 0 has only edges between groups. Given the necessity of 
intergroup awareness for polarization to occur between groups, the most extreme 
cases are both not polarized. Generally, a higher SSI represents more polarization.

Since SSI was established to measure geographical separation, it is intended for 
undirected networks. It is well-known that symmetric matrices with real elements 
only have real eigenvalues, which does not hold for non-symmetric matrices with 
real elements. Matrices of undirected networks with integer edge weights fit the 
criteria to have real eigenvalues. Distances must be (positive) real numbers, so we 
make the input network undirected for this measure.

Boundary connectivity controversy

Boundary connectivity controversy (BCC) is based on the structure of community 
boundaries between stance groups [38]. The authors posit that boundary nodes 
of polarized groups are more likely to connect with internal nodes than boundary 
nodes of the opposing group, as hostile interactions decrease the number of popular 
nodes in both groups.

Let X and Y denote groups of users. Define the set of boundary nodes BX and BY of 
groups X and Y, respectively, as follows. A node n in either group is a boundary node if 
it satisfies 2 conditions: (1) n ∈ X has at least one edge connecting to a node in Y; (2) 
n ∈ X has at least one edge connecting to another node in X that is not connected to Y. 
Define the internal nodes of each group as the remaining nodes in X and Y that are not 
boundary nodes: IX = X − BX , IY = Y − BY . Let B be the union of BX and BY and I be 
the union of IX and IY . Then

(4)SSI
X
=

1

N
c

∑

c∈X

SSI
c



1159

1 3

Journal of Computational Social Science (2023) 6:1147–1178	

where dI(n) is the number of edges between node n and internal nodes I and dB(n) 
is the number of edges between node n and boundary nodes B. BCC is bounded 
between − 0.5 and 0.5. If BCC is close to 0.5, then the groups are highly polarized 
with more boundary nodes connected to internal nodes of their respective group 
than other boundary nodes. A BCC close to − 0.5 indicates the opposite.

If there are no boundary nodes, meaning there are no edges between groups, BCC 
is undefined. This aligns with our intuition that awareness of other groups is a neces-
sary condition for polarization. Finally, BCC can be applied to directed or undirected 
networks.

Random walk controversy

Random walk controversy (RWC) measures the likelihood of a random user on each 
side of a controversial discussion being exposed to authoritative content from the other 
side [41]. The intuition is that members of more polarized groups are less likely to 
interact with key actors in other groups.

We first identify the k most authoritative users by selecting those with the highest 
total degree centrality scores. Each random walk starts from one of the groups (chosen 
randomly) and terminates once an authority node is reached (on either side). Let PXY = 
P[start in group X| end in group Y], the probability a random walk started in group X 
given that it ended in group Y. Then

A score close to 1 indicates a low probability of exposure to content in the other 
group, while a score close to 0 denotes a similar likelihood of a node reaching the 
other group and not. An RWC closer to − 1 represents a low level of polarization 
and a higher likelihood of exposure to content in the opposing group than in their 
respective group. When RWC equals 1, there are no edges between groups. When 
RWC equals − 1, there are no edges within groups. Both represent a lack of polari-
zation, although overall higher RWC indicates more polarization. RWC is designed 
for directed networks.

Virtual experiment

Simulations are a well-established tool to compare and evaluate metrics applied to 
networks with varying parameters [68–70]. Several studies use controlled virtual 
experiments to investigate the effect of varying parameters, like density and agent 
influence, on network measures, such as centrality [68] and segregation [70].

Virtual experiments allow us to go beyond arbitrarily choosing empirical cases 
for evaluation, as ground truth for these datasets is often difficult to discern or quan-
tify and thus prevents systematic analysis. We use a virtual experiment to assess 

(5)BCC =
1

|B|
∑

n∈B

dI(n)

dB(n) + dI(n)
− 0.5

(6)RWC = PXXPYY − PXYPYX
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how existing network-based measures perform on projected bipartite networks 
(shared knowledge, shared source) and aggregated networks (union, lossy intersec-
tion, intersection). In particular, we evaluate the following characteristics of polari-
zation measures: 

1.	 More polarized as density within groups increases
2.	 Less polarized as density between groups increases
3.	 Distribution of degree of polarization supports identifying differences across 

domains, times, and platforms
4.	 Computational efficiency

Parameters and synthetic network generation

We simulate three types of networks: interactions, shared knowledge, and shared 
sources. Generated networks have global community structure (two stance groups, 
referred to as Group 1 and Group 2 henceforth) and local core-periphery structure, 
as introduced by Borgatti and Everett [71–73]. Figure 1 contains examples of the 
stochastic block models (SBM) used to generate both types of networks, where each 
block is assigned a density.

Core-periphery structure has been shown to describe communities on social 
media engaging in collective action [74] and discussion surrounding specified 
topics like agriculture [75] and national attitudes [76]. It is characterized by two 
distinct types of nodes: a dense “core" of highly connected nodes surrounded by 
less connected “periphery" nodes [77].

Generating the interaction network requires directly setting the density 
between agents in each stance group and core/periphery. To generate shared 
knowledge and source networks, we set the density of edges between each sub-
group of users (i.e., Group 1 core, Group 1 periphery, Group 2 core, Group 2 

Fig. 1   Stochastic block model (SBM) representation of synthetic networks. Left SBM applies to interac-
tion networks. Right SBM applies to shared knowledge/source networks. Note: C1: user Group 1 core; 
P1: Group 1 periphery; G2: user Group 2 core; P2: Group 2 periphery; A: knowledge/source Group A; 
B: knowledge/source Group B
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periphery) and each group of knowledge bits/sources (without loss of generality, 
referred to as Group A and Group B henceforth). This creates bipartite user to 
knowledge bit and source networks, respectively.

The shared knowledge bit and source networks are then generated by project-
ing these bipartite networks. For the purposes of synthetic network generation, 
the shared knowledge and shared source networks are the same.

Of course, when working with real data we do not necessarily have knowl-
edge bits and sources designated for each stance group. For the purposes of this 
virtual experiment, we use these groups for the stochastic block model represen-
tation. The idea is that members of each stance group will use knowledge bits/
sources in Group A and B to varying degrees. Without loss of generality, we 
assign Group 1 to share more content from Group A and Group 2 to share more 
content from Group B.

To bound the set of parameters, we maintain a highly dense core for both 
stance groups. Then, we vary the relative size of the set of core and periphery 
nodes, as well as the density of periphery nodes within and between groups. 
Table 1 contains the control and independent variables for interaction network 
generation. Table  2 contains variables for the shared knowledge/source net-
works. In total, there are 36,864 unique sets of parameters. For simplicity, we 
use binary edge weights when initializing networks.

Results

More polarized as density within groups increases
We evaluate the effect of average within group density on each measure applied 

to each network by calculating the partial correlation [78]. This way we can meas-
ure the relationship between average within group density and polarization level 

Table 1   Synthetic interaction network parameters

Parameter Number Values

Agent population, N 1 1,000
Topology 1 core-periphery
Relative agent group size, n1, n2 1 50/50
Relative core and periphery group sizes, c1/p1, c2/p2 3 50/50, 75/25, 25/75
Within group core-core density, dc1c1, dc2c2 1 0.1
Within group core-periphery density, dc1p1, dp1c1, dc2p2, dp2c2 2 0.01, 0.001
Within group periphery-periphery density, dp1p1, dp2p2 1 0.001
Between group core-core density, dc1c2, dc2c1 1 0.0001
Between group core-periphery density, dc1p2, dc2p1 1 0.0001
Between group periphery-core density, dp1c2, dp2c1 2 0.001, 0.0001
Between group periphery-periphery density, dp1p2, dp2p1 2 0.1, 0.0001
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while controlling for between group density. Table 3 contains partial correlation 
coefficients and significance.

We expect positive partial correlations for each measure and network type. 
This largely holds. In particular, the W/B index, average I/E index, SSI, and mod-
ularity have significantly positive partial correlations for all six network types.

The projected bipartite networks, shared knowledge and shared source, seem 
to alter the behavior of RWC and BCC. This is evident by the negative partial 
correlations for those measures and networks. For these networks, when the den-
sity within groups increases (controlling for between groups density), RWC and 
BCC report less polarization.

Moreover, projected bipartite networks tend to be more dense than the traditional 
uni-dimensional interaction network. Hence, the projected bipartite networks may 
overwhelm the structure of the strict union network. Similarly, the interaction net-
work can be overly constrained by the interaction network. RWC and BCC both have 

Table 2   Synthetic shared knowledge and shared source network parameters

Parameter Number Values

Number of knowledge bits, K 1 500
Number of knowledge sources, S 1 100
Relative knowledge group size, k1, k2 1 50/50
Relative knowledge source group size, s1, s2 1 50/50
Within group core-knowledge, dc1k1, dc2k2 1 0.005
Within group core-source, dc1k1, dc2k2 1 0.001
Within group periphery-knowledge, dp1k1, dp2k2 2 0.001, 0.00001
Within group periphery-source, dp1k1, dp2k2 2 0.001, 0.00001
Between group core-knowledge, dp1k2, dp2k1 1 0.0001
Between group core-source, dp1k2, dp2k1 1 0.00001
Between group periphery-knowledge, dp1k2, dp2k1 2 0.00001, 0.00005
Between group periphery-knowledge, dp1k2, dp2k1 2 0.00001, 0.00005

Table 3   Partial correlation between measures and average within group density controlling for between 
group density

∗
p < 0.05,∗∗p < 0.01 , ∗∗∗p < 0.001

Measure Interaction Shared knowl-
edge

Shared source Union Lossy interesc-
tion

Intersection

W/B index 0.201∗∗∗ 0.697 0.069∗∗∗ 0.75∗∗∗ 0.533∗∗∗ 0.137∗∗∗

Avg. I/E index 0.224∗∗∗ 0.773∗∗∗ 0.176∗∗∗ 0.807∗∗∗ 0.627∗∗∗ 0.236∗∗∗

Modularity 0.556∗∗∗ 0.675∗∗∗ 0.286∗∗∗ 0.862∗∗∗ 0.651∗∗∗ 0.368∗∗∗

RWC​ 0.048∗∗∗ 0.44∗∗∗ − 0.198∗∗∗ 0.341∗∗∗ 0.153∗∗∗ − 0.007
BCC 0.073∗∗∗ − 0.496∗∗∗ − 0.078∗∗∗ − 0.281∗∗∗ 0.031∗∗∗ − 0.359∗∗∗

SSI 0.231∗∗∗ 0.82∗∗∗ 0.221∗∗∗ 0.318∗∗∗ 0.325∗∗∗ 0.112∗∗∗
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negative partial correlations for the intersection network, while only BCC is nega-
tively (partially) correlated for the union network.

When communities are highly dense or sparse, there may be cases where there 
are very few (or even no) boundary nodes satisfying the conditions described in 
Section 4.2.5. for BCC. Furthermore, projected networks are inherently undirected. 
For all measures except the SSI, we transform the undirected shared knowledge and 
source networks to be directed. Then every edge between users is reciprocal, chang-
ing the behavior of the random walk in RWC.

Less polarized as density between groups increases

We evaluate the effect of between group density on each measure applied to each 
network by calculating the partial correlation [78]. This way we can measure the 
relationship between between group density and polarization level while controlling 
for average within group density. Table  4 contains partial correlation coefficients 
and significance.

Now we expect negative partial correlations for each measure and network type. 
This largely holds. In particular, the W/B index, average I/E index, RWC have sig-
nificantly negative partial correlations for all six network types.

Interestingly, modularity reports more polarization when the density between 
groups is higher for the intersection network. BCC also reports less polariza-
tion when the between group density increases for the interaction and intersection 
network.

Finally, the SSI completely defies the expected relationship between increasing 
between group density and polarization. Notably, the SSI can be interpreted as a 
measure of which information spreads within groups [66]. Hence, changing the 
number of edges between groups does not necessarily alter the SSI as we expect.

Distribution of values

To compare the behavior of the proposed measures, we produce violin plots of the 
values they attain throughout simulation runs. All values are linearly re-scaled so 

Table 4   Partial correlation between measures and between group density controlling for average within 
group density

∗
p < 0.05 , ∗∗p < 0.01 , ∗∗∗p < 0.001

Measure Interaction Shared knowl-
edge

Shared source Union Lossy intersec-
tion

Intersection

W/B index − 0.994∗∗∗ − 0.945∗∗∗ − 0.786∗∗∗ − 0.948∗∗∗ − 0.926∗∗∗ − 0.888∗∗∗

Avg. I/E index − 0.981∗∗∗ − 0.915∗∗∗ − 0.715∗∗∗ − 0.939∗∗∗ − 0.936∗∗∗ − 0.298∗∗∗

Modularity − 0.947∗∗∗ − 0.794∗∗∗ − 0.677∗∗∗ − 0.945∗∗∗ − 0.659∗∗∗ 0.022∗∗∗

RWC​ − 0.888∗∗∗ − 0.586∗∗∗ − 0.839∗∗∗ − 0.534∗∗∗ − 0.707∗∗∗ − 0.971∗∗∗

BCC 0.365∗∗∗ − 0.342∗∗∗ − 0.218∗∗∗ − 0.276∗∗∗ − 0.037∗∗∗ 0.359∗∗∗

SSI 0.013∗ 0.742∗∗∗ 0.745∗∗∗ 0.228∗∗∗ 0.186∗∗∗ 0.195∗∗∗
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that they fell between -1 and +1, where -1 denotes the lowest possible polarization, 
and +1 indicates the highest possible polarization.

Figures  2 and  3 contain the distribution of values for each measure applied to 
each network type, in addition to each measure averaged across the interaction, 
shared knowledge, and shared source networks.

The W/B index and average I/E index follow similar patterns, which is unsurpris-
ing given their nearly identical formulas. The range of modularity values is more 
narrow than W/B index and average I/E index across networks. We see the SSI is 
highly biased towards the extremes, limiting the ability to compare polarization 
using the SSI values across contexts.
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Fig. 2   Distribution of measure values for each measure applied to interaction, shared knowledge, and 
shared source networks
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BCC has a relatively narrow range and is less than 0 across networks. This 
emphasizes the need to investigate the range of actual values each measure reports 
(rather than simply the theoretical bounds). In addition, measures cannot necessar-
ily be directly compared. A BCC value of 0.3 should be interpreted very differently 
than a W/B index value of 0.3.

RWC maintains a range appropriate for comparisons for the interaction network. 
For highly dense projected bipartite networks, like the shared knowledge network, 
the spread of RWC narrows considerably.

Computational efficiency

To assess the selected polarization measures, we also consider the time taken to run 
them across simulation experiments. More practical algorithms should run in less 
time and with less variance in the time taken. Figure 4 shows the arithmetic mean 
and standard deviation of time in seconds for each run of each measure. Overall, 
we favor measures featuring lower mean times and lower standard deviations, cor-
responding with faster and more stable measures. The W/B index, average I/E index, 
and modularity are consistently the fastest across network types. RWC is also rela-
tively fast, but varies more for highly dense networks. Finally, BCC and the SSI are 
the slowest and most variable across networks.

Recommendations

We incorporate measure features with the results from the virtual experiment to 
assess the ability of each measure and aggregation technique to detect the sufficient 
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conditions for polarization to occur in List 1, support comparisons across contexts, 
and compute efficiently.

Beginning with the awareness condition, the W/B index, average I/E index, and 
SSI are equal to 1 if the communities have no edges between them, indicating a lack 
of awareness of opposition. This is not encapsulated by modularity, which does not 
equal 1 even when there are no edges between groups.

Technically, BCC is not applicable if there are no boundary nodes. The first con-
dition for a node to be a boundary node is connection to the opposing group. The 
second condition is connection to at least one internal node within the node’s group. 
Because of the second condition, no boundary nodes does not necessarily mean 
there are no connections between groups. Thus, BCC does not encapsulate aware-
ness without further analysis of groups. In addition, RWC of 1 may denote a lack of 
awareness but requires more analysis due to randomness.

We turn now to polarization evaluation given changes in interactions, shared 
knowledge, and shared sources within and between groups. The W/B index and 
average I/E index directly assess the number of edges within communities relative 
to edges between communities, reflected by positive partial correlation with average 
within group density and negative partial correlation with between group density 
across non-aggregated and aggregated networks in Table 3 and Table 4.

Modularity, which compares the number of edges within communities to the 
expected number of edges due to random chance, also maintains positive partial 
correlation with average within group density and negative partial correlation with 
between group density across all non-aggregated networks and most aggregated 
networks. The exception is positive association with between group density for the 
intersection network. We also see in Fig. 2 that the range of modularity values is 
smaller than the range of W/B or average I/E index values, limiting comparisons 
across contexts.

RWC behaves as expected for interaction networks, but deviates for projected 
shared knowledge and shared source networks. Figure  2 shows highly dense and 
projected networks tend to greatly reduce the range of RWC values. Finally, SSI is 
biased towards extremes across network types and does not behave as expected as 
the density between groups changes.

All the measures are relatively fast (average ≤ 4 seconds) for the simulated net-
works. Compared to many real datasets, the simulated networks are very small with 
only 1000 nodes. Hence, the slowest measures (BCC and SSI) may be fast enough 
for small networks but could pose issues for networks with more nodes and edges.

In sum, the W/B index and average I/E index encapsulate awareness, consistently 
report more polarization when there are more connections within groups and fewer 
connections between groups, return a range of polarization values that support com-
parisons across contexts, and run quickly (average ∼ 1 second).

Considering the aggregation techniques, a disadvantage of the averaging 
approach is that it does not speed up the polarization assessment process since 
measures must be applied to each dimension separately. Both union and intersection 
network aggregation result in large shifts in density. Typically, the projected bipar-
tite networks (shared knowledge, shared source) are more dense than the interaction 
network. Thus, the interaction network can substantially constrain the intersection 
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network, while the projected networks can overwhelm the union. The lossy inter-
section seems to mitigate these extremes and limit shifts in density that impact the 
behavior of polarization measures, as seen in Fig. 2 and 3.

Case study

The following case study demonstrates our high-dimensional approach to assessing 
polarization between online communities. We apply the methodology to discussions 
surrounding COVID-19 vaccines on Twitter over time (before and during govern-
mental emergency authorization in the U.S.). We proceed by applying the W/B 
and average I/E indices that we established are most appropriate for our framework 
through the virtual experiment. In addition, we use lossy intersection aggregation, as 
recommended.

Data collection

On December 11, 2020, the U.S. Food & Drug Administration issued the first 
(emergency) authorization of the Pfizer-BioNTech COVID-19 vaccine. We analyze 
the discussion on Twitter surrounding COVID-19 vaccines leading up to the initial 
emergency authorization of the Pfizer-BioNTech COVID-19 vaccine from Decem-
ber 1, 2020 thru December 14, 2020. Our data was collected via keyword searches 
using Twitter v1 API. Selected tweets contain at least one term referring to COVID-
19 (coronaravirus, coronavirus, wuhan virus, wuhanvirus, 2019nCoV, NCoV, 
NCoV2019, covid-19, covid19, covid 19) and one term referring to vaccines (vac-
cine, vax, mRNA, autoimmuneencephalitis, vaccination, vaccinate, getvaccinated, 
covidisjustacold, autism, covidshotcount, dose1, dose2, VAERS, GBS, believemoth-
ers, mybodymychoice, thisisourshot, killthevirus, proscience, immunization, gotmy-
shot, igottheshot, covidvaccinated, beatcovid19, moderna, astrazeneca, pfizer, john-
son & johnson, j &j, johnson and johnson, jandj).

In total, we have 436,474 users (346,329 pro-vaccine, 90,045 anti-vaccine), 
12,979 knowledge bits (hashtags), 252,610 sources (URLs and @-mentions), and 
2,959,920 tweets distributed across the 14 days of interest. Summary statistics for 
each day in the dataset can be found in Table 5 in Appendix A.

Generate high‑dimensional and aggregated networks

In this step, we designate how edges are generated for each dimension: interaction, 
knowledge, and source. We generate a high-dimensional network for each day from 
December 1, 2020 thru December 14, 2020.

The interaction dimension represents users who retweet other users. We exclude 
other types of interactions available on Twitter, such as replies, because retweets 
typically indicate endorsements [41]. By retweeting a tweet, users are amplifying 
the ideas in that tweet to their audience.
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Our methodology purposely defines knowledge and sources broadly because 
of the variability in platform affordances and norms. On Twitter, hashtags serve 
a variety of communicative purposes, such as participating in a discussion or 
social movement or elaborating on the text in the tweet [79, 80]. We identify the 
set of hashtags that designate engagement with COVID-19 vaccine discourse as 
knowledge bits.

Second, we identify links to external websites contained in tweets. This indi-
cates what media, government, and other entities users refer to for information, 
creating one set of sources. Another source of information is other Twitter users, 
so we use @-mentions as sources as well. We generate the shared source net-
work with both types of sources at once. This demonstrates how to incorporate 
multiple types of sources, which is an analogous process for knowledge bits.

Finally, we aggregate the interaction, shared knowledge, and shared source 
dimensions by taking the lossy intersection.

Partition users into ideologically opposed communities

We use a semi-supervised stance detection algorithm that entails labelling 
the stance of hashtags, n-grams, URLs, and/or domains [81]. The two general 
stances in this dataset are pro or anti vaccines. Of course, many have much more 
nuanced views of the COVID-19 vaccines and public health measures gener-
ally. However, given the limited amount of information we have about each user, 
detecting a general stance towards COVID-19 vaccines is most appropriate.

Labels for our stance detection model come from previously validated terms 
[82]. Pro-vaccine hashtags include #Vaccines4All and #Iwillgetvaccinated. 
Anti-vaccine hashtags include #antivaxx and #RejectWeaponizedVaccines. We 
apply the stance detection method all 14 days at once.
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Pfizer-BioNTech COVID-19 vaccine
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Measure polarization of communities

Figure 5 provides the value of the average I/E index and W/B index applied to the 
interaction, shared knowledge, shared source, and lossy intersection networks on 
each day of our dataset.

Notably, the average I/E index is nearly always less than the corresponding 
W/B index. This is likely due to the effect of unequal group sizes. When one 
group is much larger than the other, it likely has many more edges internally in 
total than the smaller group. In the averaged measure, the relative number of 
edges within and between groups of both groups are weighted equally. Unequal 
groups skew the W/B index more.

The number of vaccine supporting users increases throughout the days preced-
ing the vaccine authorization, while anti-vaccine users do not at the same rate. 
Thus, the communities become increasingly disparate in size and there is less 
agreement between the W/B index and average I/E index.

We focus on the average I/E index because it controls for group sizes. From 
December 1 thru December 7, pro-vaccine and anti-vaccine users are consist-
ently highly polarized. They are not largely communicating, using similar knowl-
edge, or using similar knowledge sources across camps. As the date gets close to 
December 11th, polarization decreases between groups due to more interactions 
and shared knowledge sources between groups. This trend continues for knowl-
edge sources until the end of our dataset on December 14th, but not interactions 
or knowledge usage.

Broadly, the pro-vaccine group consists of public health officials and organ-
izations, as well as members of the public supporting the vaccine rollout. The 
anti-vaccine group at this time was not as established. One reason may be that it 
did not have governmental support already in place. The emergency authoriza-
tion drew attention towards COVID-19 vaccines becoming available to the pub-
lic, but December 2020 was still relative early into the COVID-19 pandemic and 
COVID-19 vaccine rollout. When opinion leaders, such as official U.S. govern-
ment accounts, made the monumental decision to give emergency authorization 
for the Pfizer-BioNTech COVID-19 vaccine, people who were excited and skep-
tical alike came to Twitter to comment. Even if people continue to use different 
hashtags closer to the authorization, they begin to use more similar URLs and 
mention the same users as the conversation converges.

By considering multiple dimensions of direct and indirect communication, 
we encapsulate the collapse in different knowledge sources across groups as pro 
and anti-vaccine users discuss the official announcement of the first emergency 
authorization of a COVID-19 vaccine. At the same time, both camps continue 
to use different knowledge in their posts, as their position towards the common 
knowledge sources are opposed.

Note: we do not suggest this analysis is representative of the world popula-
tion’s discourse around COVID-19 vaccines. Rather, it is a case study of English-
language discourse around COVID-19 vaccines on Twitter in early December 
2020.



1171

1 3

Journal of Computational Social Science (2023) 6:1147–1178	

Discussion

In this work, we introduce a high-dimensional approach to assess polarization 
online such that differences in communication, knowledge usage, and knowledge 
source usage within and between ideologically opposed groups is encapsulated. 
Through a virtual experiment, we evaluate six existing measures of network 
structure in our framework. The measures are applied to over 36,000 synthetic 
networks representing each dimension, as well as three aggregated networks 
(union, lossy intersection, intersection). We then assess their ability to efficiently 
capture polarization according to the definition laid out in Sect. 2.

Ultimately, the W/B index and average I/E index, the measures that directly 
assess the relative difference in connections within and between groups, consist-
ently report more polarization when density within groups increases and between 
groups decreases such that awareness is accounted for and comparison across 
contexts is accessible. Additionally, these measures are consistently fast.

Furthermore, we recommend using the lossy intersection method of aggre-
gating the social, shared knowledge, and shared source networks to avoid large 
density shifts, which we showed can cause measures to behave differently than 
expected. This technique limits the extent to which the interaction network con-
strains the aggregated network (as with intersection) or projected networks over-
whelm the aggregated network (as with union). Our recommendation aligns with 
previous work that found aggregating layers using the AND (OR) operation is 
beneficial for dense (sparse) networks [49].

Crucially, the high-dimensional methodology supports evaluation of all five 
criteria of polarization established in List 1. Following the data collection step, 
high-dimensional network generation entails representing each dimension of 
collective narrative formation (social, knowledge, source) in network form. The 
measures of polarization, W/B index and average I/E index, assess the relative 
density of interactions, knowledge sharing, and knowledge source sharing within 
and between groups. These measures require the users are partitioned into dis-
tinct groups. For our purposes, these partitions are generated using some form of 
stance detection, thus incorporating ideologically opposed groups.

By encapsulating these criteria, our approach approximates the degree of ide-
ological and psychological distancing between communities more directly than 
existing measures of online polarization.

Finally, we demonstrate that applying established measures to networks in this 
novel way reveals aspects of polarization in terms of content without relying on 
domain- or language-dependent methods. We show pro-vaccine and anti-vaccine 
users in the discussion surrounding the emergency authorization of Pfizer-BioNTech 
COVID-19 vaccine in early December 2020 become less polarized as announce-
ments from the government and related organizations provide common knowledge 
sources to comment on. Yet both camps continue to use different knowledge in their 
posts, as their position towards the common knowledge sources are opposed.

The divergence in the level of polarization across dimensions empha-
sizes the importance of considering multiple ways division occurs through a 
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high-dimensional approach. Each dimension can be affected by events differently, 
which has implications for understanding drivers of online discussion dynam-
ics. In this case, we see official communication collapses the online vaccine dis-
course around the same sources of information. As people develop their attitudes 
towards the COVID-19 vaccine, they interact with an ideologically diverse set 
of users about the (relatively) little information available at that time. Therefore, 
pro-vaccine and anti-vaccine users display less polarization overall during the 
days surrounding the authorization announcement despite consistently using dif-
ferent knowledge in their posts. Interpreting the polarization of each dimension 
and overall requires an understanding of contextual factors, such as the recentness 
of the debated issue.

Polarization is necessarily a dynamic phenomenon. The sufficient conditions of 
polarization described in List 1 can only arise due to social and cognitive processes 
that occur over time. Groups and collective narratives do not develop or disappear 
instantaneously. In this study, we see polarization as salient when division is system-
atically reproduced across group members.

That said, these measures can be applied over multiple time points to determine 
the extent to which there is consistent polarization, as we did in the case study. 
Alternatively, researchers can generate networks based on communication, knowl-
edge and knowledge sources used within a range of days rather than a single day to 
detect persistent patterns of division.

The proposed methodology is flexible enough to allow for modular adjustments 
to the analytical steps. In the case study, we use hashtags as knowledge bits. How-
ever, researchers can use topics identified through topic modeling or qualitative 
analyses, keywords, or any other categorization of content in posts to characterize 
knowledge use within and between groups. Similarly, alternative definitions of com-
munication between users and knowledge sources, as well as group membership, 
can be incorporated into our framework.

Our aim is to assist analyses of the wealth of data afforded by social media and 
other online platforms that provide new opportunities to understand how discourse 
and group dynamics evolve. Digital technologies are in constant evolution and 
require ongoing empirical investigations to capture changes in polarizing effects 
[7]. With the proposed high-dimensional framework to evaluate online polarization, 
researchers can investigate how communication, knowledge usage, and knowledge 
source citation within and between ideologically opposed communities is affected 
by related events [8] and de-polarization efforts (e.g., altering the social network 
through algorithmic bridging of users [10, 83]). Moreover, assessing polarization 
in terms of multiple dimensions could reveal how certain communities or topics are 
vulnerable to polarization. This would inform proactive interventions, rather than 
reactive ones, to improve resilience to division and extremism.

Limitations

Our choice of data, network representations of communication and shared knowl-
edge/source usage, prevents direct comparison of opinion extremity and sentiment 
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expressed within and between groups. These are worthwhile future additions to our 
measure depending on the goal of the researchers. For example, the sentiment of an 
interaction between users provides additional information about the nature of their 
relationship (e.g., antagonistic, friendly, neutral) [84]. It also often requires language 
and domain specific knowledge to detect.

Moreover, we qualify our claims of language and domain independence as fol-
lows. Although most stance detection requires some level of supervision [85], more 
methods are being developed where manual labelling is not necessary [86, 87]. We 
expect these unsupervised tools will be developed further, but do not address the 
language and domain dependence of many existing stance detection methods in this 
work. The claim of language and domain dependence solely applies to the polariza-
tion measurement following the identification of ideologically opposing groups of 
users. However, stance detection is an essential step to assign users to ideologically 
opposing groups.

Appendix A. Daily summary statistics for case study

See Table 5 here.

Table 5   Summary statistics by day for case study

Day Num. agents (pro/anti) Num. knowledge 
bits

Num. knowledge 
sources

Num. tweets

1 29,735 (24,608/5,127) 1154 11,613 39,026
2 148,662 (125,795/22,867) 2960 32,931 217,071
3 134,119 (97,089/37,030) 3059 32,647 193,599
4 98,478 (67,176/31,302) 2812 28,286 138,318
5 74,779 (49,920/24,859) 2214 19,943 103,103
6 64,994 (42,033/22,961) 2116 18,469 89,166
7 90,699 (67,195/23,504) 2169 21,811 126,771
8 218,678 (190,184/28,494) 4646 58,346 339,309
9 174,855 (137,774/37,081) 4602 53,993 251,810
10 157,078 (117,757/39,321) 4194 50,507 226,507
11 149,258 (129,883/19,375) 4062 48,448 214,403
12 101,024 (88,791/12,233) 3501 36,444 139,595
13 132,637 (118,339/14,298) 3227 37,119 187,659
14 171,942 (156,955/14,987) 3984 49,620 249,248
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